return ptr;
}
-static LLVMTypeRef to_integer_type_scalar(struct nir_to_llvm_context *ctx, LLVMTypeRef t)
+static LLVMTypeRef to_integer_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (t == ctx->f16 || t == ctx->i16)
return ctx->i16;
unreachable("Unhandled integer size");
}
-static LLVMTypeRef to_integer_type(struct nir_to_llvm_context *ctx, LLVMTypeRef t)
+static LLVMTypeRef to_integer_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
LLVMTypeRef elem_type = LLVMGetElementType(t);
return to_integer_type_scalar(ctx, t);
}
-static LLVMValueRef to_integer(struct nir_to_llvm_context *ctx, LLVMValueRef v)
+static LLVMValueRef to_integer(struct ac_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
return LLVMBuildBitCast(ctx->builder, v, to_integer_type(ctx, type), "");
}
-static LLVMTypeRef to_float_type_scalar(struct nir_to_llvm_context *ctx, LLVMTypeRef t)
+static LLVMTypeRef to_float_type_scalar(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (t == ctx->i16 || t == ctx->f16)
return ctx->f16;
unreachable("Unhandled float size");
}
-static LLVMTypeRef to_float_type(struct nir_to_llvm_context *ctx, LLVMTypeRef t)
+static LLVMTypeRef to_float_type(struct ac_llvm_context *ctx, LLVMTypeRef t)
{
if (LLVMGetTypeKind(t) == LLVMVectorTypeKind) {
LLVMTypeRef elem_type = LLVMGetElementType(t);
return to_float_type_scalar(ctx, t);
}
-static LLVMValueRef to_float(struct nir_to_llvm_context *ctx, LLVMValueRef v)
+static LLVMValueRef to_float(struct ac_llvm_context *ctx, LLVMValueRef v)
{
LLVMTypeRef type = LLVMTypeOf(v);
return LLVMBuildBitCast(ctx->builder, v, to_float_type(ctx, type), "");
}
-static int get_elem_bits(struct nir_to_llvm_context *ctx, LLVMTypeRef type)
+static int get_elem_bits(struct ac_llvm_context *ctx, LLVMTypeRef type)
{
if (LLVMGetTypeKind(type) == LLVMVectorTypeKind)
type = LLVMGetElementType(type);
LLVMValueRef src1)
{
LLVMValueRef result;
- src0 = to_float(ctx, src0);
- src1 = to_float(ctx, src1);
+ src0 = to_float(&ctx->ac, src0);
+ src1 = to_float(&ctx->ac, src1);
result = LLVMBuildFCmp(ctx->builder, pred, src0, src1, "");
return LLVMBuildSelect(ctx->builder, result,
LLVMConstInt(ctx->i32, 0xFFFFFFFF, false),
{
char name[64];
LLVMValueRef params[] = {
- to_float(ctx, src0),
+ to_float(&ctx->ac, src0),
};
- sprintf(name, "%s.f%d", intrin, get_elem_bits(ctx, result_type));
+ sprintf(name, "%s.f%d", intrin, get_elem_bits(&ctx->ac, result_type));
return ac_build_intrinsic(&ctx->ac, name, result_type, params, 1, AC_FUNC_ATTR_READNONE);
}
{
char name[64];
LLVMValueRef params[] = {
- to_float(ctx, src0),
- to_float(ctx, src1),
+ to_float(&ctx->ac, src0),
+ to_float(&ctx->ac, src1),
};
- sprintf(name, "%s.f%d", intrin, get_elem_bits(ctx, result_type));
+ sprintf(name, "%s.f%d", intrin, get_elem_bits(&ctx->ac, result_type));
return ac_build_intrinsic(&ctx->ac, name, result_type, params, 2, AC_FUNC_ATTR_READNONE);
}
{
char name[64];
LLVMValueRef params[] = {
- to_float(ctx, src0),
- to_float(ctx, src1),
- to_float(ctx, src2),
+ to_float(&ctx->ac, src0),
+ to_float(&ctx->ac, src1),
+ to_float(&ctx->ac, src2),
};
- sprintf(name, "%s.f%d", intrin, get_elem_bits(ctx, result_type));
+ sprintf(name, "%s.f%d", intrin, get_elem_bits(&ctx->ac, result_type));
