--- /dev/null
+#include <cstdlib>
+#include <cstring>
+#include <errno.h>
+#include <inttypes.h>
+#include <memory>
+#include <pthread.h>
+#include <setjmp.h>
+#include <signal.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+#include <time.h>
+#include <unistd.h>
+#include <vector>
+
+#if defined(__APPLE__)
+__OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2)
+int pthread_threadid_np(pthread_t,__uint64_t*);
+#elif defined(__linux__)
+#include <sys/syscall.h>
+#endif
+
+static const char *const RETVAL_PREFIX = "retval:";
+static const char *const SLEEP_PREFIX = "sleep:";
+static const char *const STDERR_PREFIX = "stderr:";
+static const char *const SET_MESSAGE_PREFIX = "set-message:";
+static const char *const PRINT_MESSAGE_COMMAND = "print-message:";
+static const char *const GET_DATA_ADDRESS_PREFIX = "get-data-address-hex:";
+static const char *const GET_STACK_ADDRESS_COMMAND = "get-stack-address-hex:";
+static const char *const GET_HEAP_ADDRESS_COMMAND = "get-heap-address-hex:";
+
+static const char *const GET_CODE_ADDRESS_PREFIX = "get-code-address-hex:";
+static const char *const CALL_FUNCTION_PREFIX = "call-function:";
+
+static const char *const THREAD_PREFIX = "thread:";
+static const char *const THREAD_COMMAND_NEW = "new";
+static const char *const THREAD_COMMAND_PRINT_IDS = "print-ids";
+static const char *const THREAD_COMMAND_SEGFAULT = "segfault";
+
+static bool g_print_thread_ids = false;
+static pthread_mutex_t g_print_mutex = PTHREAD_MUTEX_INITIALIZER;
+static bool g_threads_do_segfault = false;
+
+static pthread_mutex_t g_jump_buffer_mutex = PTHREAD_MUTEX_INITIALIZER;
+static jmp_buf g_jump_buffer;
+static bool g_is_segfaulting = false;
+
+static char g_message[256];
+
+static volatile char g_c1 = '0';
+static volatile char g_c2 = '1';
+
+static void
+print_thread_id ()
+{
+ // Put in the right magic here for your platform to spit out the thread id (tid) that debugserver/lldb-gdbserver would see as a TID.
+ // Otherwise, let the else clause print out the unsupported text so that the unit test knows to skip verifying thread ids.
+#if defined(__APPLE__)
+ __uint64_t tid = 0;
+ pthread_threadid_np(pthread_self(), &tid);
+ printf ("%" PRIx64, tid);
+#elif defined (__linux__)
+ // This is a call to gettid() via syscall.
+ printf ("%" PRIx64, static_cast<uint64_t> (syscall (__NR_gettid)));
+#else
+ printf("{no-tid-support}");
+#endif
+}
+
+static void
+signal_handler (int signo)
+{
+ const char *signal_name = nullptr;
+ switch (signo)
+ {
+ case SIGUSR1: signal_name = "SIGUSR1"; break;
+ case SIGSEGV: signal_name = "SIGSEGV"; break;
+ default: signal_name = nullptr;
+ }
+
+ // Print notice that we received the signal on a given thread.
+ pthread_mutex_lock (&g_print_mutex);
+ if (signal_name)
+ printf ("received %s on thread id: ", signal_name);
+ else
+ printf ("received signo %d (%s) on thread id: ", signo, strsignal (signo));
+ print_thread_id ();
+ printf ("\n");
+ pthread_mutex_unlock (&g_print_mutex);
+
+ // Reset the signal handler if we're one of the expected signal handlers.
+ switch (signo)
+ {
+ case SIGSEGV:
+ if (g_is_segfaulting)
+ {
+ // Fix up the pointer we're writing to. This needs to happen if nothing intercepts the SIGSEGV
+ // (i.e. if somebody runs this from the command line).
+ longjmp(g_jump_buffer, 1);
+ }
+ break;
+ case SIGUSR1:
+ if (g_is_segfaulting)
+ {
+ // Fix up the pointer we're writing to. This is used to test gdb remote signal delivery.
+ // A SIGSEGV will be raised when the thread is created, switched out for a SIGUSR1, and
+ // then this code still needs to fix the seg fault.
+ // (i.e. if somebody runs this from the command line).
+ longjmp(g_jump_buffer, 1);
+ }
+ break;
+ }
+
+ // Reset the signal handler.
