[NFC] Refactor identification of reductions as common utility function.
authorKarthik Bhat <kv.bhat@samsung.com>
Mon, 20 Apr 2015 04:38:33 +0000 (04:38 +0000)
committerKarthik Bhat <kv.bhat@samsung.com>
Mon, 20 Apr 2015 04:38:33 +0000 (04:38 +0000)
This patch refactors reduction identification code out of LoopVectorizer and
exposes them as common utilities.
No functional change.
Review: http://reviews.llvm.org/D9046

llvm-svn: 235284

llvm/include/llvm/Transforms/Utils/LoopUtils.h
llvm/lib/Transforms/Utils/CMakeLists.txt
llvm/lib/Transforms/Utils/LoopUtils.cpp [new file with mode: 0644]
llvm/lib/Transforms/Vectorize/LoopVectorize.cpp

index e8f3172..70645c1 100644 (file)
@@ -16,6 +16,7 @@
 
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
 
 namespace llvm {
 class AliasAnalysis;
@@ -42,6 +43,132 @@ struct LICMSafetyInfo {
   {}
 };
 
+/// This POD struct holds information about a potential reduction operation.
+class ReductionInstDesc {
+
+public:
+  // This enum represents the kind of minmax reduction.
+  enum MinMaxReductionKind {
+    MRK_Invalid,
+    MRK_UIntMin,
+    MRK_UIntMax,
+    MRK_SIntMin,
+    MRK_SIntMax,
+    MRK_FloatMin,
+    MRK_FloatMax
+  };
+  ReductionInstDesc(bool IsRedux, Instruction *I)
+      : IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
+
+  ReductionInstDesc(Instruction *I, MinMaxReductionKind K)
+      : IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
+
+  bool isReduction() { return IsReduction; }
+
+  MinMaxReductionKind getMinMaxKind() { return MinMaxKind; }
+
+private:
+  // Is this instruction a reduction candidate.
+  bool IsReduction;
+  // The last instruction in a min/max pattern (select of the select(icmp())
+  // pattern), or the current reduction instruction otherwise.
+  Instruction *PatternLastInst;
+  // If this is a min/max pattern the comparison predicate.
+  MinMaxReductionKind MinMaxKind;
+};
+
+/// This struct holds information about reduction variables.
+class ReductionDescriptor {
+
+public:
+  /// This enum represents the kinds of reductions that we support.
+  enum ReductionKind {
+    RK_NoReduction,   ///< Not a reduction.
+    RK_IntegerAdd,    ///< Sum of integers.
+    RK_IntegerMult,   ///< Product of integers.
+    RK_IntegerOr,     ///< Bitwise or logical OR of numbers.
+    RK_IntegerAnd,    ///< Bitwise or logical AND of numbers.
+    RK_IntegerXor,    ///< Bitwise or logical XOR of numbers.
+    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
+    RK_FloatAdd,      ///< Sum of floats.
+    RK_FloatMult,     ///< Product of floats.
+    RK_FloatMinMax    ///< Min/max implemented in terms of select(cmp()).
+  };
+
+  ReductionDescriptor()
+      : StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoReduction),
+        MinMaxKind(ReductionInstDesc::MRK_Invalid) {}
+
+  ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
+                      ReductionInstDesc::MinMaxReductionKind MK)
+      : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
+
+  /// Returns a struct describing if the instruction 'I' can be a reduction
+  /// variable of type 'Kind'. If the reduction is a min/max pattern of
+  /// select(icmp()) this function advances the instruction pointer 'I' from the
+  /// compare instruction to the select instruction and stores this pointer in
+  /// 'PatternLastInst' member of the returned struct.
+  static ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
+                                            ReductionInstDesc &Prev,
+                                            bool HasFunNoNaNAttr);
+
+  /// Returns true if instuction I has multiple uses in Insts
+  static bool hasMultipleUsesOf(Instruction *I,
+                                SmallPtrSetImpl<Instruction *> &Insts);
+
+  /// Returns true if all uses of the instruction I is within the Set.
+  static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
+
+  /// Returns a struct describing if the instruction if the instruction is a
+  /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
+  /// or max(X, Y).
+  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
+                                                    ReductionInstDesc &Prev);
+
+  /// Returns identity corresponding to the ReductionKind.
+  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
+
+  /// Returns the opcode of binary operation corresponding to the ReductionKind.
+  static unsigned getReductionBinOp(ReductionKind Kind);
+
+  /// Returns a Min/Max operation corresponding to MinMaxReductionKind.
+  static Value *createMinMaxOp(IRBuilder<> &Builder,
+                               ReductionInstDesc::MinMaxReductionKind RK,
+                               Value *Left, Value *Right);
+
+  /// Returns true if Phi is a reduction of type Kind and adds it to the
+  /// ReductionDescriptor.
+  static bool AddReductionVar(PHINode *Phi, ReductionKind Kind, Loop *TheLoop,
+                              bool HasFunNoNaNAttr,
+                              ReductionDescriptor &RedDes);
+
+  /// Returns true if Phi is a reduction in TheLoop. The ReductionDescriptor is
+  /// returned in RedDes.
+  static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
+                             ReductionDescriptor &RedDes);
+
+  ReductionKind getReductionKind() { return Kind; }
+
+  ReductionInstDesc::MinMaxReductionKind getMinMaxReductionKind() {
+    return MinMaxKind;
+  }
+
+  TrackingVH<Value> getReductionStartValue() { return StartValue; }
+
+  Instruction *getLoopExitInstr() { return LoopExitInstr; }
+
+private:
+  // The starting value of the reduction.
+  // It does not have to be zero!
+  TrackingVH<Value> StartValue;
+  // The instruction who's value is used outside the loop.
+  Instruction *LoopExitInstr;
+  // The kind of the reduction.
+  ReductionKind Kind;
+  // If this a min/max reduction the kind of reduction.
+  ReductionInstDesc::MinMaxReductionKind MinMaxKind;
+};
+
 BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
 
