"${CMAKE_CURRENT_LIST_DIR}/include/opencv2/${name}/streaming/*.hpp"
"${CMAKE_CURRENT_LIST_DIR}/include/opencv2/${name}/plaidml/*.hpp"
"${CMAKE_CURRENT_LIST_DIR}/include/opencv2/${name}/util/*.hpp"
+ "${CMAKE_CURRENT_LIST_DIR}/include/opencv2/${name}/python/*.hpp"
)
set(gapi_srcs
# Python bridge
src/backends/ie/bindings_ie.cpp
+ src/backends/python/gpythonbackend.cpp
)
ocv_add_dispatched_file(backends/fluid/gfluidimgproc_func SSE4_1 AVX2)
@param ddepth optional depth of the output matrix.
@sa sub, addWeighted
*/
-GAPI_EXPORTS GMat addC(const GMat& src1, const GScalar& c, int ddepth = -1);
+GAPI_EXPORTS_W GMat addC(const GMat& src1, const GScalar& c, int ddepth = -1);
//! @overload
GAPI_EXPORTS GMat addC(const GScalar& c, const GMat& src1, int ddepth = -1);
@param r Input rectangle.
@return Size (rectangle dimensions).
*/
-GAPI_EXPORTS GOpaque<Size> size(const GOpaque<Rect>& r);
+GAPI_EXPORTS_W GOpaque<Size> size(const GOpaque<Rect>& r);
/** @brief Gets dimensions from MediaFrame.
@param src Input 2D point set, stored in std::vector<cv::Point2i>.
*/
-GAPI_EXPORTS GOpaque<Rect> boundingRect(const GArray<Point2i>& src);
+GAPI_EXPORTS_W GOpaque<Rect> boundingRect(const GArray<Point2i>& src);
/** @overload
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2021 Intel Corporation
+
+
+#ifndef OPENCV_GAPI_PYTHON_API_HPP
+#define OPENCV_GAPI_PYTHON_API_HPP
+
+#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
+#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
+
+namespace cv {
+namespace gapi {
+namespace python {
+
+GAPI_EXPORTS cv::gapi::GBackend backend();
+
+struct GPythonContext
+{
+ const cv::GArgs &ins;
+ const cv::GMetaArgs &in_metas;
+ const cv::GTypesInfo &out_info;
+};
+
+using Impl = std::function<cv::GRunArgs(const GPythonContext&)>;
+
+class GAPI_EXPORTS GPythonKernel
+{
+public:
+ GPythonKernel() = default;
+ GPythonKernel(Impl run);
+
+ cv::GRunArgs operator()(const GPythonContext& ctx);
+private:
+ Impl m_run;
+};
+
+class GAPI_EXPORTS GPythonFunctor : public cv::gapi::GFunctor
+{
+public:
+ using Meta = cv::GKernel::M;
+
+ GPythonFunctor(const char* id, const Meta &meta, const Impl& impl);
+
+ GKernelImpl impl() const override;
+ gapi::GBackend backend() const override;
+
+private:
+ GKernelImpl impl_;
+};
+
+} // namespace python
+} // namespace gapi
+} // namespace cv
+
+#endif // OPENCV_GAPI_PYTHON_API_HPP
#ifdef HAVE_OPENCV_GAPI
+#include <opencv2/gapi/cpu/gcpukernel.hpp>
+#include <opencv2/gapi/python/python.hpp>
+
// NB: Python wrapper replaces :: with _ for classes
-using gapi_GKernelPackage = cv::gapi::GKernelPackage;
-using gapi_GNetPackage = cv::gapi::GNetPackage;
-using gapi_ie_PyParams = cv::gapi::ie::PyParams;
+using gapi_GKernelPackage = cv::gapi::GKernelPackage;
+using gapi_GNetPackage = cv::gapi::GNetPackage;
+using gapi_ie_PyParams = cv::gapi::ie::PyParams;
using gapi_wip_IStreamSource_Ptr = cv::Ptr<cv::gapi::wip::IStreamSource>;
using detail_ExtractArgsCallback = cv::detail::ExtractArgsCallback;
using detail_ExtractMetaCallback = cv::detail::ExtractMetaCallback;
using GOpaque_double = cv::GOpaque<double>;
using GOpaque_float = cv::GOpaque<double>;
