--- /dev/null
+/*
+ * (C) Copyright 2010
+ * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com.
+ *
+ * (C) Copyright 2012
+ * Amit Virdi, ST Microelectronics, amit.virdi@st.com.
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/io.h>
+#include <linux/bitops.h>
+#include <linux/err.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/fsmc_nand.h>
+#include <asm/arch/hardware.h>
+
+static u32 fsmc_version;
+static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)
+ CONFIG_SYS_FSMC_BASE;
+
+/*
+ * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of
+ * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can
+ * correct 1 bit in 512 bytes
+ */
+
+static struct nand_ecclayout fsmc_ecc4_lp_layout = {
+ .eccbytes = 104,
+ .eccpos = { 2, 3, 4, 5, 6, 7, 8,
+ 9, 10, 11, 12, 13, 14,
+ 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30,
+ 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 45, 46,
+ 50, 51, 52, 53, 54, 55, 56,
+ 57, 58, 59, 60, 61, 62,
+ 66, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78,
+ 82, 83, 84, 85, 86, 87, 88,
+ 89, 90, 91, 92, 93, 94,
+ 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110,
+ 114, 115, 116, 117, 118, 119, 120,
+ 121, 122, 123, 124, 125, 126
+ },
+ .oobfree = {
+ {.offset = 15, .length = 3},
+ {.offset = 31, .length = 3},
+ {.offset = 47, .length = 3},
+ {.offset = 63, .length = 3},
+ {.offset = 79, .length = 3},
+ {.offset = 95, .length = 3},
+ {.offset = 111, .length = 3},
+ {.offset = 127, .length = 1}
+ }
+};
+
+/*
+ * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
+ * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
+ * bytes are free for use.
+ */
+static struct nand_ecclayout fsmc_ecc4_224_layout = {
+ .eccbytes = 104,
+ .eccpos = { 2, 3, 4, 5, 6, 7, 8,
+ 9, 10, 11, 12, 13, 14,
+ 18, 19, 20, 21, 22, 23, 24,
+ 25, 26, 27, 28, 29, 30,
+ 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 45, 46,
+ 50, 51, 52, 53, 54, 55, 56,
+ 57, 58, 59, 60, 61, 62,
+ 66, 67, 68, 69, 70, 71, 72,
+ 73, 74, 75, 76, 77, 78,
+ 82, 83, 84, 85, 86, 87, 88,
+ 89, 90, 91, 92, 93, 94,
+ 98, 99, 100, 101, 102, 103, 104,
+ 105, 106, 107, 108, 109, 110,
+ 114, 115, 116, 117, 118, 119, 120,
+ 121, 122, 123, 124, 125, 126
+ },
+ .oobfree = {
+ {.offset = 15, .length = 3},
+ {.offset = 31, .length = 3},
+ {.offset = 47, .length = 3},
+ {.offset = 63, .length = 3},
+ {.offset = 79, .length = 3},
+ {.offset = 95, .length = 3},
+ {.offset = 111, .length = 3},
+ {.offset = 127, .length = 97}
+ }
+};
+
+/*
+ * ECC placement definitions in oobfree type format
+ * There are 13 bytes of ecc for every 512 byte block and it has to be read
+ * consecutively and immediately after the 512 byte data block for hardware to
+ * generate the error bit offsets in 512 byte data
+ * Managing the ecc bytes in the following way makes it easier for software to
+ * read ecc bytes consecutive to data bytes. This way is similar to
+ * oobfree structure maintained already in u-boot nand driver
+ */
+static struct fsmc_eccplace fsmc_eccpl_lp = {
+ .eccplace = {
+ {.offset = 2, .length = 13},
+ {.offset = 18, .length = 13},
+ {.offset = 34, .length = 13},
+ {.offset = 50, .length = 13},
+ {.offset = 66, .length = 13},
+ {.offset = 82, .length = 13},
+ {.offset = 98, .length = 13},
+ {.offset = 114, .length = 13}
+ }
+};
+
+static struct nand_ecclayout fsmc_ecc4_sp_layout = {
+ .eccbytes = 13,
+ .eccpos = { 0, 1, 2, 3, 6, 7, 8,
+ 9, 10, 11, 12, 13, 14
+ },
+ .oobfree = {
+ {.offset = 15, .length = 1},
+ }
+};
+
+static struct fsmc_eccplace fsmc_eccpl_sp = {
+ .eccplace = {
+ {.offset = 0, .length = 4},
+ {.offset = 6, .length = 9}
+ }
+};
+
+static struct nand_ecclayout fsmc_ecc1_layout = {
+ .eccbytes = 24,
+ .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
+ 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
+ .oobfree = {
+ {.offset = 8, .length = 8},
+ {.offset = 24, .length = 8},
+ {.offset = 40, .length = 8},
+ {.offset = 56, .length = 8},
+ {.offset = 72, .length = 8},
+ {.offset = 88, .length = 8},