 /// \brief Simplify each loop in a loop nest recursively.
index 01e811f..470e2d0 100644 (file)
@@ -21,6 +21,7 @@ add_llvm_library(LLVMTransformUtils
   LoopSimplify.cpp
   LoopUnroll.cpp
   LoopUnrollRuntime.cpp
+  LoopUtils.cpp
   LowerInvoke.cpp
   LowerSwitch.cpp
   Mem2Reg.cpp
diff --git a/llvm/lib/Transforms/Utils/LoopUtils.cpp b/llvm/lib/Transforms/Utils/LoopUtils.cpp
new file mode 100644 (file)
index 0000000..153cdc0
--- /dev/null
@@ -0,0 +1,453 @@
+//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines common loop utility functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "loop-utils"
+
+bool ReductionDescriptor::areAllUsesIn(Instruction *I,
+                                       SmallPtrSetImpl<Instruction *> &Set) {
+  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
+    if (!Set.count(dyn_cast<Instruction>(*Use)))
+      return false;
+  return true;
+}
+
+bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
+                                          Loop *TheLoop, bool HasFunNoNaNAttr,
+                                          ReductionDescriptor &RedDes) {
+  if (Phi->getNumIncomingValues() != 2)
+    return false;
+
+  // Reduction variables are only found in the loop header block.
+  if (Phi->getParent() != TheLoop->getHeader())
+    return false;
+
+  // Obtain the reduction start value from the value that comes from the loop
+  // preheader.
+  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
+
+  // ExitInstruction is the single value which is used outside the loop.
+  // We only allow for a single reduction value to be used outside the loop.
+  // This includes users of the reduction, variables (which form a cycle
+  // which ends in the phi node).
+  Instruction *ExitInstruction = nullptr;
+  // Indicates that we found a reduction operation in our scan.
+  bool FoundReduxOp = false;
+
+  // We start with the PHI node and scan for all of the users of this
+  // instruction. All users must be instructions that can be used as reduction
+  // variables (such as ADD). We must have a single out-of-block user. The cycle
+  // must include the original PHI.
+  bool FoundStartPHI = false;
+
+  // To recognize min/max patterns formed by a icmp select sequence, we store
+  // the number of instruction we saw from the recognized min/max pattern,
+  //  to make sure we only see exactly the two instructions.
+  unsigned NumCmpSelectPatternInst = 0;
+  ReductionInstDesc ReduxDesc(false, nullptr);
+
+  SmallPtrSet<Instruction *, 8> VisitedInsts;
+  SmallVector<Instruction *, 8> Worklist;
+  Worklist.push_back(Phi);
+  VisitedInsts.insert(Phi);
+
+  // A value in the reduction can be used:
+  //  - By the reduction:
+  //      - Reduction operation:
+  //        - One use of reduction value (safe).
+  //        - Multiple use of reduction value (not safe).
+  //      - PHI:
+  //        - All uses of the PHI must be the reduction (safe).
+  //        - Otherwise, not safe.
+  //  - By one instruction outside of the loop (safe).
+  //  - By further instructions outside of the loop (not safe).
+  //  - By an instruction that is not part of the reduction (not safe).
+  //    This is either:
+  //      * An instruction type other than PHI or the reduction operation.
+  //      * A PHI in the header other than the initial PHI.
+  while (!Worklist.empty()) {
+    Instruction *Cur = Worklist.back();
+    Worklist.pop_back();
+
+    // No Users.
+    // If the instruction has no users then this is a broken chain and can't be
+    // a reduction variable.
+    if (Cur->use_empty())
+      return false;
+
+    bool IsAPhi = isa<PHINode>(Cur);
+
+    // A header PHI use other than the original PHI.
+    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
+      return false;
+
+    // Reductions of instructions such as Div, and Sub is only possible if the
+    // LHS is the reduction variable.
+    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
+        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
+        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
+      return false;
+
+    // Any reduction instruction must be of one of the allowed kinds.
+    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
+    if (!ReduxDesc.isReduction())
+      return false;
+
+    // A reduction operation must only have one use of the reduction value.
+    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
+        hasMultipleUsesOf(Cur, VisitedInsts))
+      return false;
+
+    // All inputs to a PHI node must be a reduction value.
+    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
+      return false;
+
+    if (Kind == RK_IntegerMinMax &&
+        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
+      ++NumCmpSelectPatternInst;
+    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
+      ++NumCmpSelectPatternInst;
+
+    // Check  whether we found a reduction operator.
+    FoundReduxOp |= !IsAPhi;
+
+    // Process users of current instruction. Push non-PHI nodes after PHI nodes
+    // onto the stack. This way we are going to have seen all inputs to PHI
+    // nodes once we get to them.
+    SmallVector<Instruction *, 8> NonPHIs;
+    SmallVector<Instruction *, 8> PHIs;
+    for (User *U : Cur->users()) {
+      Instruction *UI = cast<Instruction>(U);
+
+      // Check if we found the exit user.
+      BasicBlock *Parent = UI->getParent();
+      if (!TheLoop->contains(Parent)) {
+        // Exit if you find multiple outside users or if the header phi node is
+        // being used. In this case the user uses the value of the previous
+        // iteration, in which case we would loose "VF-1" iterations of the
+        // reduction operation if we vectorize.
+        if (ExitInstruction != nullptr || Cur == Phi)
+          return false;
+
+        // The instruction used by an outside user must be the last instruction
+        // before we feed back to the reduction phi. Otherwise, we loose VF-1
+        // operations on the value.
+        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
+          return false;
+
+        ExitInstruction = Cur;
+        continue;
+      }
+
+      // Process instructions only once (termination). Each reduction cycle
+      // value must only be used once, except by phi nodes and min/max
+      // reductions which are represented as a cmp followed by a select.
+      ReductionInstDesc IgnoredVal(false, nullptr);
+      if (VisitedInsts.insert(UI).second) {
+        if (isa<PHINode>(UI))
+          PHIs.push_back(UI);
+        else
+          NonPHIs.push_back(UI);
+      } else if (!isa<PHINode>(UI) &&
+                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
+                   !isa<SelectInst>(UI)) ||
+                  !isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction()))
+        return false;
+
+      // Remember that we completed the cycle.
+      if (UI == Phi)
+        FoundStartPHI = true;
+    }
+    Worklist.append(PHIs.begin(), PHIs.end());
+    Worklist.append(NonPHIs.begin(), NonPHIs.end());
+  }
+
+  // This means we have seen one but not the other instruction of the
+  // pattern or more than just a select and cmp.
+  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
+      NumCmpSelectPatternInst != 2)
+    return false;
+
+  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
+    return false;
+
+  // We found a reduction var if we have reached the original phi node and we
+  // only have a single instruction with out-of-loop users.
+
+  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
+  // is saved as part of the ReductionDescriptor.
+
+  // Save the description of this reduction variable.
+  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
+                         ReduxDesc.getMinMaxKind());
+
+  RedDes = RD;
+
+  return true;
+}
+
+/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
+/// pattern corresponding to a min(X, Y) or max(X, Y).
+ReductionInstDesc
+ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
