tools="$tools fsdev/virtfs-proxy-helper\$(EXESUF)"
else
if test "$virtfs" = yes; then
- feature_not_found "virtfs"
+ echo "VirtFS is supported only on Linux and requires libcap-devel and libattr-devel"
+ exit 1
fi
virtfs=no
fi
}
/*
- * invalidate all TBs which intersect with the target physical pages
- * starting in range [start;end[. NOTE: start and end may refer to
- * different physical pages. 'is_cpu_write_access' should be true if called
- * from a real cpu write access: the virtual CPU will exit the current
- * TB if code is modified inside this TB.
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end may refer to *different* physical pages.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
*/
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access)
}
}
-/* invalidate all TBs which intersect with the target physical page
- starting in range [start;end[. NOTE: start and end must refer to
- the same physical page. 'is_cpu_write_access' should be true if called
- from a real cpu write access: the virtual CPU will exit the current
- TB if code is modified inside this TB. */
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end must refer to the *same* physical page.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access)
{
/* The CPU is also modeled as an interrupt controller. */
#define ARM_PIC_CPU_IRQ 0
#define ARM_PIC_CPU_FIQ 1
-qemu_irq *arm_pic_init_cpu(CPUARMState *env);
+qemu_irq *arm_pic_init_cpu(ARMCPU *cpu);
/* armv7m.c */
qemu_irq *armv7m_init(MemoryRegion *address_space_mem,
* perform any necessary CPU reset handling and set the PC for thei
* secondary CPUs to point at this boot blob.
*/
- void (*write_secondary_boot)(CPUARMState *env,
+ void (*write_secondary_boot)(ARMCPU *cpu,
const struct arm_boot_info *info);
- void (*secondary_cpu_reset_hook)(CPUARMState *env,
+ void (*secondary_cpu_reset_hook)(ARMCPU *cpu,
const struct arm_boot_info *info);
/* Used internally by arm_boot.c */
int is_linux;
target_phys_addr_t initrd_size;
target_phys_addr_t entry;
};
-void arm_load_kernel(CPUARMState *env, struct arm_boot_info *info);
+void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info);
/* Multiplication factor to convert from system clock ticks to qemu timer
ticks. */
0 /* bootreg: Boot register address is held here */
};
-static void default_write_secondary(CPUARMState *env,
+static void default_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
int n;
info->smp_loader_start);
}
-static void default_reset_secondary(CPUARMState *env,
+static void default_reset_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
+ CPUARMState *env = &cpu->env;
+
stl_phys_notdirty(info->smp_bootreg_addr, 0);
env->regs[15] = info->smp_loader_start;
}
}
}
} else {
- info->secondary_cpu_reset_hook(env, info);
+ info->secondary_cpu_reset_hook(cpu, info);
}
}
}
}
-void arm_load_kernel(CPUARMState *env, struct arm_boot_info *info)
+void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
{
- ARMCPU *cpu;
+ CPUARMState *env = &cpu->env;
int kernel_size;
int initrd_size;
int n;
rom_add_blob_fixed("bootloader", bootloader, sizeof(bootloader),
info->loader_start);
if (info->nb_cpus > 1) {
- info->write_secondary_boot(env, info);
+ info->write_secondary_boot(cpu, info);
}
}
info->is_linux = is_linux;
/* Input 0 is IRQ and input 1 is FIQ. */
static void arm_pic_cpu_handler(void *opaque, int irq, int level)
{
- CPUARMState *env = (CPUARMState *)opaque;
+ ARMCPU *cpu = opaque;
+ CPUARMState *env = &cpu->env;
+
switch (irq) {
case ARM_PIC_CPU_IRQ:
if (level)
}
}
-qemu_irq *arm_pic_init_cpu(CPUARMState *env)
+qemu_irq *arm_pic_init_cpu(ARMCPU *cpu)
{
- return qemu_allocate_irqs(arm_pic_cpu_handler, env, 2);
+ return qemu_allocate_irqs(arm_pic_cpu_handler, cpu, 2);
}
nvic = qdev_create(NULL, "armv7m_nvic");
env->nvic = nvic;
qdev_init_nofail(nvic);
- cpu_pic = arm_pic_init_cpu(env);
+ cpu_pic = arm_pic_init_cpu(cpu);
sysbus_connect_irq(sysbus_from_qdev(nvic), 0, cpu_pic[ARM_PIC_CPU_IRQ]);
for (i = 0; i < 64; i++) {
pic[i] = qdev_get_gpio_in(nvic, i);
collie_binfo.kernel_cmdline = kernel_cmdline;
collie_binfo.initrd_filename = initrd_filename;
collie_binfo.board_id = 0x208;
- arm_load_kernel(s->env, &collie_binfo);
+ arm_load_kernel(s->cpu, &collie_binfo);
}
static QEMUMachine collie_machine = {
static uint8_t chipid_and_omr[] = { 0x11, 0x02, 0x21, 0x43,
0x09, 0x00, 0x00, 0x00 };
-void exynos4210_write_secondary(CPUARMState *env,
+void exynos4210_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
int n;
SysBusDevice *busdev;
for (n = 0; n < EXYNOS4210_NCPUS; n++) {
- s->env[n] = cpu_init("cortex-a9");
- if (!s->env[n]) {
+ s->cpu[n] = cpu_arm_init("cortex-a9");
+ if (!s->cpu[n]) {
fprintf(stderr, "Unable to find CPU %d definition\n", n);
exit(1);
}
+
/* Create PIC controller for each processor instance */
- irqp = arm_pic_init_cpu(s->env[n]);
+ irqp = arm_pic_init_cpu(s->cpu[n]);
/*
* Get GICs gpio_in cpu_irq to connect a combiner to them later.
