* Bitfield of supported PRIME sharing capabilities. See &DRM_PRIME_CAP_IMPORT
* and &DRM_PRIME_CAP_EXPORT.
*
- * PRIME buffers are exposed as dma-buf file descriptors. See
- * Documentation/gpu/drm-mm.rst, section "PRIME Buffer Sharing".
+ * Starting from kernel version 6.6, both &DRM_PRIME_CAP_IMPORT and
+ * &DRM_PRIME_CAP_EXPORT are always advertised.
+ *
+ * PRIME buffers are exposed as dma-buf file descriptors.
+ * See :ref:`prime_buffer_sharing`.
*/
#define DRM_CAP_PRIME 0x5
/**
*
* If this bit is set in &DRM_CAP_PRIME, the driver supports importing PRIME
* buffers via the &DRM_IOCTL_PRIME_FD_TO_HANDLE ioctl.
+ *
+ * Starting from kernel version 6.6, this bit is always set in &DRM_CAP_PRIME.
*/
#define DRM_PRIME_CAP_IMPORT 0x1
/**
*
* If this bit is set in &DRM_CAP_PRIME, the driver supports exporting PRIME
* buffers via the &DRM_IOCTL_PRIME_HANDLE_TO_FD ioctl.
+ *
+ * Starting from kernel version 6.6, this bit is always set in &DRM_CAP_PRIME.
*/
#define DRM_PRIME_CAP_EXPORT 0x2
/**
/**
* DRM_CAP_SYNCOBJ
*
- * If set to 1, the driver supports sync objects. See
- * Documentation/gpu/drm-mm.rst, section "DRM Sync Objects".
+ * If set to 1, the driver supports sync objects. See :ref:`drm_sync_objects`.
*/
#define DRM_CAP_SYNCOBJ 0x13
/**
* DRM_CAP_SYNCOBJ_TIMELINE
*
* If set to 1, the driver supports timeline operations on sync objects. See
- * Documentation/gpu/drm-mm.rst, section "DRM Sync Objects".
+ * :ref:`drm_sync_objects`.
*/
#define DRM_CAP_SYNCOBJ_TIMELINE 0x14
#define DRM_IOCTL_MODE_PAGE_FLIP DRM_IOWR(0xB0, struct drm_mode_crtc_page_flip)
#define DRM_IOCTL_MODE_DIRTYFB DRM_IOWR(0xB1, struct drm_mode_fb_dirty_cmd)
+/**
+ * DRM_IOCTL_MODE_CREATE_DUMB - Create a new dumb buffer object.
+ *
+ * KMS dumb buffers provide a very primitive way to allocate a buffer object
+ * suitable for scanout and map it for software rendering. KMS dumb buffers are
+ * not suitable for hardware-accelerated rendering nor video decoding. KMS dumb
+ * buffers are not suitable to be displayed on any other device than the KMS
+ * device where they were allocated from. Also see
+ * :ref:`kms_dumb_buffer_objects`.
+ *
+ * The IOCTL argument is a struct drm_mode_create_dumb.
+ *
+ * User-space is expected to create a KMS dumb buffer via this IOCTL, then add
+ * it as a KMS framebuffer via &DRM_IOCTL_MODE_ADDFB and map it via
+ * &DRM_IOCTL_MODE_MAP_DUMB.
+ *
+ * &DRM_CAP_DUMB_BUFFER indicates whether this IOCTL is supported.
+ * &DRM_CAP_DUMB_PREFERRED_DEPTH and &DRM_CAP_DUMB_PREFER_SHADOW indicate
+ * driver preferences for dumb buffers.