+                                              ReductionInstDesc &Prev) {
+
+  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
+         "Expect a select instruction");
+  Instruction *Cmp = nullptr;
+  SelectInst *Select = nullptr;
+
+  // We must handle the select(cmp()) as a single instruction. Advance to the
+  // select.
+  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
+    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
+      return ReductionInstDesc(false, I);
+    return ReductionInstDesc(Select, Prev.getMinMaxKind());
+  }
+
+  // Only handle single use cases for now.
+  if (!(Select = dyn_cast<SelectInst>(I)))
+    return ReductionInstDesc(false, I);
+  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
+      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
+    return ReductionInstDesc(false, I);
+  if (!Cmp->hasOneUse())
+    return ReductionInstDesc(false, I);
+
+  Value *CmpLeft;
+  Value *CmpRight;
+
+  // Look for a min/max pattern.
+  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+    return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin);
+  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+    return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax);
+  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+    return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax);
+  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+    return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin);
+  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+    return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
+  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+    return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
+  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+    return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
+  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+    return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
+
+  return ReductionInstDesc(false, I);
+}
+
+ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I,
+                                                        ReductionKind Kind,
+                                                        ReductionInstDesc &Prev,
+                                                        bool HasFunNoNaNAttr) {
+  bool FP = I->getType()->isFloatingPointTy();
+  bool FastMath = FP && I->hasUnsafeAlgebra();
+  switch (I->getOpcode()) {
+  default:
+    return ReductionInstDesc(false, I);
+  case Instruction::PHI:
+    if (FP &&
+        (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
+      return ReductionInstDesc(false, I);
+    return ReductionInstDesc(I, Prev.getMinMaxKind());
+  case Instruction::Sub:
+  case Instruction::Add:
+    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
+  case Instruction::Mul:
+    return ReductionInstDesc(Kind == RK_IntegerMult, I);
+  case Instruction::And:
+    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
+  case Instruction::Or:
+    return ReductionInstDesc(Kind == RK_IntegerOr, I);
+  case Instruction::Xor:
+    return ReductionInstDesc(Kind == RK_IntegerXor, I);
+  case Instruction::FMul:
+    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
+  case Instruction::FSub:
+  case Instruction::FAdd:
+    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
+  case Instruction::FCmp:
+  case Instruction::ICmp:
+  case Instruction::Select:
+    if (Kind != RK_IntegerMinMax &&
+        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
+      return ReductionInstDesc(false, I);
+    return isMinMaxSelectCmpPattern(I, Prev);
+  }
+}
+
+bool ReductionDescriptor::hasMultipleUsesOf(
+    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
+  unsigned NumUses = 0;
+  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
+       ++Use) {
+    if (Insts.count(dyn_cast<Instruction>(*Use)))
+      ++NumUses;
+    if (NumUses > 1)
+      return true;
+  }
+
+  return false;
+}
+bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
+                                         ReductionDescriptor &RedDes) {
+
+  bool HasFunNoNaNAttr = false;
+  BasicBlock *Header = TheLoop->getHeader();
+  Function &F = *Header->getParent();
+  if (F.hasFnAttribute("no-nans-fp-math"))
+    HasFunNoNaNAttr =
+        F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+
+  if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+    DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+    DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
+    DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+    DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
+    DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
+                      RedDes)) {
+    DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+    DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+    DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
+    DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
+    return true;
+  }
+  // Not a reduction of known type.
+  return false;
+}
+
+/// This function returns the identity element (or neutral element) for
+/// the operation K.
+Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
+  switch (K) {
+  case RK_IntegerXor:
+  case RK_IntegerAdd:
+  case RK_IntegerOr:
+    // Adding, Xoring, Oring zero to a number does not change it.
+    return ConstantInt::get(Tp, 0);
+  case RK_IntegerMult:
+    // Multiplying a number by 1 does not change it.
+    return ConstantInt::get(Tp, 1);
+  case RK_IntegerAnd:
+    // AND-ing a number with an all-1 value does not change it.
+    return ConstantInt::get(Tp, -1, true);
+  case RK_FloatMult:
+    // Multiplying a number by 1 does not change it.
+    return ConstantFP::get(Tp, 1.0L);
+  case RK_FloatAdd:
+    // Adding zero to a number does not change it.
+    return ConstantFP::get(Tp, 0.0L);
+  default:
+    llvm_unreachable("Unknown reduction kind");
+  }
+}
+
+/// This function translates the reduction kind to an LLVM binary operator.
+unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
+  switch (Kind) {
+  case RK_IntegerAdd:
+    return Instruction::Add;
+  case RK_IntegerMult:
+    return Instruction::Mul;
+  case RK_IntegerOr:
+    return Instruction::Or;
+  case RK_IntegerAnd:
+    return Instruction::And;
+  case RK_IntegerXor:
+    return Instruction::Xor;
+  case RK_FloatMult:
+    return Instruction::FMul;
+  case RK_FloatAdd:
+    return Instruction::FAdd;
+  case RK_IntegerMinMax:
+    return Instruction::ICmp;
+  case RK_FloatMinMax:
+    return Instruction::FCmp;
+  default:
+    llvm_unreachable("Unknown reduction operation");
+  }
+}
+
+Value *
+ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder,
+                                    ReductionInstDesc::MinMaxReductionKind RK,
+                                    Value *Left, Value *Right) {
+  CmpInst::Predicate P = CmpInst::ICMP_NE;
+  switch (RK) {
+  default:
+    llvm_unreachable("Unknown min/max reduction kind");
+  case ReductionInstDesc::MRK_UIntMin:
+    P = CmpInst::ICMP_ULT;
+    break;
+  case ReductionInstDesc::MRK_UIntMax:
+    P = CmpInst::ICMP_UGT;
+    break;
+  case ReductionInstDesc::MRK_SIntMin:
+    P = CmpInst::ICMP_SLT;
+    break;
+  case ReductionInstDesc::MRK_SIntMax:
+    P = CmpInst::ICMP_SGT;
+    break;
+  case ReductionInstDesc::MRK_FloatMin:
+    P = CmpInst::FCMP_OLT;
+    break;
+  case ReductionInstDesc::MRK_FloatMax:
+    P = CmpInst::FCMP_OGT;
+    break;
+  }
+
+  Value *Cmp;
+  if (RK == ReductionInstDesc::MRK_FloatMin ||
+      RK == ReductionInstDesc::MRK_FloatMax)
+    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
+  else
+    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
+
+  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
+  return Select;
+}
index 8986932..455669b 100644 (file)
@@ -568,20 +568,6 @@ public:
         TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr),
         WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
 
