#include "SkTaskGroup.h"
#include "SkThreadUtils.h"
#include "ThermalManager.h"
+#include "SkScan.h"
#include <stdlib.h>
DEFINE_string(benchType, "",
"Apply usual --match rules to bench type: micro, recording, playback, skcodec, etc.");
+DEFINE_bool(analyticAA, false, "Analytic Anati-Alias");
+
static double now_ms() { return SkTime::GetNSecs() * 1e-6; }
static SkString humanize(double ms) {
start_keepalive();
}
+ if (FLAGS_analyticAA) {
+ GlobalAAConfig::getInstance().fUseAnalyticAA = true;
+ }
+
int runs = 0;
BenchmarkStream benchStream;
while (Benchmark* b = benchStream.next()) {
#include "Timer.h"
#include "picture_utils.h"
#include "sk_tool_utils.h"
+#include "SkScan.h"
#ifdef SK_PDF_IMAGE_STATS
extern void SkPDFImageDumpStats();
DEFINE_string(mskps, "", "Directory to read mskps from, or a single mskp file.");
+DEFINE_bool(analyticAA, false, "Analytic Anti-Alias");
+
using namespace DM;
using sk_gpu_test::GrContextFactory;
using sk_gpu_test::GLTestContext;
setbuf(stdout, nullptr);
setup_crash_handler();
+ if (FLAGS_analyticAA) {
+ GlobalAAConfig::getInstance().fUseAnalyticAA = true;
+ }
+
if (FLAGS_verbose) {
gVLog = stderr;
} else if (!FLAGS_writePath.isEmpty()) {
'<(skia_src_path)/core/SkEdgeClipper.h',
'<(skia_src_path)/core/SkEmptyShader.h',
'<(skia_src_path)/core/SkEndian.h',
+ '<(skia_src_path)/core/SkAnalyticEdge.cpp',
+ '<(skia_src_path)/core/SkAAAConstants.h',
'<(skia_src_path)/core/SkEdge.cpp',
'<(skia_src_path)/core/SkEdge.h',
'<(skia_src_path)/core/SkError.cpp',
'<(skia_src_path)/core/SkScan.cpp',
'<(skia_src_path)/core/SkScan.h',
'<(skia_src_path)/core/SkScanPriv.h',
+ '<(skia_src_path)/core/SkScan_AAAPath.cpp',
'<(skia_src_path)/core/SkScan_AntiPath.cpp',
'<(skia_src_path)/core/SkScan_Antihair.cpp',
'<(skia_src_path)/core/SkScan_Hairline.cpp',
#include "SkTypeface.h"
#include "SkWindow.h"
#include "sk_tool_utils.h"
+#include "SkScan.h"
#include "SkReadBuffer.h"
#include "SkStream.h"
this->inval(nullptr);
}
break;
+ case 'A':
+ GlobalAAConfig::getInstance().fUseAnalyticAA =
+ !GlobalAAConfig::getInstance().fUseAnalyticAA;
+ this->inval(nullptr);
+ break;
case 'B':
post_event_to_sink(new SkEvent("PictFileView::toggleBBox"), curr_view(this));
// Cannot call updateTitle() synchronously, because the toggleBBox event is still in
--- /dev/null
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkAAAConstants_DEFINED
+#define SkAAAConstants_DEFINED
+
+static const int kInverseTableSize = 1024; // SK_FDot6One * 16
+
+/*
+The following table is generated by:
+
+struct FDot6InverseTable {
+ SkFixed storage[kInverseTableSize * 2];
+ SkFixed* table = storage + kInverseTableSize;
+
+ FDot6InverseTable() {
+ SkDebugf("static const int gFDot6INVERSE[] = {");
+ for (SkFDot6 i=-kInverseTableSize; i<kInverseTableSize; i++) {
+ if (i != 0) {
+ table[i] = SkFDot6Div(SK_FDot6One, i);
+ }
+ SkDebugf("%d, ", table[i]);
+ }
+ SkDebugf("}\n");
+ }
+};
+*/
+
+static constexpr const SkFDot6 gFDot6INVERSE[kInverseTableSize * 2] = {
+ -4096, -4100, -4104, -4108, -4112, -4116, -4120, -4124, -4128, -4132, -4136,
+ -4140, -4144, -4148, -4152, -4156, -4161, -4165, -4169, -4173, -4177, -4181,
+ -4185, -4190, -4194, -4198, -4202, -4206, -4211, -4215, -4219, -4223, -4228,
+ -4232, -4236, -4240, -4245, -4249, -4253, -4258, -4262, -4266, -4271, -4275,
+ -4279, -4284, -4288, -4293, -4297, -4301, -4306, -4310, -4315, -4319, -4324,
+ -4328, -4332, -4337, -4341, -4346, -4350, -4355, -4359, -4364, -4369, -4373,
+ -4378, -4382, -4387, -4391, -4396, -4401, -4405, -4410, -4415, -4419, -4424,
+ -4429, -4433, -4438, -4443, -4447, -4452, -4457, -4462, -4466, -4471, -4476,
+ -4481, -4485, -4490, -4495, -4500, -4505, -4510, -4514, -4519, -4524, -4529,
+ -4534, -4539, -4544, -4549, -4554, -4559, -4563, -4568, -4573, -4578, -4583,
+ -4588, -4593, -4599, -4604, -4609, -4614, -4619, -4624, -4629, -4634, -4639,
+ -4644, -4650, -4655, -4660, -4665, -4670, -4675, -4681, -4686, -4691, -4696,
+ -4702, -4707, -4712, -4718, -4723, -4728, -4733, -4739, -4744, -4750, -4755,
+ -4760, -4766, -4771, -4777, -4782, -4788, -4793, -4798, -4804, -4809, -4815,
+ -4821, -4826, -4832, -4837, -4843, -4848, -4854, -4860, -4865, -4871, -4877,
+ -4882, -4888, -4894, -4899, -4905, -4911, -4917, -4922, -4928, -4934, -4940,
+ -4946, -4951, -4957, -4963, -4969, -4975, -4981, -4987, -4993, -4999, -5005,
+ -5011, -5017, -5023, -5029, -5035, -5041, -5047, -5053, -5059, -5065, -5071,
+ -5077, -5084, -5090, -5096, -5102, -5108, -5115, -5121, -5127, -5133, -5140,
+ -5146, -5152, -5159, -5165, -5171, -5178, -5184, -5190, -5197, -5203, -5210,
+ -5216, -5223, -5229, -5236, -5242, -5249, -5256, -5262, -5269, -5275, -5282,
+ -5289, -5295, -5302, -5309, -5315, -5322, -5329, -5336, -5343, -5349, -5356,
+ -5363, -5370, -5377, -5384, -5391, -5398, -5405, -5412, -5418, -5426, -5433,
+ -5440, -5447, -5454, -5461, -5468, -5475, -5482, -5489, -5497, -5504, -5511,
+ -5518, -5526, -5533, -5540, -5548, -5555, -5562, -5570, -5577, -5584, -5592,
+ -5599, -5607, -5614, -5622, -5629, -5637, -5645, -5652, -5660, -5667, -5675,
+ -5683, -5691, -5698, -5706, -5714, -5722, -5729, -5737, -5745, -5753, -5761,
+ -5769, -5777, -5785, -5793, -5801, -5809, -5817, -5825, -5833, -5841, -5849,
+ -5857, -5866, -5874, -5882, -5890, -5899, -5907, -5915, -5924, -5932, -5940,
+ -5949, -5957, -5966, -5974, -5983, -5991, -6000, -6009, -6017, -6026, -6034,
+ -6043, -6052, -6061, -6069, -6078, -6087, -6096, -6105, -6114, -6123, -6132,
+ -6141, -6150, -6159, -6168, -6177, -6186, -6195, -6204, -6213, -6223, -6232,
+ -6241, -6250, -6260, -6269, -6278, -6288, -6297, -6307, -6316, -6326, -6335,
+ -6345, -6355, -6364, -6374, -6384, -6393, -6403, -6413, -6423, -6432, -6442,
+ -6452, -6462, -6472, -6482, -6492, -6502, -6512, -6523, -6533, -6543, -6553,
+ -6563, -6574, -6584, -6594, -6605, -6615, -6626, -6636, -6647, -6657, -6668,
+ -6678, -6689, -6700, -6710, -6721, -6732, -6743, -6754, -6765, -6775, -6786,
+ -6797, -6808, -6820, -6831, -6842, -6853, -6864, -6875, -6887, -6898, -6909,
+ -6921, -6932, -6944, -6955, -6967, -6978, -6990, -7002, -7013, -7025, -7037,
+ -7049, -7061, -7073, -7084, -7096, -7108, -7121, -7133, -7145, -7157, -7169,
+ -7182, -7194, -7206, -7219, -7231, -7244, -7256, -7269, -7281, -7294, -7307,
+ -7319, -7332, -7345, -7358, -7371, -7384, -7397, -7410, -7423, -7436, -7449,
+ -7463, -7476, -7489, -7503, -7516, -7530, -7543, -7557, -7570, -7584, -7598,
+ -7612, -7626, -7639, -7653, -7667, -7681, -7695, -7710, -7724, -7738, -7752,
+ -7767, -7781, -7796, -7810, -7825, -7839, -7854, -7869, -7884, -7898, -7913,
+ -7928, -7943, -7958, -7973, -7989, -8004, -8019, -8035, -8050, -8065, -8081,
+ -8097, -8112, -8128, -8144, -8160, -8176, -8192, -8208, -8224, -8240, -8256,
+ -8272, -8289, -8305, -8322, -8338, -8355, -8371, -8388, -8405, -8422, -8439,
+ -8456, -8473, -8490, -8507, -8525, -8542, -8559, -8577, -8594, -8612, -8630,
+ -8648, -8665, -8683, -8701, -8719, -8738, -8756, -8774, -8793, -8811, -8830,
+ -8848, -8867, -8886, -8905, -8924, -8943, -8962, -8981, -9000, -9020, -9039,
+ -9058, -9078, -9098, -9118, -9137, -9157, -9177, -9198, -9218, -9238, -9258,
+ -9279, -9300, -9320, -9341, -9362, -9383, -9404, -9425, -9446, -9467, -9489,
+ -9510, -9532, -9554, -9576, -9597, -9619, -9642, -9664, -9686, -9709, -9731,
+ -9754, -9776, -9799, -9822, -9845, -9868, -9892, -9915, -9939, -9962, -9986,
+ -10010, -10034, -10058, -10082, -10106, -10131, -10155, -10180, -10205, -10230,
+ -10255, -10280, -10305, -10330, -10356, -10381, -10407, -10433, -10459, -10485,
+ -10512, -10538, -10564, -10591, -10618, -10645, -10672, -10699, -10727, -10754,
+ -10782, -10810, -10837, -10866, -10894, -10922, -10951, -10979, -11008, -11037,
+ -11066, -11096, -11125, -11155, -11184, -11214, -11244, -11275, -11305, -11335,
+ -11366, -11397, -11428, -11459, -11491, -11522, -11554, -11586, -11618, -11650,
+ -11683, -11715, -11748, -11781, -11814, -11848, -11881, -11915, -11949, -11983,
+ -12018, -12052, -12087, -12122, -12157, -12192, -12228, -12264, -12300, -12336,
+ -12372, -12409, -12446, -12483, -12520, -12557, -12595, -12633, -12671, -12710,
+ -12748, -12787, -12826, -12865, -12905, -12945, -12985, -13025, -13066, -13107,
+ -13148, -13189, -13231, -13273, -13315, -13357, -13400, -13443, -13486, -13530,
+ -13573, -13617, -13662, -13706, -13751, -13797, -13842, -13888, -13934, -13981,
+ -14027, -14074, -14122, -14169, -14217, -14266, -14315, -14364, -14413, -14463,
+ -14513, -14563, -14614, -14665, -14716, -14768, -14820, -14873, -14926, -14979,
+ -15033, -15087, -15141, -15196, -15252, -15307, -15363, -15420, -15477, -15534,
+ -15592, -15650, -15709, -15768, -15827, -15887, -15947, -16008, -16070, -16131,
+ -16194, -16256, -16320, -16384, -16448, -16513, -16578, -16644, -16710, -16777,
+ -16844, -16912, -16980, -17050, -17119, -17189, -17260, -17331, -17403, -17476,
+ -17549, -17623, -17697, -17772, -17848, -17924, -18001, -18078, -18157, -18236,
+ -18315, -18396, -18477, -18558, -18641, -18724, -18808, -18893, -18978, -19065,
+ -19152, -19239, -19328, -19418, -19508, -19599, -19691, -19784, -19878, -19972,
+ -20068, -20164, -20262, -20360, -20460, -20560, -20661, -20763, -20867, -20971,
+ -21076, -21183, -21290, -21399, -21509, -21620, -21732, -21845, -21959, -22075,
+ -22192, -22310, -22429, -22550, -22671, -22795, -22919, -23045, -23172, -23301,
