r == x % y == (x % (N * y)) % y
- And with mx/my being mantissa of double floating point number (which uses
+ And with mx/my being mantissa of a double floating point number (which uses
less bits than the storage type), on each step the argument reduction can
be improved by 11 (which is the size of uint64_t minus MANTISSA_WIDTH plus
- the signal bit):
+ the implicit one bit):
mx * 2^ex == 2^11 * mx * 2^(ex - 11)
mx << 11;
ex -= 11;
mx %= my;
- } */
+ }
+
+ Special cases:
+ - If x or y is a NaN, a NaN is returned.
+ - If x is an infinity, or y is zero, a NaN is returned and EDOM is set.
+ - If x is +0/-0, and y is not zero, +0/-0 is returned. */
double
__fmod (double x, double y)
hx ^= sx;
hy &= ~SIGN_MASK;
- /* Special cases:
- - If x or y is a Nan, NaN is returned.
- - If x is an inifinity, a NaN is returned and EDOM is set.
- - If y is zero, Nan is returned.
- - If x is +0/-0, and y is not zero, +0/-0 is returned. */
- if (__glibc_unlikely (hy == 0
- || hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
- {
- if (is_nan (hx) || is_nan (hy))
- return (x * y) / (x * y);
- return __math_edom ((x * y) / (x * y));
- }
-
- if (__glibc_unlikely (hx <= hy))
+ /* If x < y, return x (unless y is a NaN). */
+ if (__glibc_likely (hx < hy))
{
- if (hx < hy)
- return x;
- return asdouble (sx);
+ /* If y is a NaN, return a NaN. */
+ if (__glibc_unlikely (hy > EXPONENT_MASK))
+ return x * y;
+ return x;
}
int ex = hx >> MANTISSA_WIDTH;
int ey = hy >> MANTISSA_WIDTH;
+ int exp_diff = ex - ey;
+
+ /* Common case where exponents are close: |x/y| < 2^12, x not inf/NaN
+ and |x%y| not denormal. */
+ if (__glibc_likely (ey < (EXPONENT_MASK >> MANTISSA_WIDTH) - EXPONENT_WIDTH
+ && ey > MANTISSA_WIDTH
+ && exp_diff <= EXPONENT_WIDTH))
+ {
+ uint64_t mx = (hx << EXPONENT_WIDTH) | SIGN_MASK;
+ uint64_t my = (hy << EXPONENT_WIDTH) | SIGN_MASK;
+
+ mx %= (my >> exp_diff);
+
+ if (__glibc_unlikely (mx == 0))
+ return asdouble (sx);
+ int shift = clz_uint64 (mx);
+ ex -= shift + 1;
+ mx <<= shift;
+ mx = sx | (mx >> EXPONENT_WIDTH);
+ return asdouble (mx + ((uint64_t)ex << MANTISSA_WIDTH));
+ }
- /* Common case where exponents are close: ey >= -907 and |x/y| < 2^52, */
- if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
+ if (__glibc_unlikely (hy == 0 || hx >= EXPONENT_MASK))
{
- uint64_t mx = (hx & MANTISSA_MASK) | (MANTISSA_MASK + 1);
- uint64_t my = (hy & MANTISSA_MASK) | (MANTISSA_MASK + 1);
+ /* If x is a NaN, return a NaN. */
+ if (hx > EXPONENT_MASK)
+ return x * y;
- uint64_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
- return make_double (d, ey - 1, sx);
+ /* If x is an infinity or y is zero, return a NaN and set EDOM. */
+ return __math_edom ((x * y) / (x * y));
}
- /* Special case, both x and y are subnormal. */
- if (__glibc_unlikely (ex == 0 && ey == 0))
+ /* Special case, both x and y are denormal. */
+ if (__glibc_unlikely (ex == 0))
return asdouble (sx | hx % hy);
- /* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'. Assume that hx is
- not subnormal by conditions above. */
+ /* Extract normalized mantissas - hx is not denormal and hy != 0. */
uint64_t mx = get_mantissa (hx) | (MANTISSA_MASK + 1);
- ex--;
uint64_t my = get_mantissa (hy) | (MANTISSA_MASK + 1);
-
int lead_zeros_my = EXPONENT_WIDTH;
- if (__glibc_likely (ey > 0))
- ey--;
- else
+
+ ey--;
+ /* Special case for denormal y. */
+ if (__glibc_unlikely (ey < 0))
{
my = hy;
+ ey = 0;
+ exp_diff--;
lead_zeros_my = clz_uint64 (my);
}
- /* Assume hy != 0 */
int tail_zeros_my = ctz_uint64 (my);
int sides_zeroes = lead_zeros_my + tail_zeros_my;
- int exp_diff = ex - ey;
int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
my >>= right_shift;
if (exp_diff == 0)
return make_double (mx, ey, sx);
- /* Assume modulo/divide operation is slow, so use multiplication with invert
- values. */
+ /* Multiplication with the inverse is faster than repeated modulo. */
uint64_t inv_hy = UINT64_MAX / my;
while (exp_diff > sides_zeroes) {
exp_diff -= sides_zeroes;
r == x % y == (x % (N * y)) % y
- And with mx/my being mantissa of double floating point number (which uses
+ And with mx/my being mantissa of a single floating point number (which uses
less bits than the storage type), on each step the argument reduction can
be improved by 8 (which is the size of uint32_t minus MANTISSA_WIDTH plus
- the signal bit):
+ the implicit one bit):
mx * 2^ex == 2^8 * mx * 2^(ex - 8)
mx << 8;
ex -= 8;
mx %= my;
- } */
+ }
+
+ Special cases:
+ - If x or y is a NaN, a NaN is returned.