using GOpaque_string = cv::GOpaque<std::string>;
-using GOpaque_Point = cv::GOpaque<cv::Point>;
+using GOpaque_Point2i = cv::GOpaque<cv::Point>;
using GOpaque_Point2f = cv::GOpaque<cv::Point2f>;
using GOpaque_Size = cv::GOpaque<cv::Size>;
using GOpaque_Rect = cv::GOpaque<cv::Rect>;
using GArray_double = cv::GArray<double>;
using GArray_float = cv::GArray<double>;
using GArray_string = cv::GArray<std::string>;
-using GArray_Point = cv::GArray<cv::Point>;
+using GArray_Point2i = cv::GArray<cv::Point>;
using GArray_Point2f = cv::GArray<cv::Point2f>;
using GArray_Size = cv::GArray<cv::Size>;
using GArray_Rect = cv::GArray<cv::Rect>;
// WA: Create using
using std::string;
-template<>
+template <>
bool pyopencv_to(PyObject* obj, std::vector<GCompileArg>& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
-template<>
+template <>
PyObject* pyopencv_from(const std::vector<GCompileArg>& value)
{
return pyopencv_from_generic_vec(value);
}
-template<>
+template <>
bool pyopencv_to(PyObject* obj, GRunArgs& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
UNSUPPORTED(SCALAR);
UNSUPPORTED(MAT);
UNSUPPORTED(DRAW_PRIM);
- }
#undef HANDLE_CASE
#undef UNSUPPORTED
-
+ }
util::throw_error(std::logic_error("Unsupported type for GOpaqueT"));
}
#undef HANDLE_CASE
#undef UNSUPPORTED
}
-
- util::throw_error(std::logic_error("Unsupported type for GOpaqueT"));
+ util::throw_error(std::logic_error("Unsupported type for GArrayT"));
}
static cv::GRunArg extract_run_arg(const cv::GTypeInfo& info, PyObject* item)
}
case cv::GShape::GFRAME:
{
+ // NB: Isn't supported yet.
break;
}
}
break;
}
}
-
util::throw_error(std::logic_error("Unsupported output shape"));
}
return metas;
}
+inline PyObject* extract_opaque_value(const cv::GArg& value)
+{
+ GAPI_Assert(value.kind != cv::detail::ArgKind::GOBJREF);
+#define HANDLE_CASE(T, O) case cv::detail::OpaqueKind::CV_##T: \
+ { \
+ return pyopencv_from(value.get<O>()); \
+ }
+
+#define UNSUPPORTED(T) case cv::detail::OpaqueKind::CV_##T: break
+ switch (value.opaque_kind)
+ {
+ HANDLE_CASE(BOOL, bool);
+ HANDLE_CASE(INT, int);
+ HANDLE_CASE(DOUBLE, double);
+ HANDLE_CASE(FLOAT, float);
+ HANDLE_CASE(STRING, std::string);
+ HANDLE_CASE(POINT, cv::Point);
+ HANDLE_CASE(POINT2F, cv::Point2f);
+ HANDLE_CASE(SIZE, cv::Size);
+ HANDLE_CASE(RECT, cv::Rect);
+ HANDLE_CASE(SCALAR, cv::Scalar);
+ HANDLE_CASE(MAT, cv::Mat);
+ UNSUPPORTED(UNKNOWN);
+ UNSUPPORTED(UINT64);
+ UNSUPPORTED(DRAW_PRIM);
+#undef HANDLE_CASE
+#undef UNSUPPORTED
+ }
+ util::throw_error(std::logic_error("Unsupported kernel input type"));
+}
+
+static cv::GRunArgs run_py_kernel(PyObject* kernel,
+ const cv::gapi::python::GPythonContext &ctx)
+{
+ const auto& ins = ctx.ins;
+ const auto& in_metas = ctx.in_metas;
+ const auto& out_info = ctx.out_info;
+
+ PyGILState_STATE gstate;
+ gstate = PyGILState_Ensure();
+
+ cv::GRunArgs outs;
+ try
+ {
+ int in_idx = 0;
+ PyObject* args = PyTuple_New(ins.size());
+ for (size_t i = 0; i < ins.size(); ++i)
+ {
+ // NB: If meta is monostate then object isn't associated with G-TYPE, so in case it
+ // kind matches with supported types do conversion from c++ to python, if not (CV_UNKNOWN)
+ // obtain PyObject* and pass as-is.