+ -23431, -23563, -23696, -23831, -23967, -24105, -24244, -24385, -24528, -24672,
+ -24818, -24966, -25115, -25266, -25420, -25575, -25731, -25890, -26051, -26214,
+ -26379, -26546, -26715, -26886, -27060, -27235, -27413, -27594, -27776, -27962,
+ -28149, -28339, -28532, -28728, -28926, -29127, -29330, -29537, -29746, -29959,
+ -30174, -30393, -30615, -30840, -31068, -31300, -31536, -31775, -32017, -32263,
+ -32513, -32768, -33026, -33288, -33554, -33825, -34100, -34379, -34663, -34952,
+ -35246, -35544, -35848, -36157, -36472, -36792, -37117, -37449, -37786, -38130,
+ -38479, -38836, -39199, -39568, -39945, -40329, -40721, -41120, -41527, -41943,
+ -42366, -42799, -43240, -43690, -44150, -44620, -45100, -45590, -46091, -46603,
+ -47127, -47662, -48210, -48770, -49344, -49932, -50533, -51150, -51781, -52428,
+ -53092, -53773, -54471, -55188, -55924, -56679, -57456, -58254, -59074, -59918,
+ -60787, -61680, -62601, -63550, -64527, -65536, -66576, -67650, -68759, -69905,
+ -71089, -72315, -73584, -74898, -76260, -77672, -79137, -80659, -82241, -83886,
+ -85598, -87381, -89240, -91180, -93206, -95325, -97541, -99864, -102300,
+ -104857, -107546, -110376, -113359, -116508, -119837, -123361, -127100, -131072,
+ -135300, -139810, -144631, -149796, -155344, -161319, -167772, -174762, -182361,
+ -190650, -199728, -209715, -220752, -233016, -246723, -262144, -279620, -299593,
+ -322638, -349525, -381300, -419430, -466033, -524288, -599186, -699050, -838860,
+ -1048576, -1398101, -2097152, -4194304, 0, 4194304, 2097152, 1398101, 1048576,
+ 838860, 699050, 599186, 524288, 466033, 419430, 381300, 349525, 322638, 299593,
+ 279620, 262144, 246723, 233016, 220752, 209715, 199728, 190650, 182361, 174762,
+ 167772, 161319, 155344, 149796, 144631, 139810, 135300, 131072, 127100, 123361,
+ 119837, 116508, 113359, 110376, 107546, 104857, 102300, 99864, 97541, 95325,
+ 93206, 91180, 89240, 87381, 85598, 83886, 82241, 80659, 79137, 77672, 76260,
+ 74898, 73584, 72315, 71089, 69905, 68759, 67650, 66576, 65536, 64527, 63550,
+ 62601, 61680, 60787, 59918, 59074, 58254, 57456, 56679, 55924, 55188, 54471,
+ 53773, 53092, 52428, 51781, 51150, 50533, 49932, 49344, 48770, 48210, 47662,
+ 47127, 46603, 46091, 45590, 45100, 44620, 44150, 43690, 43240, 42799, 42366,
+ 41943, 41527, 41120, 40721, 40329, 39945, 39568, 39199, 38836, 38479, 38130,
+ 37786, 37449, 37117, 36792, 36472, 36157, 35848, 35544, 35246, 34952, 34663,
+ 34379, 34100, 33825, 33554, 33288, 33026, 32768, 32513, 32263, 32017, 31775,
+ 31536, 31300, 31068, 30840, 30615, 30393, 30174, 29959, 29746, 29537, 29330,
+ 29127, 28926, 28728, 28532, 28339, 28149, 27962, 27776, 27594, 27413, 27235,
+ 27060, 26886, 26715, 26546, 26379, 26214, 26051, 25890, 25731, 25575, 25420,
+ 25266, 25115, 24966, 24818, 24672, 24528, 24385, 24244, 24105, 23967, 23831,
+ 23696, 23563, 23431, 23301, 23172, 23045, 22919, 22795, 22671, 22550, 22429,
+ 22310, 22192, 22075, 21959, 21845, 21732, 21620, 21509, 21399, 21290, 21183,
+ 21076, 20971, 20867, 20763, 20661, 20560, 20460, 20360, 20262, 20164, 20068,
+ 19972, 19878, 19784, 19691, 19599, 19508, 19418, 19328, 19239, 19152, 19065,
+ 18978, 18893, 18808, 18724, 18641, 18558, 18477, 18396, 18315, 18236, 18157,
+ 18078, 18001, 17924, 17848, 17772, 17697, 17623, 17549, 17476, 17403, 17331,
+ 17260, 17189, 17119, 17050, 16980, 16912, 16844, 16777, 16710, 16644, 16578,
+ 16513, 16448, 16384, 16320, 16256, 16194, 16131, 16070, 16008, 15947, 15887,
+ 15827, 15768, 15709, 15650, 15592, 15534, 15477, 15420, 15363, 15307, 15252,
+ 15196, 15141, 15087, 15033, 14979, 14926, 14873, 14820, 14768, 14716, 14665,
+ 14614, 14563, 14513, 14463, 14413, 14364, 14315, 14266, 14217, 14169, 14122,
+ 14074, 14027, 13981, 13934, 13888, 13842, 13797, 13751, 13706, 13662, 13617,
+ 13573, 13530, 13486, 13443, 13400, 13357, 13315, 13273, 13231, 13189, 13148,
+ 13107, 13066, 13025, 12985, 12945, 12905, 12865, 12826, 12787, 12748, 12710,
+ 12671, 12633, 12595, 12557, 12520, 12483, 12446, 12409, 12372, 12336, 12300,
+ 12264, 12228, 12192, 12157, 12122, 12087, 12052, 12018, 11983, 11949, 11915,
+ 11881, 11848, 11814, 11781, 11748, 11715, 11683, 11650, 11618, 11586, 11554,
+ 11522, 11491, 11459, 11428, 11397, 11366, 11335, 11305, 11275, 11244, 11214,
+ 11184, 11155, 11125, 11096, 11066, 11037, 11008, 10979, 10951, 10922, 10894,
+ 10866, 10837, 10810, 10782, 10754, 10727, 10699, 10672, 10645, 10618, 10591,
+ 10564, 10538, 10512, 10485, 10459, 10433, 10407, 10381, 10356, 10330, 10305,
+ 10280, 10255, 10230, 10205, 10180, 10155, 10131, 10106, 10082, 10058, 10034,
+ 10010, 9986, 9962, 9939, 9915, 9892, 9868, 9845, 9822, 9799, 9776, 9754, 9731,
+ 9709, 9686, 9664, 9642, 9619, 9597, 9576, 9554, 9532, 9510, 9489, 9467, 9446,
+ 9425, 9404, 9383, 9362, 9341, 9320, 9300, 9279, 9258, 9238, 9218, 9198, 9177,
+ 9157, 9137, 9118, 9098, 9078, 9058, 9039, 9020, 9000, 8981, 8962, 8943, 8924,
+ 8905, 8886, 8867, 8848, 8830, 8811, 8793, 8774, 8756, 8738, 8719, 8701, 8683,
+ 8665, 8648, 8630, 8612, 8594, 8577, 8559, 8542, 8525, 8507, 8490, 8473, 8456,
+ 8439, 8422, 8405, 8388, 8371, 8355, 8338, 8322, 8305, 8289, 8272, 8256, 8240,
+ 8224, 8208, 8192, 8176, 8160, 8144, 8128, 8112, 8097, 8081, 8065, 8050, 8035,
+ 8019, 8004, 7989, 7973, 7958, 7943, 7928, 7913, 7898, 7884, 7869, 7854, 7839,
+ 7825, 7810, 7796, 7781, 7767, 7752, 7738, 7724, 7710, 7695, 7681, 7667, 7653,
+ 7639, 7626, 7612, 7598, 7584, 7570, 7557, 7543, 7530, 7516, 7503, 7489, 7476,
+ 7463, 7449, 7436, 7423, 7410, 7397, 7384, 7371, 7358, 7345, 7332, 7319, 7307,
+ 7294, 7281, 7269, 7256, 7244, 7231, 7219, 7206, 7194, 7182, 7169, 7157, 7145,
+ 7133, 7121, 7108, 7096, 7084, 7073, 7061, 7049, 7037, 7025, 7013, 7002, 6990,
+ 6978, 6967, 6955, 6944, 6932, 6921, 6909, 6898, 6887, 6875, 6864, 6853, 6842,
+ 6831, 6820, 6808, 6797, 6786, 6775, 6765, 6754, 6743, 6732, 6721, 6710, 6700,
+ 6689, 6678, 6668, 6657, 6647, 6636, 6626, 6615, 6605, 6594, 6584, 6574, 6563,
+ 6553, 6543, 6533, 6523, 6512, 6502, 6492, 6482, 6472, 6462, 6452, 6442, 6432,
+ 6423, 6413, 6403, 6393, 6384, 6374, 6364, 6355, 6345, 6335, 6326, 6316, 6307,
+ 6297, 6288, 6278, 6269, 6260, 6250, 6241, 6232, 6223, 6213, 6204, 6195, 6186,
+ 6177, 6168, 6159, 6150, 6141, 6132, 6123, 6114, 6105, 6096, 6087, 6078, 6069,
+ 6061, 6052, 6043, 6034, 6026, 6017, 6009, 6000, 5991, 5983, 5974, 5966, 5957,
+ 5949, 5940, 5932, 5924, 5915, 5907, 5899, 5890, 5882, 5874, 5866, 5857, 5849,
+ 5841, 5833, 5825, 5817, 5809, 5801, 5793, 5785, 5777, 5769, 5761, 5753, 5745,
+ 5737, 5729, 5722, 5714, 5706, 5698, 5691, 5683, 5675, 5667, 5660, 5652, 5645,
+ 5637, 5629, 5622, 5614, 5607, 5599, 5592, 5584, 5577, 5570, 5562, 5555, 5548,
+ 5540, 5533, 5526, 5518, 5511, 5504, 5497, 5489, 5482, 5475, 5468, 5461, 5454,
+ 5447, 5440, 5433, 5426, 5418, 5412, 5405, 5398, 5391, 5384, 5377, 5370, 5363,
+ 5356, 5349, 5343, 5336, 5329, 5322, 5315, 5309, 5302, 5295, 5289, 5282, 5275,
+ 5269, 5262, 5256, 5249, 5242, 5236, 5229, 5223, 5216, 5210, 5203, 5197, 5190,
+ 5184, 5178, 5171, 5165, 5159, 5152, 5146, 5140, 5133, 5127, 5121, 5115, 5108,
+ 5102, 5096, 5090, 5084, 5077, 5071, 5065, 5059, 5053, 5047, 5041, 5035, 5029,
+ 5023, 5017, 5011, 5005, 4999, 4993, 4987, 4981, 4975, 4969, 4963, 4957, 4951,
+ 4946, 4940, 4934, 4928, 4922, 4917, 4911, 4905, 4899, 4894, 4888, 4882, 4877,
+ 4871, 4865, 4860, 4854, 4848, 4843, 4837, 4832, 4826, 4821, 4815, 4809, 4804,
+ 4798, 4793, 4788, 4782, 4777, 4771, 4766, 4760, 4755, 4750, 4744, 4739, 4733,
+ 4728, 4723, 4718, 4712, 4707, 4702, 4696, 4691, 4686, 4681, 4675, 4670, 4665,
+ 4660, 4655, 4650, 4644, 4639, 4634, 4629, 4624, 4619, 4614, 4609, 4604, 4599,
+ 4593, 4588, 4583, 4578, 4573, 4568, 4563, 4559, 4554, 4549, 4544, 4539, 4534,
+ 4529, 4524, 4519, 4514, 4510, 4505, 4500, 4495, 4490, 4485, 4481, 4476, 4471,
+ 4466, 4462, 4457, 4452, 4447, 4443, 4438, 4433, 4429, 4424, 4419, 4415, 4410,
+ 4405, 4401, 4396, 4391, 4387, 4382, 4378, 4373, 4369, 4364, 4359, 4355, 4350,
+ 4346, 4341, 4337, 4332, 4328, 4324, 4319, 4315, 4310, 4306, 4301, 4297, 4293,
+ 4288, 4284, 4279, 4275, 4271, 4266, 4262, 4258, 4253, 4249, 4245, 4240, 4236,
+ 4232, 4228, 4223, 4219, 4215, 4211, 4206, 4202, 4198, 4194, 4190, 4185, 4181,
+ 4177, 4173, 4169, 4165, 4161, 4156, 4152, 4148, 4144, 4140, 4136, 4132, 4128,
+ 4124, 4120, 4116, 4112, 4108, 4104, 4100
+};
+
+
+#endif
--- /dev/null
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+
+#include "SkAnalyticEdge.h"
+#include "SkFDot6.h"
+#include "SkMathPriv.h"
+#include "SkAAAConstants.h"
+
+class QuickFDot6Inverse {
+private:
+ static constexpr const SkFDot6* table = gFDot6INVERSE + kInverseTableSize;
+public:
+ inline static SkFixed Lookup(SkFDot6 x) {
+ SkASSERT(SkAbs32(x) < kInverseTableSize);
+ return table[x];
+ }
+};
+
+static inline SkFixed quickSkFDot6Div(SkFDot6 a, SkFDot6 b) {
+ if (SkAbs32(b) < kInverseTableSize) {
+ SkASSERT((int64_t)a * QuickFDot6Inverse::Lookup(b) <= SK_MaxS32);
+ SkFixed ourAnswer = (a * QuickFDot6Inverse::Lookup(b)) >> 6;
+ #ifdef SK_DEBUG
+ SkFixed directAnswer = SkFDot6Div(a, b);
+ SkASSERT(
+ (directAnswer == 0 && ourAnswer == 0) ||
+ SkFixedDiv(SkAbs32(directAnswer - ourAnswer), SkAbs32(directAnswer)) <= 1 << 10
+ );
+ #endif
+ return ourAnswer;
+ } else {
+ return SkFDot6Div(a, b);
+ }
+}
+
+// This will become a bottleneck for small ovals rendering if we call SkFixedDiv twice here.
