refactored generalized hough (both CPU and GPU):
authorVladislav Vinogradov <vlad.vinogradov@itseez.com>
Tue, 25 Jun 2013 13:39:05 +0000 (17:39 +0400)
committerVladislav Vinogradov <vlad.vinogradov@itseez.com>
Thu, 18 Jul 2013 11:17:33 +0000 (15:17 +0400)
removed set/get methods from Algorithm (implement owns)
removed GHT_* enumeration

modules/gpuimgproc/doc/hough.rst
modules/gpuimgproc/include/opencv2/gpuimgproc.hpp
modules/gpuimgproc/perf/perf_hough.cpp
modules/gpuimgproc/src/cuda/generalized_hough.cu
modules/gpuimgproc/src/generalized_hough.cpp
modules/gpuimgproc/test/test_hough.cpp
modules/imgproc/include/opencv2/imgproc.hpp
modules/imgproc/src/generalized_hough.cpp
samples/gpu/generalized_hough.cpp

index eb0f83c..fa65365 100644 (file)
@@ -213,98 +213,19 @@ Creates implementation for :ocv:class:`gpu::HoughCirclesDetector` .
 
 
 
-gpu::GeneralizedHough
----------------------
-.. ocv:class:: gpu::GeneralizedHough : public Algorithm
-
-Base class for generalized hough transform. ::
-
-    class CV_EXPORTS GeneralizedHough : public Algorithm
-    {
-    public:
-        static Ptr<GeneralizedHough> create(int method);
-
-        virtual void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1)) = 0;
-        virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
-
-        virtual void detect(InputArray image, OutputArray positions, int cannyThreshold = 100) = 0;
-        virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions) = 0;
-
-        virtual void downloadResults(InputArray d_positions, OutputArray h_positions, OutputArray h_votes = noArray()) = 0;
-    };
-
-
-Finds arbitrary template in the grayscale image using Generalized Hough Transform.
-
-
-
-gpu::GeneralizedHough::create
------------------------------
-Creates implementation for :ocv:class:`gpu::GeneralizedHough` .
-
-.. ocv:function:: Ptr<GeneralizedHough> gpu::GeneralizedHough::create(int method)
-
-    :param method: Combination of flags ( ``cv::GeneralizedHough::GHT_POSITION`` , ``cv::GeneralizedHough::GHT_SCALE`` , ``cv::GeneralizedHough::GHT_ROTATION`` ) specifying transformation to find.
-
-For full affine transformations (move + scale + rotation) [Guil1999]_ algorithm is used, otherwise [Ballard1981]_ algorithm is used.
-
-
-
-gpu::GeneralizedHough::setTemplate
+gpu::createGeneralizedHoughBallard
 ----------------------------------
-Set template to search.
-
-.. ocv:function:: void gpu::GeneralizedHough::setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1))
-
-.. ocv:function:: void gpu::GeneralizedHough::setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1))
+Creates implementation for generalized hough transform from [Ballard1981]_ .
 
-    :param templ: Template image. Canny edge detector will be applied to extract template edges.
+.. ocv:function:: Ptr<GeneralizedHoughBallard> gpu::createGeneralizedHoughBallard()
 
-    :param cannyThreshold: Threshold value for Canny edge detector.
 
-    :param templCenter: Center for rotation. By default image center will be used.
 
-    :param edges: Edge map for template image.
-
-    :param dx: First derivative of template image in the vertical direction. Support only ``CV_32S`` type.
-
-    :param dy: First derivative of template image in the horizontal direction. Support only ``CV_32S`` type.
-
-
-
-gpu::GeneralizedHough::detect
------------------------------
-Finds template (set by :ocv:func:`gpu::GeneralizedHough::setTemplate` ) in the grayscale image.
-
-.. ocv:function:: void gpu::GeneralizedHough::detect(InputArray image, OutputArray positions, int cannyThreshold = 100)
-
-.. ocv:function:: void gpu::GeneralizedHough::detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions)
-
-    :param templ: Input image. Canny edge detector will be applied to extract template edges.
-
-    :param positions: Output vector of found objects. Each vector is encoded as a 4-element floating-point vector  :math:`(x, y, scale, angle)` .
-
-    :param cannyThreshold: Threshold value for Canny edge detector.
-
-    :param edges: Edge map for input image.
-
-    :param dx: First derivative of input image in the vertical direction. Support only ``CV_32S`` type.
-
-    :param dy: First derivative of input image in the horizontal direction. Support only ``CV_32S`` type.
-
-
-
-gpu::GeneralizedHough::downloadResults
---------------------------------------
-Downloads results from :ocv:func:`gpu::GeneralizedHough::detect` to host memory.
-
-.. ocv:function:: void gpu::GeneralizedHough::downloadResult(InputArray d_positions, OutputArray h_positions, OutputArray h_votes = noArray())
-
-    :param d_lines: Result of :ocv:func:`gpu::GeneralizedHough::detect` .
-
-    :param h_lines: Output host array.
+gpu::createGeneralizedHoughGuil
+-------------------------------
+Creates implementation for generalized hough transform from [Guil1999]_ .
 
-    :param h_votes: Optional output array for votes. Each vector is encoded as a 3-element integer-point vector  :math:`(position_votes, scale_votes, angle_votes)` .
+.. ocv:function:: Ptr<GeneralizedHoughGuil> gpu::createGeneralizedHoughGuil()
 
 
 
index 3304765..f0a0f12 100644 (file)
@@ -283,24 +283,13 @@ CV_EXPORTS Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float
 //////////////////////////////////////
 // GeneralizedHough
 
-//! finds arbitrary template in the grayscale image using Generalized Hough Transform
 //! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
-//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
-class CV_EXPORTS GeneralizedHough : public Algorithm
-{
-public:
-    static Ptr<GeneralizedHough> create(int method);
-
-    //! set template to search
-    virtual void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1)) = 0;
-    virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
+//! Detects position only without traslation and rotation
+CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
 
-    //! find template on image
-    virtual void detect(InputArray image, OutputArray positions, int cannyThreshold = 100) = 0;
-    virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions) = 0;
-
-    virtual void downloadResults(InputArray d_positions, OutputArray h_positions, OutputArray h_votes = noArray()) = 0;
-};
+//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
+//! Detects position, traslation and rotation
+CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
 
 ////////////////////////// Corners Detection ///////////////////////////
 
index f72a820..cce8e74 100644 (file)
@@ -227,23 +227,59 @@ PERF_TEST_P(Sz_Dp_MinDist, HoughCircles,
 //////////////////////////////////////////////////////////////////////
 // GeneralizedHough
 
-enum { GHT_POSITION = cv::GeneralizedHough::GHT_POSITION,
-       GHT_SCALE    = cv::GeneralizedHough::GHT_SCALE,
-       GHT_ROTATION = cv::GeneralizedHough::GHT_ROTATION
-     };
+PERF_TEST_P(Sz, GeneralizedHoughBallard, GPU_TYPICAL_MAT_SIZES)
+{
+    declare.time(10);
+
+    const cv::Size imageSize = GetParam();
+
+    const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
+    ASSERT_FALSE(templ.empty());
+
+    cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0));
+    templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows)));
+
+    cv::Mat edges;
+    cv::Canny(image, edges, 50, 100);
+
+    cv::Mat dx, dy;
+    cv::Sobel(image, dx, CV_32F, 1, 0);
+    cv::Sobel(image, dy, CV_32F, 0, 1);
+
+    if (PERF_RUN_GPU())
+    {
+        cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::gpu::createGeneralizedHoughBallard();
+
+        const cv::gpu::GpuMat d_edges(edges);
+        const cv::gpu::GpuMat d_dx(dx);
+        const cv::gpu::GpuMat d_dy(dy);
+        cv::gpu::GpuMat positions;
+
+        alg->setTemplate(cv::gpu::GpuMat(templ));
+
+        TEST_CYCLE() alg->detect(d_edges, d_dx, d_dy, positions);
+
+        GPU_SANITY_CHECK(positions);
+    }
+    else
+    {
+        cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::createGeneralizedHoughBallard();
+
+        cv::Mat positions;
+
+        alg->setTemplate(templ);
 
-CV_FLAGS(GHMethod, GHT_POSITION, GHT_SCALE, GHT_ROTATION);
+        TEST_CYCLE() alg->detect(edges, dx, dy, positions);
 
-DEF_PARAM_TEST(Method_Sz, GHMethod, cv::Size);
+        CPU_SANITY_CHECK(positions);
+    }
+}
 
-PERF_TEST_P(Method_Sz, GeneralizedHough,
-            Combine(Values(GHMethod(GHT_POSITION), GHMethod(GHT_POSITION | GHT_SCALE), GHMethod(GHT_POSITION | GHT_ROTATION), GHMethod(GHT_POSITION | GHT_SCALE | GHT_ROTATION)),
-                    GPU_TYPICAL_MAT_SIZES))
+PERF_TEST_P(Sz, GeneralizedHoughGuil, GPU_TYPICAL_MAT_SIZES)
 {
     declare.time(10);
 
-    const int method = GET_PARAM(0);
-    const cv::Size imageSize = GET_PARAM(1);
+    const cv::Size imageSize = GetParam();
 
     const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
     ASSERT_FALSE(templ.empty());
@@ -281,39 +317,32 @@ PERF_TEST_P(Method_Sz, GeneralizedHough,
 
     if (PERF_RUN_GPU())
     {
+        cv::Ptr<cv::GeneralizedHoughGuil> alg = cv::gpu::createGeneralizedHoughGuil();
+        alg->setMaxAngle(90.0);
+        alg->setAngleStep(2.0);
+
         const cv::gpu::GpuMat d_edges(edges);
         const cv::gpu::GpuMat d_dx(dx);
         const cv::gpu::GpuMat d_dy(dy);
-        cv::gpu::GpuMat posAndVotes;
+        cv::gpu::GpuMat positions;
 
-        cv::Ptr<cv::gpu::GeneralizedHough> d_hough = cv::gpu::GeneralizedHough::create(method);
-        if (method & GHT_ROTATION)
-        {
-            d_hough->set("maxAngle", 90.0);
-            d_hough->set("angleStep", 2.0);
-        }
+        alg->setTemplate(cv::gpu::GpuMat(templ));
 
-        d_hough->setTemplate(cv::gpu::GpuMat(templ));
+        TEST_CYCLE() alg->detect(d_edges, d_dx, d_dy, positions);
 
-        TEST_CYCLE() d_hough->detect(d_edges, d_dx, d_dy, posAndVotes);
-
-        const cv::gpu::GpuMat positions(1, posAndVotes.cols, CV_32FC4, posAndVotes.data);
         GPU_SANITY_CHECK(positions);
     }
     else
     {
-        cv::Mat positions;
+        cv::Ptr<cv::GeneralizedHoughGuil> alg = cv::createGeneralizedHoughGuil();
+        alg->setMaxAngle(90.0);
+        alg->setAngleStep(2.0);
 
-        cv::Ptr<cv::GeneralizedHough> hough = cv::GeneralizedHough::create(method);
-        if (method & GHT_ROTATION)
-        {
-            hough->set("maxAngle", 90.0);
-            hough->set("angleStep", 2.0);
-        }
+        cv::Mat positions;
 
-        hough->setTemplate(templ);
+        alg->setTemplate(templ);
 
-        TEST_CYCLE() hough->detect(edges, dx, dy, positions);
+        TEST_CYCLE() alg->detect(edges, dx, dy, positions);
 
         CPU_SANITY_CHECK(positions);
     }
index 14c8600..fdf691f 100644 (file)
@@ -308,268 +308,6 @@ namespace cv { namespace gpu { namespace cudev
         }
 
         ////////////////////////////////////////////////////////////////////////
-        // Ballard_PosScale
-
-        __global__ void Ballard_PosScale_calcHist(const unsigned int* coordList, const float* thetaList,
-                                                  PtrStep<short2> r_table, const int* r_sizes,
-                                                  PtrStepi hist, const int rows, const int cols,
-                                                  const float minScale, const float scaleStep, const int scaleRange,
-                                                  const float idp, const float thetaScale)
-        {
-            const unsigned int coord = coordList[blockIdx.x];
-            float2 p;
-            p.x = (coord & 0xFFFF);
-            p.y = (coord >> 16) & 0xFFFF;
-
-            const float theta = thetaList[blockIdx.x];
-            const int n = __float2int_rn(theta * thetaScale);
-
-            const short2* r_row = r_table.ptr(n);
-            const int r_row_size = r_sizes[n];
-
-            for (int j = 0; j < r_row_size; ++j)
-            {
-                const float2 d = saturate_cast<float2>(r_row[j]);
-
-                for (int s = threadIdx.x; s < scaleRange; s += blockDim.x)
-                {
-                    const float scale = minScale + s * scaleStep;
-
-                    float2 c = p - scale * d;
-
-                    c.x *= idp;
-                    c.y *= idp;
-
-                    if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows)
-                        ::atomicAdd(hist.ptr((s + 1) * (rows + 2) + __float2int_rn(c.y + 1)) + __float2int_rn(c.x + 1), 1);
-                }
-            }
-        }
-
-        void Ballard_PosScale_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
-                                           PtrStepSz<short2> r_table, const int* r_sizes,
-                                           PtrStepi hist, int rows, int cols,
-                                           float minScale, float scaleStep, int scaleRange,
-                                           float dp, int levels)
-        {
-            const dim3 block(256);
-            const dim3 grid(pointsCount);
-
-            const float idp = 1.0f / dp;
-            const float thetaScale = levels / (2.0f * CV_PI_F);
-
-            Ballard_PosScale_calcHist<<<grid, block>>>(coordList, thetaList,
-                                                       r_table, r_sizes,
-                                                       hist, rows, cols,
-                                                       minScale, scaleStep, scaleRange,
-                                                       idp, thetaScale);
-            cudaSafeCall( cudaGetLastError() );
-
-            cudaSafeCall( cudaDeviceSynchronize() );
-        }
-
-        __global__ void Ballard_PosScale_findPosInHist(const PtrStepi hist, const int rows, const int cols, const int scaleRange,
-                                                       float4* out, int3* votes, const int maxSize,
-                                                       const float minScale, const float scaleStep, const float dp, const int threshold)
-        {
-            const int x = blockIdx.x * blockDim.x + threadIdx.x;
-            const int y = blockIdx.y * blockDim.y + threadIdx.y;
-
-            if (x >= cols || y >= rows)
-                return;
-
-            for (int s = 0; s < scaleRange; ++s)
-            {
-                const float scale = minScale + s * scaleStep;
-
-                const int prevScaleIdx = (s) * (rows + 2);
-                const int curScaleIdx = (s + 1) * (rows + 2);
-                const int nextScaleIdx = (s + 2) * (rows + 2);
-
-                const int curVotes = hist(curScaleIdx + y + 1, x + 1);
-
-                if (curVotes > threshold &&
-                    curVotes >  hist(curScaleIdx + y + 1, x) &&
-                    curVotes >= hist(curScaleIdx + y + 1, x + 2) &&
-                    curVotes >  hist(curScaleIdx + y, x + 1) &&
-                    curVotes >= hist(curScaleIdx + y + 2, x + 1) &&
-                    curVotes >  hist(prevScaleIdx + y + 1, x + 1) &&
-                    curVotes >= hist(nextScaleIdx + y + 1, x + 1))
-                {
-                    const int ind = ::atomicAdd(&g_counter, 1);
-
-                    if (ind < maxSize)
-                    {
-                        out[ind] = make_float4(x * dp, y * dp, scale, 0.0f);
-                        votes[ind] = make_int3(curVotes, curVotes, 0);
-                    }
-                }
-            }
-        }
-
-        int Ballard_PosScale_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int scaleRange, float4* out, int3* votes, int maxSize,
-                                               float minScale, float scaleStep, float dp, int threshold)
-        {
-            void* counterPtr;
-            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
-
-            cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
-
-            const dim3 block(32, 8);
-            const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
-
-            cudaSafeCall( cudaFuncSetCacheConfig(Ballard_PosScale_findPosInHist, cudaFuncCachePreferL1) );
-
-            Ballard_PosScale_findPosInHist<<<grid, block>>>(hist, rows, cols, scaleRange, out, votes,
-                                                            maxSize, minScale, scaleStep, dp, threshold);
-            cudaSafeCall( cudaGetLastError() );
-
-            cudaSafeCall( cudaDeviceSynchronize() );
-
-            int totalCount;
-            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
-
-            totalCount = ::min(totalCount, maxSize);
-
-            return totalCount;
-        }
-
-        ////////////////////////////////////////////////////////////////////////
-        // Ballard_PosRotation
-
-        __global__ void Ballard_PosRotation_calcHist(const unsigned int* coordList, const float* thetaList,
-                                                     PtrStep<short2> r_table, const int* r_sizes,
-                                                     PtrStepi hist, const int rows, const int cols,
-                                                     const float minAngle, const float angleStep, const int angleRange,
-                                                     const float idp, const float thetaScale)
-        {
-            const unsigned int coord = coordList[blockIdx.x];
-            float2 p;
-            p.x = (coord & 0xFFFF);
-            p.y = (coord >> 16) & 0xFFFF;
-
-            const float thetaVal = thetaList[blockIdx.x];
-
-            for (int a = threadIdx.x; a < angleRange; a += blockDim.x)
-            {
-                const float angle = (minAngle + a * angleStep) * (CV_PI_F / 180.0f);
-                float sinA, cosA;
-                sincosf(angle, &sinA, &cosA);
-
-                float theta = thetaVal - angle;
-                if (theta < 0)
-                    theta += 2.0f * CV_PI_F;
-
-                const int n = __float2int_rn(theta * thetaScale);
-
-                const short2* r_row = r_table.ptr(n);
-                const int r_row_size = r_sizes[n];
-
-                for (int j = 0; j < r_row_size; ++j)
-                {
-                    const float2 d = saturate_cast<float2>(r_row[j]);
-
-                    const float2 dr = make_float2(d.x * cosA - d.y * sinA, d.x * sinA + d.y * cosA);
-
-                    float2 c = make_float2(p.x - dr.x, p.y - dr.y);
-                    c.x *= idp;
-                    c.y *= idp;
-
-                    if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows)
-                        ::atomicAdd(hist.ptr((a + 1) * (rows + 2) + __float2int_rn(c.y + 1)) + __float2int_rn(c.x + 1), 1);
-                }
-            }
-        }
-
-        void Ballard_PosRotation_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
-                                              PtrStepSz<short2> r_table, const int* r_sizes,
-                                              PtrStepi hist, int rows, int cols,
-                                              float minAngle, float angleStep, int angleRange,
-                                              float dp, int levels)
-        {
-            const dim3 block(256);
-            const dim3 grid(pointsCount);
-
-            const float idp = 1.0f / dp;
-            const float thetaScale = levels / (2.0f * CV_PI_F);
-
-            Ballard_PosRotation_calcHist<<<grid, block>>>(coordList, thetaList,
-                                                          r_table, r_sizes,
-                                                          hist, rows, cols,
-                                                          minAngle, angleStep, angleRange,
-                                                          idp, thetaScale);
-            cudaSafeCall( cudaGetLastError() );
-
-            cudaSafeCall( cudaDeviceSynchronize() );
-        }
-
-        __global__ void Ballard_PosRotation_findPosInHist(const PtrStepi hist, const int rows, const int cols, const int angleRange,
-                                                          float4* out, int3* votes, const int maxSize,
-                                                          const float minAngle, const float angleStep, const float dp, const int threshold)
-        {
-            const int x = blockIdx.x * blockDim.x + threadIdx.x;
-            const int y = blockIdx.y * blockDim.y + threadIdx.y;
-
-            if (x >= cols || y >= rows)
-                return;
-
-            for (int a = 0; a < angleRange; ++a)
-            {
-                const float angle = minAngle + a * angleStep;
-
-                const int prevAngleIdx = (a) * (rows + 2);
-                const int curAngleIdx = (a + 1) * (rows + 2);
-                const int nextAngleIdx = (a + 2) * (rows + 2);
-
-                const int curVotes = hist(curAngleIdx + y + 1, x + 1);
-
-                if (curVotes > threshold &&
-                    curVotes >  hist(curAngleIdx + y + 1, x) &&
-                    curVotes >= hist(curAngleIdx + y + 1, x + 2) &&
-                    curVotes >  hist(curAngleIdx + y, x + 1) &&
-                    curVotes >= hist(curAngleIdx + y + 2, x + 1) &&
-                    curVotes >  hist(prevAngleIdx + y + 1, x + 1) &&
-                    curVotes >= hist(nextAngleIdx + y + 1, x + 1))
-                {
-                    const int ind = ::atomicAdd(&g_counter, 1);
-
-                    if (ind < maxSize)
-                    {
-                        out[ind] = make_float4(x * dp, y * dp, 1.0f, angle);
-                        votes[ind] = make_int3(curVotes, 0, curVotes);
-                    }
-                }
-            }
-        }
-
-        int Ballard_PosRotation_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int angleRange, float4* out, int3* votes, int maxSize,
-                                                  float minAngle, float angleStep, float dp, int threshold)
-        {
-            void* counterPtr;
-            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
-
-            cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
-
-            const dim3 block(32, 8);
-            const dim3 grid(divUp(cols, block.x), divUp(rows, block.y));
-
-            cudaSafeCall( cudaFuncSetCacheConfig(Ballard_PosRotation_findPosInHist, cudaFuncCachePreferL1) );
-
-            Ballard_PosRotation_findPosInHist<<<grid, block>>>(hist, rows, cols, angleRange, out, votes,
-                                                               maxSize, minAngle, angleStep, dp, threshold);
-            cudaSafeCall( cudaGetLastError() );
-
-            cudaSafeCall( cudaDeviceSynchronize() );
-
-            int totalCount;
-            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
-
-            totalCount = ::min(totalCount, maxSize);
-
-            return totalCount;
-        }
-
-        ////////////////////////////////////////////////////////////////////////
         // Guil_Full
 