+ if (cv::util::holds_alternative<cv::util::monostate>(in_metas[i]))
+ {
+ PyTuple_SetItem(args, i,
+ ins[i].opaque_kind != cv::detail::OpaqueKind::CV_UNKNOWN ? extract_opaque_value(ins[i])
+ : ins[i].get<PyObject*>());
+ continue;
+ }
+
+ switch (in_metas[i].index())
+ {
+ case cv::GMetaArg::index_of<cv::GMatDesc>():
+ PyTuple_SetItem(args, i, pyopencv_from(ins[i].get<cv::Mat>()));
+ break;
+ case cv::GMetaArg::index_of<cv::GScalarDesc>():
+ PyTuple_SetItem(args, i, pyopencv_from(ins[i].get<cv::Scalar>()));
+ break;
+ case cv::GMetaArg::index_of<cv::GOpaqueDesc>():
+ PyTuple_SetItem(args, i, pyopencv_from(ins[i].get<cv::detail::OpaqueRef>()));
+ break;
+ case cv::GMetaArg::index_of<cv::GArrayDesc>():
+ PyTuple_SetItem(args, i, pyopencv_from(ins[i].get<cv::detail::VectorRef>()));
+ break;
+ case cv::GMetaArg::index_of<cv::GFrameDesc>():
+ util::throw_error(std::logic_error("GFrame isn't supported for custom operation"));
+ break;
+ }
+ ++in_idx;
+ }
+
+ PyObject* result = PyObject_CallObject(kernel, args);
+
+ outs = out_info.size() == 1 ? cv::GRunArgs{extract_run_arg(out_info[0], result)}
+ : extract_run_args(out_info, result);
+ }
+ catch (...)
+ {
+ PyGILState_Release(gstate);
+ throw;
+ }
+ PyGILState_Release(gstate);
+
+ return outs;
+}
+
+// FIXME: Now it's impossible to obtain meta function from operation,
+// because kernel connects to operation only by id (string).
+static GMetaArgs empty_meta(const cv::GMetaArgs &, const cv::GArgs &) {
+ return {};
+}
+
+static PyObject* pyopencv_cv_gapi_kernels(PyObject* , PyObject* py_args, PyObject*)
+{
+ using namespace cv;
+ gapi::GKernelPackage pkg;
+ Py_ssize_t size = PyTuple_Size(py_args);
+ for (int i = 0; i < size; ++i)
+ {
+ PyObject* pair = PyTuple_GetItem(py_args, i);
+ PyObject* kernel = PyTuple_GetItem(pair, 0);
+
+ std::string id;
+ if (!pyopencv_to(PyTuple_GetItem(pair, 1), id, ArgInfo("id", false)))
+ {
+ PyErr_SetString(PyExc_TypeError, "Failed to obtain: kernel id must be a string");
+ return NULL;
+ }
+ Py_INCREF(kernel);
+ gapi::python::GPythonFunctor f(id.c_str(),
+ empty_meta,
+ std::bind(run_py_kernel,
+ kernel,
+ std::placeholders::_1));
+ pkg.include(f);
+ }
+ return pyopencv_from(pkg);
+}
+
static PyObject* pyopencv_cv_gin(PyObject*, PyObject* py_args, PyObject*)
{
Py_INCREF(py_args);
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
+# Test output GMat.
+def custom_add(img1, img2, dtype):
+ return cv.add(img1, img2)
+
+# Test output GScalar.
+def custom_mean(img):
+ return cv.mean(img)
+
+# Test output tuple of GMat's.
+def custom_split3(img):
+ # NB: cv.split return list but g-api requires tuple in multiple output case
+ return tuple(cv.split(img))
+
+# Test output GOpaque.
+def custom_size(img):
+ # NB: Take only H, W, because the operation should return cv::Size which is 2D.
+ return img.shape[:2]
+
+# Test output GArray.
+def custom_goodFeaturesToTrack(img, max_corners, quality_lvl,
+ min_distance, mask, block_sz,
+ use_harris_detector, k):
+ features = cv.goodFeaturesToTrack(img, max_corners, quality_lvl,
+ min_distance, mask=mask,
+ blockSize=block_sz,
+ useHarrisDetector=use_harris_detector, k=k)
+ # NB: The operation output is cv::GArray<cv::Pointf>, so it should be mapped
+ # to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
+ # according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list.
+ # OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list
+ # tuples with size - n_features.
+ features = list(map(tuple, features.reshape(features.shape[0], -1)))
+ return features
+
+# Test input scalar.
+def custom_addC(img, sc, dtype):
+ # NB: dtype is just ignored in this implementation.
+ # More over from G-API kernel got scalar as tuples with 4 elements
+ # where the last element is equal to zero, just cut him for broadcasting.
+ return img + np.array(sc, dtype=np.uint8)[:-1]
+
+
+# Test input opaque.
+def custom_sizeR(rect):
+ # NB: rect - is tuple (x, y, h, w)
+ return (rect[2], rect[3])
+
+# Test input array.
+def custom_boundingRect(array):
+ # NB: OpenCV - numpy array (n_points x 2).
+ # G-API - array of tuples (n_points).
+ return cv.boundingRect(np.array(array))
+
class gapi_sample_pipelines(NewOpenCVTests):
'Failed on ' + pkg_name + ' backend')
+ def test_custom_mean(self):
+ img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
+ in_mat = cv.imread(img_path)
+
+ # OpenCV
+ expected = cv.mean(in_mat)
+
+ # G-API
+ g_in = cv.GMat()
+ g_out = cv.gapi.mean(g_in)
+
+ comp = cv.GComputation(g_in, g_out)
+
+ pkg = cv.gapi_wip_kernels((custom_mean, 'org.opencv.core.math.mean'))
+ actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
+
+ # Comparison
+ self.assertEqual(expected, actual)
+
+
+ def test_custom_add(self):
+ sz = (3, 3)
+ in_mat1 = np.full(sz, 45, dtype=np.uint8)
+ in_mat2 = np.full(sz, 50 , dtype=np.uint8)
+
+ # OpenCV
+ expected = cv.add(in_mat1, in_mat2)
+
+ # G-API
+ g_in1 = cv.GMat()
+ g_in2 = cv.GMat()
+ g_out = cv.gapi.add(g_in1, g_in2)
+ comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
+
+ pkg = cv.gapi_wip_kernels((custom_add, 'org.opencv.core.math.add'))
+ actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
+
+ self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
+
+
+ def test_custom_size(self):
+ sz = (100, 150, 3)
+ in_mat = np.full(sz, 45, dtype=np.uint8)
+
+ # OpenCV
+ expected = (100, 150)
+
+ # G-API
+ g_in = cv.GMat()
+ g_sz = cv.gapi.streaming.size(g_in)
+ comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
+
+ pkg = cv.gapi_wip_kernels((custom_size, 'org.opencv.streaming.size'))
+ actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
+
+ self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
+
+
+ def test_custom_goodFeaturesToTrack(self):
+ # G-API
+ img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
+ in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
+
+ # NB: goodFeaturesToTrack configuration
+ max_corners = 50
+ quality_lvl = 0.01
+ min_distance = 10
+ block_sz = 3
+ use_harris_detector = True
+ k = 0.04
+ mask = None
+
+ # OpenCV
+ expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
+ min_distance, mask=mask,
+ blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
+
+ # G-API
+ g_in = cv.GMat()
+ g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl,
+ min_distance, mask, block_sz, use_harris_detector, k)
+
+ comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
+ pkg = cv.gapi_wip_kernels((custom_goodFeaturesToTrack, 'org.opencv.imgproc.feature.goodFeaturesToTrack'))
+ actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
+
+ # NB: OpenCV & G-API have different output types.
+ # OpenCV - numpy array with shape (num_points, 1, 2)
+ # G-API - list of tuples with size - num_points
+ # Comparison
+ self.assertEqual(0.0, cv.norm(expected.flatten(),
+ np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
+
+
+ def test_custom_addC(self):
+ sz = (3, 3, 3)
+ in_mat = np.full(sz, 45, dtype=np.uint8)
+ sc = (50, 10, 20)
+
+ # Numpy reference, make array from sc to keep uint8 dtype.