+// Therefore, we'll let the outter function compute the slope once and send in the value.
+// Moreover, we'll compute fDY by quickly lookup the inverse table (if possible).
+bool SkAnalyticEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1, SkFixed slope) {
+ // Since we send in the slope, we can no longer snap y inside this function.
+ // If we don't send in the slope, or we do some more sophisticated snapping, this function
+ // could be a performance bottleneck.
+ SkASSERT(fWinding == 1 || fWinding == -1);
+ SkASSERT(fCurveCount != 0);
+
+ SkASSERT(y0 <= y1);
+
+ SkFDot6 dx = SkFixedToFDot6(x1 - x0);
+ SkFDot6 dy = SkFixedToFDot6(y1 - y0);
+
+ // are we a zero-height line?
+ if (dy == 0) {
+ return false;
+ }
+
+ SkASSERT(slope < SK_MaxS32);
+
+ SkFDot6 absSlope = SkAbs32(SkFixedToFDot6(slope));
+ fX = x0;
+ fDX = slope;
+ fUpperX = x0;
+ fY = y0;
+ fUpperY = y0;
+ fLowerY = y1;
+ fDY = (absSlope | dx) == 0
+ ? SK_MaxS32
+ : absSlope < kInverseTableSize
+ ? QuickFDot6Inverse::Lookup(absSlope)
+ : SkAbs32(quickSkFDot6Div(dy, dx));
+
+ return true;
+}
+
+void SkAnalyticEdge::chopLineWithClip(const SkIRect& clip) {
+ int top = SkFixedFloorToInt(fUpperY);
+
+ SkASSERT(top < clip.fBottom);
+
+ // clip the line to the clip top
+ if (top < clip.fTop) {
+ SkASSERT(SkFixedCeilToInt(fLowerY) > clip.fTop);
+ SkFixed newY = SkIntToFixed(clip.fTop);
+ this->goY(newY);
+ fUpperY = newY;
+ }
+}
+
+bool SkAnalyticQuadraticEdge::setQuadratic(const SkPoint pts[3]) {
+ if (!fQEdge.setQuadraticWithoutUpdate(pts, 2)) {
+ return false;
+ }
+ fQEdge.fQx >>= 2;
+ fQEdge.fQy >>= 2;
+ fQEdge.fQDx >>= 2;
+ fQEdge.fQDy >>= 2;
+ fQEdge.fQDDx >>= 2;
+ fQEdge.fQDDy >>= 2;
+ fQEdge.fQLastX >>= 2;
+ fQEdge.fQLastY >>= 2;
+ fQEdge.fQy = snapY(fQEdge.fQy);
+ fQEdge.fQLastY = snapY(fQEdge.fQLastY);
+
+ fWinding = fQEdge.fWinding;
+ fCurveCount = fQEdge.fCurveCount;
+ fCurveShift = fQEdge.fCurveShift;
+
+ fSnappedX = fQEdge.fQx;
+ fSnappedY = fQEdge.fQy;
+
+ return this->updateQuadratic();
+}
+
+bool SkAnalyticQuadraticEdge::updateQuadratic() {
+ int success = 0; // initialize to fail!
+ int count = fCurveCount;
+ SkFixed oldx = fQEdge.fQx;
+ SkFixed oldy = fQEdge.fQy;
+ SkFixed dx = fQEdge.fQDx;
+ SkFixed dy = fQEdge.fQDy;
+ SkFixed newx, newy, newSnappedX, newSnappedY;
+ int shift = fCurveShift;
+
+ SkASSERT(count > 0);
+
+ do {
+ SkFixed slope;
+ if (--count > 0)
+ {
+ newx = oldx + (dx >> shift);
+ newy = snapY(oldy + (dy >> shift));
+ slope = dy >> 10 > 0 ? quickSkFDot6Div(dx >> 10, dy >> 10) : SK_MaxS32;
+ if (SkAbs32(dy) >= SK_Fixed1 * 2) { // only snap when dy is large enough
+ newSnappedY = SkTMin<SkFixed>(fQEdge.fQLastY, SkFixedRoundToFixed(newy));
+ newSnappedX = newx + SkFixedMul_lowprec(slope, newSnappedY - newy);
+ } else {
+ newSnappedY = newy;
+ newSnappedX = newx;
+ }
+ dx += fQEdge.fQDDx;
+ dy += fQEdge.fQDDy;
+ }
+ else // last segment
+ {
+ newx = fQEdge.fQLastX;
+ newy = fQEdge.fQLastY;
+ newSnappedY = newy;
+ newSnappedX = newx;
+ slope = (newSnappedY - fSnappedY) >> 10
+ ? quickSkFDot6Div((newx - fSnappedX) >> 10, (newy - fSnappedY) >> 10)
+ : SK_MaxS32;
+ }
+ if (slope < SK_MaxS32) {
+ success = this->updateLine(fSnappedX, fSnappedY, newSnappedX, newSnappedY, slope);
+ }
+ oldx = newx;
+ oldy = newy;
+ } while (count > 0 && !success);
+
+ SkASSERT(newSnappedY <= fQEdge.fQLastY);
+
+ fQEdge.fQx = newx;
+ fQEdge.fQy = newy;
+ fQEdge.fQDx = dx;
+ fQEdge.fQDy = dy;
+ fSnappedX = newSnappedX;
+ fSnappedY = newSnappedY;
+ fCurveCount = SkToS8(count);
+ return success;
+}
+
+bool SkAnalyticCubicEdge::setCubic(const SkPoint pts[4]) {
+ if (!fCEdge.setCubicWithoutUpdate(pts, 2)) {
+ return false;
+ }
+
+ fCEdge.fCx >>= 2;
+ fCEdge.fCy >>= 2;
+ fCEdge.fCDx >>= 2;
+ fCEdge.fCDy >>= 2;
+ fCEdge.fCDDx >>= 2;
+ fCEdge.fCDDy >>= 2;
+ fCEdge.fCDDDx >>= 2;
+ fCEdge.fCDDDy >>= 2;
+ fCEdge.fCLastX >>= 2;
+ fCEdge.fCLastY >>= 2;
+ fCEdge.fCy = snapY(fCEdge.fCy);
+ fCEdge.fCLastY = snapY(fCEdge.fCLastY);
+
+ fWinding = fCEdge.fWinding;
+ fCurveCount = fCEdge.fCurveCount;
+ fCurveShift = fCEdge.fCurveShift;
+ fCubicDShift = fCEdge.fCubicDShift;
+
+ return this->updateCubic();
+}
+
+bool SkAnalyticCubicEdge::updateCubic() {
+ int success;
+ int count = fCurveCount;
+ SkFixed oldx = fCEdge.fCx;
+ SkFixed oldy = fCEdge.fCy;
+ SkFixed newx, newy;
+ const int ddshift = fCurveShift;
+ const int dshift = fCubicDShift;
+
+ SkASSERT(count < 0);
+
+ do {
+ if (++count < 0) {
+ newx = oldx + (fCEdge.fCDx >> dshift);
+ fCEdge.fCDx += fCEdge.fCDDx >> ddshift;
+ fCEdge.fCDDx += fCEdge.fCDDDx;
+
+ newy = oldy + (fCEdge.fCDy >> dshift);
+ fCEdge.fCDy += fCEdge.fCDDy >> ddshift;
+ fCEdge.fCDDy += fCEdge.fCDDDy;
+ }
+ else { // last segment
+ newx = fCEdge.fCLastX;
+ newy = fCEdge.fCLastY;
+ }
+
+ // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
+ // doesn't always achieve that, so we have to explicitly pin it here.
+ if (newy < oldy) {
+ newy = oldy;
+ }
+
+ success = this->updateLine(oldx, oldy, newx, newy,
+ SkFixedToFDot6(newy - oldy) == 0 ? SK_MaxS32 :
+ SkFDot6Div(SkFixedToFDot6(newx - oldx), SkFixedToFDot6(newy - oldy)));
+ oldx = newx;
+ oldy = newy;
+ } while (count < 0 && !success);
+
+ fCEdge.fCx = newx;
+ fCEdge.fCy = newy;
+ fCurveCount = SkToS8(count);
+ return success;
+}
--- /dev/null
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkAnalyticEdge_DEFINED
+#define SkAnalyticEdge_DEFINED
+
+#include "SkEdge.h"
+
+inline SkFixed SkFixedMul_lowprec(SkFixed a, SkFixed b) {
+ SkASSERT(((int64_t)a >> 8) * (b >> 8) <= SK_MaxS32);
+ return (a >> 8) * (b >> 8);
+}
+
+struct SkAnalyticEdge {
+ // Similar to SkEdge, the conic edges will be converted to quadratic edges
+ enum Type {
+ kLine_Type,
+ kQuad_Type,
+ kCubic_Type
+ };
+
+ SkAnalyticEdge* fNext;
+ SkAnalyticEdge* fPrev;
+
+ SkFixed fX;
+ SkFixed fDX;
+ SkFixed fUpperX; // The x value when y = fUpperY
+ SkFixed fY; // The current y
+ SkFixed fUpperY; // The upper bound of y (our edge is from y = fUpperY to y = fLowerY)
+ SkFixed fLowerY; // The lower bound of y (our edge is from y = fUpperY to y = fLowerY)
+ SkFixed fDY; // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0.
+ // fDY is only used for blitting trapezoids.