+ {.offset = 104, .length = 8},
+ {.offset = 120, .length = 8}
+ }
+};
+
+/* Count the number of 0's in buff upto a max of max_bits */
+static int count_written_bits(uint8_t *buff, int size, int max_bits)
+{
+ int k, written_bits = 0;
+
+ for (k = 0; k < size; k++) {
+ written_bits += hweight8(~buff[k]);
+ if (written_bits > max_bits)
+ break;
+ }
+
+ return written_bits;
+}
+
+static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl)
+{
+ struct nand_chip *this = mtd->priv;
+ ulong IO_ADDR_W;
+
+ if (ctrl & NAND_CTRL_CHANGE) {
+ IO_ADDR_W = (ulong)this->IO_ADDR_W;
+
+ IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);
+ if (ctrl & NAND_CLE)
+ IO_ADDR_W |= CONFIG_SYS_NAND_CLE;
+ if (ctrl & NAND_ALE)
+ IO_ADDR_W |= CONFIG_SYS_NAND_ALE;
+
+ if (ctrl & NAND_NCE) {
+ writel(readl(&fsmc_regs_p->pc) |
+ FSMC_ENABLE, &fsmc_regs_p->pc);
+ } else {
+ writel(readl(&fsmc_regs_p->pc) &
+ ~FSMC_ENABLE, &fsmc_regs_p->pc);
+ }
+ this->IO_ADDR_W = (void *)IO_ADDR_W;
+ }
+
+ if (cmd != NAND_CMD_NONE)
+ writeb(cmd, this->IO_ADDR_W);
+}
+
+static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ /* The calculated ecc is actually the correction index in data */
+ u32 err_idx[8];
+ u32 num_err, i;
+ u32 ecc1, ecc2, ecc3, ecc4;
+
+ num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;
+
+ if (likely(num_err == 0))
+ return 0;
+
+ if (unlikely(num_err > 8)) {
+ /*
+ * This is a temporary erase check. A newly erased page read
+ * would result in an ecc error because the oob data is also
+ * erased to FF and the calculated ecc for an FF data is not
+ * FF..FF.
+ * This is a workaround to skip performing correction in case
+ * data is FF..FF
+ *
+ * Logic:
+ * For every page, each bit written as 0 is counted until these
+ * number of bits are greater than 8 (the maximum correction
+ * capability of FSMC for each 512 + 13 bytes)
+ */
+
+ int bits_ecc = count_written_bits(read_ecc, 13, 8);
+ int bits_data = count_written_bits(dat, 512, 8);
+
+ if ((bits_ecc + bits_data) <= 8) {
+ if (bits_data)
+ memset(dat, 0xff, 512);
+ return bits_data + bits_ecc;
+ }
+
+ return -EBADMSG;
+ }
+
+ ecc1 = readl(&fsmc_regs_p->ecc1);
+ ecc2 = readl(&fsmc_regs_p->ecc2);
+ ecc3 = readl(&fsmc_regs_p->ecc3);
+ ecc4 = readl(&fsmc_regs_p->sts);
+
+ err_idx[0] = (ecc1 >> 0) & 0x1FFF;
+ err_idx[1] = (ecc1 >> 13) & 0x1FFF;
+ err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
+ err_idx[3] = (ecc2 >> 7) & 0x1FFF;
+ err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
+ err_idx[5] = (ecc3 >> 1) & 0x1FFF;
+ err_idx[6] = (ecc3 >> 14) & 0x1FFF;
+ err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
+
+ i = 0;
+ while (i < num_err) {
+ err_idx[i] ^= 3;
+
+ if (err_idx[i] < 512 * 8)
+ __change_bit(err_idx[i], dat);
+
+ i++;
+ }
+
+ return num_err;
+}
+
+static int fsmc_read_hwecc(struct mtd_info *mtd,
+ const u_char *data, u_char *ecc)
+{
+ u_int ecc_tmp;
+ int timeout = CONFIG_SYS_HZ;
+ ulong start;
+
+ switch (fsmc_version) {
+ case FSMC_VER8:
+ start = get_timer(0);
+ while (get_timer(start) < timeout) {
+ /*
+ * Busy waiting for ecc computation
+ * to finish for 512 bytes
+ */
+ if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)
+ break;
+ }
+
+ ecc_tmp = readl(&fsmc_regs_p->ecc1);
+ ecc[0] = (u_char) (ecc_tmp >> 0);
+ ecc[1] = (u_char) (ecc_tmp >> 8);
+ ecc[2] = (u_char) (ecc_tmp >> 16);
+ ecc[3] = (u_char) (ecc_tmp >> 24);
+
+ ecc_tmp = readl(&fsmc_regs_p->ecc2);
+ ecc[4] = (u_char) (ecc_tmp >> 0);
+ ecc[5] = (u_char) (ecc_tmp >> 8);
+ ecc[6] = (u_char) (ecc_tmp >> 16);
+ ecc[7] = (u_char) (ecc_tmp >> 24);
+
+ ecc_tmp = readl(&fsmc_regs_p->ecc3);
+ ecc[8] = (u_char) (ecc_tmp >> 0);
+ ecc[9] = (u_char) (ecc_tmp >> 8);
+ ecc[10] = (u_char) (ecc_tmp >> 16);
+ ecc[11] = (u_char) (ecc_tmp >> 24);
+
+ ecc_tmp = readl(&fsmc_regs_p->sts);
+ ecc[12] = (u_char) (ecc_tmp >> 16);
+ break;
+
+ default:
+ ecc_tmp = readl(&fsmc_regs_p->ecc1);
+ ecc[0] = (u_char) (ecc_tmp >> 0);
+ ecc[1] = (u_char) (ecc_tmp >> 8);
+ ecc[2] = (u_char) (ecc_tmp >> 16);
+ break;
+ }
+
+ return 0;
+}
+