         struct FeatureTable
index 0d01301..6adfcb7 100644 (file)
@@ -47,7 +47,9 @@ using namespace cv::gpu;
 
 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_GPUARITHM)
 
-Ptr<gpu::GeneralizedHough> cv::gpu::GeneralizedHough::create(int) { throw_no_cuda(); return Ptr<GeneralizedHough>(); }
+Ptr<GeneralizedHoughBallard> cv::gpu::createGeneralizedHoughBallard() { throw_no_cuda(); return Ptr<GeneralizedHoughBallard>(); }
+
+Ptr<GeneralizedHoughGuil> cv::gpu::createGeneralizedHoughGuil() { throw_no_cuda(); return Ptr<GeneralizedHoughGuil>(); }
 
 #else /* !defined (HAVE_CUDA) */
 
@@ -67,22 +69,6 @@ namespace cv { namespace gpu { namespace cudev
                                       float dp, int levels);
         int Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold);
 
-        void Ballard_PosScale_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
-                                           PtrStepSz<short2> r_table, const int* r_sizes,
-                                           PtrStepi hist, int rows, int cols,
-                                           float minScale, float scaleStep, int scaleRange,
-                                           float dp, int levels);
-        int Ballard_PosScale_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int scaleRange, float4* out, int3* votes, int maxSize,
-                                               float minScale, float scaleStep, float dp, int threshold);
-
-        void Ballard_PosRotation_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
-                                              PtrStepSz<short2> r_table, const int* r_sizes,
-                                              PtrStepi hist, int rows, int cols,
-                                              float minAngle, float angleStep, int angleRange,
-                                              float dp, int levels);
-        int Ballard_PosRotation_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int angleRange, float4* out, int3* votes, int maxSize,
-                                                  float minAngle, float angleStep, float dp, int threshold);
-
         void Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
         void Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
         void Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
@@ -110,278 +96,207 @@ namespace cv { namespace gpu { namespace cudev
     }
 }}}
 
+// common
+
 namespace
 {
-    /////////////////////////////////////
-    // GeneralizedHoughBase
-
-    class GeneralizedHoughBase : public gpu::GeneralizedHough
+    class GeneralizedHoughBase
     {
-    public:
+    protected:
         GeneralizedHoughBase();
+        virtual ~GeneralizedHoughBase() {}
 
-        void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
-        void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1));
+        void setTemplateImpl(InputArray templ, Point templCenter);
+        void setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter);
 
-        void detect(InputArray image, OutputArray positions, int cannyThreshold = 100);
-        void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions);
+        void detectImpl(InputArray image, OutputArray positions, OutputArray votes);
+        void detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes);
 
-        void downloadResults(InputArray d_positions, OutputArray h_positions, OutputArray h_votes = noArray());
+        void buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy);
 
-    protected:
-        virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0;
-        virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, OutputArray positions) = 0;
+        virtual void processTempl() = 0;
+        virtual void processImage() = 0;
+
+        int cannyLowThresh_;
+        int cannyHighThresh_;
+        double minDist_;
+        double dp_;
+        int maxBufferSize_;
+
+        Size templSize_;
+        Point templCenter_;
+        GpuMat templEdges_;
+        GpuMat templDx_;
+        GpuMat templDy_;
+
+        Size imageSize_;
+        GpuMat imageEdges_;
+        GpuMat imageDx_;
+        GpuMat imageDy_;
+
+        GpuMat edgePointList_;
+
+        GpuMat outBuf_;
+        int posCount_;
 
     private:
 #ifdef HAVE_OPENCV_GPUFILTERS
-        GpuMat dx_, dy_;
-        GpuMat edges_;
+        void calcEdges(InputArray src, GpuMat& edges, GpuMat& dx, GpuMat& dy);
+#endif
+
+        void filterMinDist();
+        void convertTo(OutputArray positions, OutputArray votes);
+
+#ifdef HAVE_OPENCV_GPUFILTERS
         Ptr<gpu::CannyEdgeDetector> canny_;
         Ptr<gpu::Filter> filterDx_;
         Ptr<gpu::Filter> filterDy_;
 #endif
+
+        std::vector<float4> oldPosBuf_;
+        std::vector<int3> oldVoteBuf_;
+        std::vector<float4> newPosBuf_;
+        std::vector<int3> newVoteBuf_;
+        std::vector<int> indexies_;
     };
 
     GeneralizedHoughBase::GeneralizedHoughBase()
     {
+        cannyLowThresh_ = 50;
+        cannyHighThresh_ = 100;
+        minDist_ = 1.0;
+        dp_ = 1.0;
+
+        maxBufferSize_ = 10000;
+
 #ifdef HAVE_OPENCV_GPUFILTERS
-        canny_ = gpu::createCannyEdgeDetector(50, 100);
+        canny_ = gpu::createCannyEdgeDetector(cannyLowThresh_, cannyHighThresh_);
         filterDx_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
         filterDy_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
 #endif
     }
 
-    void GeneralizedHoughBase::setTemplate(InputArray _templ, int cannyThreshold, Point templCenter)
+#ifdef HAVE_OPENCV_GPUFILTERS
+    void GeneralizedHoughBase::calcEdges(InputArray _src, GpuMat& edges, GpuMat& dx, GpuMat& dy)
     {
-#ifndef HAVE_OPENCV_GPUFILTERS
-        (void) _templ;
-        (void) cannyThreshold;
-        (void) templCenter;
-        throw_no_cuda();
-#else
-        GpuMat templ = _templ.getGpuMat();
-
-        CV_Assert( templ.type() == CV_8UC1 );
-        CV_Assert( cannyThreshold > 0 );
+        GpuMat src = _src.getGpuMat();
 
-        ensureSizeIsEnough(templ.size(), CV_32SC1, dx_);
-        ensureSizeIsEnough(templ.size(), CV_32SC1, dy_);
+        CV_Assert( src.type() == CV_8UC1 );
+        CV_Assert( cannyLowThresh_ > 0 && cannyLowThresh_ < cannyHighThresh_ );
 
-        filterDx_->apply(templ, dx_);
-        filterDy_->apply(templ, dy_);
+        ensureSizeIsEnough(src.size(), CV_32SC1, dx);
+        ensureSizeIsEnough(src.size(), CV_32SC1, dy);
 
-        ensureSizeIsEnough(templ.size(), CV_8UC1, edges_);
+        filterDx_->apply(src, dx);
+        filterDy_->apply(src, dy);
 
-        canny_->setLowThreshold(cannyThreshold / 2);
-        canny_->setHighThreshold(cannyThreshold);
-        canny_->detect(dx_, dy_, edges_);
+        ensureSizeIsEnough(src.size(), CV_8UC1, edges);
 
-        if (templCenter == Point(-1, -1))
-            templCenter = Point(templ.cols / 2, templ.rows / 2);
-
-        setTemplateImpl(edges_, dx_, dy_, templCenter);
-#endif
-    }
-
-    void GeneralizedHoughBase::setTemplate(InputArray _edges, InputArray _dx, InputArray _dy, Point templCenter)
-    {
-        GpuMat edges = _edges.getGpuMat();
-        GpuMat dx = _dx.getGpuMat();
-        GpuMat dy = _dy.getGpuMat();
-
-        if (templCenter == Point(-1, -1))
-            templCenter = Point(edges.cols / 2, edges.rows / 2);
-
-        setTemplateImpl(edges, dx, dy, templCenter);
+        canny_->setLowThreshold(cannyLowThresh_);
+        canny_->setHighThreshold(cannyHighThresh_);
+        canny_->detect(dx, dy, edges);
     }
+#endif
 
-    void GeneralizedHoughBase::detect(InputArray _image, OutputArray positions, int cannyThreshold)
+    void GeneralizedHoughBase::setTemplateImpl(InputArray templ, Point templCenter)
     {
 #ifndef HAVE_OPENCV_GPUFILTERS
-        (void) _image;
-        (void) positions;
-        (void) cannyThreshold;
+        (void) templ;
+        (void) templCenter;
         throw_no_cuda();
 #else
-        GpuMat image = _image.getGpuMat();
-
-        CV_Assert( image.type() == CV_8UC1 );
-        CV_Assert( cannyThreshold > 0 );
-
-        ensureSizeIsEnough(image.size(), CV_32SC1, dx_);
-        ensureSizeIsEnough(image.size(), CV_32SC1, dy_);
-
-        filterDx_->apply(image, dx_);
-        filterDy_->apply(image, dy_);
+        calcEdges(templ, templEdges_, templDx_, templDy_);
 
-        ensureSizeIsEnough(image.size(), CV_8UC1, edges_);
+        if (templCenter == Point(-1, -1))
+            templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2);
 
-        canny_->setLowThreshold(cannyThreshold / 2);
-        canny_->setHighThreshold(cannyThreshold);
-        canny_->detect(dx_, dy_, edges_);
+        templSize_ = templEdges_.size();
+        templCenter_ = templCenter;
 
-        detectImpl(edges_, dx_, dy_, positions);
+        processTempl();
 #endif
     }
 
-    void GeneralizedHoughBase::detect(InputArray _edges, InputArray _dx, InputArray _dy, OutputArray positions)
+    void GeneralizedHoughBase::setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter)
     {
-        GpuMat edges = _edges.getGpuMat();
-        GpuMat dx = _dx.getGpuMat();
-        GpuMat dy = _dy.getGpuMat();
-
-        detectImpl(edges, dx, dy, positions);
-    }
-
-    void GeneralizedHoughBase::downloadResults(InputArray _d_positions, OutputArray h_positions, OutputArray h_votes)
-    {
-        GpuMat d_positions = _d_positions.getGpuMat();
-
-        if (d_positions.empty())
-        {
-            h_positions.release();
-            if (h_votes.needed())
-                h_votes.release();
-            return;
-        }
+        edges.getGpuMat().copyTo(templEdges_);
+        dx.getGpuMat().copyTo(templDx_);
+        dy.getGpuMat().copyTo(templDy_);
 
-        CV_Assert( d_positions.rows == 2 && d_positions.type() == CV_32FC4 );
+        CV_Assert( templEdges_.type() == CV_8UC1 );
+        CV_Assert( templDx_.type() == CV_32FC1 && templDx_.size() == templEdges_.size() );
+        CV_Assert( templDy_.type() == templDx_.type() && templDy_.size() == templEdges_.size() );
 
-        d_positions.row(0).download(h_positions);
-
-        if (h_votes.needed())
-        {
-            GpuMat d_votes(1, d_positions.cols, CV_32SC3, d_positions.ptr<int3>(1));
-            d_votes.download(h_votes);
-        }
-    }
+        if (templCenter == Point(-1, -1))
+            templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2);
 
-    /////////////////////////////////////
-    // GHT_Pos
+        templSize_ = templEdges_.size();
+        templCenter_ = templCenter;
 
-    template <typename T, class A> void releaseVector(std::vector<T, A>& v)
-    {
-        std::vector<T, A> empty;
-        empty.swap(v);
+        processTempl();
     }
 
-    class GHT_Pos : public GeneralizedHoughBase
+    void GeneralizedHoughBase::detectImpl(InputArray image, OutputArray positions, OutputArray votes)
     {
-    public:
-        GHT_Pos();
-
-    protected:
-        void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter);
-        void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, OutputArray positions);
-        void releaseImpl();
-
-        virtual void processTempl() = 0;
-        virtual void processImage() = 0;
-
-        void buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy);
-        void filterMinDist();
-        void convertTo(OutputArray positions);
-
-        int maxSize;
-        double minDist;
-
-        Size templSize;
-        Point templCenter;
-        GpuMat templEdges;
-        GpuMat templDx;
-        GpuMat templDy;
-
-        Size imageSize;
-        GpuMat imageEdges;
-        GpuMat imageDx;
-        GpuMat imageDy;
-
-        GpuMat edgePointList;
-
-        GpuMat outBuf;
-        int posCount;
-
-        std::vector<float4> oldPosBuf;
-        std::vector<int3> oldVoteBuf;
-        std::vector<float4> newPosBuf;
-        std::vector<int3> newVoteBuf;
-        std::vector<int> indexies;
-    };
-
-    GHT_Pos::GHT_Pos()
-    {
-        maxSize = 10000;
-        minDist = 1.0;
-    }
+#ifndef HAVE_OPENCV_GPUFILTERS
+        (void) templ;
+        (void) templCenter;
+        throw_no_cuda();
+#else
+        calcEdges(image, imageEdges_, imageDx_, imageDy_);
 
-    void GHT_Pos::setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter_)
-    {
-        templSize = edges.size();
-        templCenter = templCenter_;
+        imageSize_ = imageEdges_.size();
 
-        ensureSizeIsEnough(templSize, edges.type(), templEdges);
-        ensureSizeIsEnough(templSize, dx.type(), templDx);
-        ensureSizeIsEnough(templSize, dy.type(), templDy);
+        posCount_ = 0;
 
-        edges.copyTo(templEdges);
-        dx.copyTo(templDx);
-        dy.copyTo(templDy);
+        processImage();
 
-        processTempl();
+        if (posCount_ == 0)
+        {
+            positions.release();
+            if (votes.needed())
+                votes.release();
+        }
+        else
+        {
+            if (minDist_ > 1)
+                filterMinDist();
+            convertTo(positions, votes);
+        }
+#endif
     }
 
-    void GHT_Pos::detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, OutputArray positions)
+    void GeneralizedHoughBase::detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes)
     {
-        imageSize = edges.size();
+        edges.getGpuMat().copyTo(imageEdges_);
+        dx.getGpuMat().copyTo(imageDx_);
+        dy.getGpuMat().copyTo(imageDy_);
 
-        ensureSizeIsEnough(imageSize, edges.type(), imageEdges);
-        ensureSizeIsEnough(imageSize, dx.type(), imageDx);
-        ensureSizeIsEnough(imageSize, dy.type(), imageDy);
+        CV_Assert( imageEdges_.type() == CV_8UC1 );
+        CV_Assert( imageDx_.type() == CV_32FC1 && imageDx_.size() == imageEdges_.size() );
+        CV_Assert( imageDy_.type() == imageDx_.type() && imageDy_.size() == imageEdges_.size() );
 