return ac_build_intrinsic(&ctx->ac, name, result_type, params, 3, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef src0)
{
const char *intr = "llvm.floor.f32";
- LLVMValueRef fsrc0 = to_float(ctx, src0);
+ LLVMValueRef fsrc0 = to_float(&ctx->ac, src0);
LLVMValueRef params[] = {
fsrc0,
};
LLVMValueRef result;
LLVMValueRef cond;
- src0 = to_float(ctx, src0);
+ src0 = to_float(&ctx->ac, src0);
result = LLVMBuildFPTrunc(ctx->builder, src0, ctx->f16, "");
/* TODO SI/CIK options here */
int i;
LLVMValueRef comp[2];
- src0 = to_float(ctx, src0);
+ src0 = to_float(&ctx->ac, src0);
comp[0] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, "");
comp[1] = LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, "");
for (i = 0; i < 2; i++) {
result = src[0];
break;
case nir_op_fneg:
- src[0] = to_float(ctx, src[0]);
+ src[0] = to_float(&ctx->ac, src[0]);
result = LLVMBuildFNeg(ctx->builder, src[0], "");
break;
case nir_op_ineg:
result = LLVMBuildAdd(ctx->builder, src[0], src[1], "");
break;
case nir_op_fadd:
- src[0] = to_float(ctx, src[0]);
- src[1] = to_float(ctx, src[1]);
+ src[0] = to_float(&ctx->ac, src[0]);
+ src[1] = to_float(&ctx->ac, src[1]);
result = LLVMBuildFAdd(ctx->builder, src[0], src[1], "");
break;
case nir_op_fsub:
- src[0] = to_float(ctx, src[0]);
- src[1] = to_float(ctx, src[1]);
+ src[0] = to_float(&ctx->ac, src[0]);
+ src[1] = to_float(&ctx->ac, src[1]);
result = LLVMBuildFSub(ctx->builder, src[0], src[1], "");
break;
case nir_op_isub:
result = LLVMBuildURem(ctx->builder, src[0], src[1], "");
break;
case nir_op_fmod:
- src[0] = to_float(ctx, src[0]);
- src[1] = to_float(ctx, src[1]);
+ src[0] = to_float(&ctx->ac, src[0]);
+ src[1] = to_float(&ctx->ac, src[1]);
result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
result = emit_intrin_1f_param(ctx, "llvm.floor",
- to_float_type(ctx, def_type), result);
+ to_float_type(&ctx->ac, def_type), result);
result = LLVMBuildFMul(ctx->builder, src[1] , result, "");
result = LLVMBuildFSub(ctx->builder, src[0], result, "");
break;
case nir_op_frem:
- src[0] = to_float(ctx, src[0]);
- src[1] = to_float(ctx, src[1]);
+ src[0] = to_float(&ctx->ac, src[0]);
+ src[1] = to_float(&ctx->ac, src[1]);
result = LLVMBuildFRem(ctx->builder, src[0], src[1], "");
break;
case nir_op_irem:
result = LLVMBuildUDiv(ctx->builder, src[0], src[1], "");
break;
case nir_op_fmul:
- src[0] = to_float(ctx, src[0]);
- src[1] = to_float(ctx, src[1]);
+ src[0] = to_float(&ctx->ac, src[0]);
+ src[1] = to_float(&ctx->ac, src[1]);
result = LLVMBuildFMul(ctx->builder, src[0], src[1], "");
break;
case nir_op_fdiv:
- src[0] = to_float(ctx, src[0]);
- src[1] = to_float(ctx, src[1]);
+ src[0] = to_float(&ctx->ac, src[0]);
+ src[1] = to_float(&ctx->ac, src[1]);
result = ac_build_fdiv(&ctx->ac, src[0], src[1]);
break;
case nir_op_frcp:
- src[0] = to_float(ctx, src[0]);
+ src[0] = to_float(&ctx->ac, src[0]);
result = ac_build_fdiv(&ctx->ac, ctx->f32one, src[0]);
break;
case nir_op_iand:
break;
case nir_op_fabs:
result = emit_intrin_1f_param(ctx, "llvm.fabs",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_iabs:
result = emit_iabs(ctx, src[0]);
result = emit_isign(ctx, src[0]);
break;
case nir_op_fsign:
- src[0] = to_float(ctx, src[0]);