+
+ int8_t fCurveCount; // only used by kQuad(+) and kCubic(-)
+ uint8_t fCurveShift; // appled to all Dx/DDx/DDDx except for fCubicDShift exception
+ uint8_t fCubicDShift; // applied to fCDx and fCDy only in cubic
+ int8_t fWinding; // 1 or -1
+
+ static const int kDefaultAccuracy = 2; // default accuracy for snapping
+
+ static inline SkFixed snapY(SkFixed y, int accuracy = kDefaultAccuracy) {
+ return SkFixedRoundToFixed(y << accuracy) >> accuracy;
+ }
+
+ // Update fX, fY of this edge so fY = y
+ inline void goY(SkFixed y) {
+ if (y == fY + SK_Fixed1) {
+ fX = fX + fDX;
+ fY = y;
+ } else if (y != fY) {
+ // Drop lower digits as our alpha only has 8 bits
+ // (fDX and y - fUpperY may be greater than SK_Fixed1)
+ fX = fUpperX + SkFixedMul_lowprec(fDX, y - fUpperY);
+ fY = y;
+ }
+ }
+
+ inline bool setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip = nullptr);
+ inline bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope);
+ void chopLineWithClip(const SkIRect& clip);
+
+ inline bool intersectsClip(const SkIRect& clip) const {
+ SkASSERT(SkFixedFloorToInt(fUpperY) < clip.fBottom);
+ return SkFixedCeilToInt(fLowerY) > clip.fTop;
+ }
+
+#ifdef SK_DEBUG
+ void dump() const {
+ SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n",
+ fUpperY, fLowerY, SkFixedToFloat(fY), SkFixedToFloat(fX),
+ SkFixedToFloat(fDX), fWinding);
+ }
+
+ void validate() const {
+ SkASSERT(fPrev && fNext);
+ SkASSERT(fPrev->fNext == this);
+ SkASSERT(fNext->fPrev == this);
+
+ SkASSERT(fUpperY < fLowerY);
+ SkASSERT(SkAbs32(fWinding) == 1);
+ }
+#endif
+};
+
+struct SkAnalyticQuadraticEdge : public SkAnalyticEdge {
+ SkQuadraticEdge fQEdge;
+
+ // snap y to integer points in the middle of the curve to accelerate AAA path filling
+ SkFixed fSnappedX, fSnappedY;
+
+ bool setQuadratic(const SkPoint pts[3]);
+ bool updateQuadratic();
+};
+
+struct SkAnalyticCubicEdge : public SkAnalyticEdge {
+ SkCubicEdge fCEdge;
+
+ bool setCubic(const SkPoint pts[4]);
+ bool updateCubic();
+};
+
+bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip) {
+ // We must set X/Y using the same way (times 4, to FDot6, then to Fixed) as Quads/Cubics.
+ // Otherwise the order of the edge might be wrong due to precision limit.
+ SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * 4)) >> 2;
+ SkFixed y0 = snapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * 4)) >> 2);
+ SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * 4)) >> 2;
+ SkFixed y1 = snapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * 4)) >> 2);
+
+ // are we a zero-height line?
+ if (y0 == y1) {
+ return false;
+ }
+
+ int top = SkFixedFloorToInt(y0);
+ int bot = SkFixedCeilToInt(y1);
+
+ // are we completely above or below the clip?
+ if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
+ return false;
+ }
+
+ int winding = 1;
+
+ if (y0 > y1) {
+ SkTSwap(x0, x1);
+ SkTSwap(y0, y1);
+ winding = -1;
+ }
+
+ SkFixed slope = SkFixedDiv(x1 - x0, y1 - y0);
+
+ fX = x0;
+ fDX = slope;
+ fUpperX = x0;
+ fY = y0;
+ fUpperY = y0;
+ fLowerY = y1;
+ fDY = x1 != x0 ? SkAbs32(SkFixedDiv(y1 - y0, x1 - x0)) : SK_MaxS32;
+ fCurveCount = 0;
+ fWinding = SkToS8(winding);
+ fCurveShift = 0;
+
+ if (clip) {
+ this->chopLineWithClip(*clip);
+ }
+ return true;
+}
+
+#endif
}
}
-/// Default implementation doesn't check for any easy optimizations
-/// such as alpha == 0 or 255; also uses blitV(), which some subclasses
+/// Default implementation doesn't check for easy optimizations
+/// such as alpha == 255; also uses blitV(), which some subclasses
/// may not support.
void SkBlitter::blitAntiRect(int x, int y, int width, int height,
SkAlpha leftAlpha, SkAlpha rightAlpha) {
- this->blitV(x++, y, height, leftAlpha);
+ if (leftAlpha > 0) { // we may send in x = -1 with leftAlpha = 0
+ this->blitV(x, y, height, leftAlpha);
+ }
+ x++;
if (width > 0) {
this->blitRect(x, y, width, height);
x += width;
}
- this->blitV(x, y, height, rightAlpha);
+ if (rightAlpha > 0) {
+ this->blitV(x, y, height, rightAlpha);
+ }
}
//////////////////////////////////////////////////////////////////////////////
return (32 - SkCLZ(dist)) >> 1;
}
-int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
-{
+bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) {
SkFDot6 x0, y0, x1, y1, x2, y2;
{
fQLastX = SkFDot6ToFixed(x2);
fQLastY = SkFDot6ToFixed(y2);
+ return true;
+}
+
+int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) {
+ if (!setQuadraticWithoutUpdate(pts, shift)) {
+ return 0;
+ }
return this->updateQuadratic();
}
return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
}
-int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
+bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift) {
SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
{
fCLastX = SkFDot6ToFixed(x3);
fCLastY = SkFDot6ToFixed(y3);
+ return true;
+}
+
+int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
+ if (!this->setCubicWithoutUpdate(pts, shift)) {
+ return 0;
+ }
return this->updateCubic();
}
SkFixed fQDDx, fQDDy;
SkFixed fQLastX, fQLastY;
+ bool setQuadraticWithoutUpdate(const SkPoint pts[3], int shiftUp);
int setQuadratic(const SkPoint pts[3], int shiftUp);
int updateQuadratic();
};
SkFixed fCDDDx, fCDDDy;
SkFixed fCLastX, fCLastY;
+ bool setCubicWithoutUpdate(const SkPoint pts[4], int shiftUp);
int setCubic(const SkPoint pts[4], int shiftUp);
int updateCubic();
};
return 1;
}
-
#endif
#include "SkEdgeBuilder.h"
#include "SkPath.h"
#include "SkEdge.h"
+#include "SkAnalyticEdge.h"
#include "SkEdgeClipper.h"
#include "SkLineClipper.h"
#include "SkGeometry.h"
return kNo_Combine;
}
-static bool vertical_line(const SkEdge* edge) {
+SkEdgeBuilder::Combine SkEdgeBuilder::CombineVertical(
+ const SkAnalyticEdge* edge, SkAnalyticEdge* last) {
+ SkASSERT(fAnalyticAA);
+ if (last->fCurveCount || last->fDX || edge->fX != last->fX) {
+ return kNo_Combine;
+ }
+ if (edge->fWinding == last->fWinding) {
+ if (edge->fLowerY == last->fUpperY) {
+ last->fUpperY = edge->fUpperY;
+ last->fY = last->fUpperY;
+ return kPartial_Combine;
+ }
+ if (edge->fUpperY == last->fLowerY) {
+ last->fLowerY = edge->fLowerY;
+ return kPartial_Combine;
+ }
+ return kNo_Combine;
+ }
+ if (edge->fUpperY == last->fUpperY) {
+ if (edge->fLowerY == last->fLowerY) {
+ return kTotal_Combine;
+ }
+ if (edge->fLowerY < last->fLowerY) {
+ last->fUpperY = edge->fLowerY;
+ last->fY = last->fUpperY;
+ return kPartial_Combine;
+ }
+ last->fUpperY = last->fLowerY;
+ last->fY = last->fUpperY;
+ last->fLowerY = edge->fLowerY;
+ last->fWinding = edge->fWinding;
+ return kPartial_Combine;
+ }
+ if (edge->fLowerY == last->fLowerY) {
+ if (edge->fUpperY > last->fUpperY) {
+ last->fLowerY = edge->fUpperY;
+ return kPartial_Combine;
+ }
+ last->fLowerY = last->fUpperY;
+ last->fUpperY = edge->fUpperY;
+ last->fY = last->fUpperY;
+ last->fWinding = edge->fWinding;
+ return kPartial_Combine;
+ }
+ return kNo_Combine;
+}
+
+bool SkEdgeBuilder::vertical_line(const SkEdge* edge) {
+ return !edge->fDX && !edge->fCurveCount;
+}
+
+bool SkEdgeBuilder::vertical_line(const SkAnalyticEdge* edge) {
+ SkASSERT(fAnalyticAA);
return !edge->fDX && !edge->fCurveCount;
}
void SkEdgeBuilder::addLine(const SkPoint pts[]) {
- SkEdge* edge = typedAllocThrow<SkEdge>(fAlloc);
- if (edge->setLine(pts[0], pts[1], fShiftUp)) {
- if (vertical_line(edge) && fList.count()) {
- Combine combine = CombineVertical(edge, *(fList.end() - 1));
- if (kNo_Combine != combine) {
- if (kTotal_Combine == combine) {
- fList.pop();
+ if (fAnalyticAA) {
+ SkAnalyticEdge* edge = typedAllocThrow<SkAnalyticEdge>(fAlloc);
+ if (edge->setLine(pts[0], pts[1])) {
+ if (vertical_line(edge) && fList.count()) {
+ Combine combine = CombineVertical(edge, (SkAnalyticEdge*)*(fList.end() - 1));
+ if (kNo_Combine != combine) {
+ if (kTotal_Combine == combine) {
+ fList.pop();
+ }
+ goto unallocate_analytic_edge;
}
- goto unallocate_edge;
}
+ fList.push(edge);
+ } else {
+unallocate_analytic_edge:
+ ;
+ // TODO: unallocate edge from storage...
}
- fList.push(edge);
} else {
+ SkEdge* edge = typedAllocThrow<SkEdge>(fAlloc);
+ if (edge->setLine(pts[0], pts[1], fShiftUp)) {
+ if (vertical_line(edge) && fList.count()) {
+ Combine combine = CombineVertical(edge, (SkEdge*)*(fList.end() - 1));
+ if (kNo_Combine != combine) {
+ if (kTotal_Combine == combine) {
+ fList.pop();
+ }
+ goto unallocate_edge;
+ }
+ }
+ fList.push(edge);
+ } else {
unallocate_edge:
- ;
- // TODO: unallocate edge from storage...
+ ;
+ // TODO: unallocate edge from storage...
+ }
}
}
void SkEdgeBuilder::addQuad(const SkPoint pts[]) {
- SkQuadraticEdge* edge = typedAllocThrow<SkQuadraticEdge>(fAlloc);
- if (edge->setQuadratic(pts, fShiftUp)) {
- fList.push(edge);
+ if (fAnalyticAA) {
+ SkAnalyticQuadraticEdge* edge = typedAllocThrow<SkAnalyticQuadraticEdge>(fAlloc);
+ if (edge->setQuadratic(pts)) {
+ fList.push(edge);
+ } else {
+ // TODO: unallocate edge from storage...
+ }
} else {
- // TODO: unallocate edge from storage...
+ SkQuadraticEdge* edge = typedAllocThrow<SkQuadraticEdge>(fAlloc);
+ if (edge->setQuadratic(pts, fShiftUp)) {
+ fList.push(edge);
+ } else {
+ // TODO: unallocate edge from storage...
+ }
}
}
void SkEdgeBuilder::addCubic(const SkPoint pts[]) {
- SkCubicEdge* edge = typedAllocThrow<SkCubicEdge>(fAlloc);
- if (edge->setCubic(pts, fShiftUp)) {
- fList.push(edge);
+ if (fAnalyticAA) {
+ SkAnalyticCubicEdge* edge = typedAllocThrow<SkAnalyticCubicEdge>(fAlloc);
+ if (edge->setCubic(pts)) {
+ fList.push(edge);
+ } else {
+ // TODO: unallocate edge from storage...
+ }
} else {
- // TODO: unallocate edge from storage...
+ SkCubicEdge* edge = typedAllocThrow<SkCubicEdge>(fAlloc);
+ if (edge->setCubic(pts, fShiftUp)) {
+ fList.push(edge);
+ } else {
+ // TODO: unallocate edge from storage...