-        edges.copyTo(imageEdges);
-        dx.copyTo(imageDx);
-        dy.copyTo(imageDy);
+        imageSize_ = imageEdges_.size();
 
-        posCount = 0;
+        posCount_ = 0;
 
         processImage();
 
-        if (posCount == 0)
+        if (posCount_ == 0)
+        {
             positions.release();
+            if (votes.needed())
+                votes.release();
+        }
         else
         {
-            if (minDist > 1)
+            if (minDist_ > 1)
                 filterMinDist();
-            convertTo(positions);
+            convertTo(positions, votes);
         }
     }
 
-    void GHT_Pos::releaseImpl()
-    {
-        templSize = Size();
-        templCenter = Point(-1, -1);
-        templEdges.release();
-        templDx.release();
-        templDy.release();
-
-        imageSize = Size();
-        imageEdges.release();
-        imageDx.release();
-        imageDy.release();
-
-        edgePointList.release();
-
-        outBuf.release();
-        posCount = 0;
-
-        releaseVector(oldPosBuf);
-        releaseVector(oldVoteBuf);
-        releaseVector(newPosBuf);
-        releaseVector(newVoteBuf);
-        releaseVector(indexies);
-    }
-
-    void GHT_Pos::buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy)
+    void GeneralizedHoughBase::buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy)
     {
         using namespace cv::gpu::cudev::ght;
 
@@ -397,17 +312,17 @@ namespace
             0
         };
 
-        CV_Assert(edges.type() == CV_8UC1);
-        CV_Assert(dx.size() == edges.size());
-        CV_Assert(dy.type() == dx.type() && dy.size() == edges.size());
+        CV_Assert( edges.type() == CV_8UC1 );
+        CV_Assert( dx.size() == edges.size() );
+        CV_Assert( dy.type() == dx.type() && dy.size() == edges.size() );
 
         const func_t func = funcs[dx.depth()];
-        CV_Assert(func != 0);
+        CV_Assert( func != 0 );
 
-        edgePointList.cols = (int) (edgePointList.step / sizeof(int));
-        ensureSizeIsEnough(2, edges.size().area(), CV_32SC1, edgePointList);
+        edgePointList_.cols = (int) (edgePointList_.step / sizeof(int));
+        ensureSizeIsEnough(2, edges.size().area(), CV_32SC1, edgePointList_);
 
-        edgePointList.cols = func(edges, dx, dy, edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1));
+        edgePointList_.cols = func(edges, dx, dy, edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1));
     }
 
     struct IndexCmp
@@ -422,37 +337,37 @@ namespace
         }
     };
 
-    void GHT_Pos::filterMinDist()
+    void GeneralizedHoughBase::filterMinDist()
     {
-        oldPosBuf.resize(posCount);
-        oldVoteBuf.resize(posCount);
+        oldPosBuf_.resize(posCount_);
+        oldVoteBuf_.resize(posCount_);
 
-        cudaSafeCall( cudaMemcpy(&oldPosBuf[0], outBuf.ptr(0), posCount * sizeof(float4), cudaMemcpyDeviceToHost) );
-        cudaSafeCall( cudaMemcpy(&oldVoteBuf[0], outBuf.ptr(1), posCount * sizeof(int3), cudaMemcpyDeviceToHost) );
+        cudaSafeCall( cudaMemcpy(&oldPosBuf_[0], outBuf_.ptr(0), posCount_ * sizeof(float4), cudaMemcpyDeviceToHost) );
+        cudaSafeCall( cudaMemcpy(&oldVoteBuf_[0], outBuf_.ptr(1), posCount_ * sizeof(int3), cudaMemcpyDeviceToHost) );
 
-        indexies.resize(posCount);
-        for (int i = 0; i < posCount; ++i)
-            indexies[i] = i;
-        std::sort(indexies.begin(), indexies.end(), IndexCmp(&oldVoteBuf[0]));
+        indexies_.resize(posCount_);
+        for (int i = 0; i < posCount_; ++i)
+            indexies_[i] = i;
+        std::sort(indexies_.begin(), indexies_.end(), IndexCmp(&oldVoteBuf_[0]));
 
-        newPosBuf.clear();
-        newVoteBuf.clear();
-        newPosBuf.reserve(posCount);
-        newVoteBuf.reserve(posCount);
+        newPosBuf_.clear();
+        newVoteBuf_.clear();
+        newPosBuf_.reserve(posCount_);
+        newVoteBuf_.reserve(posCount_);
 
-        const int cellSize = cvRound(minDist);
-        const int gridWidth = (imageSize.width + cellSize - 1) / cellSize;
-        const int gridHeight = (imageSize.height + cellSize - 1) / cellSize;
+        const int cellSize = cvRound(minDist_);
+        const int gridWidth = (imageSize_.width + cellSize - 1) / cellSize;
+        const int gridHeight = (imageSize_.height + cellSize - 1) / cellSize;
 
         std::vector< std::vector<Point2f> > grid(gridWidth * gridHeight);
 
-        const double minDist2 = minDist * minDist;
+        const double minDist2 = minDist_ * minDist_;
 
-        for (int i = 0; i < posCount; ++i)
+        for (int i = 0; i < posCount_; ++i)
         {
-            const int ind = indexies[i];
+            const int ind = indexies_[i];
 
-            Point2f p(oldPosBuf[ind].x, oldPosBuf[ind].y);
+            Point2f p(oldPosBuf_[ind].x, oldPosBuf_[ind].y);
 
             bool good = true;
 
@@ -495,353 +410,238 @@ namespace
             {
                 grid[yCell * gridWidth + xCell].push_back(p);
 
-                newPosBuf.push_back(oldPosBuf[ind]);
-                newVoteBuf.push_back(oldVoteBuf[ind]);
+                newPosBuf_.push_back(oldPosBuf_[ind]);
+                newVoteBuf_.push_back(oldVoteBuf_[ind]);
             }
         }
 
-        posCount = static_cast<int>(newPosBuf.size());
-        cudaSafeCall( cudaMemcpy(outBuf.ptr(0), &newPosBuf[0], posCount * sizeof(float4), cudaMemcpyHostToDevice) );
-        cudaSafeCall( cudaMemcpy(outBuf.ptr(1), &newVoteBuf[0], posCount * sizeof(int3), cudaMemcpyHostToDevice) );
+        posCount_ = static_cast<int>(newPosBuf_.size());
+        cudaSafeCall( cudaMemcpy(outBuf_.ptr(0), &newPosBuf_[0], posCount_ * sizeof(float4), cudaMemcpyHostToDevice) );
+        cudaSafeCall( cudaMemcpy(outBuf_.ptr(1), &newVoteBuf_[0], posCount_ * sizeof(int3), cudaMemcpyHostToDevice) );
     }
 
-    void GHT_Pos::convertTo(OutputArray positions)
+    void GeneralizedHoughBase::convertTo(OutputArray positions, OutputArray votes)
     {
-        ensureSizeIsEnough(2, posCount, CV_32FC4, positions);
-        GpuMat(2, posCount, CV_32FC4, outBuf.data, outBuf.step).copyTo(positions);
+        ensureSizeIsEnough(1, posCount_, CV_32FC4, positions);
+        GpuMat(1, posCount_, CV_32FC4, outBuf_.ptr(0), outBuf_.step).copyTo(positions);
+
+        if (votes.needed())
+        {
+            ensureSizeIsEnough(1, posCount_, CV_32FC3, votes);
+            GpuMat(1, posCount_, CV_32FC4, outBuf_.ptr(1), outBuf_.step).copyTo(votes);
+        }
     }
+}
 
-    /////////////////////////////////////
-    // POSITION Ballard
+// GeneralizedHoughBallard
 
-    class GHT_Ballard_Pos : public GHT_Pos
+namespace
+{
+    class GeneralizedHoughBallardImpl : public GeneralizedHoughBallard, private GeneralizedHoughBase
     {
     public:
-        AlgorithmInfo* info() const;
-
-        GHT_Ballard_Pos();
-
-    protected:
-        void releaseImpl();
+        GeneralizedHoughBallardImpl();
 
-        void processTempl();
-        void processImage();
+        void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); }
+        void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); }
 
-        virtual void calcHist();
-        virtual void findPosInHist();
+        void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); }
+        void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); }
 
-        int levels;
-        int votesThreshold;
-        double dp;
+        void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; }
+        int getCannyLowThresh() const { return cannyLowThresh_; }
 
-        GpuMat r_table;
-        GpuMat r_sizes;
+        void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; }
+        int getCannyHighThresh() const { return cannyHighThresh_; }
 
-        GpuMat hist;
-    };
+        void setMinDist(double minDist) { minDist_ = minDist; }
+        double getMinDist() const { return minDist_; }
 
-    CV_INIT_ALGORITHM(GHT_Ballard_Pos, "GeneralizedHough_GPU.POSITION",
-                      obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
-                                           "Maximal size of inner buffers.");
-                      obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
-                                           "Minimum distance between the centers of the detected objects.");
-                      obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
-                                           "R-Table levels.");
-                      obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
-                                           "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
-                      obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
-                                           "Inverse ratio of the accumulator resolution to the image resolution."));
-
-    GHT_Ballard_Pos::GHT_Ballard_Pos()
-    {
-        levels = 360;
-        votesThreshold = 100;
-        dp = 1.0;
-    }
+        void setDp(double dp) { dp_ = dp; }
+        double getDp() const { return dp_; }
 
-    void GHT_Ballard_Pos::releaseImpl()
-    {
-        GHT_Pos::releaseImpl();
+        void setMaxBufferSize(int maxBufferSize) { maxBufferSize_ = maxBufferSize; }
+        int getMaxBufferSize() const { return maxBufferSize_; }
 
-        r_table.release();
-        r_sizes.release();
+        void setLevels(int levels) { levels_ = levels; }
+        int getLevels() const { return levels_; }
 
-        hist.release();
-    }
+        void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
+        int getVotesThreshold() const { return votesThreshold_; }
 
-    void GHT_Ballard_Pos::processTempl()
-    {
-        using namespace cv::gpu::cudev::ght;
+    private:
+        void processTempl();
+        void processImage();
 
-        CV_Assert(levels > 0);
+        void calcHist();
+        void findPosInHist();
 
-        buildEdgePointList(templEdges, templDx, templDy);
+        int levels_;
+        int votesThreshold_;
 
-        ensureSizeIsEnough(levels + 1, maxSize, CV_16SC2, r_table);
-        ensureSizeIsEnough(1, levels + 1, CV_32SC1, r_sizes);
-        r_sizes.setTo(Scalar::all(0));
+        GpuMat r_table_;
+        GpuMat r_sizes_;
 
-        if (edgePointList.cols > 0)
-        {
-            buildRTable_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
-                            r_table, r_sizes.ptr<int>(), make_short2(templCenter.x, templCenter.y), levels);
-            gpu::min(r_sizes, maxSize, r_sizes);
-        }
-    }
+        GpuMat hist_;
+    };
 
-    void GHT_Ballard_Pos::processImage()
+    GeneralizedHoughBallardImpl::GeneralizedHoughBallardImpl()
     {
-        calcHist();
-        findPosInHist();
+        levels_ = 360;
+        votesThreshold_ = 100;
     }
 
-    void GHT_Ballard_Pos::calcHist()
+    void GeneralizedHoughBallardImpl::processTempl()
     {
         using namespace cv::gpu::cudev::ght;
 
-        CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
-        CV_Assert(dp > 0.0);
-
-        const double idp = 1.0 / dp;
+        CV_Assert( levels_ > 0 );
 
-        buildEdgePointList(imageEdges, imageDx, imageDy);
+        buildEdgePointList(templEdges_, templDx_, templDy_);
 
-        ensureSizeIsEnough(cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2, CV_32SC1, hist);
-        hist.setTo(Scalar::all(0));
+        ensureSizeIsEnough(levels_ + 1, maxBufferSize_, CV_16SC2, r_table_);
+        ensureSizeIsEnough(1, levels_ + 1, CV_32SC1, r_sizes_);
+        r_sizes_.setTo(Scalar::all(0));
 
-        if (edgePointList.cols > 0)
+        if (edgePointList_.cols > 0)
         {
-            Ballard_Pos_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
-                                     r_table, r_sizes.ptr<int>(),
-                                     hist,
-                                     (float)dp, levels);
+            buildRTable_gpu(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
+                            r_table_, r_sizes_.ptr<int>(), make_short2(templCenter_.x, templCenter_.y), levels_);
+            gpu::min(r_sizes_, maxBufferSize_, r_sizes_);
         }
     }
 
-    void GHT_Ballard_Pos::findPosInHist()
+    void GeneralizedHoughBallardImpl::processImage()
     {
-        using namespace cv::gpu::cudev::ght;
-
-        CV_Assert(votesThreshold > 0);
-
-        ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
-
-        posCount = Ballard_Pos_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)dp, votesThreshold);
-    }
-
-    /////////////////////////////////////
-    // POSITION & SCALE
-
-    class GHT_Ballard_PosScale : public GHT_Ballard_Pos
-    {
-    public:
-        AlgorithmInfo* info() const;
-
-        GHT_Ballard_PosScale();
-
-    protected:
-        void calcHist();
-        void findPosInHist();
-
-        double minScale;
-        double maxScale;
-        double scaleStep;
-    };
-
-    CV_INIT_ALGORITHM(GHT_Ballard_PosScale, "GeneralizedHough_GPU.POSITION_SCALE",
-                      obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
-                                           "Maximal size of inner buffers.");
-                      obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
-                                           "Minimum distance between the centers of the detected objects.");
-                      obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
-                                           "R-Table levels.");
-                      obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
-                                           "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
-                      obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
-                                           "Inverse ratio of the accumulator resolution to the image resolution.");
-                      obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0,
-                                           "Minimal scale to detect.");
-                      obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0,
-                                           "Maximal scale to detect.");
-                      obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
-                                           "Scale step."));
-
-    GHT_Ballard_PosScale::GHT_Ballard_PosScale()
-    {
-        minScale = 0.5;
-        maxScale = 2.0;
-        scaleStep = 0.05;
+        calcHist();
+        findPosInHist();
     }
 
-    void GHT_Ballard_PosScale::calcHist()
+    void GeneralizedHoughBallardImpl::calcHist()
     {
         using namespace cv::gpu::cudev::ght;
 
-        CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
-        CV_Assert(dp > 0.0);
-        CV_Assert(minScale > 0.0 && minScale < maxScale);
-        CV_Assert(scaleStep > 0.0);
+        CV_Assert( levels_ > 0 && r_table_.rows == (levels_ + 1) && r_sizes_.cols == (levels_ + 1) );
+        CV_Assert( dp_ > 0.0);
 
-        const double idp = 1.0 / dp;
-        const int scaleRange = cvCeil((maxScale - minScale) / scaleStep);
-        const int rows = cvCeil(imageSize.height * idp);
-        const int cols = cvCeil(imageSize.width * idp);
+        const double idp = 1.0 / dp_;
 
-        buildEdgePointList(imageEdges, imageDx, imageDy);
+        buildEdgePointList(imageEdges_, imageDx_, imageDy_);
 
-        ensureSizeIsEnough((scaleRange + 2) * (rows + 2), cols + 2, CV_32SC1, hist);
-        hist.setTo(Scalar::all(0));
+        ensureSizeIsEnough(cvCeil(imageSize_.height * idp) + 2, cvCeil(imageSize_.width * idp) + 2, CV_32SC1, hist_);
+        hist_.setTo(Scalar::all(0));
 
-        if (edgePointList.cols > 0)
+        if (edgePointList_.cols > 0)
         {
-            Ballard_PosScale_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
-                                          r_table, r_sizes.ptr<int>(),
-                                          hist, rows, cols,
-                                          (float)minScale, (float)scaleStep, scaleRange, (float)dp, levels);
+            Ballard_Pos_calcHist_gpu(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
+                                     r_table_, r_sizes_.ptr<int>(),
+                                     hist_,
+                                     (float)dp_, levels_);
         }
     }
 
-    void GHT_Ballard_PosScale::findPosInHist()
+    void GeneralizedHoughBallardImpl::findPosInHist()
     {
         using namespace cv::gpu::cudev::ght;
 
-        CV_Assert(votesThreshold > 0);
-
-        const double idp = 1.0 / dp;
-        const int scaleRange = cvCeil((maxScale - minScale) / scaleStep);
-        const int rows = cvCeil(imageSize.height * idp);
-        const int cols = cvCeil(imageSize.width * idp);
+        CV_Assert( votesThreshold_ > 0 );
 
-        ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
+        ensureSizeIsEnough(2, maxBufferSize_, CV_32FC4, outBuf_);
 
-        posCount =  Ballard_PosScale_findPosInHist_gpu(hist, rows, cols, scaleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)minScale, (float)scaleStep, (float)dp, votesThreshold);
+        posCount_ = Ballard_Pos_findPosInHist_gpu(hist_, outBuf_.ptr<float4>(0), outBuf_.ptr<int3>(1), maxBufferSize_, (float)dp_, votesThreshold_);
     }
+}
 
-    /////////////////////////////////////
-    // POSITION & Rotation
+Ptr<GeneralizedHoughBallard> cv::gpu::createGeneralizedHoughBallard()
+{
+    return new GeneralizedHoughBallardImpl;
+}
 
-    class GHT_Ballard_PosRotation : public GHT_Ballard_Pos
+// GeneralizedHoughGuil
+
+namespace
+{
+    class GeneralizedHoughGuilImpl : public GeneralizedHoughGuil, private GeneralizedHoughBase
     {
     public:
-        AlgorithmInfo* info() const;
+        GeneralizedHoughGuilImpl();
 
-        GHT_Ballard_PosRotation();
+        void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); }
+        void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); }
 
