// });
}
+class SCSpecific : public ::testing::TestWithParam<std::tr1::tuple<std::string, int> > {
+};
+
+namespace {
+std::string itoa(long i)
+{
+ static char s[65];
+ sprintf(s, "%ld", i);
+ return std::string(s);
+}
+}
+
+TEST_P(SCSpecific, detect)
+{
+ std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml";
+ cv::gpu::SoftCascade cascade;
+ ASSERT_TRUE(cascade.load(xml));
+
+ std::string path = GET_PARAM(0);
+ cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + path);
+
+ ASSERT_FALSE(coloredCpu.empty());
+ GpuMat colored(coloredCpu), objectBoxes(1, 1000, CV_8UC1), rois;
+
+ int level = GET_PARAM(1);
+ cascade.detectMultiScale(colored, rois, objectBoxes, 1, level);
+
+ cv::Mat dt(objectBoxes);
+ typedef cv::gpu::SoftCascade::Detection detection_t;
+
+ detection_t* dts = (detection_t*)dt.data;
+ cv::Mat result(coloredCpu);
+
+
+ std::cout << "Total detections " << (dt.cols / sizeof(detection_t)) << std::endl;
+ for(int i = 0; i < (int)(dt.cols / sizeof(detection_t)); ++i)
+ {
+ detection_t d = dts[i];
+ std::cout << "detection: [" << std::setw(4) << d.x << " " << std::setw(4) << d.y
+ << "] [" << std::setw(4) << d.w << " " << std::setw(4) << d.h << "] "
+ << std::setw(12) << d.confidence << std::endl;
+
+ cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
+ }
+
+ std::cout << "Result stored in " << "/home/kellan/gpu_res_1_oct_" + itoa(level) << "_"
+ + itoa((dt.cols / sizeof(detection_t))) + ".png" << std::endl;
+ cv::imwrite("/home/kellan/gpu_res_1_oct_" + itoa(level) + "_" + itoa((dt.cols / sizeof(detection_t))) + ".png",
+ result);
+ cv::imshow("res", result);
+ cv::waitKey(0);
+}
+
+INSTANTIATE_TEST_CASE_P(inLevel, SCSpecific,
+ testing::Combine(
+ testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
+ testing::Range(0, 47)
+ ));
+
#endif
\ No newline at end of file