+ }
}
}
}
SkEdgeBuilder::Combine SkEdgeBuilder::checkVertical(const SkEdge* edge, SkEdge** edgePtr) {
- return !vertical_line(edge) || edgePtr <= fEdgeList ? kNo_Combine :
+ return !vertical_line(edge) || edgePtr <= (SkEdge**)fEdgeList ? kNo_Combine :
+ CombineVertical(edge, edgePtr[-1]);
+}
+
+SkEdgeBuilder::Combine SkEdgeBuilder::checkVertical(const SkAnalyticEdge* edge,
+ SkAnalyticEdge** edgePtr) {
+ SkASSERT(fAnalyticAA);
+ return !vertical_line(edge) || edgePtr <= (SkAnalyticEdge**)fEdgeList ? kNo_Combine :
CombineVertical(edge, edgePtr[-1]);
}
// segments.
maxEdgeCount *= SkLineClipper::kMaxClippedLineSegments;
}
- size_t maxEdgeSize = maxEdgeCount * sizeof(SkEdge);
- size_t maxEdgePtrSize = maxEdgeCount * sizeof(SkEdge*);
+ size_t edgeSize = fAnalyticAA ? sizeof(SkAnalyticEdge) : sizeof(SkEdge);
+ size_t maxEdgeSize = maxEdgeCount * edgeSize;
+ size_t maxEdgePtrSize = maxEdgeCount * sizeof(char*);
// lets store the edges and their pointers in the same block
char* storage = (char*)fAlloc.allocThrow(maxEdgeSize + maxEdgePtrSize);
- SkEdge* edge = reinterpret_cast<SkEdge*>(storage);
- SkEdge** edgePtr = reinterpret_cast<SkEdge**>(storage + maxEdgeSize);
+ char* edge = (char*)storage;
+ char** edgePtr = (char**)(storage + maxEdgeSize);
// Record the beginning of our pointers, so we can return them to the caller
- fEdgeList = edgePtr;
+ fEdgeList = (void**)edgePtr;
if (iclip) {
SkRect clip;
int lineCount = SkLineClipper::ClipLine(pts, clip, lines, canCullToTheRight);
SkASSERT(lineCount <= SkLineClipper::kMaxClippedLineSegments);
for (int i = 0; i < lineCount; i++) {
- if (edge->setLine(lines[i], lines[i + 1], shiftUp)) {
- Combine combine = checkVertical(edge, edgePtr);
+ bool setLineResult = fAnalyticAA ?
+ ((SkAnalyticEdge*)edge)->setLine(lines[i], lines[i + 1]) :
+ ((SkEdge*)edge)->setLine(lines[i], lines[i + 1], shiftUp);
+ if (setLineResult) {
+ Combine combine = fAnalyticAA ?
+ checkVertical((SkAnalyticEdge*)edge, (SkAnalyticEdge**)edgePtr) :
+ checkVertical((SkEdge*)edge, (SkEdge**)edgePtr);
if (kNo_Combine == combine) {
- *edgePtr++ = edge++;
+ *edgePtr++ = edge;
+ edge += edgeSize;
} else if (kTotal_Combine == combine) {
--edgePtr;
}
// we ignore these, and just get the whole segment from
// the corresponding line/quad/cubic verbs
break;
- case SkPath::kLine_Verb:
- if (edge->setLine(pts[0], pts[1], shiftUp)) {
- Combine combine = checkVertical(edge, edgePtr);
+ case SkPath::kLine_Verb: {
+ bool setLineResult = fAnalyticAA ?
+ ((SkAnalyticEdge*)edge)->setLine(pts[0], pts[1]) :
+ ((SkEdge*)edge)->setLine(pts[0], pts[1], shiftUp);
+ if (setLineResult) {
+ Combine combine = fAnalyticAA ?
+ checkVertical((SkAnalyticEdge*)edge, (SkAnalyticEdge**)edgePtr) :
+ checkVertical((SkEdge*)edge, (SkEdge**)edgePtr);
if (kNo_Combine == combine) {
- *edgePtr++ = edge++;
+ *edgePtr++ = edge;
+ edge += edgeSize;
} else if (kTotal_Combine == combine) {
--edgePtr;
}
}
break;
+ }
default:
SkDEBUGFAIL("unexpected verb");
break;
}
}
SkASSERT((char*)edge <= (char*)fEdgeList);
- SkASSERT(edgePtr - fEdgeList <= maxEdgeCount);
- return SkToInt(edgePtr - fEdgeList);
+ SkASSERT(edgePtr - (char**)fEdgeList <= maxEdgeCount);
+ return SkToInt(edgePtr - (char**)fEdgeList);
}
static void handle_quad(SkEdgeBuilder* builder, const SkPoint pts[3]) {
}
int SkEdgeBuilder::build(const SkPath& path, const SkIRect* iclip, int shiftUp,
- bool canCullToTheRight) {
+ bool canCullToTheRight, bool analyticAA) {
fAlloc.reset();
fList.reset();
fShiftUp = shiftUp;
+ fAnalyticAA = analyticAA;
if (SkPath::kLine_SegmentMask == path.getSegmentMasks()) {
return this->buildPoly(path, iclip, shiftUp, canCullToTheRight);
#include "SkTDArray.h"
struct SkEdge;
+struct SkAnalyticEdge;
class SkEdgeClipper;
class SkPath;
// returns the number of built edges. The array of those edge pointers
// is returned from edgeList().
- int build(const SkPath& path, const SkIRect* clip, int shiftUp, bool clipToTheRight);
+ int build(const SkPath& path, const SkIRect* clip, int shiftUp, bool clipToTheRight,
+ bool analyticAA = false);
- SkEdge** edgeList() { return fEdgeList; }
+ SkEdge** edgeList() { return (SkEdge**)fEdgeList; }
+ SkAnalyticEdge** analyticEdgeList() { return (SkAnalyticEdge**)fEdgeList; }
private:
enum Combine {
kTotal_Combine
};
- static Combine CombineVertical(const SkEdge* edge, SkEdge* last);
+ Combine CombineVertical(const SkEdge* edge, SkEdge* last);
+ Combine CombineVertical(const SkAnalyticEdge* edge, SkAnalyticEdge* last);
Combine checkVertical(const SkEdge* edge, SkEdge** edgePtr);
+ Combine checkVertical(const SkAnalyticEdge* edge, SkAnalyticEdge** edgePtr);
+ bool vertical_line(const SkEdge* edge);
+ bool vertical_line(const SkAnalyticEdge* edge);
SkChunkAlloc fAlloc;
- SkTDArray<SkEdge*> fList;
+ SkTDArray<void*> fList;
/*
* If we're in general mode, we allcoate the pointers in fList, and this
* empty, as we will have preallocated room for the pointers in fAlloc's
* block, and fEdgeList will point into that.
*/
- SkEdge** fEdgeList;
+ void** fEdgeList;
int fShiftUp;
+ bool fAnalyticAA;
public:
void addLine(const SkPoint pts[]);
*/
typedef SkIRect SkXRect;
+class GlobalAAConfig {
+private:
+ GlobalAAConfig() {}
+
+public:
+ bool fUseAnalyticAA = false;
+
+ GlobalAAConfig(const GlobalAAConfig&) = delete;
+ void operator=(const GlobalAAConfig&) = delete;
+
+ static GlobalAAConfig& getInstance() {
+ static GlobalAAConfig instance;
+ return instance;
+ }
+};
+
+class AdditiveBlitter;
+
class SkScan {
public:
/*
static void AntiFillXRect(const SkXRect&, const SkRasterClip&, SkBlitter*);
static void FillPath(const SkPath&, const SkRasterClip&, SkBlitter*);
static void AntiFillPath(const SkPath&, const SkRasterClip&, SkBlitter*);
+ static void AAAFillPath(const SkPath&, const SkRasterClip&, SkBlitter*);
static void FrameRect(const SkRect&, const SkPoint& strokeSize,
const SkRasterClip&, SkBlitter*);
static void AntiFrameRect(const SkRect&, const SkPoint& strokeSize,
const SkRegion*, SkBlitter*);
static void HairLineRgn(const SkPoint[], int count, const SkRegion*, SkBlitter*);
static void AntiHairLineRgn(const SkPoint[], int count, const SkRegion*, SkBlitter*);
+ static void AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter);
+ static void aaa_fill_path(const SkPath& path, const SkIRect* clipRect, AdditiveBlitter*,
+ int start_y, int stop_y, const SkRegion& clipRgn, bool isUsingMask);
};
/** Assign an SkXRect from a SkIRect, by promoting the src rect's coordinates
--- /dev/null
+/*
+ * Copyright 2016 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkAntiRun.h"
+#include "SkBlitter.h"
+#include "SkEdge.h"
+#include "SkAnalyticEdge.h"
+#include "SkEdgeBuilder.h"
+#include "SkGeometry.h"
+#include "SkPath.h"
+#include "SkQuadClipper.h"
+#include "SkRasterClip.h"
+#include "SkRegion.h"
+#include "SkScan.h"
+#include "SkScanPriv.h"
+#include "SkTemplates.h"
+#include "SkTSort.h"
+#include "SkUtils.h"
+
+///////////////////////////////////////////////////////////////////////////////
+
+/*
+
+The following is a high-level overview of our analytic anti-aliasing
+algorithm. We consider a path as a collection of line segments, as
+quadratic/cubic curves are converted to small line segments. Without loss of
+generality, let's assume that the draw region is [0, W] x [0, H].
+
+Our algorithm is based on horizontal scan lines (y = c_i) as the previous
+sampling-based algorithm did. However, our algorithm uses non-equal-spaced
+scan lines, while the previous method always uses equal-spaced scan lines,
+such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm,
+and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous
+16-supersampling AA algorithm.
+
+Our algorithm contains scan lines y = c_i for c_i that is either:
+
+1. an integer between [0, H]
+
+2. the y value of a line segment endpoint
+
+3. the y value of an intersection of two line segments
+
+For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes
+the coverage of this horizontal strip of our path on each pixel. This can be
+done very efficiently because the strip of our path now only consists of
+trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes
+rectangles and triangles as special cases).
+
+We now describe how the coverage of single pixel is computed against such a
+trapezoid. That coverage is essentially the intersection area of a rectangle
+(e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection
+could be complicated, as shown in the example region A below:
+
++-----------\----+
+| \ C|
+| \ |
+\ \ |
+|\ A \|
+| \ \
+| \ |
+| B \ |
++----\-----------+
+
+However, we don't have to compute the area of A directly. Instead, we can
+compute the excluded area, which are B and C, quite easily, because they're
+just triangles. In fact, we can prove that an excluded region (take B as an
+example) is either itself a simple trapezoid (including rectangles, triangles,
+and empty regions), or its opposite (the opposite of B is A + C) is a simple
+trapezoid. In any case, we can compute its area efficiently.
+
+In summary, our algorithm has a higher quality because it generates ground-
+truth coverages analytically. It is also faster because it has much fewer
+unnessasary horizontal scan lines. For example, given a triangle path, the
+number of scan lines in our algorithm is only about 3 + H while the
+16-supersampling algorithm has about 4H scan lines.
+
+*/
+
+///////////////////////////////////////////////////////////////////////////////
+
+inline void addAlpha(SkAlpha& alpha, SkAlpha delta) {
+ SkASSERT(alpha + (int)delta <= 0xFF);
+ alpha += delta;
+}
+
+class AdditiveBlitter : public SkBlitter {
+public:
+ virtual ~AdditiveBlitter() {}
+
+ virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0;
+
+ virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0;
+ virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0;
+ virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0;
+
+ void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override {
+ SkDEBUGFAIL("Please call real blitter's blitAntiH instead.");
+ }
+
+ void blitV(int x, int y, int height, SkAlpha alpha) override {
+ SkDEBUGFAIL("Please call real blitter's blitV instead.");
+ }
+
+ void blitH(int x, int y, int width) override {
+ SkDEBUGFAIL("Please call real blitter's blitH instead.");
+ }
+
+ void blitRect(int x, int y, int width, int height) override {
+ SkDEBUGFAIL("Please call real blitter's blitRect instead.");
+ }
+
+ void blitAntiRect(int x, int y, int width, int height,
+ SkAlpha leftAlpha, SkAlpha rightAlpha) override {
+ SkDEBUGFAIL("Please call real blitter's blitAntiRect instead.");
+ }
+
+ virtual int getWidth() = 0;
+};
+
+// We need this mask blitter because it significantly accelerates small path filling.
+class MaskAdditiveBlitter : public AdditiveBlitter {
+public:
+ MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
+ bool isInverse);
+ ~MaskAdditiveBlitter() {
+ fRealBlitter->blitMask(fMask, fClipRect);
+ }
+
+ // Most of the time, we still consider this mask blitter as the real blitter
+ // so we can accelerate blitRect and others. But sometimes we want to return
+ // the absolute real blitter (e.g., when we fall back to the old code path).