-    protected:
-        void calcHist();
-        void findPosInHist();
+        void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); }
+        void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); }
 
-        double minAngle;
-        double maxAngle;
-        double angleStep;
-    };
+        void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; }
+        int getCannyLowThresh() const { return cannyLowThresh_; }
 
-    CV_INIT_ALGORITHM(GHT_Ballard_PosRotation, "GeneralizedHough_GPU.POSITION_ROTATION",
-                      obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
-                                           "Maximal size of inner buffers.");
-                      obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
-                                           "Minimum distance between the centers of the detected objects.");
-                      obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
-                                           "R-Table levels.");
-                      obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
-                                           "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
-                      obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
-                                           "Inverse ratio of the accumulator resolution to the image resolution.");
-                      obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0,
-                                           "Minimal rotation angle to detect in degrees.");
-                      obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0,
-                                           "Maximal rotation angle to detect in degrees.");
-                      obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0,
-                                           "Angle step in degrees."));
-
-    GHT_Ballard_PosRotation::GHT_Ballard_PosRotation()
-    {
-        minAngle = 0.0;
-        maxAngle = 360.0;
-        angleStep = 1.0;
-    }
+        void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; }
+        int getCannyHighThresh() const { return cannyHighThresh_; }
 
-    void GHT_Ballard_PosRotation::calcHist()
-    {
-        using namespace cv::gpu::cudev::ght;
+        void setMinDist(double minDist) { minDist_ = minDist; }
+        double getMinDist() const { return minDist_; }
 
-        CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
-        CV_Assert(dp > 0.0);
-        CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0);
-        CV_Assert(angleStep > 0.0 && angleStep < 360.0);
+        void setDp(double dp) { dp_ = dp; }
+        double getDp() const { return dp_; }
 
-        const double idp = 1.0 / dp;
-        const int angleRange = cvCeil((maxAngle - minAngle) / angleStep);
-        const int rows = cvCeil(imageSize.height * idp);
-        const int cols = cvCeil(imageSize.width * idp);
+        void setMaxBufferSize(int maxBufferSize) { maxBufferSize_ = maxBufferSize; }
+        int getMaxBufferSize() const { return maxBufferSize_; }
 
-        buildEdgePointList(imageEdges, imageDx, imageDy);
+        void setXi(double xi) { xi_ = xi; }
+        double getXi() const { return xi_; }
 
-        ensureSizeIsEnough((angleRange + 2) * (rows + 2), cols + 2, CV_32SC1, hist);
-        hist.setTo(Scalar::all(0));
+        void setLevels(int levels) { levels_ = levels; }
+        int getLevels() const { return levels_; }
 
-        if (edgePointList.cols > 0)
-        {
-            Ballard_PosRotation_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
-                                             r_table, r_sizes.ptr<int>(),
-                                             hist, rows, cols,
-                                             (float)minAngle, (float)angleStep, angleRange, (float)dp, levels);
-        }
-    }
+        void setAngleEpsilon(double angleEpsilon) { angleEpsilon_ = angleEpsilon; }
+        double getAngleEpsilon() const { return angleEpsilon_; }
 
-    void GHT_Ballard_PosRotation::findPosInHist()
-    {
-        using namespace cv::gpu::cudev::ght;
+        void setMinAngle(double minAngle) { minAngle_ = minAngle; }
+        double getMinAngle() const { return minAngle_; }
 
-        CV_Assert(votesThreshold > 0);
+        void setMaxAngle(double maxAngle) { maxAngle_ = maxAngle; }
+        double getMaxAngle() const { return maxAngle_; }
 
-        const double idp = 1.0 / dp;
-        const int angleRange = cvCeil((maxAngle - minAngle) / angleStep);
-        const int rows = cvCeil(imageSize.height * idp);
-        const int cols = cvCeil(imageSize.width * idp);
+        void setAngleStep(double angleStep) { angleStep_ = angleStep; }
+        double getAngleStep() const { return angleStep_; }
 
-        ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
+        void setAngleThresh(int angleThresh) { angleThresh_ = angleThresh; }
+        int getAngleThresh() const { return angleThresh_; }
 
-        posCount = Ballard_PosRotation_findPosInHist_gpu(hist, rows, cols, angleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)minAngle, (float)angleStep, (float)dp, votesThreshold);
-    }
+        void setMinScale(double minScale) { minScale_ = minScale; }
+        double getMinScale() const { return minScale_; }
 
-    /////////////////////////////////////////
-    // POSITION & SCALE & ROTATION
+        void setMaxScale(double maxScale) { maxScale_ = maxScale; }
+        double getMaxScale() const { return maxScale_; }
 
-    double toRad(double a)
-    {
-        return a * CV_PI / 180.0;
-    }
+        void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; }
+        double getScaleStep() const { return scaleStep_; }
 
-    double clampAngle(double a)
-    {
-        double res = a;
-
-        while (res > 360.0)
-            res -= 360.0;
-        while (res < 0)
-            res += 360.0;
+        void setScaleThresh(int scaleThresh) { scaleThresh_ = scaleThresh; }
+        int getScaleThresh() const { return scaleThresh_; }
 
-        return res;
-    }
+        void setPosThresh(int posThresh) { posThresh_ = posThresh; }
+        int getPosThresh() const { return posThresh_; }
 
-    bool angleEq(double a, double b, double eps = 1.0)
-    {
-        return (fabs(clampAngle(a - b)) <= eps);
-    }
+    private:
+        void processTempl();
+        void processImage();
 
-    class GHT_Guil_Full : public GHT_Pos
-    {
-    public:
-        AlgorithmInfo* info() const;
+        double xi_;
+        int levels_;
+        double angleEpsilon_;
 
-        GHT_Guil_Full();
+        double minAngle_;
+        double maxAngle_;
+        double angleStep_;
+        int angleThresh_;
 
-    protected:
-        void releaseImpl();
+        double minScale_;
+        double maxScale_;
+        double scaleStep_;
+        int scaleThresh_;
 
-        void processTempl();
-        void processImage();
+        int posThresh_;
 
         struct Feature
         {
@@ -858,7 +658,6 @@ namespace
             int maxSize;
 
             void create(int levels, int maxCapacity, bool isTempl);
-            void release();
         };
 
         typedef void (*set_func_t)(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
@@ -874,167 +673,126 @@ namespace
         void calcScale(double angle);
         void calcPosition(double angle, int angleVotes, double scale, int scaleVotes);
 
-        double xi;
-        int levels;
-        double angleEpsilon;
+        Feature templFeatures_;
+        Feature imageFeatures_;
 
-        double minAngle;
-        double maxAngle;
-        double angleStep;
-        int angleThresh;
+        std::vector< std::pair<double, int> > angles_;
+        std::vector< std::pair<double, int> > scales_;
 
-        double minScale;
-        double maxScale;
-        double scaleStep;
-        int scaleThresh;
+        GpuMat hist_;
+        std::vector<int> h_buf_;
+    };
 
-        double dp;
-        int posThresh;
+    double toRad(double a)
+    {
+        return a * CV_PI / 180.0;
+    }
 
-        Feature templFeatures;
-        Feature imageFeatures;
+    double clampAngle(double a)
+    {
+        double res = a;
 
-        std::vector< std::pair<double, int> > angles;
-        std::vector< std::pair<double, int> > scales;
+        while (res > 360.0)
+            res -= 360.0;
+        while (res < 0)
+            res += 360.0;
 
-        GpuMat hist;
-        std::vector<int> h_buf;
-    };
+        return res;
+    }
 
-    CV_INIT_ALGORITHM(GHT_Guil_Full, "GeneralizedHough_GPU.POSITION_SCALE_ROTATION",
-                      obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
-                                           "Minimum distance between the centers of the detected objects.");
-                      obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
-                                           "Maximal size of inner buffers.");
-                      obj.info()->addParam(obj, "xi", obj.xi, false, 0, 0,
-                                           "Angle difference in degrees between two points in feature.");
-                      obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
-                                           "Feature table levels.");
-                      obj.info()->addParam(obj, "angleEpsilon", obj.angleEpsilon, false, 0, 0,
-                                           "Maximal difference between angles that treated as equal.");
-                      obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0,
-                                           "Minimal rotation angle to detect in degrees.");
-                      obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0,
-                                           "Maximal rotation angle to detect in degrees.");
-                      obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0,
-                                           "Angle step in degrees.");
-                      obj.info()->addParam(obj, "angleThresh", obj.angleThresh, false, 0, 0,
-                                           "Angle threshold.");
-                      obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0,
-                                           "Minimal scale to detect.");
-                      obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0,
-                                           "Maximal scale to detect.");
-                      obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
-                                           "Scale step.");
-                      obj.info()->addParam(obj, "scaleThresh", obj.scaleThresh, false, 0, 0,
-                                           "Scale threshold.");
-                      obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
-                                           "Inverse ratio of the accumulator resolution to the image resolution.");
-                      obj.info()->addParam(obj, "posThresh", obj.posThresh, false, 0, 0,
-                                           "Position threshold."));
-
-    GHT_Guil_Full::GHT_Guil_Full()
+    bool angleEq(double a, double b, double eps = 1.0)
     {
-        maxSize = 1000;
-        xi = 90.0;
-        levels = 360;
-        angleEpsilon = 1.0;
-
-        minAngle = 0.0;
-        maxAngle = 360.0;
-        angleStep = 1.0;
-        angleThresh = 15000;
-
-        minScale = 0.5;
-        maxScale = 2.0;
-        scaleStep = 0.05;
-        scaleThresh = 1000;
-
-        dp = 1.0;
-        posThresh = 100;
+        return (fabs(clampAngle(a - b)) <= eps);
     }
 
-    void GHT_Guil_Full::releaseImpl()
+    GeneralizedHoughGuilImpl::GeneralizedHoughGuilImpl()
     {
-        GHT_Pos::releaseImpl();
+        maxBufferSize_ = 1000;
+
+        xi_ = 90.0;
+        levels_ = 360;
+        angleEpsilon_ = 1.0;
 
-        templFeatures.release();
-        imageFeatures.release();
+        minAngle_ = 0.0;
+        maxAngle_ = 360.0;
+        angleStep_ = 1.0;
+        angleThresh_ = 15000;
 
-        releaseVector(angles);
-        releaseVector(scales);
+        minScale_ = 0.5;
+        maxScale_ = 2.0;
+        scaleStep_ = 0.05;
+        scaleThresh_ = 1000;
 
-        hist.release();
-        releaseVector(h_buf);
+        posThresh_ = 100;
     }
 
-    void GHT_Guil_Full::processTempl()
+    void GeneralizedHoughGuilImpl::processTempl()
     {
         using namespace cv::gpu::cudev::ght;
 
-        buildFeatureList(templEdges, templDx, templDy, templFeatures,
+        buildFeatureList(templEdges_, templDx_, templDy_, templFeatures_,
             Guil_Full_setTemplFeatures, Guil_Full_buildTemplFeatureList_gpu,
-            true, templCenter);
+            true, templCenter_);
 
-        h_buf.resize(templFeatures.sizes.cols);
-        cudaSafeCall( cudaMemcpy(&h_buf[0], templFeatures.sizes.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) );
-        templFeatures.maxSize = *max_element(h_buf.begin(), h_buf.end());
+        h_buf_.resize(templFeatures_.sizes.cols);
+        cudaSafeCall( cudaMemcpy(&h_buf_[0], templFeatures_.sizes.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );
+        templFeatures_.maxSize = *std::max_element(h_buf_.begin(), h_buf_.end());
     }
 
-    void GHT_Guil_Full::processImage()
+    void GeneralizedHoughGuilImpl::processImage()
     {
         using namespace cv::gpu::cudev::ght;
 
-        CV_Assert(levels > 0);
-        CV_Assert(templFeatures.sizes.cols == levels + 1);
-        CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0);
-        CV_Assert(angleStep > 0.0 && angleStep < 360.0);
-        CV_Assert(angleThresh > 0);
-        CV_Assert(minScale > 0.0 && minScale < maxScale);
-        CV_Assert(scaleStep > 0.0);
-        CV_Assert(scaleThresh > 0);
-        CV_Assert(dp > 0.0);
-        CV_Assert(posThresh > 0);
+        CV_Assert( levels_ > 0 );
+        CV_Assert( templFeatures_.sizes.cols == levels_ + 1 );
+        CV_Assert( minAngle_ >= 0.0 && minAngle_ < maxAngle_ && maxAngle_ <= 360.0 );
+        CV_Assert( angleStep_ > 0.0 && angleStep_ < 360.0 );
+        CV_Assert( angleThresh_ > 0 );
+        CV_Assert( minScale_ > 0.0 && minScale_ < maxScale_ );
+        CV_Assert( scaleStep_ > 0.0 );
+        CV_Assert( scaleThresh_ > 0 );
+        CV_Assert( dp_ > 0.0 );
+        CV_Assert( posThresh_ > 0 );
 
-        const double iAngleStep = 1.0 / angleStep;
-        const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep);
+        const double iAngleStep = 1.0 / angleStep_;
+        const int angleRange = cvCeil((maxAngle_ - minAngle_) * iAngleStep);
 
-        const double iScaleStep = 1.0 / scaleStep;
-        const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep);
+        const double iScaleStep = 1.0 / scaleStep_;
+        const int scaleRange = cvCeil((maxScale_ - minScale_) * iScaleStep);
 
-        const double idp = 1.0 / dp;
-        const int histRows = cvCeil(imageSize.height * idp);
-        const int histCols = cvCeil(imageSize.width * idp);
+        const double idp = 1.0 / dp_;
+        const int histRows = cvCeil(imageSize_.height * idp);
+        const int histCols = cvCeil(imageSize_.width * idp);
 
-        ensureSizeIsEnough(histRows + 2, std::max(angleRange + 1, std::max(scaleRange + 1, histCols + 2)), CV_32SC1, hist);
-        h_buf.resize(std::max(angleRange + 1, scaleRange + 1));
+        ensureSizeIsEnough(histRows + 2, std::max(angleRange + 1, std::max(scaleRange + 1, histCols + 2)), CV_32SC1, hist_);
+        h_buf_.resize(std::max(angleRange + 1, scaleRange + 1));
 
-        ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
+        ensureSizeIsEnough(2, maxBufferSize_, CV_32FC4, outBuf_);
 
-        buildFeatureList(imageEdges, imageDx, imageDy, imageFeatures,
+        buildFeatureList(imageEdges_, imageDx_, imageDy_, imageFeatures_,
             Guil_Full_setImageFeatures, Guil_Full_buildImageFeatureList_gpu,
             false);
 
         calcOrientation();
 
-        for (size_t i = 0; i < angles.size(); ++i)
+        for (size_t i = 0; i < angles_.size(); ++i)
         {
-            const double angle = angles[i].first;
-            const int angleVotes = angles[i].second;
+            const double angle = angles_[i].first;
+            const int angleVotes = angles_[i].second;
 
             calcScale(angle);
 
-            for (size_t j = 0; j < scales.size(); ++j)
+            for (size_t j = 0; j < scales_.size(); ++j)
             {
-                const double scale = scales[j].first;
-                const int scaleVotes = scales[j].second;
+                const double scale = scales_[j].first;
+                const int scaleVotes = scales_[j].second;
 
                 calcPosition(angle, angleVotes, scale, scaleVotes);
             }
         }
     }
 
-    void GHT_Guil_Full::Feature::create(int levels, int maxCapacity, bool isTempl)
+    void GeneralizedHoughGuilImpl::Feature::create(int levels, int maxCapacity, bool isTempl)
     {
         if (!isTempl)
         {
@@ -1058,128 +816,91 @@ namespace
         maxSize = 0;
     }
 
-    void GHT_Guil_Full::Feature::release()
+    void GeneralizedHoughGuilImpl::buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features,
+                                                    set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center)
     {
-        p1_pos.release();
-        p1_theta.release();
-        p2_pos.release();
+        CV_Assert( levels_ > 0 );
 
-        d12.release();
+        const double maxDist = sqrt((double) templSize_.width * templSize_.width + templSize_.height * templSize_.height) * maxScale_;
 
-        r1.release();
-        r2.release();
-
-        sizes.release();
-
-        maxSize = 0;
-    }
-
-    void GHT_Guil_Full::buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features,
-                                         set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center)
-    {
-        CV_Assert(levels > 0);
-
-        const double maxDist = sqrt((double) templSize.width * templSize.width + templSize.height * templSize.height) * maxScale;
-
-        features.create(levels, maxSize, isTempl);
+        features.create(levels_, maxBufferSize_, isTempl);
         set_func(features.p1_pos, features.p1_theta, features.p2_pos, features.d12, features.r1, features.r2);
 
         buildEdgePointList(edges, dx, dy);
 
-        if (edgePointList.cols > 0)
+        if (edgePointList_.cols > 0)
         {
-            build_func(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
-                features.sizes.ptr<int>(), maxSize, (float)xi, (float)angleEpsilon, levels, make_float2((float)center.x, (float)center.y), (float)maxDist);
+            build_func(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
+                features.sizes.ptr<int>(), maxBufferSize_, (float)xi_, (float)angleEpsilon_, levels_, make_float2((float)center.x, (float)center.y), (float)maxDist);
         }
     }
 
-    void GHT_Guil_Full::calcOrientation()
+    void GeneralizedHoughGuilImpl::calcOrientation()
     {
         using namespace cv::gpu::cudev::ght;
 
-        const double iAngleStep = 1.0 / angleStep;
-        const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep);
+        const double iAngleStep = 1.0 / angleStep_;
+        const int angleRange = cvCeil((maxAngle_ - minAngle_) * iAngleStep);
 
