spin_unlock(&spool->lock);
/* If no pages are used, and no other handles to the subpool
- * remain, give up any reservations mased on minimum size and
+ * remain, give up any reservations based on minimum size and
* free the subpool */
if (free) {
if (spool->min_hpages != -1)
* the request. Otherwise, return the number of pages by which the
* global pools must be adjusted (upward). The returned value may
* only be different than the passed value (delta) in the case where
- * a subpool minimum size must be manitained.
+ * a subpool minimum size must be maintained.
*/
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
long delta)
*
* Return the number of new huge pages added to the map. This number is greater
* than or equal to zero. If file_region entries needed to be allocated for
- * this operation and we were not able to allocate, it ruturns -ENOMEM.
+ * this operation and we were not able to allocate, it returns -ENOMEM.
* region_add of regions of length 1 never allocate file_regions and cannot
* fail; region_chg will always allocate at least 1 entry and a region_add for
* 1 page will only require at most 1 entry.
* We know VM_NORESERVE is not set. Therefore, there SHOULD
* be a region map for all pages. The only situation where
* there is no region map is if a hole was punched via
- * fallocate. In this case, there really are no reverves to
+ * fallocate. In this case, there really are no reserves to
* use. This situation is indicated if chg != 0.
*/
if (chg)
* For gigantic hugepages allocated through bootmem at
* boot, it's safer to be consistent with the not-gigantic
* hugepages and clear the PG_reserved bit from all tail pages
- * too. Otherwse drivers using get_user_pages() to access tail
+ * too. Otherwise drivers using get_user_pages() to access tail
* pages may get the reference counting wrong if they see
* PG_reserved set on a tail page (despite the head page not
* having PG_reserved set). Enforcing this consistency between
/*
* entry could be a migration/hwpoison entry at this point, so this
* check prevents the kernel from going below assuming that we have
- * a active hugepage in pagecache. This goto expects the 2nd page fault,
- * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
- * handle it.
+ * an active hugepage in pagecache. This goto expects the 2nd page
+ * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
+ * properly handle it.
*/
if (!pte_present(entry))
goto out_mutex;