-  /// This enum represents the kinds of reductions that we support.
-  enum ReductionKind {
-    RK_NoReduction, ///< Not a reduction.
-    RK_IntegerAdd,  ///< Sum of integers.
-    RK_IntegerMult, ///< Product of integers.
-    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
-    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
-    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
-    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
-    RK_FloatAdd,    ///< Sum of floats.
-    RK_FloatMult,   ///< Product of floats.
-    RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
-  };
-
   /// This enum represents the kinds of inductions that we support.
   enum InductionKind {
     IK_NoInduction,  ///< Not an induction variable.
@@ -589,54 +575,6 @@ public:
     IK_PtrInduction  ///< Pointer induction var. Step = C / sizeof(elem).
   };
 
-  // This enum represents the kind of minmax reduction.
-  enum MinMaxReductionKind {
-    MRK_Invalid,
-    MRK_UIntMin,
-    MRK_UIntMax,
-    MRK_SIntMin,
-    MRK_SIntMax,
-    MRK_FloatMin,
-    MRK_FloatMax
-  };
-
-  /// This struct holds information about reduction variables.
-  struct ReductionDescriptor {
-    ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
-      Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
-
-    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
-                        MinMaxReductionKind MK)
-        : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
-
-    // The starting value of the reduction.
-    // It does not have to be zero!
-    TrackingVH<Value> StartValue;
-    // The instruction who's value is used outside the loop.
-    Instruction *LoopExitInstr;
-    // The kind of the reduction.
-    ReductionKind Kind;
-    // If this a min/max reduction the kind of reduction.
-    MinMaxReductionKind MinMaxKind;
-  };
-
-  /// This POD struct holds information about a potential reduction operation.
-  struct ReductionInstDesc {
-    ReductionInstDesc(bool IsRedux, Instruction *I) :
-      IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
-
-    ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
-      IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
-
-    // Is this instruction a reduction candidate.
-    bool IsReduction;
-    // The last instruction in a min/max pattern (select of the select(icmp())
-    // pattern), or the current reduction instruction otherwise.
-    Instruction *PatternLastInst;
-    // If this is a min/max pattern the comparison predicate.
-    MinMaxReductionKind MinMaxKind;
-  };
-
   /// A struct for saving information about induction variables.
   struct InductionInfo {
     InductionInfo(Value *Start, InductionKind K, ConstantInt *Step)
@@ -759,10 +697,6 @@ public:
     return LAI;
   }
 