-        hist.setTo(Scalar::all(0));
-        Guil_Full_calcOHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), hist.ptr<int>(),
-                                (float)minAngle, (float)maxAngle, (float)angleStep, angleRange, levels, templFeatures.maxSize);
-        cudaSafeCall( cudaMemcpy(&h_buf[0], hist.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) );
+        hist_.setTo(Scalar::all(0));
+        Guil_Full_calcOHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_.ptr<int>(),
+                                (float)minAngle_, (float)maxAngle_, (float)angleStep_, angleRange, levels_, templFeatures_.maxSize);
+        cudaSafeCall( cudaMemcpy(&h_buf_[0], hist_.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );
 
-        angles.clear();
+        angles_.clear();
 
         for (int n = 0; n < angleRange; ++n)
         {
-            if (h_buf[n] >= angleThresh)
+            if (h_buf_[n] >= angleThresh_)
             {
-                const double angle = minAngle + n * angleStep;
-                angles.push_back(std::make_pair(angle, h_buf[n]));
+                const double angle = minAngle_ + n * angleStep_;
+                angles_.push_back(std::make_pair(angle, h_buf_[n]));
             }
         }
     }
 
-    void GHT_Guil_Full::calcScale(double angle)
+    void GeneralizedHoughGuilImpl::calcScale(double angle)
     {
         using namespace cv::gpu::cudev::ght;
 
-        const double iScaleStep = 1.0 / scaleStep;
-        const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep);
+        const double iScaleStep = 1.0 / scaleStep_;
+        const int scaleRange = cvCeil((maxScale_ - minScale_) * iScaleStep);
 
-        hist.setTo(Scalar::all(0));
-        Guil_Full_calcSHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), hist.ptr<int>(),
-                                (float)angle, (float)angleEpsilon, (float)minScale, (float)maxScale,
-                                (float)iScaleStep, scaleRange, levels, templFeatures.maxSize);
-        cudaSafeCall( cudaMemcpy(&h_buf[0], hist.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) );
+        hist_.setTo(Scalar::all(0));
+        Guil_Full_calcSHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_.ptr<int>(),
+                                (float)angle, (float)angleEpsilon_, (float)minScale_, (float)maxScale_,
+                                (float)iScaleStep, scaleRange, levels_, templFeatures_.maxSize);
+        cudaSafeCall( cudaMemcpy(&h_buf_[0], hist_.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );
 
-        scales.clear();
+        scales_.clear();
 
         for (int s = 0; s < scaleRange; ++s)
         {
-            if (h_buf[s] >= scaleThresh)
+            if (h_buf_[s] >= scaleThresh_)
             {
-                const double scale = minScale + s * scaleStep;
-                scales.push_back(std::make_pair(scale, h_buf[s]));
+                const double scale = minScale_ + s * scaleStep_;
+                scales_.push_back(std::make_pair(scale, h_buf_[s]));
             }
         }
     }
 
-    void GHT_Guil_Full::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
+    void GeneralizedHoughGuilImpl::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
     {
         using namespace cv::gpu::cudev::ght;
 
-        hist.setTo(Scalar::all(0));
-        Guil_Full_calcPHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), hist,
-                                (float)angle, (float)angleEpsilon, (float)scale, (float)dp, levels, templFeatures.maxSize);
+        hist_.setTo(Scalar::all(0));
+        Guil_Full_calcPHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_,
+                                (float)angle, (float)angleEpsilon_, (float)scale, (float)dp_, levels_, templFeatures_.maxSize);
 
-        posCount = Guil_Full_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1),
-                                               posCount, maxSize, (float)angle, angleVotes,
-                                               (float)scale, scaleVotes, (float)dp, posThresh);
+        posCount_ = Guil_Full_findPosInHist_gpu(hist_, outBuf_.ptr<float4>(0), outBuf_.ptr<int3>(1),
+                                                posCount_, maxBufferSize_, (float)angle, angleVotes,
+                                                (float)scale, scaleVotes, (float)dp_, posThresh_);
     }
 }
 
-Ptr<gpu::GeneralizedHough> cv::gpu::GeneralizedHough::create(int method)
+Ptr<GeneralizedHoughGuil> cv::gpu::createGeneralizedHoughGuil()
 {
-    switch (method)
-    {
-    case cv::GeneralizedHough::GHT_POSITION:
-        CV_Assert( !GHT_Ballard_Pos_info_auto.name().empty() );
-        return new GHT_Ballard_Pos();
-
-    case (cv::GeneralizedHough::GHT_POSITION | cv::GeneralizedHough::GHT_SCALE):
-        CV_Assert( !GHT_Ballard_PosScale_info_auto.name().empty() );
-        return new GHT_Ballard_PosScale();
-
-    case (cv::GeneralizedHough::GHT_POSITION | cv::GeneralizedHough::GHT_ROTATION):
-        CV_Assert( !GHT_Ballard_PosRotation_info_auto.name().empty() );
-        return new GHT_Ballard_PosRotation();
-
-    case (cv::GeneralizedHough::GHT_POSITION | cv::GeneralizedHough::GHT_SCALE | cv::GeneralizedHough::GHT_ROTATION):
-        CV_Assert( !GHT_Guil_Full_info_auto.name().empty() );
-        return new GHT_Guil_Full();
-
-    default:
-        CV_Error(Error::StsBadArg, "Unsupported method");
-        return Ptr<GeneralizedHough>();
-    }
+    return new GeneralizedHoughGuilImpl;
 }
 
 #endif /* !defined (HAVE_CUDA) */
index e4319bd..969899d 100644 (file)
@@ -193,7 +193,7 @@ PARAM_TEST_CASE(GeneralizedHough, cv::gpu::DeviceInfo, UseRoi)
 {
 };
 
-GPU_TEST_P(GeneralizedHough, POSITION)
+GPU_TEST_P(GeneralizedHough, Ballard)
 {
     const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
     cv::gpu::setDevice(devInfo.deviceID());
@@ -218,16 +218,16 @@ GPU_TEST_P(GeneralizedHough, POSITION)
         templ.copyTo(imageROI);
     }
 
-    cv::Ptr<cv::gpu::GeneralizedHough> hough = cv::gpu::GeneralizedHough::create(cv::GeneralizedHough::GHT_POSITION);
-    hough->set("votesThreshold", 200);
+    cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::gpu::createGeneralizedHoughBallard();
+    alg->setVotesThreshold(200);
 
-    hough->setTemplate(loadMat(templ, useRoi));
+    alg->setTemplate(loadMat(templ, useRoi));
 
     cv::gpu::GpuMat d_pos;
-    hough->detect(loadMat(image, useRoi), d_pos);
+    alg->detect(loadMat(image, useRoi), d_pos);
 
     std::vector<cv::Vec4f> pos;
-    hough->downloadResults(d_pos, pos);
+    d_pos.download(pos);
 
     ASSERT_EQ(gold_count, pos.size());
 
index 6d61088..d28bea4 100644 (file)
@@ -688,39 +688,104 @@ public:
 
 
 //! finds arbitrary template in the grayscale image using Generalized Hough Transform
+class CV_EXPORTS GeneralizedHough : public Algorithm
+{
+public:
+    //! set template to search
+    virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
+    virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
+
+    //! find template on image
+    virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
+    virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
+
+    //! Canny low threshold.
+    virtual void setCannyLowThresh(int cannyLowThresh) = 0;
+    virtual int getCannyLowThresh() const = 0;
+
+    //! Canny high threshold.
+    virtual void setCannyHighThresh(int cannyHighThresh) = 0;
+    virtual int getCannyHighThresh() const = 0;
+
+    //! Minimum distance between the centers of the detected objects.
+    virtual void setMinDist(double minDist) = 0;
+    virtual double getMinDist() const = 0;
+
+    //! Inverse ratio of the accumulator resolution to the image resolution.
+    virtual void setDp(double dp) = 0;
+    virtual double getDp() const = 0;
+
+    //! Maximal size of inner buffers.
+    virtual void setMaxBufferSize(int maxBufferSize) = 0;
+    virtual int getMaxBufferSize() const = 0;
+};
+
 //! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
+//! Detects position only without traslation and rotation
+class CV_EXPORTS GeneralizedHoughBallard : public GeneralizedHough
+{
+public:
+    //! R-Table levels.
+    virtual void setLevels(int levels) = 0;
+    virtual int getLevels() const = 0;
+
+    //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
+    virtual void setVotesThreshold(int votesThreshold) = 0;
+    virtual int getVotesThreshold() const = 0;
+};
+
 //! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
-class CV_EXPORTS GeneralizedHough : public Algorithm
+//! Detects position, traslation and rotation
+class CV_EXPORTS GeneralizedHoughGuil : public GeneralizedHough
 {
 public:
-    enum { GHT_POSITION = 0,
-           GHT_SCALE    = 1,
-           GHT_ROTATION = 2
-         };
+    //! Angle difference in degrees between two points in feature.
+    virtual void setXi(double xi) = 0;
+    virtual double getXi() const = 0;
 
-    static Ptr<GeneralizedHough> create(int method);
+    //! Feature table levels.
+    virtual void setLevels(int levels) = 0;
+    virtual int getLevels() const = 0;
 
-    virtual ~GeneralizedHough();
+    //! Maximal difference between angles that treated as equal.
+    virtual void setAngleEpsilon(double angleEpsilon) = 0;
+    virtual double getAngleEpsilon() const = 0;
 
-    //! set template to search
-    void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
-    void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1));
+    //! Minimal rotation angle to detect in degrees.
+    virtual void setMinAngle(double minAngle) = 0;
+    virtual double getMinAngle() const = 0;
 
-    //! find template on image
-    void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100);
-    void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray());
+    //! Maximal rotation angle to detect in degrees.
+    virtual void setMaxAngle(double maxAngle) = 0;
+    virtual double getMaxAngle() const = 0;
 
-    void release();
+    //! Angle step in degrees.
+    virtual void setAngleStep(double angleStep) = 0;
+    virtual double getAngleStep() const = 0;
 
-protected:
-    virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0;
-    virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0;
-    virtual void releaseImpl() = 0;
-
-private:
-    Mat edges_;
-    Mat dx_;
-    Mat dy_;
+    //! Angle votes threshold.
+    virtual void setAngleThresh(int angleThresh) = 0;
+    virtual int getAngleThresh() const = 0;
+
+    //! Minimal scale to detect.
+    virtual void setMinScale(double minScale) = 0;
+    virtual double getMinScale() const = 0;
+
+    //! Maximal scale to detect.
+    virtual void setMaxScale(double maxScale) = 0;
+    virtual double getMaxScale() const = 0;
+
+    //! Scale step.
+    virtual void setScaleStep(double scaleStep) = 0;
+    virtual double getScaleStep() const = 0;
+
+    //! Scale votes threshold.
+    virtual void setScaleThresh(int scaleThresh) = 0;
+    virtual int getScaleThresh() const = 0;
+
+    //! Position votes threshold.
+    virtual void setPosThresh(int posThresh) = 0;
+    virtual int getPosThresh() const = 0;
 };
 
 
@@ -1355,6 +1420,14 @@ CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measu
 
 CV_EXPORTS Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
 
+//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
+//! Detects position only without traslation and rotation
+CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
+
+//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
+//! Detects position, traslation and rotation
+CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
+
 } // cv
 
 #endif
index 8eadff2..7ee3b70 100644 (file)
 
 using namespace cv;
 
+// common
+
 namespace
 {
-    /////////////////////////////////////
-    // Common
-
-    template <typename T, class A> void releaseVector(std::vector<T, A>& v)
-    {
-        std::vector<T, A> empty;
-        empty.swap(v);
-    }
-
     double toRad(double a)
     {
         return a * CV_PI / 180.0;
@@ -66,70 +59,112 @@ namespace
         return fabs(v) > std::numeric_limits<float>::epsilon();
     }
 
-    class GHT_Pos : public GeneralizedHough
+    class GeneralizedHoughBase
     {
-    public:
-        GHT_Pos();
-
     protected:
-        void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter);
-        void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes);
-        void releaseImpl();
+        GeneralizedHoughBase();
+        virtual ~GeneralizedHoughBase() {}
+
+        void setTemplateImpl(InputArray templ, Point templCenter);
+        void setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter);
+
+        void detectImpl(InputArray image, OutputArray positions, OutputArray votes);
+        void detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes);
 
         virtual void processTempl() = 0;
         virtual void processImage() = 0;
 
+        int cannyLowThresh_;
+        int cannyHighThresh_;
+        double minDist_;
+        double dp_;
+
+        Size templSize_;
+        Point templCenter_;
+        Mat templEdges_;
+        Mat templDx_;
+        Mat templDy_;
+
+        Size imageSize_;
+        Mat imageEdges_;
+        Mat imageDx_;
+        Mat imageDy_;
+
+        std::vector<Vec4f> posOutBuf_;
+        std::vector<Vec3i> voteOutBuf_;
+
+    private:
+        void calcEdges(InputArray src, Mat& edges, Mat& dx, Mat& dy);
         void filterMinDist();
         void convertTo(OutputArray positions, OutputArray votes);
+    };
 
-        double minDist;
+    GeneralizedHoughBase::GeneralizedHoughBase()
+    {
+        cannyLowThresh_ = 50;
+        cannyHighThresh_ = 100;
+        minDist_ = 1.0;
+        dp_ = 1.0;
+    }
 
-        Size templSize;
-        Point templCenter;
-        Mat templEdges;
-        Mat templDx;
-        Mat templDy;
+    void GeneralizedHoughBase::calcEdges(InputArray _src, Mat& edges, Mat& dx, Mat& dy)
+    {
+        Mat src = _src.getMat();
 
-        Size imageSize;
-        Mat imageEdges;
-        Mat imageDx;
-        Mat imageDy;
+        CV_Assert( src.type() == CV_8UC1 );
+        CV_Assert( cannyLowThresh_ > 0 && cannyLowThresh_ < cannyHighThresh_ );
 
-        std::vector<Vec4f> posOutBuf;
-        std::vector<Vec3i> voteOutBuf;
-    };
+        Canny(src, edges, cannyLowThresh_, cannyHighThresh_);
+        Sobel(src, dx, CV_32F, 1, 0);
+        Sobel(src, dy, CV_32F, 0, 1);
+    }
 
-    GHT_Pos::GHT_Pos()
+    void GeneralizedHoughBase::setTemplateImpl(InputArray templ, Point templCenter)
     {
-        minDist = 1.0;
+        calcEdges(templ, templEdges_, templDx_, templDy_);
+
+        if (templCenter == Point(-1, -1))
+            templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2);
+
+        templSize_ = templEdges_.size();
+        templCenter_ = templCenter;
+
+        processTempl();
     }
 
-    void GHT_Pos::setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter_)
+    void GeneralizedHoughBase::setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter)
     {
-        templSize = edges.size();
-        templCenter = templCenter_;
-        edges.copyTo(templEdges);
-        dx.copyTo(templDx);
-        dy.copyTo(templDy);
+        edges.getMat().copyTo(templEdges_);
+        dx.getMat().copyTo(templDx_);
+        dy.getMat().copyTo(templDy_);
+
+        CV_Assert( templEdges_.type() == CV_8UC1 );
+        CV_Assert( templDx_.type() == CV_32FC1 && templDx_.size() == templEdges_.size() );
+        CV_Assert( templDy_.type() == templDx_.type() && templDy_.size() == templEdges_.size() );
+
+        if (templCenter == Point(-1, -1))
+            templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2);
+
+        templSize_ = templEdges_.size();
+        templCenter_ = templCenter;
 
         processTempl();
     }
 
-    void GHT_Pos::detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes)
+    void GeneralizedHoughBase::detectImpl(InputArray image, OutputArray positions, OutputArray votes)
     {
-        imageSize = edges.size();
-        edges.copyTo(imageEdges);
-        dx.copyTo(imageDx);
-        dy.copyTo(imageDy);
+        calcEdges(image, imageEdges_, imageDx_, imageDy_);
+
+        imageSize_ = imageEdges_.size();
 
-        posOutBuf.clear();
-        voteOutBuf.clear();
+        posOutBuf_.clear();
+        voteOutBuf_.clear();
 
         processImage();
 
-        if (!posOutBuf.empty())
+        if (!posOutBuf_.empty())
         {
-            if (minDist > 1)
+            if (minDist_ > 1)
                 filterMinDist();
             convertTo(positions, votes);
         }
@@ -141,21 +176,35 @@ namespace
         }
     }
 
-    void GHT_Pos::releaseImpl()
+    void GeneralizedHoughBase::detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes)
     {
-        templSize = Size();
-        templCenter = Point(-1, -1);
-        templEdges.release();
-        templDx.release();
-        templDy.release();
-
-        imageSize = Size();
-        imageEdges.release();
-        imageDx.release();
-        imageDy.release();
-
-        releaseVector(posOutBuf);
-        releaseVector(voteOutBuf);
+        edges.getMat().copyTo(imageEdges_);
+        dx.getMat().copyTo(imageDx_);
+        dy.getMat().copyTo(imageDy_);
+
+        CV_Assert( imageEdges_.type() == CV_8UC1 );
+        CV_Assert( imageDx_.type() == CV_32FC1 && imageDx_.size() == imageEdges_.size() );
+        CV_Assert( imageDy_.type() == imageDx_.type() && imageDy_.size() == imageEdges_.size() );
+
+        imageSize_ = imageEdges_.size();
+
+        posOutBuf_.clear();
+        voteOutBuf_.clear();
+
+        processImage();
+
+        if (!posOutBuf_.empty())
+        {
+            if (minDist_ > 1)
+                filterMinDist();
+            convertTo(positions, votes);
+        }
+        else
+        {
+            positions.release();
+            if (votes.needed())
+                votes.release();
+        }
     }
 
     class Vec3iGreaterThanIdx
@@ -166,31 +215,31 @@ namespace
         const Vec3i* arr;
     };
 
-    void GHT_Pos::filterMinDist()
+    void GeneralizedHoughBase::filterMinDist()
     {
-        size_t oldSize = posOutBuf.size();
-        const bool hasVotes = !voteOutBuf.empty();
+        size_t oldSize = posOutBuf_.size();
+        const bool hasVotes = !voteOutBuf_.empty();
 