+ src[0] = to_float(&ctx->ac, src[0]);
result = emit_fsign(ctx, src[0]);
break;
case nir_op_ffloor:
result = emit_intrin_1f_param(ctx, "llvm.floor",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_ftrunc:
result = emit_intrin_1f_param(ctx, "llvm.trunc",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fceil:
result = emit_intrin_1f_param(ctx, "llvm.ceil",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fround_even:
result = emit_intrin_1f_param(ctx, "llvm.rint",
- to_float_type(ctx, def_type),src[0]);
+ to_float_type(&ctx->ac, def_type),src[0]);
break;
case nir_op_ffract:
result = emit_ffract(ctx, src[0]);
break;
case nir_op_fsin:
result = emit_intrin_1f_param(ctx, "llvm.sin",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fcos:
result = emit_intrin_1f_param(ctx, "llvm.cos",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fsqrt:
result = emit_intrin_1f_param(ctx, "llvm.sqrt",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_fexp2:
result = emit_intrin_1f_param(ctx, "llvm.exp2",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_flog2:
result = emit_intrin_1f_param(ctx, "llvm.log2",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
break;
case nir_op_frsq:
result = emit_intrin_1f_param(ctx, "llvm.sqrt",
- to_float_type(ctx, def_type), src[0]);
+ to_float_type(&ctx->ac, def_type), src[0]);
result = ac_build_fdiv(&ctx->ac, ctx->f32one, result);
break;
case nir_op_fpow:
result = emit_intrin_2f_param(ctx, "llvm.pow",
- to_float_type(ctx, def_type), src[0], src[1]);
+ to_float_type(&ctx->ac, def_type), src[0], src[1]);
break;
case nir_op_fmax:
result = emit_intrin_2f_param(ctx, "llvm.maxnum",
- to_float_type(ctx, def_type), src[0], src[1]);
+ to_float_type(&ctx->ac, def_type), src[0], src[1]);
if (instr->dest.dest.ssa.bit_size == 32)
result = emit_intrin_1f_param(ctx, "llvm.canonicalize",
- to_float_type(ctx, def_type),
+ to_float_type(&ctx->ac, def_type),
result);
break;
case nir_op_fmin:
result = emit_intrin_2f_param(ctx, "llvm.minnum",
- to_float_type(ctx, def_type), src[0], src[1]);
+ to_float_type(&ctx->ac, def_type), src[0], src[1]);
if (instr->dest.dest.ssa.bit_size == 32)
result = emit_intrin_1f_param(ctx, "llvm.canonicalize",
- to_float_type(ctx, def_type),
+ to_float_type(&ctx->ac, def_type),
result);
break;
case nir_op_ffma:
result = emit_intrin_3f_param(ctx, "llvm.fma",
- to_float_type(ctx, def_type), src[0], src[1], src[2]);
+ to_float_type(&ctx->ac, def_type), src[0], src[1], src[2]);
break;
case nir_op_ibitfield_extract:
result = emit_bitfield_extract(ctx, true, src);
case nir_op_vec3:
case nir_op_vec4:
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
- src[i] = to_integer(ctx, src[i]);
+ src[i] = to_integer(&ctx->ac, src[i]);
result = ac_build_gather_values(&ctx->ac, src, num_components);
break;
case nir_op_f2i32:
case nir_op_f2i64:
- src[0] = to_float(ctx, src[0]);
+ src[0] = to_float(&ctx->ac, src[0]);
result = LLVMBuildFPToSI(ctx->builder, src[0], def_type, "");
break;
case nir_op_f2u32:
case nir_op_f2u64:
- src[0] = to_float(ctx, src[0]);
+ src[0] = to_float(&ctx->ac, src[0]);
result = LLVMBuildFPToUI(ctx->builder, src[0], def_type, "");
break;
case nir_op_i2f32:
case nir_op_i2f64:
- result = LLVMBuildSIToFP(ctx->builder, src[0], to_float_type(ctx, def_type), "");