-  /// This function returns the identity element (or neutral element) for
-  /// the operation K.
-  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
-
   unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
 
   bool hasStride(Value *V) { return StrideSet.count(V); }
@@ -820,20 +754,6 @@ private:
   /// and we know that we can read from them without segfault.
   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
 
-  /// Returns True, if 'Phi' is the kind of reduction variable for type
-  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
-  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
-  /// Returns a struct describing if the instruction 'I' can be a reduction
-  /// variable of type 'Kind'. If the reduction is a min/max pattern of
-  /// select(icmp()) this function advances the instruction pointer 'I' from the
-  /// compare instruction to the select instruction and stores this pointer in
-  /// 'PatternLastInst' member of the returned struct.
-  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
-                                     ReductionInstDesc &Desc);
-  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
-  /// pattern corresponding to a min(X, Y) or max(X, Y).
-  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
-                                                    ReductionInstDesc &Prev);
   /// Returns the induction kind of Phi and record the step. This function may
   /// return NoInduction if the PHI is not an induction variable.
   InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue);
@@ -2469,98 +2389,6 @@ void InnerLoopVectorizer::createEmptyLoop() {
   Hints.setAlreadyVectorized();
 }
 
-/// This function returns the identity element (or neutral element) for
-/// the operation K.
-Constant*
-LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
-  switch (K) {
-  case RK_IntegerXor:
-  case RK_IntegerAdd:
-  case RK_IntegerOr:
-    // Adding, Xoring, Oring zero to a number does not change it.
-    return ConstantInt::get(Tp, 0);
-  case RK_IntegerMult:
-    // Multiplying a number by 1 does not change it.
-    return ConstantInt::get(Tp, 1);
-  case RK_IntegerAnd:
-    // AND-ing a number with an all-1 value does not change it.
-    return ConstantInt::get(Tp, -1, true);
-  case  RK_FloatMult:
-    // Multiplying a number by 1 does not change it.
-    return ConstantFP::get(Tp, 1.0L);
-  case  RK_FloatAdd:
-    // Adding zero to a number does not change it.
-    return ConstantFP::get(Tp, 0.0L);
-  default:
-    llvm_unreachable("Unknown reduction kind");
-  }
-}
-
-/// This function translates the reduction kind to an LLVM binary operator.
-static unsigned
-getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
-  switch (Kind) {
-    case LoopVectorizationLegality::RK_IntegerAdd:
-      return Instruction::Add;
-    case LoopVectorizationLegality::RK_IntegerMult:
-      return Instruction::Mul;
-    case LoopVectorizationLegality::RK_IntegerOr:
-      return Instruction::Or;
-    case LoopVectorizationLegality::RK_IntegerAnd:
-      return Instruction::And;
-    case LoopVectorizationLegality::RK_IntegerXor:
-      return Instruction::Xor;
-    case LoopVectorizationLegality::RK_FloatMult:
-      return Instruction::FMul;
-    case LoopVectorizationLegality::RK_FloatAdd:
-      return Instruction::FAdd;
-    case LoopVectorizationLegality::RK_IntegerMinMax:
-      return Instruction::ICmp;
-    case LoopVectorizationLegality::RK_FloatMinMax:
-      return Instruction::FCmp;
-    default:
-      llvm_unreachable("Unknown reduction operation");
-  }
-}
-
-static Value *createMinMaxOp(IRBuilder<> &Builder,
-                             LoopVectorizationLegality::MinMaxReductionKind RK,
-                             Value *Left, Value *Right) {
-  CmpInst::Predicate P = CmpInst::ICMP_NE;
-  switch (RK) {
-  default:
-    llvm_unreachable("Unknown min/max reduction kind");
-  case LoopVectorizationLegality::MRK_UIntMin:
-    P = CmpInst::ICMP_ULT;
-    break;
-  case LoopVectorizationLegality::MRK_UIntMax:
-    P = CmpInst::ICMP_UGT;
-    break;
-  case LoopVectorizationLegality::MRK_SIntMin:
-    P = CmpInst::ICMP_SLT;
-    break;
-  case LoopVectorizationLegality::MRK_SIntMax:
-    P = CmpInst::ICMP_SGT;
-    break;
-  case LoopVectorizationLegality::MRK_FloatMin:
-    P = CmpInst::FCMP_OLT;
-    break;
-  case LoopVectorizationLegality::MRK_FloatMax:
-    P = CmpInst::FCMP_OGT;
-    break;
-  }
-
-  Value *Cmp;
-  if (RK == LoopVectorizationLegality::MRK_FloatMin ||
-      RK == LoopVectorizationLegality::MRK_FloatMax)
-    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
-  else
-    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
-
-  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
-  return Select;
-}
-
 namespace {
 struct CSEDenseMapInfo {
   static bool canHandle(Instruction *I) {
@@ -2772,10 +2600,14 @@ void InnerLoopVectorizer::vectorizeLoop() {
     // Find the reduction variable descriptor.
     assert(Legal->getReductionVars()->count(RdxPhi) &&
            "Unable to find the reduction variable");
-    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
-    (*Legal->getReductionVars())[RdxPhi];
+    ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
 