-        CV_Assert(!hasVotes || voteOutBuf.size() == oldSize);
+        CV_Assert( !hasVotes || voteOutBuf_.size() == oldSize );
 
-        std::vector<Vec4f> oldPosBuf(posOutBuf);
-        std::vector<Vec3i> oldVoteBuf(voteOutBuf);
+        std::vector<Vec4f> oldPosBuf(posOutBuf_);
+        std::vector<Vec3i> oldVoteBuf(voteOutBuf_);
 
         std::vector<size_t> indexies(oldSize);
         for (size_t i = 0; i < oldSize; ++i)
             indexies[i] = i;
         std::sort(indexies.begin(), indexies.end(), Vec3iGreaterThanIdx(&oldVoteBuf[0]));
 
-        posOutBuf.clear();
-        voteOutBuf.clear();
+        posOutBuf_.clear();
+        voteOutBuf_.clear();
 
-        const int cellSize = cvRound(minDist);
-        const int gridWidth = (imageSize.width + cellSize - 1) / cellSize;
-        const int gridHeight = (imageSize.height + cellSize - 1) / cellSize;
+        const int cellSize = cvRound(minDist_);
+        const int gridWidth = (imageSize_.width + cellSize - 1) / cellSize;
+        const int gridHeight = (imageSize_.height + cellSize - 1) / cellSize;
 
         std::vector< std::vector<Point2f> > grid(gridWidth * gridHeight);
 
-        const double minDist2 = minDist * minDist;
+        const double minDist2 = minDist_ * minDist_;
 
         for (size_t i = 0; i < oldSize; ++i)
         {
@@ -239,108 +288,112 @@ namespace
             {
                 grid[yCell * gridWidth + xCell].push_back(p);
 
-                posOutBuf.push_back(oldPosBuf[ind]);
+                posOutBuf_.push_back(oldPosBuf[ind]);
                 if (hasVotes)
-                    voteOutBuf.push_back(oldVoteBuf[ind]);
+                    voteOutBuf_.push_back(oldVoteBuf[ind]);
             }
         }
     }
 
-    void GHT_Pos::convertTo(OutputArray _positions, OutputArray _votes)
+    void GeneralizedHoughBase::convertTo(OutputArray _positions, OutputArray _votes)
     {
-        const int total = static_cast<int>(posOutBuf.size());
-        const bool hasVotes = !voteOutBuf.empty();
+        const int total = static_cast<int>(posOutBuf_.size());
+        const bool hasVotes = !voteOutBuf_.empty();
 
-        CV_Assert(!hasVotes || voteOutBuf.size() == posOutBuf.size());
+        CV_Assert( !hasVotes || voteOutBuf_.size() == posOutBuf_.size() );
 
         _positions.create(1, total, CV_32FC4);
         Mat positions = _positions.getMat();
-        Mat(1, total, CV_32FC4, &posOutBuf[0]).copyTo(positions);
+        Mat(1, total, CV_32FC4, &posOutBuf_[0]).copyTo(positions);
 
         if (_votes.needed())
         {
             if (!hasVotes)
+            {
                 _votes.release();
+            }
             else
             {
                 _votes.create(1, total, CV_32SC3);
                 Mat votes = _votes.getMat();
-                Mat(1, total, CV_32SC3, &voteOutBuf[0]).copyTo(votes);
+                Mat(1, total, CV_32SC3, &voteOutBuf_[0]).copyTo(votes);
             }
         }
     }
+}
 
-    /////////////////////////////////////
-    // POSITION Ballard
+// GeneralizedHoughBallard
 
-    class GHT_Ballard_Pos : public GHT_Pos
+namespace
+{
+    class GeneralizedHoughBallardImpl : public GeneralizedHoughBallard, private GeneralizedHoughBase
     {
     public:
-        AlgorithmInfo* info() const;
+        GeneralizedHoughBallardImpl();
 
-        GHT_Ballard_Pos();
+        void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); }
+        void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); }
 
-    protected:
-        void releaseImpl();
+        void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); }
+        void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); }
+
+        void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; }
+        int getCannyLowThresh() const { return cannyLowThresh_; }
+
+        void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; }
+        int getCannyHighThresh() const { return cannyHighThresh_; }
+
+        void setMinDist(double minDist) { minDist_ = minDist; }
+        double getMinDist() const { return minDist_; }
+
+        void setDp(double dp) { dp_ = dp; }
+        double getDp() const { return dp_; }
+
+        void setMaxBufferSize(int) {  }
+        int getMaxBufferSize() const { return 0; }
 
+        void setLevels(int levels) { levels_ = levels; }
+        int getLevels() const { return levels_; }
+
+        void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
+        int getVotesThreshold() const { return votesThreshold_; }
+
+    private:
         void processTempl();
         void processImage();
 
-        virtual void calcHist();
-        virtual void findPosInHist();
+        void calcHist();
+        void findPosInHist();
 
-        int levels;
-        int votesThreshold;
-        double dp;
+        int levels_;
+        int votesThreshold_;
 
-        std::vector< std::vector<Point> > r_table;
-        Mat hist;
+        std::vector< std::vector<Point> > r_table_;
+        Mat hist_;
     };
 
-    CV_INIT_ALGORITHM(GHT_Ballard_Pos, "GeneralizedHough.POSITION",
-                      obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
-                                           "Minimum distance between the centers of the detected objects.");
-                      obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
-                                           "R-Table levels.");
-                      obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
-                                           "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
-                      obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
-                                           "Inverse ratio of the accumulator resolution to the image resolution."));
-
-    GHT_Ballard_Pos::GHT_Ballard_Pos()
+    GeneralizedHoughBallardImpl::GeneralizedHoughBallardImpl()
     {
-        levels = 360;
-        votesThreshold = 100;
-        dp = 1.0;
+        levels_ = 360;
+        votesThreshold_ = 100;
     }
 
-    void GHT_Ballard_Pos::releaseImpl()
+    void GeneralizedHoughBallardImpl::processTempl()
     {
-        GHT_Pos::releaseImpl();
+        CV_Assert( levels_ > 0 );
 
-        releaseVector(r_table);
-        hist.release();
-    }
+        const double thetaScale = levels_ / 360.0;
 
-    void GHT_Ballard_Pos::processTempl()
-    {
-        CV_Assert(templEdges.type() == CV_8UC1);
-        CV_Assert(templDx.type() == CV_32FC1 && templDx.size() == templSize);
-        CV_Assert(templDy.type() == templDx.type() && templDy.size() == templSize);
-        CV_Assert(levels > 0);
+        r_table_.resize(levels_ + 1);
+        std::for_each(r_table_.begin(), r_table_.end(), std::mem_fun_ref(&std::vector<Point>::clear));
 
-        const double thetaScale = levels / 360.0;
-
-        r_table.resize(levels + 1);
-        for_each(r_table.begin(), r_table.end(), mem_fun_ref(&std::vector<Point>::clear));
-
-        for (int y = 0; y < templSize.height; ++y)
+        for (int y = 0; y < templSize_.height; ++y)
         {
-            const uchar* edgesRow = templEdges.ptr(y);
-            const float* dxRow = templDx.ptr<float>(y);
-            const float* dyRow = templDy.ptr<float>(y);
+            const uchar* edgesRow = templEdges_.ptr(y);
+            const float* dxRow = templDx_.ptr<float>(y);
+            const float* dyRow = templDy_.ptr<float>(y);
 
-            for (int x = 0; x < templSize.width; ++x)
+            for (int x = 0; x < templSize_.width; ++x)
             {
                 const Point p(x, y);
 
@@ -348,42 +401,42 @@ namespace
                 {
                     const float theta = fastAtan2(dyRow[x], dxRow[x]);
                     const int n = cvRound(theta * thetaScale);
-                    r_table[n].push_back(p - templCenter);
+                    r_table_[n].push_back(p - templCenter_);
                 }
             }
         }
     }
 
-    void GHT_Ballard_Pos::processImage()
+    void GeneralizedHoughBallardImpl::processImage()
     {
         calcHist();
         findPosInHist();
     }
 
-    void GHT_Ballard_Pos::calcHist()
+    void GeneralizedHoughBallardImpl::calcHist()
     {
-        CV_Assert(imageEdges.type() == CV_8UC1);
-        CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize);
-        CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize);
-        CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1));
-        CV_Assert(dp > 0.0);
+        CV_Assert( imageEdges_.type() == CV_8UC1 );
+        CV_Assert( imageDx_.type() == CV_32FC1 && imageDx_.size() == imageSize_);
+        CV_Assert( imageDy_.type() == imageDx_.type() && imageDy_.size() == imageSize_);
+        CV_Assert( levels_ > 0 && r_table_.size() == static_cast<size_t>(levels_ + 1) );
+        CV_Assert( dp_ > 0.0 );
 
-        const double thetaScale = levels / 360.0;
-        const double idp = 1.0 / dp;
+        const double thetaScale = levels_ / 360.0;
+        const double idp = 1.0 / dp_;
 
-        hist.create(cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2, CV_32SC1);
-        hist.setTo(0);
+        hist_.create(cvCeil(imageSize_.height * idp) + 2, cvCeil(imageSize_.width * idp) + 2, CV_32SC1);
+        hist_.setTo(0);
 
-        const int rows = hist.rows - 2;
-        const int cols = hist.cols - 2;
+        const int rows = hist_.rows - 2;
+        const int cols = hist_.cols - 2;
 
-        for (int y = 0; y < imageSize.height; ++y)
+        for (int y = 0; y < imageSize_.height; ++y)
         {
-            const uchar* edgesRow = imageEdges.ptr(y);
-            const float* dxRow = imageDx.ptr<float>(y);
-            const float* dyRow = imageDy.ptr<float>(y);
+            const uchar* edgesRow = imageEdges_.ptr(y);
+            const float* dxRow = imageDx_.ptr<float>(y);
+            const float* dyRow = imageDy_.ptr<float>(y);
 
-            for (int x = 0; x < imageSize.width; ++x)
+            for (int x = 0; x < imageSize_.width; ++x)
             {
                 const Point p(x, y);
 
@@ -392,7 +445,7 @@ namespace
                     const float theta = fastAtan2(dyRow[x], dxRow[x]);
                     const int n = cvRound(theta * thetaScale);
 
-                    const std::vector<Point>& r_row = r_table[n];
+                    const std::vector<Point>& r_row = r_table_[n];
 
                     for (size_t j = 0; j < r_row.size(); ++j)
                     {
@@ -402,406 +455,131 @@ namespace
                         c.y = cvRound(c.y * idp);
 
                         if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows)
-                            ++hist.at<int>(c.y + 1, c.x + 1);
+                            ++hist_.at<int>(c.y + 1, c.x + 1);
                     }
                 }
             }
         }
     }
 
-    void GHT_Ballard_Pos::findPosInHist()
+    void GeneralizedHoughBallardImpl::findPosInHist()
     {
-        CV_Assert(votesThreshold > 0);
+        CV_Assert( votesThreshold_ > 0 );
 
-        const int histRows = hist.rows - 2;
-        const int histCols = hist.cols - 2;
+        const int histRows = hist_.rows - 2;
+        const int histCols = hist_.cols - 2;
 
         for(int y = 0; y < histRows; ++y)
         {
-            const int* prevRow = hist.ptr<int>(y);
-            const int* curRow = hist.ptr<int>(y + 1);
-            const int* nextRow = hist.ptr<int>(y + 2);
+            const int* prevRow = hist_.ptr<int>(y);
+            const int* curRow = hist_.ptr<int>(y + 1);
+            const int* nextRow = hist_.ptr<int>(y + 2);
 
             for(int x = 0; x < histCols; ++x)
             {
                 const int votes = curRow[x + 1];
 
-                if (votes > votesThreshold && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1])
+                if (votes > votesThreshold_ && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1])
                 {
-                    posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), 1.0f, 0.0f));
-                    voteOutBuf.push_back(Vec3i(votes, 0, 0));
+                    posOutBuf_.push_back(Vec4f(static_cast<float>(x * dp_), static_cast<float>(y * dp_), 1.0f, 0.0f));
+                    voteOutBuf_.push_back(Vec3i(votes, 0, 0));
                 }
             }
         }
     }
+}
 
-    /////////////////////////////////////
-    // POSITION & SCALE
-
-    class GHT_Ballard_PosScale : public GHT_Ballard_Pos
-    {
-    public:
-        AlgorithmInfo* info() const;
-
-        GHT_Ballard_PosScale();
-
-    protected:
-        void calcHist();
-        void findPosInHist();
-
-        double minScale;
-        double maxScale;
-        double scaleStep;
+Ptr<GeneralizedHoughBallard> cv::createGeneralizedHoughBallard()
+{
+    return new GeneralizedHoughBallardImpl;
+}
 
-        class Worker;
-        friend class Worker;
-    };
+// GeneralizedHoughGuil
 
-    CV_INIT_ALGORITHM(GHT_Ballard_PosScale, "GeneralizedHough.POSITION_SCALE",
-                      obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
-                                           "Minimum distance between the centers of the detected objects.");
-                      obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
-                                           "R-Table levels.");
-                      obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
-                                           "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
-                      obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
-                                           "Inverse ratio of the accumulator resolution to the image resolution.");
-                      obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0,
-                                           "Minimal scale to detect.");
-                      obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0,
-                                           "Maximal scale to detect.");
-                      obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
-                                           "Scale step."));
-
-    GHT_Ballard_PosScale::GHT_Ballard_PosScale()
-    {
-        minScale = 0.5;
-        maxScale = 2.0;
-        scaleStep = 0.05;
-    }
-
-    class GHT_Ballard_PosScale::Worker : public ParallelLoopBody
+namespace
+{
+    class GeneralizedHoughGuilImpl : public GeneralizedHoughGuil, private GeneralizedHoughBase
     {
     public:
-        explicit Worker(GHT_Ballard_PosScale* base_) : base(base_) {}
+        GeneralizedHoughGuilImpl();
 
-        void operator ()(const Range& range) const;
+        void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); }
+        void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); }
 
-    private:
-        GHT_Ballard_PosScale* base;
-    };
+        void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); }
+        void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); }
 
-    void GHT_Ballard_PosScale::Worker::operator ()(const Range& range) const
-    {
-        const double thetaScale = base->levels / 360.0;
-        const double idp = 1.0 / base->dp;
+        void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; }
+        int getCannyLowThresh() const { return cannyLowThresh_; }
 
-        for (int s = range.start; s < range.end; ++s)
-        {
-            const double scale = base->minScale + s * base->scaleStep;
+        void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; }
+        int getCannyHighThresh() const { return cannyHighThresh_; }
 
-            Mat curHist(base->hist.size[1], base->hist.size[2], CV_32SC1, base->hist.ptr(s + 1), base->hist.step[1]);
+        void setMinDist(double minDist) { minDist_ = minDist; }
+        double getMinDist() const { return minDist_; }
 
-            for (int y = 0; y < base->imageSize.height; ++y)
-            {
-                const uchar* edgesRow = base->imageEdges.ptr(y);
-                const float* dxRow = base->imageDx.ptr<float>(y);
-                const float* dyRow = base->imageDy.ptr<float>(y);
+        void setDp(double dp) { dp_ = dp; }
+        double getDp() const { return dp_; }
 
-                for (int x = 0; x < base->imageSize.width; ++x)
-                {
-                    const Point2d p(x, y);
+        void setMaxBufferSize(int maxBufferSize) { maxBufferSize_ = maxBufferSize; }
+        int getMaxBufferSize() const { return maxBufferSize_; }
 
-                    if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x])))
-                    {
-                        const float theta = fastAtan2(dyRow[x], dxRow[x]);
-                        const int n = cvRound(theta * thetaScale);
+        void setXi(double xi) { xi_ = xi; }
+        double getXi() const { return xi_; }
 
-                        const std::vector<Point>& r_row = base->r_table[n];
+        void setLevels(int levels) { levels_ = levels; }
+        int getLevels() const { return levels_; }
 
-                        for (size_t j = 0; j < r_row.size(); ++j)
-                        {
-                            Point2d d = r_row[j];
-                            Point2d c = p - d * scale;
+        void setAngleEpsilon(double angleEpsilon) { angleEpsilon_ = angleEpsilon; }
+        double getAngleEpsilon() const { return angleEpsilon_; }
 
-                            c.x *= idp;
-                            c.y *= idp;
+        void setMinAngle(double minAngle) { minAngle_ = minAngle; }
+        double getMinAngle() const { return minAngle_; }
 
-                            if (c.x >= 0 && c.x < base->hist.size[2] - 2 && c.y >= 0 && c.y < base->hist.size[1] - 2)
-                                ++curHist.at<int>(cvRound(c.y + 1), cvRound(c.x + 1));
-                        }
-                    }
-                }
-            }
-        }
-    }
-
-    void GHT_Ballard_PosScale::calcHist()
-    {
-        CV_Assert(imageEdges.type() == CV_8UC1);
-        CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize);
-        CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize);
-        CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1));
-        CV_Assert(dp > 0.0);
-        CV_Assert(minScale > 0.0 && minScale < maxScale);
-        CV_Assert(scaleStep > 0.0);
-
-        const double idp = 1.0 / dp;
-        const int scaleRange = cvCeil((maxScale - minScale) / scaleStep);
-
-        const int sizes[] = {scaleRange + 2, cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2};
-        hist.create(3, sizes, CV_32SC1);
-        hist.setTo(0);
-
-        parallel_for_(Range(0, scaleRange), Worker(this));
-    }
-
-    void GHT_Ballard_PosScale::findPosInHist()
-    {
-        CV_Assert(votesThreshold > 0);
-
-        const int scaleRange = hist.size[0] - 2;
-        const int histRows = hist.size[1] - 2;
-        const int histCols = hist.size[2] - 2;
-
-        for (int s = 0; s < scaleRange; ++s)
-        {
-            const float scale = static_cast<float>(minScale + s * scaleStep);
-
-            const Mat prevHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s), hist.step[1]);
-            const Mat curHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s + 1), hist.step[1]);
-            const Mat nextHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s + 2), hist.step[1]);
-
-            for(int y = 0; y < histRows; ++y)
-            {
-                const int* prevHistRow = prevHist.ptr<int>(y + 1);
-                const int* prevRow = curHist.ptr<int>(y);
-                const int* curRow = curHist.ptr<int>(y + 1);
-                const int* nextRow = curHist.ptr<int>(y + 2);
-                const int* nextHistRow = nextHist.ptr<int>(y + 1);
+        void setMaxAngle(double maxAngle) { maxAngle_ = maxAngle; }
+        double getMaxAngle() const { return maxAngle_; }
 