+void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,
+ &fsmc_regs_p->pc);
+ writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,
+ &fsmc_regs_p->pc);
+ writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,
+ &fsmc_regs_p->pc);
+}
+
+/*
+ * fsmc_read_page_hwecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @page: page number to read
+ *
+ * This routine is needed for fsmc verison 8 as reading from NAND chip has to be
+ * performed in a strict sequence as follows:
+ * data(512 byte) -> ecc(13 byte)
+ * After this read, fsmc hardware generates and reports error data bits(upto a
+ * max of 8 bits)
+ */
+static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int page)
+{
+ struct fsmc_eccplace *fsmc_eccpl;
+ int i, j, s, stat, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint8_t *ecc_code = chip->buffers->ecccode;
+ int off, len, group = 0;
+ uint8_t oob[13] __attribute__ ((aligned (2)));
+
+ /* Differentiate between small and large page ecc place definitions */
+ if (mtd->writesize == 512)
+ fsmc_eccpl = &fsmc_eccpl_sp;
+ else
+ fsmc_eccpl = &fsmc_eccpl_lp;
+
+ for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
+
+ chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
+ chip->ecc.hwctl(mtd, NAND_ECC_READ);
+ chip->read_buf(mtd, p, eccsize);
+
+ for (j = 0; j < eccbytes;) {
+ off = fsmc_eccpl->eccplace[group].offset;
+ len = fsmc_eccpl->eccplace[group].length;
+ group++;
+
+ /*
+ * length is intentionally kept a higher multiple of 2
+ * to read at least 13 bytes even in case of 16 bit NAND
+ * devices
+ */
+ if (chip->options & NAND_BUSWIDTH_16)
+ len = roundup(len, 2);
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
+ chip->read_buf(mtd, oob + j, len);
+ j += len;
+ }
+
+ memcpy(&ecc_code[i], oob, 13);
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i],
+ &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+
+ return 0;
+}
+
+int fsmc_nand_init(struct nand_chip *nand)
+{
+ static int chip_nr;
+ struct mtd_info *mtd;
+ int i;
+ u32 peripid2 = readl(&fsmc_regs_p->peripid2);
+
+ fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &
+ FSMC_REVISION_MSK;
+
+ writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);
+
+#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
+ writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
+ &fsmc_regs_p->pc);
+#elif defined(CONFIG_SYS_FSMC_NAND_8BIT)
+ writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
+ &fsmc_regs_p->pc);
+#else
+#error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT
+#endif
+ writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,
+ &fsmc_regs_p->pc);
+ writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
+ &fsmc_regs_p->comm);
+ writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
+ &fsmc_regs_p->attrib);
+
+ nand->options = 0;
+#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
+ nand->options |= NAND_BUSWIDTH_16;
+#endif
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.size = 512;
+ nand->ecc.calculate = fsmc_read_hwecc;
+ nand->ecc.hwctl = fsmc_enable_hwecc;
+ nand->cmd_ctrl = fsmc_nand_hwcontrol;
+ nand->IO_ADDR_R = nand->IO_ADDR_W =
+ (void __iomem *)CONFIG_SYS_NAND_BASE;
+ nand->badblockbits = 7;
+
+ mtd = &nand_info[chip_nr++];
+ mtd->priv = nand;
+
+ switch (fsmc_version) {
+ case FSMC_VER8:
+ nand->ecc.bytes = 13;
+ nand->ecc.correct = fsmc_bch8_correct_data;
+ nand->ecc.read_page = fsmc_read_page_hwecc;
+ if (mtd->writesize == 512)
+ nand->ecc.layout = &fsmc_ecc4_sp_layout;
+ else {
+ if (mtd->oobsize == 224)
+ nand->ecc.layout = &fsmc_ecc4_224_layout;
+ else
+ nand->ecc.layout = &fsmc_ecc4_lp_layout;
+ }
+
+ break;
+ default:
+ nand->ecc.bytes = 3;
+ nand->ecc.layout = &fsmc_ecc1_layout;
+ nand->ecc.correct = nand_correct_data;
+ break;
+ }
+
+ /* Detect NAND chips */
+ if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
+ return -ENXIO;
+
+ if (nand_scan_tail(mtd))
+ return -ENXIO;
+
+ for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
+ if (nand_register(i))
+ return -ENXIO;
+
+ return 0;
+}