+ SkBlitter* getRealBlitter(bool forceRealBlitter) override {
+ return forceRealBlitter ? fRealBlitter : this;
+ }
+
+ // Virtual function is slow. So don't use this. Directly add alpha to the mask instead.
+ void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
+
+ // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges
+ // Since there aren't many rectangles, we can still break the slow speed of virtual functions.
+ void blitAntiH(int x, int y, const SkAlpha alpha) override;
+ void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
+ void blitV(int x, int y, int height, SkAlpha alpha) override;
+ void blitRect(int x, int y, int width, int height) override;
+ void blitAntiRect(int x, int y, int width, int height,
+ SkAlpha leftAlpha, SkAlpha rightAlpha) override;
+
+ int getWidth() override { return fClipRect.width(); }
+
+ static bool canHandleRect(const SkIRect& bounds) {
+ int width = bounds.width();
+ int64_t rb = SkAlign4(width);
+ // use 64bits to detect overflow
+ int64_t storage = rb * bounds.height();
+
+ return (width <= MaskAdditiveBlitter::kMAX_WIDTH) &&
+ (storage <= MaskAdditiveBlitter::kMAX_STORAGE);
+ }
+
+ // Return a pointer where pointer[x] corresonds to the alpha of (x, y)
+ inline uint8_t* getRow(int y) {
+ if (y != fY) {
+ fY = y;
+ fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft;
+ }
+ return fRow;
+ }
+
+private:
+ // so we don't try to do very wide things, where the RLE blitter would be faster
+ static const int kMAX_WIDTH = 32;
+ static const int kMAX_STORAGE = 1024;
+
+ SkBlitter* fRealBlitter;
+ SkMask fMask;
+ SkIRect fClipRect;
+ // we add 2 because we can write 1 extra byte at either end due to precision error
+ uint32_t fStorage[(kMAX_STORAGE >> 2) + 2];
+
+ uint8_t* fRow;
+ int fY;
+};
+
+MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
+ bool isInverse) {
+ SkASSERT(canHandleRect(ir));
+ SkASSERT(!isInverse);
+
+ fRealBlitter = realBlitter;
+
+ fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either end of fStorage
+ fMask.fBounds = ir;
+ fMask.fRowBytes = ir.width();
+ fMask.fFormat = SkMask::kA8_Format;
+
+ fY = ir.fTop - 1;
+ fRow = nullptr;
+
+ fClipRect = ir;
+ if (!fClipRect.intersect(clip.getBounds())) {
+ SkASSERT(0);
+ fClipRect.setEmpty();
+ }
+
+ memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2);
+}
+
+void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
+ SkFAIL("Don't use this; directly add alphas to the mask.");
+}
+
+void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
+ SkASSERT(x >= fMask.fBounds.fLeft -1);
+ addAlpha(this->getRow(y)[x], alpha);
+}
+
+void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
+ SkASSERT(x >= fMask.fBounds.fLeft -1);
+ uint8_t* row = this->getRow(y);
+ for (int i=0; i<width; i++) {
+ addAlpha(row[x + i], alpha);
+ }
+}
+
+void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
+ if (alpha == 0) {
+ return;
+ }
+ SkASSERT(x >= fMask.fBounds.fLeft -1);
+ // This must be called as if this is a real blitter.
+ // So we directly set alpha rather than adding it.
+ uint8_t* row = this->getRow(y);
+ for (int i=0; i<height; i++) {
+ row[x] = alpha;
+ row += fMask.fRowBytes;
+ }
+}
+
+void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) {
+ SkASSERT(x >= fMask.fBounds.fLeft -1);
+ // This must be called as if this is a real blitter.
+ // So we directly set alpha rather than adding it.
+ uint8_t* row = this->getRow(y);
+ for (int i=0; i<height; i++) {
+ memset(row + x, 0xFF, width);
+ row += fMask.fRowBytes;
+ }
+}
+
+void MaskAdditiveBlitter::blitAntiRect(int x, int y, int width, int height,
+ SkAlpha leftAlpha, SkAlpha rightAlpha) {
+ blitV(x, y, height, leftAlpha);
+ blitV(x + 1 + width, y, height, rightAlpha);
+ blitRect(x + 1, y, width, height);
+}
+
+class RunBasedAdditiveBlitter : public AdditiveBlitter {
+public:
+ RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
+ bool isInverse);
+ ~RunBasedAdditiveBlitter();
+
+ SkBlitter* getRealBlitter(bool forceRealBlitter) override;
+
+ void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
+ void blitAntiH(int x, int y, const SkAlpha alpha) override;
+ void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
+
+ int getWidth() override;
+
+private:
+ SkBlitter* fRealBlitter;
+
+ /// Current y coordinate
+ int fCurrY;
+ /// Widest row of region to be blitted
+ int fWidth;
+ /// Leftmost x coordinate in any row
+ int fLeft;
+ /// Initial y coordinate (top of bounds).
+ int fTop;
+
+ // The next three variables are used to track a circular buffer that
+ // contains the values used in SkAlphaRuns. These variables should only
+ // ever be updated in advanceRuns(), and fRuns should always point to
+ // a valid SkAlphaRuns...
+ int fRunsToBuffer;
+ void* fRunsBuffer;
+ int fCurrentRun;
+ SkAlphaRuns fRuns;
+
+ int fOffsetX;
+
+ inline bool check(int x, int width) {
+ #ifdef SK_DEBUG
+ if (x < 0 || x + width > fWidth) {
+ SkDebugf("Ignore x = %d, width = %d\n", x, width);
+ }
+ #endif
+ return (x >= 0 && x + width <= fWidth);
+ }
+
+ // extra one to store the zero at the end
+ inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }
+
+ // This function updates the fRuns variable to point to the next buffer space
+ // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
+ // and resets fRuns to point to an empty scanline.
+ inline void advanceRuns() {
+ const size_t kRunsSz = this->getRunsSz();
+ fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
+ fRuns.fRuns = reinterpret_cast<int16_t*>(
+ reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
+ fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
+ fRuns.reset(fWidth);
+ }
+
+ // Blitting 0xFF and 0 is much faster so we snap alphas close to them
+ inline SkAlpha snapAlpha(SkAlpha alpha) {
+ return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha;
+ }
+
+ inline void flush() {
+ if (fCurrY >= fTop) {
+ SkASSERT(fCurrentRun < fRunsToBuffer);
+ for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) {
+ // It seems that blitting 255 or 0 is much faster than blitting 254 or 1
+ fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]);
+ }
+ if (!fRuns.empty()) {
+ // SkDEBUGCODE(fRuns.dump();)
+ fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns);
+ this->advanceRuns();
+ fOffsetX = 0;
+ }
+ fCurrY = fTop - 1;
+ }
+ }
+
+ inline void checkY(int y) {
+ if (y != fCurrY) {
+ this->flush();
+ fCurrY = y;
+ }
+ }
+};
+
+RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
+ bool isInverse) {
+ fRealBlitter = realBlitter;
+
+ SkIRect sectBounds;
+ if (isInverse) {
+ // We use the clip bounds instead of the ir, since we may be asked to
+ //draw outside of the rect when we're a inverse filltype
+ sectBounds = clip.getBounds();
+ } else {
+ if (!sectBounds.intersect(ir, clip.getBounds())) {
+ sectBounds.setEmpty();
+ }
+ }
+
+ const int left = sectBounds.left();
+ const int right = sectBounds.right();
+
+ fLeft = left;
+ fWidth = right - left;
+ fTop = sectBounds.top();
+ fCurrY = fTop - 1;
+
+ fRunsToBuffer = realBlitter->requestRowsPreserved();
+ fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
+ fCurrentRun = -1;
+
+ this->advanceRuns();
+
+ fOffsetX = 0;
+}
+
+RunBasedAdditiveBlitter::~RunBasedAdditiveBlitter() {
+ this->flush();
+}
+
+SkBlitter* RunBasedAdditiveBlitter::getRealBlitter(bool forceRealBlitter) {
+ return fRealBlitter;
+}
+
+void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
+ checkY(y);
+ x -= fLeft;
+
+ if (x < 0) {
+ len += x;
+ antialias -= x;
+ x = 0;
+ }
+ len = SkTMin(len, fWidth - x);
+ SkASSERT(check(x, len));
+
+ if (x < fOffsetX) {
+ fOffsetX = 0;
+ }
+
+ fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run
+ for (int i = 0; i < len; i += fRuns.fRuns[x + i]) {
+ for (int j = 1; j < fRuns.fRuns[x + i]; j++) {
+ fRuns.fRuns[x + i + j] = 1;
+ fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i];
+ }
+ fRuns.fRuns[x + i] = 1;
+ }
+ for (int i=0; i<len; i++) {
+ addAlpha(fRuns.fAlpha[x + i], antialias[i]);
+ }
+}
+void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
+ checkY(y);
+ x -= fLeft;
+
+ if (x < fOffsetX) {
+ fOffsetX = 0;
+ }
+
+ if (this->check(x, 1)) {
+ fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX);
+ }
+}
+
+void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
+ checkY(y);
+ x -= fLeft;
+
+ if (x < fOffsetX) {
+ fOffsetX = 0;
+ }
+
+ if (this->check(x, width)) {
+ fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX);
+ }
+}
+
+int RunBasedAdditiveBlitter::getWidth() { return fWidth; }
+
+///////////////////////////////////////////////////////////////////////////////
+
+// Return the alpha of a trapezoid whose height is 1
+static inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) {
+ SkASSERT(l1 >= 0 && l2 >= 0);
+ return ((l1 + l2) >> 9);
+}
+
+// The alpha of right-triangle (a, a*b), in 16 bits
+static inline SkFixed partialTriangleToAlpha16(SkFixed a, SkFixed b) {
+ SkASSERT(a <= SK_Fixed1);
+ // SkFixedMul_lowprec(SkFixedMul_lowprec(a, a), b) >> 1
+ // return ((((a >> 8) * (a >> 8)) >> 8) * (b >> 8)) >> 1;
+ return (a >> 11) * (a >> 11) * (b >> 11);
+}
+
+// The alpha of right-triangle (a, a*b)
+static inline SkAlpha partialTriangleToAlpha(SkFixed a, SkFixed b) {
+ return partialTriangleToAlpha16(a, b) >> 8;
+}
+
+static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) {
+ return (alpha * partialHeight) >> 16;
+}
+
+static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkAlpha fullAlpha) {
+ return ((uint16_t)alpha * fullAlpha) >> 8;
+}
+
+// For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right.
+// For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255.
+// This is rarely the problem so we'll only use this for blitting rectangles.
+static inline SkAlpha f2a(SkFixed f) {
+ SkASSERT(f <= SK_Fixed1);
+ return getPartialAlpha(0xFF, f);
+}
+
+// Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1),
+// approximate (very coarsely) the x coordinate of the intersection.