-                for(int x = 0; x < histCols; ++x)
-                {
-                    const int votes = curRow[x + 1];
-
-                    if (votes > votesThreshold &&
-                        votes > curRow[x] &&
-                        votes >= curRow[x + 2] &&
-                        votes > prevRow[x + 1] &&
-                        votes >= nextRow[x + 1] &&
-                        votes > prevHistRow[x + 1] &&
-                        votes >= nextHistRow[x + 1])
-                    {
-                        posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), scale, 0.0f));
-                        voteOutBuf.push_back(Vec3i(votes, votes, 0));
-                    }
-                }
-            }
-        }
-    }
+        void setAngleStep(double angleStep) { angleStep_ = angleStep; }
+        double getAngleStep() const { return angleStep_; }
 
-    /////////////////////////////////////
-    // POSITION & ROTATION
+        void setAngleThresh(int angleThresh) { angleThresh_ = angleThresh; }
+        int getAngleThresh() const { return angleThresh_; }
 
-    class GHT_Ballard_PosRotation : public GHT_Ballard_Pos
-    {
-    public:
-        AlgorithmInfo* info() const;
+        void setMinScale(double minScale) { minScale_ = minScale; }
+        double getMinScale() const { return minScale_; }
 
-        GHT_Ballard_PosRotation();
+        void setMaxScale(double maxScale) { maxScale_ = maxScale; }
+        double getMaxScale() const { return maxScale_; }
 
-    protected:
-        void calcHist();
-        void findPosInHist();
+        void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; }
+        double getScaleStep() const { return scaleStep_; }
 
-        double minAngle;
-        double maxAngle;
-        double angleStep;
+        void setScaleThresh(int scaleThresh) { scaleThresh_ = scaleThresh; }
+        int getScaleThresh() const { return scaleThresh_; }
 
-        class Worker;
-        friend class Worker;
-    };
-
-    CV_INIT_ALGORITHM(GHT_Ballard_PosRotation, "GeneralizedHough.POSITION_ROTATION",
-                      obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
-                                           "Minimum distance between the centers of the detected objects.");
-                      obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
-                                           "R-Table levels.");
-                      obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0,
-                                           "The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.");
-                      obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
-                                           "Inverse ratio of the accumulator resolution to the image resolution.");
-                      obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0,
-                                           "Minimal rotation angle to detect in degrees.");
-                      obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0,
-                                           "Maximal rotation angle to detect in degrees.");
-                      obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0,
-                                           "Angle step in degrees."));
-
-    GHT_Ballard_PosRotation::GHT_Ballard_PosRotation()
-    {
-        minAngle = 0.0;
-        maxAngle = 360.0;
-        angleStep = 1.0;
-    }
-
-    class GHT_Ballard_PosRotation::Worker : public ParallelLoopBody
-    {
-    public:
-        explicit Worker(GHT_Ballard_PosRotation* base_) : base(base_) {}
-
-        void operator ()(const Range& range) const;
+        void setPosThresh(int posThresh) { posThresh_ = posThresh; }
+        int getPosThresh() const { return posThresh_; }
 
     private:
-        GHT_Ballard_PosRotation* base;
-    };
-
-    void GHT_Ballard_PosRotation::Worker::operator ()(const Range& range) const
-    {
-        const double thetaScale = base->levels / 360.0;
-        const double idp = 1.0 / base->dp;
-
-        for (int a = range.start; a < range.end; ++a)
-        {
-            const double angle = base->minAngle + a * base->angleStep;
-
-            const double sinA = ::sin(toRad(angle));
-            const double cosA = ::cos(toRad(angle));
-
-            Mat curHist(base->hist.size[1], base->hist.size[2], CV_32SC1, base->hist.ptr(a + 1), base->hist.step[1]);
-
-            for (int y = 0; y < base->imageSize.height; ++y)
-            {
-                const uchar* edgesRow = base->imageEdges.ptr(y);
-                const float* dxRow = base->imageDx.ptr<float>(y);
-                const float* dyRow = base->imageDy.ptr<float>(y);
-
-                for (int x = 0; x < base->imageSize.width; ++x)
-                {
-                    const Point2d p(x, y);
-
-                    if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x])))
-                    {
-                        double theta = fastAtan2(dyRow[x], dxRow[x]) - angle;
-                        if (theta < 0)
-                            theta += 360.0;
-                        const int n = cvRound(theta * thetaScale);
-
-                        const std::vector<Point>& r_row = base->r_table[n];
-
-                        for (size_t j = 0; j < r_row.size(); ++j)
-                        {
-                            Point2d d = r_row[j];
-                            Point2d c = p - Point2d(d.x * cosA - d.y * sinA, d.x * sinA + d.y * cosA);
-
-                            c.x *= idp;
-                            c.y *= idp;
-
-                            if (c.x >= 0 && c.x < base->hist.size[2] - 2 && c.y >= 0 && c.y < base->hist.size[1] - 2)
-                                ++curHist.at<int>(cvRound(c.y + 1), cvRound(c.x + 1));
-                        }
-                    }
-                }
-            }
-        }
-    }
-
-    void GHT_Ballard_PosRotation::calcHist()
-    {
-        CV_Assert(imageEdges.type() == CV_8UC1);
-        CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize);
-        CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize);
-        CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1));
-        CV_Assert(dp > 0.0);
-        CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0);
-        CV_Assert(angleStep > 0.0 && angleStep < 360.0);
-
-        const double idp = 1.0 / dp;
-        const int angleRange = cvCeil((maxAngle - minAngle) / angleStep);
-
-        const int sizes[] = {angleRange + 2, cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2};
-        hist.create(3, sizes, CV_32SC1);
-        hist.setTo(0);
-
-        parallel_for_(Range(0, angleRange), Worker(this));
-    }
-
-    void GHT_Ballard_PosRotation::findPosInHist()
-    {
-        CV_Assert(votesThreshold > 0);
-
-        const int angleRange = hist.size[0] - 2;
-        const int histRows = hist.size[1] - 2;
-        const int histCols = hist.size[2] - 2;
-
-        for (int a = 0; a < angleRange; ++a)
-        {
-            const float angle = static_cast<float>(minAngle + a * angleStep);
-
-            const Mat prevHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a), hist.step[1]);
-            const Mat curHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a + 1), hist.step[1]);
-            const Mat nextHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a + 2), hist.step[1]);
-
-            for(int y = 0; y < histRows; ++y)
-            {
-                const int* prevHistRow = prevHist.ptr<int>(y + 1);
-                const int* prevRow = curHist.ptr<int>(y);
-                const int* curRow = curHist.ptr<int>(y + 1);
-                const int* nextRow = curHist.ptr<int>(y + 2);
-                const int* nextHistRow = nextHist.ptr<int>(y + 1);
-
-                for(int x = 0; x < histCols; ++x)
-                {
-                    const int votes = curRow[x + 1];
-
-                    if (votes > votesThreshold &&
-                        votes > curRow[x] &&
-                        votes >= curRow[x + 2] &&
-                        votes > prevRow[x + 1] &&
-                        votes >= nextRow[x + 1] &&
-                        votes > prevHistRow[x + 1] &&
-                        votes >= nextHistRow[x + 1])
-                    {
-                        posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), 1.0f, angle));
-                        voteOutBuf.push_back(Vec3i(votes, 0, votes));
-                    }
-                }
-            }
-        }
-    }
-
-    /////////////////////////////////////////
-    // POSITION & SCALE & ROTATION
-
-    double clampAngle(double a)
-    {
-        double res = a;
-
-        while (res > 360.0)
-            res -= 360.0;
-        while (res < 0)
-            res += 360.0;
-
-        return res;
-    }
-
-    bool angleEq(double a, double b, double eps = 1.0)
-    {
-        return (fabs(clampAngle(a - b)) <= eps);
-    }
+        void processTempl();
+        void processImage();
 
-    class GHT_Guil_Full : public GHT_Pos
-    {
-    public:
-        AlgorithmInfo* info() const;
+        int maxBufferSize_;
+        double xi_;
+        int levels_;
+        double angleEpsilon_;
 
-        GHT_Guil_Full();
+        double minAngle_;
+        double maxAngle_;
+        double angleStep_;
+        int angleThresh_;
 
-    protected:
-        void releaseImpl();
+        double minScale_;
+        double maxScale_;
+        double scaleStep_;
+        int scaleThresh_;
 
-        void processTempl();
-        void processImage();
+        int posThresh_;
 
         struct ContourPoint
         {
@@ -828,137 +606,92 @@ namespace
         void calcScale(double angle);
         void calcPosition(double angle, int angleVotes, double scale, int scaleVotes);
 
-        int maxSize;
-        double xi;
-        int levels;
-        double angleEpsilon;
+        std::vector< std::vector<Feature> > templFeatures_;
+        std::vector< std::vector<Feature> > imageFeatures_;
 
-        double minAngle;
-        double maxAngle;
-        double angleStep;
-        int angleThresh;
-
-        double minScale;
-        double maxScale;
-        double scaleStep;
-        int scaleThresh;
+        std::vector< std::pair<double, int> > angles_;
+        std::vector< std::pair<double, int> > scales_;
+    };
 
-        double dp;
-        int posThresh;
+    double clampAngle(double a)
+    {
+        double res = a;
 
-        std::vector< std::vector<Feature> > templFeatures;
-        std::vector< std::vector<Feature> > imageFeatures;
+        while (res > 360.0)
+            res -= 360.0;
+        while (res < 0)
+            res += 360.0;
 
-        std::vector< std::pair<double, int> > angles;
-        std::vector< std::pair<double, int> > scales;
-    };
+        return res;
+    }
 
-    CV_INIT_ALGORITHM(GHT_Guil_Full, "GeneralizedHough.POSITION_SCALE_ROTATION",
-                      obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0,
-                                           "Minimum distance between the centers of the detected objects.");
-                      obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0,
-                                           "Maximal size of inner buffers.");
-                      obj.info()->addParam(obj, "xi", obj.xi, false, 0, 0,
-                                           "Angle difference in degrees between two points in feature.");
-                      obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0,
-                                           "Feature table levels.");
-                      obj.info()->addParam(obj, "angleEpsilon", obj.angleEpsilon, false, 0, 0,
-                                           "Maximal difference between angles that treated as equal.");
-                      obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0,
-                                           "Minimal rotation angle to detect in degrees.");
-                      obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0,
-                                           "Maximal rotation angle to detect in degrees.");
-                      obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0,
-                                           "Angle step in degrees.");
-                      obj.info()->addParam(obj, "angleThresh", obj.angleThresh, false, 0, 0,
-                                           "Angle threshold.");
-                      obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0,
-                                           "Minimal scale to detect.");
-                      obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0,
-                                           "Maximal scale to detect.");
-                      obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
-                                           "Scale step.");
-                      obj.info()->addParam(obj, "scaleThresh", obj.scaleThresh, false, 0, 0,
-                                           "Scale threshold.");
-                      obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0,
-                                           "Inverse ratio of the accumulator resolution to the image resolution.");
-                      obj.info()->addParam(obj, "posThresh", obj.posThresh, false, 0, 0,
-                                           "Position threshold."));
-
-    GHT_Guil_Full::GHT_Guil_Full()
+    bool angleEq(double a, double b, double eps = 1.0)
     {
-        maxSize = 1000;
-        xi = 90.0;
-        levels = 360;
-        angleEpsilon = 1.0;
-
-        minAngle = 0.0;
-        maxAngle = 360.0;
-        angleStep = 1.0;
-        angleThresh = 15000;
-
-        minScale = 0.5;
-        maxScale = 2.0;
-        scaleStep = 0.05;
-        scaleThresh = 1000;
-
-        dp = 1.0;
-        posThresh = 100;
+        return (fabs(clampAngle(a - b)) <= eps);
     }
 
-    void GHT_Guil_Full::releaseImpl()
+    GeneralizedHoughGuilImpl::GeneralizedHoughGuilImpl()
     {
-        GHT_Pos::releaseImpl();
+        maxBufferSize_ = 1000;
+        xi_ = 90.0;
+        levels_ = 360;
+        angleEpsilon_ = 1.0;
 
-        releaseVector(templFeatures);
-        releaseVector(imageFeatures);
+        minAngle_ = 0.0;
+        maxAngle_ = 360.0;
+        angleStep_ = 1.0;
+        angleThresh_ = 15000;
 
-        releaseVector(angles);
-        releaseVector(scales);
+        minScale_ = 0.5;
+        maxScale_ = 2.0;
+        scaleStep_ = 0.05;
+        scaleThresh_ = 1000;
+
+        posThresh_ = 100;
     }
 
-    void GHT_Guil_Full::processTempl()
+    void GeneralizedHoughGuilImpl::processTempl()
     {
-        buildFeatureList(templEdges, templDx, templDy, templFeatures, templCenter);
+        buildFeatureList(templEdges_, templDx_, templDy_, templFeatures_, templCenter_);
     }
 
-    void GHT_Guil_Full::processImage()
+    void GeneralizedHoughGuilImpl::processImage()
     {
-        buildFeatureList(imageEdges, imageDx, imageDy, imageFeatures);
+        buildFeatureList(imageEdges_, imageDx_, imageDy_, imageFeatures_);
 
         calcOrientation();
 
-        for (size_t i = 0; i < angles.size(); ++i)
+        for (size_t i = 0; i < angles_.size(); ++i)
         {
-            const double angle = angles[i].first;
-            const int angleVotes = angles[i].second;
+            const double angle = angles_[i].first;
+            const int angleVotes = angles_[i].second;
 
             calcScale(angle);
 
-            for (size_t j = 0; j < scales.size(); ++j)
+            for (size_t j = 0; j < scales_.size(); ++j)
             {
-                const double scale = scales[j].first;
-                const int scaleVotes = scales[j].second;
+                const double scale = scales_[j].first;
+                const int scaleVotes = scales_[j].second;
 
                 calcPosition(angle, angleVotes, scale, scaleVotes);
             }
         }
     }
 
-    void GHT_Guil_Full::buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, std::vector< std::vector<Feature> >& features, Point2d center)
+    void GeneralizedHoughGuilImpl::buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, std::vector< std::vector<Feature> >& features, Point2d center)
     {
-        CV_Assert(levels > 0);
+        CV_Assert( levels_ > 0 );
 
-        const double maxDist = sqrt((double) templSize.width * templSize.width + templSize.height * templSize.height) * maxScale;
+        const double maxDist = sqrt((double) templSize_.width * templSize_.width + templSize_.height * templSize_.height) * maxScale_;
 
-        const double alphaScale = levels / 360.0;
+        const double alphaScale = levels_ / 360.0;
 
         std::vector<ContourPoint> points;
         getContourPoints(edges, dx, dy, points);
 
-        features.resize(levels + 1);
-        for_each(features.begin(), features.end(), mem_fun_ref(&std::vector<Feature>::clear));
-        for_each(features.begin(), features.end(), bind2nd(mem_fun_ref(&std::vector<Feature>::reserve), maxSize));
+        features.resize(levels_ + 1);
+        std::for_each(features.begin(), features.end(), std::mem_fun_ref(&std::vector<Feature>::clear));
+        std::for_each(features.begin(), features.end(), std::bind2nd(std::mem_fun_ref(&std::vector<Feature>::reserve), maxBufferSize_));
 
         for (size_t i = 0; i < points.size(); ++i)
         {
@@ -968,7 +701,7 @@ namespace
             {
                 ContourPoint p2 = points[j];
 
-                if (angleEq(p1.theta - p2.theta, xi, angleEpsilon))
+                if (angleEq(p1.theta - p2.theta, xi_, angleEpsilon_))
                 {
                     const Point2d d = p1.pos - p2.pos;
 
@@ -988,18 +721,18 @@ namespace
 
                     const int n = cvRound(f.alpha12 * alphaScale);
 
-                    if (features[n].size() < static_cast<size_t>(maxSize))
+                    if (features[n].size() < static_cast<size_t>(maxBufferSize_))
                         features[n].push_back(f);
                 }
             }
         }
     }
 
-    void GHT_Guil_Full::getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, std::vector<ContourPoint>& points)
+    void GeneralizedHoughGuilImpl::getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, std::vector<ContourPoint>& points)
     {
-        CV_Assert(edges.type() == CV_8UC1);
-        CV_Assert(dx.type() == CV_32FC1 && dx.size == edges.size);
-        CV_Assert(dy.type() == dx.type() && dy.size == edges.size);
+        CV_Assert( edges.type() == CV_8UC1 );
+        CV_Assert( dx.type() == CV_32FC1 && dx.size == edges.size );
+        CV_Assert( dy.type() == dx.type() && dy.size == edges.size );
 
         points.clear();
         points.reserve(edges.size().area());
@@ -1025,23 +758,23 @@ namespace
         }
     }
 