+ expected = in_mat + np.array(sc, dtype=np.uint8)
+
+ # G-API
+ g_in = cv.GMat()
+ g_sc = cv.GScalar()
+ g_out = cv.gapi.addC(g_in, g_sc)
+ comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
+
+ pkg = cv.gapi_wip_kernels((custom_addC, 'org.opencv.core.math.addC'))
+ actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
+
+ self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
+
+
+ def test_custom_sizeR(self):
+ # x, y, h, w
+ roi = (10, 15, 100, 150)
+
+ expected = (100, 150)
+
+ # G-API
+ g_r = cv.GOpaqueT(cv.gapi.CV_RECT)
+ g_sz = cv.gapi.streaming.size(g_r)
+ comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
+
+ pkg = cv.gapi_wip_kernels((custom_sizeR, 'org.opencv.streaming.sizeR'))
+ actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
+
+ # cv.norm works with tuples ?
+ self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
+
+
+ def test_custom_boundingRect(self):
+ points = [(0,0), (0,1), (1,0), (1,1)]
+
+ # OpenCV
+ expected = cv.boundingRect(np.array(points))
+
+ # G-API
+ g_pts = cv.GArrayT(cv.gapi.CV_POINT)
+ g_br = cv.gapi.boundingRect(g_pts)
+ comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
+
+ pkg = cv.gapi_wip_kernels((custom_boundingRect, 'org.opencv.imgproc.shape.boundingRectVector32S'))
+ actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
+
+ # cv.norm works with tuples ?
+ self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
+
+
+ def test_multiple_custom_kernels(self):
+ sz = (3, 3, 3)
+ in_mat1 = np.full(sz, 45, dtype=np.uint8)
+ in_mat2 = np.full(sz, 50 , dtype=np.uint8)
+
+ # OpenCV
+ expected = cv.mean(cv.split(cv.add(in_mat1, in_mat2))[1])
+
+ # G-API
+ g_in1 = cv.GMat()
+ g_in2 = cv.GMat()
+ g_sum = cv.gapi.add(g_in1, g_in2)
+ g_b, g_r, g_g = cv.gapi.split3(g_sum)
+ g_mean = cv.gapi.mean(g_b)
+
+ comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_mean))
+
+
+ pkg = cv.gapi_wip_kernels((custom_add , 'org.opencv.core.math.add'),
+ (custom_mean , 'org.opencv.core.math.mean'),
+ (custom_split3, 'org.opencv.core.transform.split3'))
+
+ actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
+
+ self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
+
+
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
if proc_num_frames == max_num_frames:
break;
-
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2021 Intel Corporation
+
+#include <ade/util/zip_range.hpp> // zip_range, indexed
+
+#include <opencv2/gapi/util/throw.hpp> // throw_error
+#include <opencv2/gapi/python/python.hpp>
+
+#include "api/gbackend_priv.hpp"
+#include "backends/common/gbackend.hpp"
+
+cv::gapi::python::GPythonKernel::GPythonKernel(cv::gapi::python::Impl run)
+ : m_run(run)
+{
+}
+
+cv::GRunArgs cv::gapi::python::GPythonKernel::operator()(const cv::gapi::python::GPythonContext& ctx)
+{
+ return m_run(ctx);
+}
+
+cv::gapi::python::GPythonFunctor::GPythonFunctor(const char* id,
+ const cv::gapi::python::GPythonFunctor::Meta &meta,
+ const cv::gapi::python::Impl& impl)
+ : gapi::GFunctor(id), impl_{GPythonKernel{impl}, meta}
+{
+}
+
+cv::GKernelImpl cv::gapi::python::GPythonFunctor::impl() const
+{
+ return impl_;
+}
+
+cv::gapi::GBackend cv::gapi::python::GPythonFunctor::backend() const
+{
+ return cv::gapi::python::backend();
+}
+
+namespace {
+
+struct PythonUnit
+{
+ static const char *name() { return "PythonUnit"; }
+ cv::gapi::python::GPythonKernel kernel;
+};
+
+using PythonModel = ade::TypedGraph
+ < cv::gimpl::Op
+ , PythonUnit
+ >;
+
+using ConstPythonModel = ade::ConstTypedGraph
+ < cv::gimpl::Op
+ , PythonUnit
+ >;
+
+class GPythonExecutable final: public cv::gimpl::GIslandExecutable
+{
+ virtual void run(std::vector<InObj> &&,
+ std::vector<OutObj> &&) override;
+
+ virtual bool allocatesOutputs() const override { return true; }
+ // Return an empty RMat since we will reuse the input.
+ // There is no need to allocate and copy 4k image here.