-    setDebugLocFromInst(Builder, RdxDesc.StartValue);
+    ReductionDescriptor::ReductionKind RK = RdxDesc.getReductionKind();
+    TrackingVH<Value> ReductionStartValue = RdxDesc.getReductionStartValue();
+    Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
+    ReductionInstDesc::MinMaxReductionKind MinMaxKind =
+        RdxDesc.getMinMaxReductionKind();
+    setDebugLocFromInst(Builder, ReductionStartValue);
 
     // We need to generate a reduction vector from the incoming scalar.
     // To do so, we need to generate the 'identity' vector and override
@@ -2784,40 +2616,38 @@ void InnerLoopVectorizer::vectorizeLoop() {
     Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
 
     // This is the vector-clone of the value that leaves the loop.
-    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
+    VectorParts &VectorExit = getVectorValue(LoopExitInst);
     Type *VecTy = VectorExit[0]->getType();
 
     // Find the reduction identity variable. Zero for addition, or, xor,
     // one for multiplication, -1 for And.
     Value *Identity;
     Value *VectorStart;
-    if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
-        RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
+    if (RK == ReductionDescriptor::RK_IntegerMinMax ||
+        RK == ReductionDescriptor::RK_FloatMinMax) {
       // MinMax reduction have the start value as their identify.
       if (VF == 1) {
-        VectorStart = Identity = RdxDesc.StartValue;
+        VectorStart = Identity = ReductionStartValue;
       } else {
-        VectorStart = Identity = Builder.CreateVectorSplat(VF,
-                                                           RdxDesc.StartValue,
-                                                           "minmax.ident");
+        VectorStart = Identity =
+            Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
       }
     } else {
       // Handle other reduction kinds:
       Constant *Iden =
-      LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
-                                                      VecTy->getScalarType());
+          ReductionDescriptor::getReductionIdentity(RK, VecTy->getScalarType());
       if (VF == 1) {
         Identity = Iden;
         // This vector is the Identity vector where the first element is the
         // incoming scalar reduction.
-        VectorStart = RdxDesc.StartValue;
+        VectorStart = ReductionStartValue;
       } else {
         Identity = ConstantVector::getSplat(VF, Iden);
 
         // This vector is the Identity vector where the first element is the
         // incoming scalar reduction.
-        VectorStart = Builder.CreateInsertElement(Identity,
-                                                  RdxDesc.StartValue, Zero);
+        VectorStart =
+            Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
       }
     }
 
@@ -2846,11 +2676,11 @@ void InnerLoopVectorizer::vectorizeLoop() {
     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
 
     VectorParts RdxParts;
-    setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
+    setDebugLocFromInst(Builder, LoopExitInst);
     for (unsigned part = 0; part < UF; ++part) {
       // This PHINode contains the vectorized reduction variable, or
       // the initial value vector, if we bypass the vector loop.
-      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
+      VectorParts &RdxExitVal = getVectorValue(LoopExitInst);
       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
       Value *StartVal = (part == 0) ? VectorStart : Identity;
       for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
@@ -2862,7 +2692,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
 
     // Reduce all of the unrolled parts into a single vector.
     Value *ReducedPartRdx = RdxParts[0];
-    unsigned Op = getReductionBinOp(RdxDesc.Kind);
+    unsigned Op = ReductionDescriptor::getReductionBinOp(RK);
     setDebugLocFromInst(Builder, ReducedPartRdx);
     for (unsigned part = 1; part < UF; ++part) {
       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
@@ -2871,8 +2701,8 @@ void InnerLoopVectorizer::vectorizeLoop() {
             Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
                                 ReducedPartRdx, "bin.rdx"));
       else
-        ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
-                                        ReducedPartRdx, RdxParts[part]);
+        ReducedPartRdx = ReductionDescriptor::createMinMaxOp(
+            Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
     }
 
     if (VF > 1) {
@@ -2903,7 +2733,8 @@ void InnerLoopVectorizer::vectorizeLoop() {
           TmpVec = addFastMathFlag(Builder.CreateBinOp(
               (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
         else
-          TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
+          TmpVec = ReductionDescriptor::createMinMaxOp(Builder, MinMaxKind,
+                                                       TmpVec, Shuf);
       }
 
       // The result is in the first element of the vector.
@@ -2915,7 +2746,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
     // block and the middle block.
     PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
                                           LoopScalarPreHeader->getTerminator());
-    BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
+    BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[0]);
     BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
 
     // Now, we need to fix the users of the reduction variable
@@ -2933,7 +2764,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
 
       // We found our reduction value exit-PHI. Update it with the
       // incoming bypass edge.
-      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
+      if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
         // Add an edge coming from the bypass.
         LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
         break;
@@ -2948,7 +2779,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
     // Pick the other block.
     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
-    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
+    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
   }// end of for each redux variable.
 
   fixLCSSAPHIs();
@@ -3712,41 +3543,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
           continue;
         }
 