+ - If x is an infinity, or y is zero, a NaN is returned and EDOM is set.
+ - If x is +0/-0, and y is not zero, +0/-0 is returned. */
float
__fmodf (float x, float y)
hx ^= sx;
hy &= ~SIGN_MASK;
- /* Special cases:
- - If x or y is a Nan, NaN is returned.
- - If x is an inifinity, a NaN is returned.
- - If y is zero, Nan is returned.
- - If x is +0/-0, and y is not zero, +0/-0 is returned. */
- if (__glibc_unlikely (hy == 0
- || hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
- {
- if (is_nan (hx) || is_nan (hy))
- return (x * y) / (x * y);
- return __math_edomf ((x * y) / (x * y));
- }
-
- if (__glibc_unlikely (hx <= hy))
+ if (__glibc_likely (hx < hy))
{
- if (hx < hy)
- return x;
- return asfloat (sx);
+ /* If y is a NaN, return a NaN. */
+ if (__glibc_unlikely (hy > EXPONENT_MASK))
+ return x * y;
+ return x;
}
int ex = hx >> MANTISSA_WIDTH;
int ey = hy >> MANTISSA_WIDTH;
+ int exp_diff = ex - ey;
+
+ /* Common case where exponents are close: |x/y| < 2^9, x not inf/NaN
+ and |x%y| not denormal. */
+ if (__glibc_likely (ey < (EXPONENT_MASK >> MANTISSA_WIDTH) - EXPONENT_WIDTH
+ && ey > MANTISSA_WIDTH
+ && exp_diff <= EXPONENT_WIDTH))
+ {
+ uint32_t mx = (hx << EXPONENT_WIDTH) | SIGN_MASK;
+ uint32_t my = (hy << EXPONENT_WIDTH) | SIGN_MASK;
+
+ mx %= (my >> exp_diff);
+
+ if (__glibc_unlikely (mx == 0))
+ return asfloat (sx);
+ int shift = __builtin_clz (mx);
+ ex -= shift + 1;
+ mx <<= shift;
+ mx = sx | (mx >> EXPONENT_WIDTH);
+ return asfloat (mx + ((uint32_t)ex << MANTISSA_WIDTH));
+ }
- /* Common case where exponents are close: ey >= -103 and |x/y| < 2^8, */
- if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
+ if (__glibc_unlikely (hy == 0 || hx >= EXPONENT_MASK))
{
- uint64_t mx = (hx & MANTISSA_MASK) | (MANTISSA_MASK + 1);
- uint64_t my = (hy & MANTISSA_MASK) | (MANTISSA_MASK + 1);
+ /* If x is a NaN, return a NaN. */
+ if (hx > EXPONENT_MASK)
+ return x * y;
- uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
- return make_float (d, ey - 1, sx);
+ /* If x is an infinity or y is zero, return a NaN and set EDOM. */
+ return __math_edomf ((x * y) / (x * y));
}
- /* Special case, both x and y are subnormal. */
- if (__glibc_unlikely (ex == 0 && ey == 0))
+ /* Special case, both x and y are denormal. */
+ if (__glibc_unlikely (ex == 0))
return asfloat (sx | hx % hy);
- /* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'. Assume that hx is
- not subnormal by conditions above. */
+ /* Extract normalized mantissas - hx is not denormal and hy != 0. */
uint32_t mx = get_mantissa (hx) | (MANTISSA_MASK + 1);
- ex--;
-
uint32_t my = get_mantissa (hy) | (MANTISSA_MASK + 1);
int lead_zeros_my = EXPONENT_WIDTH;
- if (__glibc_likely (ey > 0))
- ey--;
- else
+
+ ey--;
+ /* Special case for denormal y. */
+ if (__glibc_unlikely (ey < 0))
{
my = hy;
+ ey = 0;
+ exp_diff--;
lead_zeros_my = __builtin_clz (my);
}
int tail_zeros_my = __builtin_ctz (my);
int sides_zeroes = lead_zeros_my + tail_zeros_my;
- int exp_diff = ex - ey;
int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
my >>= right_shift;
if (exp_diff == 0)
return make_float (mx, ey, sx);
- /* Assume modulo/divide operation is slow, so use multiplication with invert
- values. */
+ /* Multiplication with the inverse is faster than repeated modulo. */
uint32_t inv_hy = UINT32_MAX / my;
while (exp_diff > sides_zeroes) {
exp_diff -= sides_zeroes;