+ sig_t sig_result = signal (signo, signal_handler);
+ if (sig_result == SIG_ERR)
+ {
+ fprintf(stderr, "failed to set signal handler: errno=%d\n", errno);
+ exit (1);
+ }
+}
+
+static void
+swap_chars ()
+{
+ g_c1 = '1';
+ g_c2 = '0';
+
+ g_c1 = '0';
+ g_c2 = '1';
+}
+
+static void
+hello ()
+{
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("hello, world\n");
+ pthread_mutex_unlock (&g_print_mutex);
+}
+
+static void*
+thread_func (void *arg)
+{
+ static pthread_mutex_t s_thread_index_mutex = PTHREAD_MUTEX_INITIALIZER;
+ static int s_thread_index = 1;
+
+ pthread_mutex_lock (&s_thread_index_mutex);
+ const int this_thread_index = s_thread_index++;
+ pthread_mutex_unlock (&s_thread_index_mutex);
+
+ if (g_print_thread_ids)
+ {
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("thread %d id: ", this_thread_index);
+ print_thread_id ();
+ printf ("\n");
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+
+ if (g_threads_do_segfault)
+ {
+ // Sleep for a number of seconds based on the thread index.
+ // TODO add ability to send commands to test exe so we can
+ // handle timing more precisely. This is clunky. All we're
+ // trying to do is add predictability as to the timing of
+ // signal generation by created threads.
+ int sleep_seconds = 2 * (this_thread_index - 1);
+ while (sleep_seconds > 0)
+ sleep_seconds = sleep(sleep_seconds);
+
+ // Test creating a SEGV.
+ pthread_mutex_lock (&g_jump_buffer_mutex);
+ g_is_segfaulting = true;
+ int *bad_p = nullptr;
+ if (setjmp(g_jump_buffer) == 0)
+ {
+ // Force a seg fault signal on this thread.
+ *bad_p = 0;
+ }
+ else
+ {
+ // Tell the system we're no longer seg faulting.
+ // Used by the SIGUSR1 signal handler that we inject
+ // in place of the SIGSEGV so it only tries to
+ // recover from the SIGSEGV if this seg fault code
+ // was in play.
+ g_is_segfaulting = false;
+ }
+ pthread_mutex_unlock (&g_jump_buffer_mutex);
+
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("thread ");
+ print_thread_id ();
+ printf (": past SIGSEGV\n");
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+
+ int sleep_seconds_remaining = 60;
+ while (sleep_seconds_remaining > 0)
+ {
+ sleep_seconds_remaining = sleep (sleep_seconds_remaining);
+ }
+
+ return nullptr;
+}
+
+int main (int argc, char **argv)
+{
+ lldb_enable_attach();
+
+ std::vector<pthread_t> threads;
+ std::unique_ptr<uint8_t[]> heap_array_up;
+ int return_value = 0;
+
+ // Set the signal handler.
+ sig_t sig_result = signal (SIGALRM, signal_handler);
+ if (sig_result == SIG_ERR)
+ {
+ fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno);
+ exit (1);
+ }
+
+ sig_result = signal (SIGUSR1, signal_handler);
+ if (sig_result == SIG_ERR)
+ {
+ fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
+ exit (1);
+ }
+
+ sig_result = signal (SIGSEGV, signal_handler);
+ if (sig_result == SIG_ERR)
+ {
+ fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
+ exit (1);
+ }
+
+ // Process command line args.
+ for (int i = 1; i < argc; ++i)
+ {
+ if (std::strstr (argv[i], STDERR_PREFIX))
+ {
+ // Treat remainder as text to go to stderr.
+ fprintf (stderr, "%s\n", (argv[i] + strlen (STDERR_PREFIX)));
+ }
+ else if (std::strstr (argv[i], RETVAL_PREFIX))
+ {
+ // Treat as the return value for the program.
+ return_value = std::atoi (argv[i] + strlen (RETVAL_PREFIX));
+ }
+ else if (std::strstr (argv[i], SLEEP_PREFIX))
+ {
+ // Treat as the amount of time to have this process sleep (in seconds).
+ int sleep_seconds_remaining = std::atoi (argv[i] + strlen (SLEEP_PREFIX));
+
+ // Loop around, sleeping until all sleep time is used up. Note that
+ // signals will cause sleep to end early with the number of seconds remaining.
+ for (int i = 0; sleep_seconds_remaining > 0; ++i)
+ {
+ sleep_seconds_remaining = sleep (sleep_seconds_remaining);
+ // std::cout << "sleep result (call " << i << "): " << sleep_seconds_remaining << std::endl;
+ }
+ }
+ else if (std::strstr (argv[i], SET_MESSAGE_PREFIX))
+ {
+ // Copy the contents after "set-message:" to the g_message buffer.