+ */
#define DRM_IOCTL_MODE_CREATE_DUMB DRM_IOWR(0xB2, struct drm_mode_create_dumb)
#define DRM_IOCTL_MODE_MAP_DUMB DRM_IOWR(0xB3, struct drm_mode_map_dumb)
#define DRM_IOCTL_MODE_DESTROY_DUMB DRM_IOWR(0xB4, struct drm_mode_destroy_dumb)
#define DRM_IOCTL_SYNCOBJ_EVENTFD DRM_IOWR(0xCF, struct drm_syncobj_eventfd)
+/**
+ * DRM_IOCTL_MODE_CLOSEFB - Close a framebuffer.
+ *
+ * This closes a framebuffer previously added via ADDFB/ADDFB2. The IOCTL
+ * argument is a framebuffer object ID.
+ *
+ * This IOCTL is similar to &DRM_IOCTL_MODE_RMFB, except it doesn't disable
+ * planes and CRTCs. As long as the framebuffer is used by a plane, it's kept
+ * alive. When the plane no longer uses the framebuffer (because the
+ * framebuffer is replaced with another one, or the plane is disabled), the
+ * framebuffer is cleaned up.
+ *
+ * This is useful to implement flicker-free transitions between two processes.
+ *
+ * Depending on the threat model, user-space may want to ensure that the
+ * framebuffer doesn't expose any sensitive user information: closed
+ * framebuffers attached to a plane can be read back by the next DRM master.
+ */
+#define DRM_IOCTL_MODE_CLOSEFB DRM_IOWR(0xD0, struct drm_mode_closefb)
+
/*
* Device specific ioctls should only be in their respective headers
* The device specific ioctl range is from 0x40 to 0x9f.
#define DRM_COMMAND_BASE 0x40
#define DRM_COMMAND_END 0xA0
-/*
- * Header for events written back to userspace on the drm fd. The
- * type defines the type of event, the length specifies the total
- * length of the event (including the header), and user_data is
- * typically a 64 bit value passed with the ioctl that triggered the
- * event. A read on the drm fd will always only return complete
- * events, that is, if for example the read buffer is 100 bytes, and
- * there are two 64 byte events pending, only one will be returned.
+/**
+ * struct drm_event - Header for DRM events
+ * @type: event type.
+ * @length: total number of payload bytes (including header).
+ *
+ * This struct is a header for events written back to user-space on the DRM FD.
+ * A read on the DRM FD will always only return complete events: e.g. if the
+ * read buffer is 100 bytes large and there are two 64 byte events pending,
+ * only one will be returned.
*
- * Event types 0 - 0x7fffffff are generic drm events, 0x80000000 and
- * up are chipset specific.
+ * Event types 0 - 0x7fffffff are generic DRM events, 0x80000000 and
+ * up are chipset specific. Generic DRM events include &DRM_EVENT_VBLANK,
+ * &DRM_EVENT_FLIP_COMPLETE and &DRM_EVENT_CRTC_SEQUENCE.
*/
struct drm_event {
__u32 type;
__u32 length;
};
+/**
+ * DRM_EVENT_VBLANK - vertical blanking event
+ *
+ * This event is sent in response to &DRM_IOCTL_WAIT_VBLANK with the
+ * &_DRM_VBLANK_EVENT flag set.
+ *
+ * The event payload is a struct drm_event_vblank.
+ */
#define DRM_EVENT_VBLANK 0x01
+/**
+ * DRM_EVENT_FLIP_COMPLETE - page-flip completion event
+ *
+ * This event is sent in response to an atomic commit or legacy page-flip with
+ * the &DRM_MODE_PAGE_FLIP_EVENT flag set.
+ *
+ * The event payload is a struct drm_event_vblank.
+ */
#define DRM_EVENT_FLIP_COMPLETE 0x02
+/**
+ * DRM_EVENT_CRTC_SEQUENCE - CRTC sequence event
+ *
+ * This event is sent in response to &DRM_IOCTL_CRTC_QUEUE_SEQUENCE.
+ *
+ * The event payload is a struct drm_event_crtc_sequence.
+ */
#define DRM_EVENT_CRTC_SEQUENCE 0x03
struct drm_event_vblank {