+ result = LLVMBuildSIToFP(ctx->builder, src[0], to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_u2f32:
case nir_op_u2f64:
- result = LLVMBuildUIToFP(ctx->builder, src[0], to_float_type(ctx, def_type), "");
+ result = LLVMBuildUIToFP(ctx->builder, src[0], to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_f2f64:
- result = LLVMBuildFPExt(ctx->builder, src[0], to_float_type(ctx, def_type), "");
+ result = LLVMBuildFPExt(ctx->builder, src[0], to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_f2f32:
- result = LLVMBuildFPTrunc(ctx->builder, src[0], to_float_type(ctx, def_type), "");
+ result = LLVMBuildFPTrunc(ctx->builder, src[0], to_float_type(&ctx->ac, def_type), "");
break;
case nir_op_u2u32:
case nir_op_u2u64:
- if (get_elem_bits(ctx, LLVMTypeOf(src[0])) < get_elem_bits(ctx, def_type))
+ if (get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildZExt(ctx->builder, src[0], def_type, "");
else
result = LLVMBuildTrunc(ctx->builder, src[0], def_type, "");
break;
case nir_op_i2i32:
case nir_op_i2i64:
- if (get_elem_bits(ctx, LLVMTypeOf(src[0])) < get_elem_bits(ctx, def_type))
+ if (get_elem_bits(&ctx->ac, LLVMTypeOf(src[0])) < get_elem_bits(&ctx->ac, def_type))
result = LLVMBuildSExt(ctx->builder, src[0], def_type, "");
else
result = LLVMBuildTrunc(ctx->builder, src[0], def_type, "");
if (result) {
assert(instr->dest.dest.is_ssa);
- result = to_integer(ctx, result);
+ result = to_integer(&ctx->ac, result);
_mesa_hash_table_insert(ctx->defs, &instr->dest.dest.ssa,
result);
}
const char *store_name;
LLVMValueRef src_data = get_src(ctx, instr->src[0]);
LLVMTypeRef data_type = ctx->f32;
- int elem_size_mult = get_elem_bits(ctx, LLVMTypeOf(src_data)) / 32;
+ int elem_size_mult = get_elem_bits(&ctx->ac, LLVMTypeOf(src_data)) / 32;
int components_32bit = elem_size_mult * instr->num_components;
unsigned writemask = nir_intrinsic_write_mask(instr);
LLVMValueRef base_data, base_offset;
if (components_32bit > 1)
data_type = LLVMVectorType(ctx->f32, components_32bit);
- base_data = to_float(ctx, src_data);
+ base_data = to_float(&ctx->ac, src_data);
base_data = trim_vector(ctx, base_data, instr->num_components);
base_data = LLVMBuildBitCast(ctx->builder, base_data,
data_type, "");
{
LLVMValueRef temp_ptr, value;
int idx = instr->variables[0]->var->data.driver_location;
- LLVMValueRef src = to_float(ctx, get_src(ctx, instr->src[0]));
+ LLVMValueRef src = to_float(&ctx->ac, get_src(ctx, instr->src[0]));
int writemask = instr->const_index[0];
LLVMValueRef indir_index;
unsigned const_index;
radv_get_deref_offset(ctx, instr->variables[0], false,
NULL, NULL, &const_index, &indir_index);
- if (get_elem_bits(ctx, LLVMTypeOf(src)) == 64) {
+ if (get_elem_bits(&ctx->ac, LLVMTypeOf(src)) == 64) {
int old_writemask = writemask;
src = LLVMBuildBitCast(ctx->builder, src,
value = llvm_extract_elem(ctx, src, chan);
derived_ptr = LLVMBuildGEP(ctx->builder, ptr, &index, 1, "");
LLVMBuildStore(ctx->builder,
- to_integer(ctx, value), derived_ptr);
+ to_integer(&ctx->ac, value), derived_ptr);
}
break;
}
res = ac_build_image_opcode(&ctx->ac, &args);
- res = to_integer(ctx, res);
+ res = to_integer(&ctx->ac, res);
LLVMValueRef four = LLVMConstInt(ctx->i32, 4, false);