-    void GHT_Guil_Full::calcOrientation()
+    void GeneralizedHoughGuilImpl::calcOrientation()
     {
-        CV_Assert(levels > 0);
-        CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1));
-        CV_Assert(imageFeatures.size() == templFeatures.size());
-        CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0);
-        CV_Assert(angleStep > 0.0 && angleStep < 360.0);
-        CV_Assert(angleThresh > 0);
+        CV_Assert( levels_ > 0 );
+        CV_Assert( templFeatures_.size() == static_cast<size_t>(levels_ + 1) );
+        CV_Assert( imageFeatures_.size() == templFeatures_.size() );
+        CV_Assert( minAngle_ >= 0.0 && minAngle_ < maxAngle_ && maxAngle_ <= 360.0 );
+        CV_Assert( angleStep_ > 0.0 && angleStep_ < 360.0 );
+        CV_Assert( angleThresh_ > 0 );
 
-        const double iAngleStep = 1.0 / angleStep;
-        const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep);
+        const double iAngleStep = 1.0 / angleStep_;
+        const int angleRange = cvCeil((maxAngle_ - minAngle_) * iAngleStep);
 
         std::vector<int> OHist(angleRange + 1, 0);
-        for (int i = 0; i <= levels; ++i)
+        for (int i = 0; i <= levels_; ++i)
         {
-            const std::vector<Feature>& templRow = templFeatures[i];
-            const std::vector<Feature>& imageRow = imageFeatures[i];
+            const std::vector<Feature>& templRow = templFeatures_[i];
+            const std::vector<Feature>& imageRow = imageFeatures_[i];
 
             for (size_t j = 0; j < templRow.size(); ++j)
             {
@@ -1052,45 +785,45 @@ namespace
                     Feature imF = imageRow[k];
 
                     const double angle = clampAngle(imF.p1.theta - templF.p1.theta);
-                    if (angle >= minAngle && angle <= maxAngle)
+                    if (angle >= minAngle_ && angle <= maxAngle_)
                     {
-                        const int n = cvRound((angle - minAngle) * iAngleStep);
+                        const int n = cvRound((angle - minAngle_) * iAngleStep);
                         ++OHist[n];
                     }
                 }
             }
         }
 
-        angles.clear();
+        angles_.clear();
 
         for (int n = 0; n < angleRange; ++n)
         {
-            if (OHist[n] >= angleThresh)
+            if (OHist[n] >= angleThresh_)
             {
-                const double angle = minAngle + n * angleStep;
-                angles.push_back(std::make_pair(angle, OHist[n]));
+                const double angle = minAngle_ + n * angleStep_;
+                angles_.push_back(std::make_pair(angle, OHist[n]));
             }
         }
     }
 
-    void GHT_Guil_Full::calcScale(double angle)
+    void GeneralizedHoughGuilImpl::calcScale(double angle)
     {
-        CV_Assert(levels > 0);
-        CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1));
-        CV_Assert(imageFeatures.size() == templFeatures.size());
-        CV_Assert(minScale > 0.0 && minScale < maxScale);
-        CV_Assert(scaleStep > 0.0);
-        CV_Assert(scaleThresh > 0);
+        CV_Assert( levels_ > 0 );
+        CV_Assert( templFeatures_.size() == static_cast<size_t>(levels_ + 1) );
+        CV_Assert( imageFeatures_.size() == templFeatures_.size() );
+        CV_Assert( minScale_ > 0.0 && minScale_ < maxScale_ );
+        CV_Assert( scaleStep_ > 0.0 );
+        CV_Assert( scaleThresh_ > 0 );
 
-        const double iScaleStep = 1.0 / scaleStep;
-        const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep);
+        const double iScaleStep = 1.0 / scaleStep_;
+        const int scaleRange = cvCeil((maxScale_ - minScale_) * iScaleStep);
 
         std::vector<int> SHist(scaleRange + 1, 0);
 
-        for (int i = 0; i <= levels; ++i)
+        for (int i = 0; i <= levels_; ++i)
         {
-            const std::vector<Feature>& templRow = templFeatures[i];
-            const std::vector<Feature>& imageRow = imageFeatures[i];
+            const std::vector<Feature>& templRow = templFeatures_[i];
+            const std::vector<Feature>& imageRow = imageFeatures_[i];
 
             for (size_t j = 0; j < templRow.size(); ++j)
             {
@@ -1102,12 +835,12 @@ namespace
                 {
                     Feature imF = imageRow[k];
 
-                    if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon))
+                    if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon_))
                     {
                         const double scale = imF.d12 / templF.d12;
-                        if (scale >= minScale && scale <= maxScale)
+                        if (scale >= minScale_ && scale <= maxScale_)
                         {
-                            const int s = cvRound((scale - minScale) * iScaleStep);
+                            const int s = cvRound((scale - minScale_) * iScaleStep);
                             ++SHist[s];
                         }
                     }
@@ -1115,39 +848,39 @@ namespace
             }
         }
 
-        scales.clear();
+        scales_.clear();
 
         for (int s = 0; s < scaleRange; ++s)
         {
-            if (SHist[s] >= scaleThresh)
+            if (SHist[s] >= scaleThresh_)
             {
-                const double scale = minScale + s * scaleStep;
-                scales.push_back(std::make_pair(scale, SHist[s]));
+                const double scale = minScale_ + s * scaleStep_;
+                scales_.push_back(std::make_pair(scale, SHist[s]));
             }
         }
     }
 
-    void GHT_Guil_Full::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
+    void GeneralizedHoughGuilImpl::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
     {
-        CV_Assert(levels > 0);
-        CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1));
-        CV_Assert(imageFeatures.size() == templFeatures.size());
-        CV_Assert(dp > 0.0);
-        CV_Assert(posThresh > 0);
+        CV_Assert( levels_ > 0 );
+        CV_Assert( templFeatures_.size() == static_cast<size_t>(levels_ + 1) );
+        CV_Assert( imageFeatures_.size() == templFeatures_.size() );
+        CV_Assert( dp_ > 0.0 );
+        CV_Assert( posThresh_ > 0 );
 
         const double sinVal = sin(toRad(angle));
         const double cosVal = cos(toRad(angle));
-        const double idp = 1.0 / dp;
+        const double idp = 1.0 / dp_;
 
-        const int histRows = cvCeil(imageSize.height * idp);
-        const int histCols = cvCeil(imageSize.width * idp);
+        const int histRows = cvCeil(imageSize_.height * idp);
+        const int histCols = cvCeil(imageSize_.width * idp);
 
         Mat DHist(histRows + 2, histCols + 2, CV_32SC1, Scalar::all(0));
 
-        for (int i = 0; i <= levels; ++i)
+        for (int i = 0; i <= levels_; ++i)
         {
-            const std::vector<Feature>& templRow = templFeatures[i];
-            const std::vector<Feature>& imageRow = imageFeatures[i];
+            const std::vector<Feature>& templRow = templFeatures_[i];
+            const std::vector<Feature>& imageRow = imageFeatures_[i];
 
             for (size_t j = 0; j < templRow.size(); ++j)
             {
@@ -1165,7 +898,7 @@ namespace
                 {
                     Feature imF = imageRow[k];
 
-                    if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon))
+                    if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon_))
                     {
                         Point2d c1, c2;
 
@@ -1195,101 +928,17 @@ namespace
             {
                 const int votes = curRow[x + 1];
 
-                if (votes > posThresh && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1])
+                if (votes > posThresh_ && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1])
                 {
-                    posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), static_cast<float>(scale), static_cast<float>(angle)));
-                    voteOutBuf.push_back(Vec3i(votes, scaleVotes, angleVotes));
+                    posOutBuf_.push_back(Vec4f(static_cast<float>(x * dp_), static_cast<float>(y * dp_), static_cast<float>(scale), static_cast<float>(angle)));
+                    voteOutBuf_.push_back(Vec3i(votes, scaleVotes, angleVotes));
                 }
             }
         }
     }
 }
 
-Ptr<GeneralizedHough> cv::GeneralizedHough::create(int method)
-{
-    switch (method)
-    {
-    case GHT_POSITION:
-        CV_Assert( !GHT_Ballard_Pos_info_auto.name().empty() );
-        return new GHT_Ballard_Pos();
-
-    case (GHT_POSITION | GHT_SCALE):
-        CV_Assert( !GHT_Ballard_PosScale_info_auto.name().empty() );
-        return new GHT_Ballard_PosScale();
-
-    case (GHT_POSITION | GHT_ROTATION):
-        CV_Assert( !GHT_Ballard_PosRotation_info_auto.name().empty() );
-        return new GHT_Ballard_PosRotation();
-
-    case (GHT_POSITION | GHT_SCALE | GHT_ROTATION):
-        CV_Assert( !GHT_Guil_Full_info_auto.name().empty() );
-        return new GHT_Guil_Full();
-    }
-
-    CV_Error(CV_StsBadArg, "Unsupported method");
-    return Ptr<GeneralizedHough>();
-}
-
-cv::GeneralizedHough::~GeneralizedHough()
-{
-}
-
-void cv::GeneralizedHough::setTemplate(InputArray _templ, int cannyThreshold, Point templCenter)
-{
-    Mat templ = _templ.getMat();
-
-    CV_Assert(templ.type() == CV_8UC1);
-    CV_Assert(cannyThreshold > 0);
-
-    Canny(templ, edges_, cannyThreshold / 2, cannyThreshold);
-    Sobel(templ, dx_, CV_32F, 1, 0);
-    Sobel(templ, dy_, CV_32F, 0, 1);
-
-    if (templCenter == Point(-1, -1))
-        templCenter = Point(templ.cols / 2, templ.rows / 2);
-
-    setTemplateImpl(edges_, dx_, dy_, templCenter);
-}
-
-void cv::GeneralizedHough::setTemplate(InputArray _edges, InputArray _dx, InputArray _dy, Point templCenter)
-{
-    Mat edges = _edges.getMat();
-    Mat dx = _dx.getMat();
-    Mat dy = _dy.getMat();
-
-    if (templCenter == Point(-1, -1))
-        templCenter = Point(edges.cols / 2, edges.rows / 2);
-
-    setTemplateImpl(edges, dx, dy, templCenter);
-}
-
-void cv::GeneralizedHough::detect(InputArray _image, OutputArray positions, OutputArray votes, int cannyThreshold)
-{
-    Mat image = _image.getMat();
-
-    CV_Assert(image.type() == CV_8UC1);
-    CV_Assert(cannyThreshold > 0);
-
-    Canny(image, edges_, cannyThreshold / 2, cannyThreshold);
-    Sobel(image, dx_, CV_32F, 1, 0);
-    Sobel(image, dy_, CV_32F, 0, 1);
-
-    detectImpl(edges_, dx_, dy_, positions, votes);
-}
-
-void cv::GeneralizedHough::detect(InputArray _edges, InputArray _dx, InputArray _dy, OutputArray positions, OutputArray votes)
-{
-    cv::Mat edges = _edges.getMat();
-    cv::Mat dx = _dx.getMat();
-    cv::Mat dy = _dy.getMat();
-
-    detectImpl(edges, dx, dy, positions, votes);
-}
-
-void cv::GeneralizedHough::release()
+Ptr<GeneralizedHoughGuil> cv::createGeneralizedHoughGuil()
 {
-    edges_.release();
-    dx_.release();
-    dy_.release();
-    releaseImpl();
+    return new GeneralizedHoughGuilImpl;
 }
index dbd924f..1863085 100644 (file)
@@ -5,13 +5,12 @@
 #include "opencv2/core.hpp"
 #include "opencv2/core/utility.hpp"
 #include "opencv2/imgproc.hpp"
-#include "opencv2/gpu.hpp"
+#include "opencv2/gpuimgproc.hpp"
 #include "opencv2/highgui.hpp"
 #include "opencv2/contrib.hpp"
 
 using namespace std;
 using namespace cv;
-using cv::gpu::GpuMat;
 
 static Mat loadImage(const string& name)
 {
@@ -29,8 +28,7 @@ int main(int argc, const char* argv[])
     CommandLineParser cmd(argc, argv,
         "{ image i        | pic1.png  | input image }"
         "{ template t     | templ.png | template image }"
-        "{ scale s        |           | estimate scale }"
-        "{ rotation r     |           | estimate rotation }"
+        "{ full           |           | estimate scale and rotation }"
         "{ gpu            |           | use gpu version }"
         "{ minDist        | 100       | minimum distance between the centers of the detected objects }"
         "{ levels         | 360       | R-Table levels }"
@@ -45,7 +43,7 @@ int main(int argc, const char* argv[])
         "{ minAngle       | 0         | minimal rotation angle to detect in degrees }"
         "{ maxAngle       | 360       | maximal rotation angle to detect in degrees }"
         "{ angleStep      | 1         | angle step in degrees }"
-        "{ maxSize        | 1000      | maximal size of inner buffers }"
+        "{ maxBufSize     | 1000      | maximal size of inner buffers }"
         "{ help h ?       |           | print help message }"
     );
 
@@ -59,8 +57,7 @@ int main(int argc, const char* argv[])
 
     const string templName = cmd.get<string>("template");
     const string imageName = cmd.get<string>("image");
-    const bool estimateScale = cmd.has("scale");
-    const bool estimateRotation = cmd.has("rotation");
+    const bool full = cmd.has("full");
     const bool useGpu = cmd.has("gpu");
     const double minDist = cmd.get<double>("minDist");
     const int levels = cmd.get<int>("levels");
@@ -75,7 +72,7 @@ int main(int argc, const char* argv[])
     const double minAngle = cmd.get<double>("minAngle");
     const double maxAngle = cmd.get<double>("maxAngle");
     const double angleStep = cmd.get<double>("angleStep");
-    const int maxSize = cmd.get<int>("maxSize");
+    const int maxBufSize = cmd.get<int>("maxBufSize");
 
     if (!cmd.check())
     {
@@ -86,93 +83,69 @@ int main(int argc, const char* argv[])
     Mat templ = loadImage(templName);
     Mat image = loadImage(imageName);
 
-    int method = cv::GeneralizedHough::GHT_POSITION;
-    if (estimateScale)
-        method += cv::GeneralizedHough::GHT_SCALE;
-    if (estimateRotation)
-        method += cv::GeneralizedHough::GHT_ROTATION;
+    Ptr<GeneralizedHough> alg;
+
+    if (!full)
+    {
+        Ptr<GeneralizedHoughBallard> ballard = useGpu ? gpu::createGeneralizedHoughBallard() : createGeneralizedHoughBallard();
+
+        ballard->setMinDist(minDist);
+        ballard->setLevels(levels);
+        ballard->setDp(dp);
+        ballard->setMaxBufferSize(maxBufSize);
+        ballard->setVotesThreshold(votesThreshold);
+
+        alg = ballard;
+    }
+    else
+    {
+        Ptr<GeneralizedHoughGuil> guil = useGpu ? gpu::createGeneralizedHoughGuil() : createGeneralizedHoughGuil();
+
+        guil->setMinDist(minDist);
+        guil->setLevels(levels);
+        guil->setDp(dp);
+        guil->setMaxBufferSize(maxBufSize);
+
+        guil->setMinAngle(minAngle);
+        guil->setMaxAngle(maxAngle);
+        guil->setAngleStep(angleStep);
+        guil->setAngleThresh(angleThresh);
+
+        guil->setMinScale(minScale);
+        guil->setMaxScale(maxScale);
+        guil->setScaleStep(scaleStep);
+        guil->setScaleThresh(scaleThresh);
+
+        guil->setPosThresh(posThresh);
+
+        alg = guil;
+    }
 
     vector<Vec4f> position;
-    cv::TickMeter tm;
+    TickMeter tm;
 
     if (useGpu)
     {
-        GpuMat d_templ(templ);
-        GpuMat d_image(image);
-        GpuMat d_position;
-
-        Ptr<gpu::GeneralizedHough> d_hough = gpu::GeneralizedHough::create(method);
-        d_hough->set("minDist", minDist);
-        d_hough->set("levels", levels);
-        d_hough->set("dp", dp);
-        d_hough->set("maxSize", maxSize);
-        if (estimateScale && estimateRotation)
-        {
-            d_hough->set("angleThresh", angleThresh);
-            d_hough->set("scaleThresh", scaleThresh);
-            d_hough->set("posThresh", posThresh);
-        }
-        else
-        {
-            d_hough->set("votesThreshold", votesThreshold);
-        }
-        if (estimateScale)
-        {
-            d_hough->set("minScale", minScale);
-            d_hough->set("maxScale", maxScale);
-            d_hough->set("scaleStep", scaleStep);
-        }
-        if (estimateRotation)
-        {
-            d_hough->set("minAngle", minAngle);
-            d_hough->set("maxAngle", maxAngle);
-            d_hough->set("angleStep", angleStep);
-        }
-
-        d_hough->setTemplate(d_templ);
+        gpu::GpuMat d_templ(templ);
+        gpu::GpuMat d_image(image);
+        gpu::GpuMat d_position;
+
+        alg->setTemplate(d_templ);
 
         tm.start();
 
-        d_hough->detect(d_image, d_position);
-        d_hough->downloadResults(d_position, position);
+        alg->detect(d_image, d_position);
+        d_position.download(position);
 
         tm.stop();
     }
     else
     {
-        Ptr<GeneralizedHough> hough = GeneralizedHough::create(method);
-        hough->set("minDist", minDist);
-        hough->set("levels", levels);
-        hough->set("dp", dp);
-        if (estimateScale && estimateRotation)
-        {
-            hough->set("angleThresh", angleThresh);
-            hough->set("scaleThresh", scaleThresh);
-            hough->set("posThresh", posThresh);
-            hough->set("maxSize", maxSize);
-        }
-        else
-        {
-            hough->set("votesThreshold", votesThreshold);
-        }
-        if (estimateScale)
-        {
-            hough->set("minScale", minScale);
-            hough->set("maxScale", maxScale);
-            hough->set("scaleStep", scaleStep);
-        }
-        if (estimateRotation)
-        {
-            hough->set("minAngle", minAngle);
-            hough->set("maxAngle", maxAngle);
-            hough->set("angleStep", angleStep);
-        }
-
-        hough->setTemplate(templ);
+        alg->setTemplate(templ);
 
         tm.start();
 
-        hough->detect(image, position);
+        alg->detect(image, position);
 
         tm.stop();
     }