-        if (AddReductionVar(Phi, RK_IntegerAdd)) {
-          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
-          continue;
-        }
-        if (AddReductionVar(Phi, RK_IntegerMult)) {
-          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
-          continue;
-        }
-        if (AddReductionVar(Phi, RK_IntegerOr)) {
-          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
-          continue;
-        }
-        if (AddReductionVar(Phi, RK_IntegerAnd)) {
-          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
-          continue;
-        }
-        if (AddReductionVar(Phi, RK_IntegerXor)) {
-          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
-          continue;
-        }
-        if (AddReductionVar(Phi, RK_IntegerMinMax)) {
-          DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
-          continue;
-        }
-        if (AddReductionVar(Phi, RK_FloatMult)) {
-          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
-          continue;
-        }
-        if (AddReductionVar(Phi, RK_FloatAdd)) {
-          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
-          continue;
-        }
-        if (AddReductionVar(Phi, RK_FloatMinMax)) {
-          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
-                "\n");
+        if (ReductionDescriptor::isReductionPHI(Phi, TheLoop,
+                                                Reductions[Phi])) {
+          AllowedExit.insert(Reductions[Phi].getLoopExitInstr());
           continue;
         }
 
@@ -4029,294 +3828,6 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
   return true;
 }
 
-static bool hasMultipleUsesOf(Instruction *I,
-                              SmallPtrSetImpl<Instruction *> &Insts) {
-  unsigned NumUses = 0;
-  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
-    if (Insts.count(dyn_cast<Instruction>(*Use)))
-      ++NumUses;
-    if (NumUses > 1)
-      return true;
-  }
-
-  return false;
-}
-
-static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
-  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
-    if (!Set.count(dyn_cast<Instruction>(*Use)))
-      return false;
-  return true;
-}
-
-bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
-                                                ReductionKind Kind) {
-  if (Phi->getNumIncomingValues() != 2)
-    return false;
-
-  // Reduction variables are only found in the loop header block.
-  if (Phi->getParent() != TheLoop->getHeader())
-    return false;
-
-  // Obtain the reduction start value from the value that comes from the loop
-  // preheader.
-  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
-
-  // ExitInstruction is the single value which is used outside the loop.
-  // We only allow for a single reduction value to be used outside the loop.
-  // This includes users of the reduction, variables (which form a cycle
-  // which ends in the phi node).
-  Instruction *ExitInstruction = nullptr;
-  // Indicates that we found a reduction operation in our scan.
-  bool FoundReduxOp = false;
-
-  // We start with the PHI node and scan for all of the users of this
-  // instruction. All users must be instructions that can be used as reduction
-  // variables (such as ADD). We must have a single out-of-block user. The cycle
-  // must include the original PHI.
-  bool FoundStartPHI = false;
-
-  // To recognize min/max patterns formed by a icmp select sequence, we store
-  // the number of instruction we saw from the recognized min/max pattern,
-  //  to make sure we only see exactly the two instructions.
-  unsigned NumCmpSelectPatternInst = 0;
-  ReductionInstDesc ReduxDesc(false, nullptr);
-
-  SmallPtrSet<Instruction *, 8> VisitedInsts;
-  SmallVector<Instruction *, 8> Worklist;
-  Worklist.push_back(Phi);
-  VisitedInsts.insert(Phi);
-
-  // A value in the reduction can be used:
-  //  - By the reduction:
-  //      - Reduction operation:
-  //        - One use of reduction value (safe).
-  //        - Multiple use of reduction value (not safe).
-  //      - PHI:
-  //        - All uses of the PHI must be the reduction (safe).
-  //        - Otherwise, not safe.
-  //  - By one instruction outside of the loop (safe).
-  //  - By further instructions outside of the loop (not safe).
-  //  - By an instruction that is not part of the reduction (not safe).
-  //    This is either:
-  //      * An instruction type other than PHI or the reduction operation.
-  //      * A PHI in the header other than the initial PHI.
-  while (!Worklist.empty()) {
-    Instruction *Cur = Worklist.back();
-    Worklist.pop_back();
-
-    // No Users.
-    // If the instruction has no users then this is a broken chain and can't be
-    // a reduction variable.
-    if (Cur->use_empty())
-      return false;
-
-    bool IsAPhi = isa<PHINode>(Cur);
-
-    // A header PHI use other than the original PHI.
-    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
-      return false;
-
-    // Reductions of instructions such as Div, and Sub is only possible if the
-    // LHS is the reduction variable.
-    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
-        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
-        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
-      return false;
-
-    // Any reduction instruction must be of one of the allowed kinds.
-    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
-    if (!ReduxDesc.IsReduction)
-      return false;
-
-    // A reduction operation must only have one use of the reduction value.
-    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
-        hasMultipleUsesOf(Cur, VisitedInsts))
-      return false;
-
-    // All inputs to a PHI node must be a reduction value.
-    if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
-      return false;
-
-    if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
-                                     isa<SelectInst>(Cur)))
-      ++NumCmpSelectPatternInst;
-    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
-                                   isa<SelectInst>(Cur)))
-      ++NumCmpSelectPatternInst;
-
-    // Check  whether we found a reduction operator.
-    FoundReduxOp |= !IsAPhi;
-
-    // Process users of current instruction. Push non-PHI nodes after PHI nodes
-    // onto the stack. This way we are going to have seen all inputs to PHI
-    // nodes once we get to them.
-    SmallVector<Instruction *, 8> NonPHIs;
-    SmallVector<Instruction *, 8> PHIs;