LLVMValueRef F = LLVMConstInt(ctx->i32, 0xf, false);
params, 5, 0);
res = trim_vector(ctx, res, instr->dest.ssa.num_components);
- res = to_integer(ctx, res);
+ res = to_integer(&ctx->ac, res);
} else {
bool is_da = glsl_sampler_type_is_array(type) ||
glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_CUBE;
res = ac_build_intrinsic(&ctx->ac, intrinsic_name, ctx->v4f32,
params, 7, AC_FUNC_ATTR_READONLY);
}
- return to_integer(ctx, res);
+ return to_integer(&ctx->ac, res);
}
static void visit_image_store(struct nir_to_llvm_context *ctx,
ctx->shader_info->fs.writes_memory = true;
if (glsl_get_sampler_dim(type) == GLSL_SAMPLER_DIM_BUF) {
- params[0] = to_float(ctx, get_src(ctx, instr->src[2])); /* data */
+ params[0] = to_float(&ctx->ac, get_src(ctx, instr->src[2])); /* data */
params[1] = get_sampler_desc(ctx, instr->variables[0], DESC_BUFFER);
params[2] = LLVMBuildExtractElement(ctx->builder, get_src(ctx, instr->src[0]),
LLVMConstInt(ctx->i32, 0, false), ""); /* vindex */
LLVMValueRef glc = ctx->i1false;
LLVMValueRef slc = ctx->i1false;
- params[0] = to_float(ctx, get_src(ctx, instr->src[2]));
+ params[0] = to_float(&ctx->ac, get_src(ctx, instr->src[2]));
params[1] = get_image_coords(ctx, instr); /* coords */
params[2] = get_sampler_desc(ctx, instr->variables[0], DESC_IMAGE);
params[3] = LLVMConstInt(ctx->i32, 15, false); /* dmask */
return NULL;
}
- result = LLVMBuildAtomicRMW(ctx->builder, op, ptr, to_integer(ctx, src),
+ result = LLVMBuildAtomicRMW(ctx->builder, op, ptr, to_integer(&ctx->ac, src),
LLVMAtomicOrderingSequentiallyConsistent,
false);
}
}
if (instr->intrinsic == nir_intrinsic_interp_var_at_offset) {
- src_c0 = to_float(ctx, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, ""));
- src_c1 = to_float(ctx, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, ""));
+ src_c0 = to_float(&ctx->ac, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32zero, ""));
+ src_c1 = to_float(&ctx->ac, LLVMBuildExtractElement(ctx->builder, src0, ctx->i32one, ""));
} else if (instr->intrinsic == nir_intrinsic_interp_var_at_sample) {
LLVMValueRef sample_position;
LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
static LLVMValueRef apply_round_slice(struct nir_to_llvm_context *ctx,
LLVMValueRef coord)
{
- coord = to_float(ctx, coord);
+ coord = to_float(&ctx->ac, coord);
coord = ac_build_intrinsic(&ctx->ac, "llvm.rint.f32", ctx->f32, &coord, 1, 0);
- coord = to_integer(ctx, coord);
+ coord = to_integer(&ctx->ac, coord);
return coord;
}
}
for (unsigned i = 0; i < num_deriv_comp; i++) {
- derivs[i] = to_float(ctx, llvm_extract_elem(ctx, ddx, i));
- derivs[num_deriv_comp + i] = to_float(ctx, llvm_extract_elem(ctx, ddy, i));
+ derivs[i] = to_float(&ctx->ac, llvm_extract_elem(ctx, ddx, i));
+ derivs[num_deriv_comp + i] = to_float(&ctx->ac, llvm_extract_elem(ctx, ddy, i));
}
}
if (instr->is_array && instr->op != nir_texop_lod)
coords[3] = apply_round_slice(ctx, coords[3]);
for (chan = 0; chan < instr->coord_components; chan++)
- coords[chan] = to_float(ctx, coords[chan]);
+ coords[chan] = to_float(&ctx->ac, coords[chan]);
if (instr->coord_components == 3)
coords[3] = LLVMGetUndef(ctx->f32);
ac_prepare_cube_coords(&ctx->ac,
write_result:
if (result) {