+ // Used for reading inferior memory and verifying contents match expectations.
+ strncpy (g_message, argv[i] + strlen (SET_MESSAGE_PREFIX), sizeof (g_message));
+
+ // Ensure we're null terminated.
+ g_message[sizeof (g_message) - 1] = '\0';
+
+ }
+ else if (std::strstr (argv[i], PRINT_MESSAGE_COMMAND))
+ {
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("message: %s\n", g_message);
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+ else if (std::strstr (argv[i], GET_DATA_ADDRESS_PREFIX))
+ {
+ volatile void *data_p = nullptr;
+
+ if (std::strstr (argv[i] + strlen (GET_DATA_ADDRESS_PREFIX), "g_message"))
+ data_p = &g_message[0];
+ else if (std::strstr (argv[i] + strlen (GET_DATA_ADDRESS_PREFIX), "g_c1"))
+ data_p = &g_c1;
+ else if (std::strstr (argv[i] + strlen (GET_DATA_ADDRESS_PREFIX), "g_c2"))
+ data_p = &g_c2;
+
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("data address: %p\n", data_p);
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+ else if (std::strstr (argv[i], GET_HEAP_ADDRESS_COMMAND))
+ {
+ // Create a byte array if not already present.
+ if (!heap_array_up)
+ heap_array_up.reset (new uint8_t[32]);
+
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("heap address: %p\n", heap_array_up.get ());
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+ else if (std::strstr (argv[i], GET_STACK_ADDRESS_COMMAND))
+ {
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("stack address: %p\n", &return_value);
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+ else if (std::strstr (argv[i], GET_CODE_ADDRESS_PREFIX))
+ {
+ void (*func_p)() = nullptr;
+
+ if (std::strstr (argv[i] + strlen (GET_CODE_ADDRESS_PREFIX), "hello"))
+ func_p = hello;
+ else if (std::strstr (argv[i] + strlen (GET_CODE_ADDRESS_PREFIX), "swap_chars"))
+ func_p = swap_chars;
+
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("code address: %p\n", func_p);
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+ else if (std::strstr (argv[i], CALL_FUNCTION_PREFIX))
+ {
+ // Defaut to providing the address of main.
+ if (std::strcmp (argv[i] + strlen (CALL_FUNCTION_PREFIX), "hello") == 0)
+ hello();
+ else if (std::strcmp (argv[i] + strlen (CALL_FUNCTION_PREFIX), "swap_chars") == 0)
+ swap_chars();
+ else
+ {
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("unknown function: %s\n", argv[i] + strlen (CALL_FUNCTION_PREFIX));
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+ }
+ else if (std::strstr (argv[i], THREAD_PREFIX))
+ {
+ // Check if we're creating a new thread.
+ if (std::strstr (argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_NEW))
+ {
+ // Create a new thread.
+ pthread_t new_thread;
+ const int err = ::pthread_create (&new_thread, nullptr, thread_func, nullptr);
+ if (err)
+ {
+ fprintf (stderr, "pthread_create() failed with error code %d\n", err);
+ exit (err);
+ }
+ threads.push_back (new_thread);
+ }
+ else if (std::strstr (argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_PRINT_IDS))
+ {
+ // Turn on thread id announcing.
+ g_print_thread_ids = true;
+
+ // And announce us.
+ pthread_mutex_lock (&g_print_mutex);
+ printf ("thread 0 id: ");
+ print_thread_id ();
+ printf ("\n");
+ pthread_mutex_unlock (&g_print_mutex);
+ }
+ else if (std::strstr (argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_SEGFAULT))
+ {
+ g_threads_do_segfault = true;
+ }
+ else
+ {
+ // At this point we don't do anything else with threads.
+ // Later use thread index and send command to thread.
+ }
+ }
+ else
+ {
+ // Treat the argument as text for stdout.
+ printf("%s\n", argv[i]);
+ }
+ }
+
+ // If we launched any threads, join them
+ for (std::vector<pthread_t>::iterator it = threads.begin (); it != threads.end (); ++it)
+ {
+ void *thread_retval = nullptr;
+ const int err = ::pthread_join (*it, &thread_retval);
+ if (err != 0)
+ fprintf (stderr, "pthread_join() failed with error code %d\n", err);
+ }
+
+ return return_value;
+}