-    for (User *U : Cur->users()) {
-      Instruction *UI = cast<Instruction>(U);
-
-      // Check if we found the exit user.
-      BasicBlock *Parent = UI->getParent();
-      if (!TheLoop->contains(Parent)) {
-        // Exit if you find multiple outside users or if the header phi node is
-        // being used. In this case the user uses the value of the previous
-        // iteration, in which case we would loose "VF-1" iterations of the
-        // reduction operation if we vectorize.
-        if (ExitInstruction != nullptr || Cur == Phi)
-          return false;
-
-        // The instruction used by an outside user must be the last instruction
-        // before we feed back to the reduction phi. Otherwise, we loose VF-1
-        // operations on the value.
-        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
-         return false;
-
-        ExitInstruction = Cur;
-        continue;
-      }
-
-      // Process instructions only once (termination). Each reduction cycle
-      // value must only be used once, except by phi nodes and min/max
-      // reductions which are represented as a cmp followed by a select.
-      ReductionInstDesc IgnoredVal(false, nullptr);
-      if (VisitedInsts.insert(UI).second) {
-        if (isa<PHINode>(UI))
-          PHIs.push_back(UI);
-        else
-          NonPHIs.push_back(UI);
-      } else if (!isa<PHINode>(UI) &&
-                 ((!isa<FCmpInst>(UI) &&
-                   !isa<ICmpInst>(UI) &&
-                   !isa<SelectInst>(UI)) ||
-                  !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
-        return false;
-
-      // Remember that we completed the cycle.
-      if (UI == Phi)
-        FoundStartPHI = true;
-    }
-    Worklist.append(PHIs.begin(), PHIs.end());
-    Worklist.append(NonPHIs.begin(), NonPHIs.end());
-  }
-
-  // This means we have seen one but not the other instruction of the
-  // pattern or more than just a select and cmp.
-  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
-      NumCmpSelectPatternInst != 2)
-    return false;
-
-  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
-    return false;
-
-  // We found a reduction var if we have reached the original phi node and we
-  // only have a single instruction with out-of-loop users.
-
-  // This instruction is allowed to have out-of-loop users.
-  AllowedExit.insert(ExitInstruction);
-
-  // Save the description of this reduction variable.
-  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
-                         ReduxDesc.MinMaxKind);
-  Reductions[Phi] = RD;
-  // We've ended the cycle. This is a reduction variable if we have an
-  // outside user and it has a binary op.
-
-  return true;
-}
-
-/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
-/// pattern corresponding to a min(X, Y) or max(X, Y).
-LoopVectorizationLegality::ReductionInstDesc
-LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
-                                                    ReductionInstDesc &Prev) {
-
-  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
-         "Expect a select instruction");
-  Instruction *Cmp = nullptr;
-  SelectInst *Select = nullptr;
-
-  // We must handle the select(cmp()) as a single instruction. Advance to the
-  // select.
-  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
-    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
-      return ReductionInstDesc(false, I);
-    return ReductionInstDesc(Select, Prev.MinMaxKind);
-  }
-
-  // Only handle single use cases for now.
-  if (!(Select = dyn_cast<SelectInst>(I)))
-    return ReductionInstDesc(false, I);
-  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
-      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
-    return ReductionInstDesc(false, I);
-  if (!Cmp->hasOneUse())
-    return ReductionInstDesc(false, I);
-
-  Value *CmpLeft;
-  Value *CmpRight;
-
-  // Look for a min/max pattern.
-  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
-    return ReductionInstDesc(Select, MRK_UIntMin);
-  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
-    return ReductionInstDesc(Select, MRK_UIntMax);
-  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
-    return ReductionInstDesc(Select, MRK_SIntMax);
-  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
-    return ReductionInstDesc(Select, MRK_SIntMin);
-  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
-    return ReductionInstDesc(Select, MRK_FloatMin);
-  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
-    return ReductionInstDesc(Select, MRK_FloatMax);
-  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
-    return ReductionInstDesc(Select, MRK_FloatMin);
-  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
-    return ReductionInstDesc(Select, MRK_FloatMax);
-
-  return ReductionInstDesc(false, I);
-}
-
-LoopVectorizationLegality::ReductionInstDesc
-LoopVectorizationLegality::isReductionInstr(Instruction *I,
-                                            ReductionKind Kind,
-                                            ReductionInstDesc &Prev) {
-  bool FP = I->getType()->isFloatingPointTy();
-  bool FastMath = FP && I->hasUnsafeAlgebra();
-  switch (I->getOpcode()) {
-  default:
-    return ReductionInstDesc(false, I);
-  case Instruction::PHI:
-      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
-                 Kind != RK_FloatMinMax))
-        return ReductionInstDesc(false, I);
-    return ReductionInstDesc(I, Prev.MinMaxKind);
-  case Instruction::Sub:
-  case Instruction::Add:
-    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
-  case Instruction::Mul:
-    return ReductionInstDesc(Kind == RK_IntegerMult, I);
-  case Instruction::And:
-    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
-  case Instruction::Or:
-    return ReductionInstDesc(Kind == RK_IntegerOr, I);
-  case Instruction::Xor:
-    return ReductionInstDesc(Kind == RK_IntegerXor, I);
-  case Instruction::FMul:
-    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
-  case Instruction::FSub:
-  case Instruction::FAdd:
-    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
-  case Instruction::FCmp:
-  case Instruction::ICmp:
-  case Instruction::Select:
-    if (Kind != RK_IntegerMinMax &&
-        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
-      return ReductionInstDesc(false, I);
-    return isMinMaxSelectCmpPattern(I, Prev);
-  }
-}
-
 bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
                           ConstantInt *&StepValue) {
   Type *PhiTy = Phi->getType();