+static inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) {
+ if (l1 > r1) { SkTSwap(l1, r1); }
+ if (l2 > r2) { SkTSwap(l2, r2); }
+ return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1;
+}
+
+// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0]
+static inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r,
+ SkFixed dY, SkAlpha fullAlpha) {
+ SkASSERT(l <= r);
+ SkASSERT(l >> 16 == 0);
+ int R = SkFixedCeilToInt(r);
+ if (R == 0) {
+ return;
+ } else if (R == 1) {
+ alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, fullAlpha);
+ } else {
+ SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle
+ SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle
+ SkFixed firstH = SkFixedMul_lowprec(first, dY); // vertical edge of the left-most triangle
+ alphas[0] = SkFixedMul_lowprec(first, firstH) >> 9; // triangle alpha
+ SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle
+ for (int i = 1; i < R - 1; i++) {
+ alphas[i] = alpha16 >> 8;
+ alpha16 += dY;
+ }
+ alphas[R - 1] = fullAlpha - partialTriangleToAlpha(last, dY);
+ }
+}
+
+// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0]
+static inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed dY, SkAlpha fullAlpha) {
+ SkASSERT(l <= r);
+ SkASSERT(l >> 16 == 0);
+ int R = SkFixedCeilToInt(r);
+ if (R == 0) {
+ return;
+ } else if (R == 1) {
+ alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), fullAlpha);
+ } else {
+ SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle
+ SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle
+ SkFixed lastH = SkFixedMul_lowprec(last, dY); // vertical edge of the right-most triangle
+ alphas[R-1] = SkFixedMul_lowprec(last, lastH) >> 9; // triangle alpha
+ SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle
+ for (int i = R - 2; i > 0; i--) {
+ alphas[i] = alpha16 >> 8;
+ alpha16 += dY;
+ }
+ alphas[0] = fullAlpha - partialTriangleToAlpha(first, dY);
+ }
+}
+
+// Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha
+static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x,
+ SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow,
+ bool isUsingMask) {
+ if (isUsingMask) {
+ if (fullAlpha == 0xFF) {
+ maskRow[x] = alpha;
+ } else {
+ addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha));
+ }
+ } else {
+ if (fullAlpha == 0xFF) {
+ blitter->getRealBlitter()->blitV(x, y, 1, alpha);
+ } else {
+ blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha));
+ }
+ }
+}
+
+static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x,
+ SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha* maskRow,
+ bool isUsingMask) {
+ if (isUsingMask) {
+ addAlpha(maskRow[x], a1);
+ addAlpha(maskRow[x + 1], a2);
+ } else {
+ if (fullAlpha == 0xFF) {
+ blitter->getRealBlitter()->blitV(x, y, 1, a1);
+ blitter->getRealBlitter()->blitV(x + 1, y, 1, a2);
+ } else {
+ blitter->blitAntiH(x, y, a1);
+ blitter->blitAntiH(x + 1, y, a2);
+ }
+ }
+}
+
+// It's important that this is inline. Otherwise it'll be much slower.
+static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, int x, int len,
+ SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMask) {
+ if (isUsingMask) {
+ for (int i=0; i<len; i++) {
+ addAlpha(maskRow[x + i], fullAlpha);
+ }
+ } else {
+ if (fullAlpha == 0xFF) {
+ blitter->getRealBlitter()->blitH(x, y, len);
+ } else {
+ blitter->blitAntiH(x, y, len, fullAlpha);
+ }
+ }
+}
+
+static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
+ SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
+ SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, SkAlpha* maskRow,
+ bool isUsingMask) {
+ int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr);
+ int len = R - L;
+
+ if (len == 1) {
+ SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll);
+ blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask);
+ return;
+ }
+
+ // SkDebugf("y = %d, len = %d, ul = %f, ur = %f, ll = %f, lr = %f\n", y, len,
+ // SkFixedToFloat(ul), SkFixedToFloat(ur), SkFixedToFloat(ll), SkFixedToFloat(lr));
+
+ const int kQuickLen = 31;
+ // This is faster than SkAutoSMalloc<1024>
+ char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)];
+ SkAlpha* alphas;
+
+ if (len <= kQuickLen) {
+ alphas = (SkAlpha*)quickMemory;
+ } else {
+ alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))];
+ }
+
+ SkAlpha* tempAlphas = alphas + len + 1;
+ int16_t* runs = (int16_t*)(alphas + (len + 1) * 2);
+
+ for (int i = 0; i < len; i++) {
+ runs[i] = 1;
+ alphas[i] = fullAlpha;
+ }
+ runs[len] = 0;
+
+ int uL = SkFixedFloorToInt(ul);
+ int lL = SkFixedCeilToInt(ll);
+ if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case
+ SkFixed first = (uL << 16) + SK_Fixed1 - ul;
+ SkFixed second = ll - ul - first;
+ SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, lDY);
+ SkAlpha a2 = partialTriangleToAlpha(second, lDY);
+ alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0;
+ alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0;
+ } else {
+ computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL << 16),
+ lDY, fullAlpha);
+ for (int i = uL; i < lL; i++) {
+ if (alphas[i - L] > tempAlphas[i - L]) {
+ alphas[i - L] -= tempAlphas[i - L];
+ } else {
+ alphas[i - L] = 0;
+ }
+ }
+ }
+
+ int uR = SkFixedFloorToInt(ur);
+ int lR = SkFixedCeilToInt(lr);
+ if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case
+ SkFixed first = (uR << 16) + SK_Fixed1 - ur;
+ SkFixed second = lr - ur - first;
+ SkAlpha a1 = partialTriangleToAlpha(first, rDY);
+ SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, rDY);
+ alphas[len-2] = alphas[len-2] > a1 ? alphas[len-2] - a1 : 0;
+ alphas[len-1] = alphas[len-1] > a2 ? alphas[len-1] - a2 : 0;
+ } else {
+ computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR << 16),
+ rDY, fullAlpha);
+ for (int i = uR; i < lR; i++) {
+ if (alphas[i - L] > tempAlphas[i - L]) {
+ alphas[i - L] -= tempAlphas[i - L];
+ } else {
+ alphas[i - L] = 0;
+ }
+ }
+ }
+
+ if (isUsingMask) {
+ for (int i=0; i<len; i++) {
+ addAlpha(maskRow[L + i], alphas[i]);
+ }
+ } else {
+ if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditiveBlitter
+ blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs);
+ } else {
+ blitter->blitAntiH(L, y, alphas, len);
+ }
+ }
+
+ if (len > kQuickLen) {
+ delete [] alphas;
+ }
+}
+
+static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y,
+ SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
+ SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha,
+ SkAlpha* maskRow, bool isUsingMask) {
+ SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value
+
+ if (ul > ur) {
+#ifdef SK_DEBUG
+ SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur));
+#endif
+ return;
+ }
+
+ // Edge crosses. Approximate it. This should only happend due to precision limit,
+ // so the approximation could be very coarse.
+ if (ll > lr) {
+#ifdef SK_DEBUG
+ SkDebugf("approximate intersection: %d %f %f\n", y,
+ SkFixedToFloat(ll), SkFixedToFloat(lr));
+#endif
+ ll = lr = approximateIntersection(ul, ll, ur, lr);
+ }
+
+ if (ul == ur && ll == lr) {
+ return; // empty trapzoid
+ }
+
+ // We're going to use the left line ul-ll and the rite line ur-lr
+ // to exclude the area that's not covered by the path.
+ // Swapping (ul, ll) or (ur, lr) won't affect that exclusion
+ // so we'll do that for simplicity.
+ if (ul > ll) { SkTSwap(ul, ll); }
+ if (ur > lr) { SkTSwap(ur, lr); }
+
+ SkFixed joinLeft = SkFixedCeilToFixed(ll);
+ SkFixed joinRite = SkFixedFloorToFixed(ur);
+ if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit
+ if (joinLeft < joinRite) {
+ blit_full_alpha(blitter, y, joinLeft >> 16, (joinRite - joinLeft) >> 16, fullAlpha,
+ maskRow, isUsingMask);
+ }
+ if (ul < joinLeft) {
+ int len = SkFixedCeilToInt(joinLeft - ul);
+ if (len == 1) {
+ SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll);
+ blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRow, isUsingMask);
+ } else if (len == 2) {
+ SkFixed first = joinLeft - SK_Fixed1 - ul;
+ SkFixed second = ll - ul - first;
+ SkAlpha a1 = partialTriangleToAlpha(first, lDY);
+ SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY);
+ blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow, isUsingMask);
+ } else {
+ blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, lDY, SK_MaxS32,
+ fullAlpha, maskRow, isUsingMask);
+ }
+ }
+ if (lr > joinRite) {
+ int len = SkFixedCeilToInt(lr - joinRite);
+ if (len == 1) {
+ SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite);
+ blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha, maskRow,
+ isUsingMask);
+ } else if (len == 2) {
+ SkFixed first = joinRite + SK_Fixed1 - ur;
+ SkFixed second = lr - ur - first;
+ SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY);
+ SkAlpha a2 = partialTriangleToAlpha(second, rDY);
+ blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, maskRow,
+ isUsingMask);
+ } else {
+ blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, SK_MaxS32, rDY,
+ fullAlpha, maskRow, isUsingMask);
+ }
+ }
+ } else {
+ blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha, maskRow,
+ isUsingMask);
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) {
+ int valuea = a.fUpperY;
+ int valueb = b.fUpperY;
+
+ if (valuea == valueb) {
+ valuea = a.fX;
+ valueb = b.fX;
+ }
+
+ if (valuea == valueb) {
+ valuea = a.fDX;
+ valueb = b.fDX;
+ }
+
+ return valuea < valueb;
+}
+
+static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) {
+ SkTQSort(list, list + count - 1);
+
+ // now make the edges linked in sorted order
+ for (int i = 1; i < count; i++) {
+ list[i - 1]->fNext = list[i];
+ list[i]->fPrev = list[i - 1];
+ }
+
+ *last = list[count - 1];
+ return list[0];
+}
+
+#ifdef SK_DEBUG
+ static void validate_sort(const SkAnalyticEdge* edge) {
+ SkFixed y = SkIntToFixed(-32768);
+
+ while (edge->fUpperY != SK_MaxS32) {
+ edge->validate();
+ SkASSERT(y <= edge->fUpperY);
+
+ y = edge->fUpperY;
+ edge = (SkAnalyticEdge*)edge->fNext;
+ }
+ }
+#else
+ #define validate_sort(edge)
+#endif
+
+// return true if we're done with this edge
+static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) {
+ if (last_y >= edge->fLowerY) {
+ if (edge->fCurveCount < 0) {
+ if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) {
+ return false;
+ }
+ } else if (edge->fCurveCount > 0) {
+ if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic()) {
+ return false;
+ }
+ }
+ return true;
+ }
+ SkASSERT(false);
+ return false;
+}
+
+// For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough
+// For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are
+// relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy
+static inline bool isSmoothEnough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) {
+ if (thisEdge->fCurveCount < 0) {
+ const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge;
+ int ddshift = cEdge.fCurveShift;
+ return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift &&
+ SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift &&
+ // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift
+ (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1;
+ } else if (thisEdge->fCurveCount > 0) {
+ const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge;
+ return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) &&
+ SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) &&
+ // current Dy is (fQDy - fQDDy) >> shift
+ (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift
+ >= SK_Fixed1;
+ }
+ return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small
+ nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large
+}
+
+// Check if the leftE and riteE are changing smoothly in terms of fDX.
+// If yes, we can later skip the fractional y and directly jump to integer y.
+static inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE,
+ SkAnalyticEdge* currE, int stop_y) {
+ if (currE->fUpperY >= stop_y << 16) {
+ return false; // We're at the end so we won't skip anything
+ }
+ if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) {
+ return isSmoothEnough(leftE, currE, stop_y); // Only leftE is changing
+ } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) {
+ return isSmoothEnough(riteE, currE, stop_y); // Only riteE is changing
+ }
+
+ // Now both edges are changing, find the second next edge
+ SkAnalyticEdge* nextCurrE = currE->fNext;
+ if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end
+ return false;
+ }
+ if (*nextCurrE < *currE) {
+ SkTSwap(currE, nextCurrE);
+ }
+ return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCurrE, stop_y);
+}
+
+static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* blitter,
+ int start_y, int stop_y, SkFixed leftBound, SkFixed riteBound,
+ bool isUsingMask) {
+ validate_sort((SkAnalyticEdge*)prevHead->fNext);
+
+ SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext;
+ SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext;
+ SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext;
+
+ SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY);
+
+ #ifdef SK_DEBUG
+ int frac_y_cnt = 0;
+ int total_y_cnt = 0;
+ #endif
+
+ for (;;) {
+ // We have to check fLowerY first because some edges might be alone (e.g., there's only
+ // a left edge but no right edge in a given y scan line) due to precision limit.