+ virtual cv::RMat allocate(const cv::GMatDesc&) const override { return {}; }
+
+ virtual bool canReshape() const override { return true; }
+ virtual void reshape(ade::Graph&, const cv::GCompileArgs&) override {
+ // Do nothing here
+ }
+
+public:
+ GPythonExecutable(const ade::Graph &,
+ const std::vector<ade::NodeHandle> &);
+
+ const ade::Graph& m_g;
+ cv::gimpl::GModel::ConstGraph m_gm;
+ cv::gapi::python::GPythonKernel m_kernel;
+ ade::NodeHandle m_op;
+
+ cv::GTypesInfo m_out_info;
+ cv::GMetaArgs m_in_metas;
+ cv::gimpl::Mag m_res;
+};
+
+static cv::GArg packArg(cv::gimpl::Mag& m_res, const cv::GArg &arg)
+{
+ // No API placeholders allowed at this point
+ // FIXME: this check has to be done somewhere in compilation stage.
+ GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
+ && arg.kind != cv::detail::ArgKind::GSCALAR
+ && arg.kind != cv::detail::ArgKind::GARRAY
+ && arg.kind != cv::detail::ArgKind::GOPAQUE
+ && arg.kind != cv::detail::ArgKind::GFRAME);
+
+ if (arg.kind != cv::detail::ArgKind::GOBJREF)
+ {
+ // All other cases - pass as-is, with no transformations to GArg contents.
+ return arg;
+ }
+ GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
+
+ // Wrap associated CPU object (either host or an internal one)
+ // FIXME: object can be moved out!!! GExecutor faced that.
+ const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
+ switch (ref.shape)
+ {
+ case cv::GShape::GMAT: return cv::GArg(m_res.slot<cv::Mat>() [ref.id]);
+ case cv::GShape::GSCALAR: return cv::GArg(m_res.slot<cv::Scalar>()[ref.id]);
+ // Note: .at() is intentional for GArray and GOpaque as objects MUST be already there
+ // (and constructed by either bindIn/Out or resetInternal)
+ case cv::GShape::GARRAY: return cv::GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
+ case cv::GShape::GOPAQUE: return cv::GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
+ case cv::GShape::GFRAME: return cv::GArg(m_res.slot<cv::MediaFrame>().at(ref.id));
+ default:
+ cv::util::throw_error(std::logic_error("Unsupported GShape type"));
+ break;
+ }
+}
+
+static void writeBack(cv::GRunArg& arg, cv::GRunArgP& out)
+{
+ switch (arg.index())
+ {
+ case cv::GRunArg::index_of<cv::Mat>():
+ {
+ auto& rmat = *cv::util::get<cv::RMat*>(out);
+ rmat = cv::make_rmat<cv::gimpl::RMatAdapter>(cv::util::get<cv::Mat>(arg));
+ break;
+ }
+ case cv::GRunArg::index_of<cv::Scalar>():
+ {
+ *cv::util::get<cv::Scalar*>(out) = cv::util::get<cv::Scalar>(arg);
+ break;
+ }
+ case cv::GRunArg::index_of<cv::detail::OpaqueRef>():
+ {
+ auto& oref = cv::util::get<cv::detail::OpaqueRef>(arg);
+ cv::util::get<cv::detail::OpaqueRef>(out).mov(oref);
+ break;
+ }
+ case cv::GRunArg::index_of<cv::detail::VectorRef>():
+ {
+ auto& vref = cv::util::get<cv::detail::VectorRef>(arg);
+ cv::util::get<cv::detail::VectorRef>(out).mov(vref);
+ break;
+ }
+ default:
+ GAPI_Assert(false && "Unsupported output type");
+ }
+}
+
+void GPythonExecutable::run(std::vector<InObj> &&input_objs,
+ std::vector<OutObj> &&output_objs)
+{
+ const auto &op = m_gm.metadata(m_op).get<cv::gimpl::Op>();
+ for (auto& it : input_objs) cv::gimpl::magazine::bindInArg(m_res, it.first, it.second);
+
+ using namespace std::placeholders;
+ cv::GArgs inputs;