assert(instr->dest.is_ssa);
- result = to_integer(ctx, result);
+ result = to_integer(&ctx->ac, result);
_mesa_hash_table_insert(ctx->defs, &instr->dest.ssa, result);
}
}
for (unsigned chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, false);
ctx->inputs[radeon_llvm_reg_index_soa(idx, chan)] =
- to_integer(ctx, LLVMBuildExtractElement(ctx->builder,
+ to_integer(&ctx->ac, LLVMBuildExtractElement(ctx->builder,
input, llvm_chan, ""));
}
}
static LLVMValueRef
emit_float_saturate(struct nir_to_llvm_context *ctx, LLVMValueRef v, float lo, float hi)
{
- v = to_float(ctx, v);
+ v = to_float(&ctx->ac, v);
v = emit_intrin_2f_param(ctx, "llvm.maxnum.f32", ctx->f32, v, LLVMConstReal(ctx->f32, lo));
return emit_intrin_2f_param(ctx, "llvm.minnum.f32", ctx->f32, v, LLVMConstReal(ctx->f32, hi));
}
LLVMValueRef max = LLVMConstInt(ctx->i32, is_int8 ? 255 : 65535, 0);
for (unsigned chan = 0; chan < 4; chan++) {
- val[chan] = to_integer(ctx, values[chan]);
+ val[chan] = to_integer(&ctx->ac, values[chan]);
val[chan] = emit_minmax_int(ctx, LLVMIntULT, val[chan], max);
}
/* Clamp. */
for (unsigned chan = 0; chan < 4; chan++) {
- val[chan] = to_integer(ctx, values[chan]);
+ val[chan] = to_integer(&ctx->ac, values[chan]);
val[chan] = emit_minmax_int(ctx, LLVMIntSLT, val[chan], max);
val[chan] = emit_minmax_int(ctx, LLVMIntSGT, val[chan], min);
}
memcpy(&args->out[0], values, sizeof(values[0]) * 4);
for (unsigned i = 0; i < 4; ++i)
- args->out[i] = to_float(ctx, args->out[i]);
+ args->out[i] = to_float(&ctx->ac, args->out[i]);
}
static void
i = VARYING_SLOT_CLIP_DIST0;
for (j = 0; j < ctx->num_output_clips + ctx->num_output_culls; j++)
- slots[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
+ slots[j] = to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
for (i = ctx->num_output_clips + ctx->num_output_culls; i < 8; i++)
continue;
for (unsigned j = 0; j < 4; j++)
- values[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
+ values[j] = to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
if (i == VARYING_SLOT_POS) {
if (i == FRAG_RESULT_DEPTH) {
ctx->shader_info->fs.writes_z = true;
- depth = to_float(ctx, LLVMBuildLoad(ctx->builder,
+ depth = to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
} else if (i == FRAG_RESULT_STENCIL) {
ctx->shader_info->fs.writes_stencil = true;
- stencil = to_float(ctx, LLVMBuildLoad(ctx->builder,
+ stencil = to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
} else if (i == FRAG_RESULT_SAMPLE_MASK) {
ctx->shader_info->fs.writes_sample_mask = true;
- samplemask = to_float(ctx, LLVMBuildLoad(ctx->builder,
+ samplemask = to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, 0)], ""));
} else {
bool last = false;
for (unsigned j = 0; j < 4; j++)
- values[j] = to_float(ctx, LLVMBuildLoad(ctx->builder,
+ values[j] = to_float(&ctx->ac, LLVMBuildLoad(ctx->builder,
ctx->outputs[radeon_llvm_reg_index_soa(i, j)], ""));
if (!ctx->shader_info->fs.writes_z && !ctx->shader_info->fs.writes_stencil && !ctx->shader_info->fs.writes_sample_mask)
AC_FUNC_ATTR_LEGACY);
LLVMBuildStore(ctx->builder,
- to_float(ctx, value), ctx->outputs[radeon_llvm_reg_index_soa(i, j)]);
+ to_float(&ctx->ac, value), ctx->outputs[radeon_llvm_reg_index_soa(i, j)]);
}
idx += slot_inc;
}