+ while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges
+ if (update_edge(leftE, y)) {
+ if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) {
+ goto END_WALK;
+ }
+ leftE = currE;
+ currE = (SkAnalyticEdge*)currE->fNext;
+ }
+ }
+ while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges
+ if (update_edge(riteE, y)) {
+ if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) {
+ goto END_WALK;
+ }
+ riteE = currE;
+ currE = (SkAnalyticEdge*)currE->fNext;
+ }
+ }
+
+ SkASSERT(leftE);
+ SkASSERT(riteE);
+
+ // check our bottom clip
+ if (SkFixedFloorToInt(y) >= stop_y) {
+ break;
+ }
+
+ SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y);
+ SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y);
+
+ leftE->goY(y);
+ riteE->goY(y);
+
+ if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX &&
+ leftE->fDX > riteE->fDX)) {
+ SkTSwap(leftE, riteE);
+ }
+
+ SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY);
+ // Skip the fractional y if edges are changing smoothly
+ if (isSmoothEnough(leftE, riteE, currE, stop_y)) {
+ local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed);
+ }
+ local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1));
+
+ SkFixed left = leftE->fX;
+ SkFixed dLeft = leftE->fDX;
+ SkFixed rite = riteE->fX;
+ SkFixed dRite = riteE->fDX;
+ if (0 == (dLeft | dRite)) {
+ int fullLeft = SkFixedCeilToInt(left);
+ int fullRite = SkFixedFloorToInt(rite);
+ SkFixed partialLeft = SkIntToFixed(fullLeft) - left;
+ SkFixed partialRite = rite - SkIntToFixed(fullRite);
+ int fullTop = SkFixedCeilToInt(y);
+ int fullBot = SkFixedFloorToInt(local_bot_fixed);
+ SkFixed partialTop = SkIntToFixed(fullTop) - y;
+ SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot);
+ if (fullTop > fullBot) { // The rectangle is within one pixel height...
+ partialTop -= (SK_Fixed1 - partialBot);
+ partialBot = 0;
+ }
+
+ if (fullRite >= fullLeft) {
+ // Blit all full-height rows from fullTop to fullBot
+ if (fullBot > fullTop) {
+ blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTop,
+ fullRite - fullLeft, fullBot - fullTop,
+ f2a(partialLeft), f2a(partialRite));
+ }
+
+ if (partialTop > 0) { // blit first partial row
+ if (partialLeft > 0) {
+ blitter->blitAntiH(fullLeft - 1, fullTop - 1,
+ f2a(SkFixedMul_lowprec(partialTop, partialLeft)));
+ }
+ if (partialRite > 0) {
+ blitter->blitAntiH(fullRite, fullTop - 1,
+ f2a(SkFixedMul_lowprec(partialTop, partialRite)));
+ }
+ blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLeft,
+ f2a(partialTop));
+ }
+
+ if (partialBot > 0) { // blit last partial row
+ if (partialLeft > 0) {
+ blitter->blitAntiH(fullLeft - 1, fullBot,
+ f2a(SkFixedMul_lowprec(partialBot, partialLeft)));
+ }
+ if (partialRite > 0) {
+ blitter->blitAntiH(fullRite, fullBot,
+ f2a(SkFixedMul_lowprec(partialBot, partialRite)));
+ }
+ blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, f2a(partialBot));
+ }
+ } else { // left and rite are within the same pixel
+ if (partialTop > 0) {
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1, 1,
+ f2a(SkFixedMul_lowprec(partialTop, rite - left)));
+ }
+ if (partialBot > 0) {
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1,
+ f2a(SkFixedMul_lowprec(partialBot, rite - left)));
+ }
+ if (fullBot >= fullTop) {
+ blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, fullBot - fullTop,
+ f2a(rite - left));
+ }
+ }
+
+ y = local_bot_fixed;
+ } else {
+ // The following constant are used to snap X
+ // We snap X mainly for speedup (no tiny triangle) and
+ // avoiding edge cases caused by precision errors
+ const SkFixed kSnapDigit = SK_Fixed1 >> 4;
+ const SkFixed kSnapHalf = kSnapDigit >> 1;
+ const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1));
+ left += kSnapHalf; rite += kSnapHalf; // For fast rounding
+
+ // Number of blit_trapezoid_row calls we'll have
+ int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y);
+ #ifdef SK_DEBUG
+ total_y_cnt += count;
+ frac_y_cnt += ((int)(y & 0xFFFF0000) != y);
+ if ((int)(y & 0xFFFF0000) != y) {
+ SkDebugf("frac_y = %f\n", SkFixedToFloat(y));
+ }
+ #endif
+
+ // If we're using mask blitter, we advance the mask row in this function
+ // to save some "if" condition checks.
+ SkAlpha* maskRow = nullptr;
+ if (isUsingMask) {
+ maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
+ }
+
+ // Instead of writing one loop that handles both partial-row blit_trapezoid_row
+ // and full-row trapezoid_row together, we use the following 3-stage flow to
+ // handle partial-row blit and full-row blit separately. It will save us much time
+ // on changing y, left, and rite.
+ if (count > 1) {
+ if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top
+ count--;
+ SkFixed nextY = SkFixedCeilToFixed(y + 1);
+ SkFixed dY = nextY - y;
+ SkFixed nextLeft = left + SkFixedMul_lowprec(dLeft, dY);
+ SkFixed nextRite = rite + SkFixedMul_lowprec(dRite, dY);
+ blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
+ nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY,
+ getPartialAlpha(0xFF, dY), maskRow, isUsingMask);
+ left = nextLeft; rite = nextRite; y = nextY;
+ }
+
+ while (count > 1) { // Full rows in the middle
+ count--;
+ if (isUsingMask) {
+ maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
+ }
+ SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite;
+ blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
+ nextLeft & kSnapMask, nextRite & kSnapMask,
+ leftE->fDY, riteE->fDY, 0xFF, maskRow, isUsingMask);
+ left = nextLeft; rite = nextRite; y = nextY;
+ }
+ }
+
+ if (isUsingMask) {
+ maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
+ }
+
+ SkFixed dY = local_bot_fixed - y; // partial-row on the bottom
+ SkASSERT(dY <= SK_Fixed1);
+ // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound.
+ // Take them back into the bound here.
+ SkFixed nextLeft = SkTMax(left + SkFixedMul_lowprec(dLeft, dY), leftBound);
+ SkFixed nextRite = SkTMin(rite + SkFixedMul_lowprec(dRite, dY), riteBound);
+ blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
+ nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY,
+ getPartialAlpha(0xFF, dY), maskRow, isUsingMask);
+ left = nextLeft; rite = nextRite; y = local_bot_fixed;
+ left -= kSnapHalf; rite -= kSnapHalf;
+ }
+
+ leftE->fX = left;
+ riteE->fX = rite;
+ leftE->fY = riteE->fY = y;
+ }
+
+END_WALK:
+ ;
+ #ifdef SK_DEBUG
+ SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt);
+ #endif
+}
+
+void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, AdditiveBlitter* blitter,
+ int start_y, int stop_y, const SkRegion& clipRgn, bool isUsingMask) {
+ SkASSERT(blitter);
+
+ if (path.isInverseFillType() || !path.isConvex()) {
+ // fall back to supersampling AA
+ SkScan::AntiFillPath(path, clipRgn, blitter->getRealBlitter(true), false);
+ return;
+ }
+
+ SkEdgeBuilder builder;
+
+ // If we're convex, then we need both edges, even the right edge is past the clip
+ const bool canCullToTheRight = !path.isConvex();
+
+ SkASSERT(GlobalAAConfig::getInstance().fUseAnalyticAA);
+ int count = builder.build(path, clipRect, 0, canCullToTheRight, true);
+ SkASSERT(count >= 0);
+
+ SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList();
+
+ SkIRect rect = clipRgn.getBounds();
+ if (0 == count) {
+ if (path.isInverseFillType()) {
+ /*
+ * Since we are in inverse-fill, our caller has already drawn above
+ * our top (start_y) and will draw below our bottom (stop_y). Thus
+ * we need to restrict our drawing to the intersection of the clip
+ * and those two limits.
+ */
+ if (rect.fTop < start_y) {
+ rect.fTop = start_y;
+ }
+ if (rect.fBottom > stop_y) {
+ rect.fBottom = stop_y;
+ }
+ if (!rect.isEmpty()) {
+ blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.height());
+ }
+ }
+ return;
+ }
+
+ SkAnalyticEdge headEdge, tailEdge, *last;
+ // this returns the first and last edge after they're sorted into a dlink list
+ SkAnalyticEdge* edge = sort_edges(list, count, &last);
+
+ headEdge.fPrev = nullptr;
+ headEdge.fNext = edge;
+ headEdge.fUpperY = headEdge.fLowerY = SK_MinS32;
+ headEdge.fX = SK_MinS32;
+ headEdge.fDX = 0;
+ headEdge.fDY = SK_MaxS32;
+ headEdge.fUpperX = SK_MinS32;
+ edge->fPrev = &headEdge;
+
+ tailEdge.fPrev = last;
+ tailEdge.fNext = nullptr;
+ tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32;
+ headEdge.fX = SK_MaxS32;
+ headEdge.fDX = 0;
+ headEdge.fDY = SK_MaxS32;
+ headEdge.fUpperX = SK_MaxS32;
+ last->fNext = &tailEdge;
+
+ // now edge is the head of the sorted linklist
+
+ if (clipRect && start_y < clipRect->fTop) {
+ start_y = clipRect->fTop;
+ }
+ if (clipRect && stop_y > clipRect->fBottom) {
+ stop_y = clipRect->fBottom;
+ }
+
+ if (!path.isInverseFillType() && path.isConvex()) {
+ SkASSERT(count >= 2); // convex walker does not handle missing right edges
+ aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y,
+ rect.fLeft << 16, rect.fRight << 16, isUsingMask);
+ } else {
+ SkFAIL("Concave AAA is not yet implemented!");
+ }
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter) {
+ if (origClip.isEmpty()) {
+ return;
+ }
+
+ const bool isInverse = path.isInverseFillType();
+ SkIRect ir;
+ path.getBounds().roundOut(&ir);
+ if (ir.isEmpty()) {
+ if (isInverse) {
+ blitter->blitRegion(origClip);
+ }
+ return;
+ }
+
+ SkIRect clippedIR;
+ if (isInverse) {
+ // If the path is an inverse fill, it's going to fill the entire
+ // clip, and we care whether the entire clip exceeds our limits.
+ clippedIR = origClip.getBounds();
+ } else {
+ if (!clippedIR.intersect(ir, origClip.getBounds())) {
+ return;
+ }
+ }
+
+ // Our antialiasing can't handle a clip larger than 32767, so we restrict
+ // the clip to that limit here. (the runs[] uses int16_t for its index).
+ //
+ // A more general solution (one that could also eliminate the need to
+ // disable aa based on ir bounds (see overflows_short_shift) would be
+ // to tile the clip/target...
+ SkRegion tmpClipStorage;
+ const SkRegion* clipRgn = &origClip;
+ {
+ static const int32_t kMaxClipCoord = 32767;
+ const SkIRect& bounds = origClip.getBounds();
+ if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
+ SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
+ tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
+ clipRgn = &tmpClipStorage;
+ }
+ }
+ // for here down, use clipRgn, not origClip
+
+ SkScanClipper clipper(blitter, clipRgn, ir);
+ const SkIRect* clipRect = clipper.getClipRect();
+
+ if (clipper.getBlitter() == nullptr) { // clipped out
+ if (isInverse) {
+ blitter->blitRegion(*clipRgn);
+ }
+ return;
+ }
+
+ // now use the (possibly wrapped) blitter
+ blitter = clipper.getBlitter();
+
+ if (isInverse) {
+ // Currently, we use the old path to render the inverse path,
+ // so we don't need this.
+ // sk_blit_above(blitter, ir, *clipRgn);
+ }
+
+ SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
+
+ if (MaskAdditiveBlitter::canHandleRect(ir) && !isInverse) {
+ MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
+ aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, true);
+ } else {
+ RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
+ aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, false);
+ }
+
+ if (isInverse) {
+ // Currently, we use the old path to render the inverse path,
+ // so we don't need this.
+ // sk_blit_below(blitter, ir, *clipRgn);
+ }
+}
+
+// This almost copies SkScan::AntiFillPath
+void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) {
+ if (clip.isEmpty()) {
+ return;
+ }
+
+ if (clip.isBW()) {
+ AAAFillPath(path, clip.bwRgn(), blitter);
+ } else {
+ SkRegion tmp;
+ SkAAClipBlitter aaBlitter;
+
+ tmp.setRect(clip.getBounds());
+ aaBlitter.init(blitter, &clip.aaRgn());
+ AAAFillPath(path, tmp, &aaBlitter);
+ }
+}
void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip,
SkBlitter* blitter) {
+ if (GlobalAAConfig::getInstance().fUseAnalyticAA) {
+ SkScan::AAAFillPath(path, clip, blitter);
+ return;
+ }
+
if (clip.isEmpty()) {
return;
}