+ ade::util::transform(op.args,
+ std::back_inserter(inputs),
+ std::bind(&packArg, std::ref(m_res), _1));
+
+
+ cv::gapi::python::GPythonContext ctx{inputs, m_in_metas, m_out_info};
+ auto outs = m_kernel(ctx);
+
+ for (auto&& it : ade::util::zip(outs, output_objs))
+ {
+ writeBack(std::get<0>(it), std::get<1>(it).second);
+ }
+}
+
+class GPythonBackendImpl final: public cv::gapi::GBackend::Priv
+{
+ virtual void unpackKernel(ade::Graph &graph,
+ const ade::NodeHandle &op_node,
+ const cv::GKernelImpl &impl) override
+ {
+ PythonModel gm(graph);
+ const auto &kernel = cv::util::any_cast<cv::gapi::python::GPythonKernel>(impl.opaque);
+ gm.metadata(op_node).set(PythonUnit{kernel});
+ }
+
+ virtual EPtr compile(const ade::Graph &graph,
+ const cv::GCompileArgs &,
+ const std::vector<ade::NodeHandle> &nodes) const override
+ {
+ return EPtr{new GPythonExecutable(graph, nodes)};
+ }
+
+ virtual bool controlsMerge() const override
+ {
+ return true;
+ }
+
+ virtual bool allowsMerge(const cv::gimpl::GIslandModel::Graph &,
+ const ade::NodeHandle &,
+ const ade::NodeHandle &,
+ const ade::NodeHandle &) const override
+ {
+ return false;
+ }
+};
+
+GPythonExecutable::GPythonExecutable(const ade::Graph& g,
+ const std::vector<ade::NodeHandle>& nodes)
+ : m_g(g), m_gm(m_g)
+{
+ using namespace cv::gimpl;
+ const auto is_op = [this](const ade::NodeHandle &nh)
+ {
+ return m_gm.metadata(nh).get<NodeType>().t == NodeType::OP;
+ };
+
+ auto it = std::find_if(nodes.begin(), nodes.end(), is_op);
+ GAPI_Assert(it != nodes.end() && "No operators found for this island?!");
+
+ ConstPythonModel cag(m_g);
+
+ m_op = *it;
+ m_kernel = cag.metadata(m_op).get<PythonUnit>().kernel;
+
+ // Ensure this the only op in the graph
+ if (std::any_of(it+1, nodes.end(), is_op))
+ {
+ cv::util::throw_error
+ (std::logic_error
+ ("Internal error: Python subgraph has multiple operations"));
+ }
+
+ m_out_info.reserve(m_op->outEdges().size());
+ for (const auto &e : m_op->outEdges())
+ {
+ const auto& out_data = m_gm.metadata(e->dstNode()).get<cv::gimpl::Data>();
+ m_out_info.push_back(cv::GTypeInfo{out_data.shape, out_data.kind, out_data.ctor});
+ }
+
+ const auto& op = m_gm.metadata(m_op).get<cv::gimpl::Op>();
+ m_in_metas.resize(op.args.size());
+ GAPI_Assert(m_op->inEdges().size() > 0);
+ for (const auto &in_eh : m_op->inEdges())
+ {
+ const auto& input_port = m_gm.metadata(in_eh).get<Input>().port;
+ const auto& input_nh = in_eh->srcNode();
+ const auto& input_meta = m_gm.metadata(input_nh).get<Data>().meta;
+ m_in_metas.at(input_port) = input_meta;
+ }
+}
+
+} // anonymous namespace
+
+cv::gapi::GBackend cv::gapi::python::backend()
+{
+ static cv::gapi::GBackend this_backend(std::make_shared<GPythonBackendImpl>());
+ return this_backend;
+}
#endif
#ifdef HAVE_OPENCV_GAPI
{"GIn", CV_PY_FN_WITH_KW(pyopencv_cv_GIn), "GIn(...) -> GInputProtoArgs"},
+ {"gapi_wip_kernels", CV_PY_FN_WITH_KW(pyopencv_cv_gapi_kernels), "kernels(...) -> GKernelPackage"},
{"GOut", CV_PY_FN_WITH_KW(pyopencv_cv_GOut), "GOut(...) -> GOutputProtoArgs"},
{"gin", CV_PY_FN_WITH_KW(pyopencv_cv_gin), "gin(...) -> ExtractArgsCallback"},
{"descr_of", CV_PY_FN_WITH_KW(pyopencv_cv_descr_of), "descr_of(...) -> ExtractMetaCallback"},