} Exynos4210Irq;
typedef struct Exynos4210State {
- CPUARMState * env[EXYNOS4210_NCPUS];
+ ARMCPU *cpu[EXYNOS4210_NCPUS];
Exynos4210Irq irqs;
qemu_irq *irq_table;
MemoryRegion bootreg_mem;
} Exynos4210State;
-void exynos4210_write_secondary(CPUARMState *env,
+void exynos4210_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info);
Exynos4210State *exynos4210_init(MemoryRegion *system_mem,
exynos4_boards_init_common(kernel_filename, kernel_cmdline,
initrd_filename, EXYNOS4_BOARD_NURI);
- arm_load_kernel(first_cpu, &exynos4_board_binfo);
+ arm_load_kernel(arm_env_get_cpu(first_cpu), &exynos4_board_binfo);
}
static void smdkc210_init(ram_addr_t ram_size,
lan9215_init(SMDK_LAN9118_BASE_ADDR,
qemu_irq_invert(s->irq_table[exynos4210_get_irq(37, 1)]));
- arm_load_kernel(first_cpu, &exynos4_board_binfo);
+ arm_load_kernel(arm_env_get_cpu(first_cpu), &exynos4_board_binfo);
}
static QEMUMachine exynos4_machines[EXYNOS4_NUM_OF_BOARDS] = {
/* Board init. */
-static void hb_write_secondary(CPUARMState *env, const struct arm_boot_info *info)
+static void hb_write_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
{
int n;
uint32_t smpboot[] = {
rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot), SMP_BOOT_ADDR);
}
-static void hb_reset_secondary(CPUARMState *env, const struct arm_boot_info *info)
+static void hb_reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
{
+ CPUARMState *env = &cpu->env;
+
switch (info->nb_cpus) {
case 4:
stl_phys_notdirty(SMP_BOOT_REG + 0x30, 0);
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
- CPUARMState *env = NULL;
DeviceState *dev;
SysBusDevice *busdev;
qemu_irq *irqp;
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
- env = &cpu->env;
+
/* This will become a QOM property eventually */
cpu->reset_cbar = GIC_BASE_ADDR;
- irqp = arm_pic_init_cpu(env);
+ irqp = arm_pic_init_cpu(cpu);
cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
}
highbank_binfo.loader_start = 0;
highbank_binfo.write_secondary_boot = hb_write_secondary;
highbank_binfo.secondary_cpu_reset_hook = hb_reset_secondary;
- arm_load_kernel(first_cpu, &highbank_binfo);
+ arm_load_kernel(arm_env_get_cpu(first_cpu), &highbank_binfo);
}
static QEMUMachine highbank_machine = {
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
- CPUARMState *env;
+ ARMCPU *cpu;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *ram_alias = g_new(MemoryRegion, 1);
DeviceState *dev;
int i;
- if (!cpu_model)
+ if (!cpu_model) {
cpu_model = "arm926";
- env = cpu_init(cpu_model);
- if (!env) {
+ }
+ cpu = cpu_arm_init(cpu_model);
+ if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
+
memory_region_init_ram(ram, "integrator.ram", ram_size);
vmstate_register_ram_global(ram);
/* ??? On a real system the first 1Mb is mapped as SSRAM or boot flash. */
qdev_init_nofail(dev);
sysbus_mmio_map((SysBusDevice *)dev, 0, 0x10000000);
- cpu_pic = arm_pic_init_cpu(env);
+ cpu_pic = arm_pic_init_cpu(cpu);
dev = sysbus_create_varargs("integrator_pic", 0x14000000,
cpu_pic[ARM_PIC_CPU_IRQ],
cpu_pic[ARM_PIC_CPU_FIQ], NULL);
integrator_binfo.kernel_filename = kernel_filename;
integrator_binfo.kernel_cmdline = kernel_cmdline;
integrator_binfo.initrd_filename = initrd_filename;
- arm_load_kernel(env, &integrator_binfo);
+ arm_load_kernel(cpu, &integrator_binfo);
}
static QEMUMachine integratorcp_machine = {
{
uint32_t sector_len = 256 * 1024;
target_phys_addr_t mainstone_flash_base[] = { MST_FLASH_0, MST_FLASH_1 };
- PXA2xxState *cpu;
+ PXA2xxState *mpu;
DeviceState *mst_irq;
DriveInfo *dinfo;
int i;
cpu_model = "pxa270-c5";
/* Setup CPU & memory */
- cpu = pxa270_init(address_space_mem, mainstone_binfo.ram_size, cpu_model);
+ mpu = pxa270_init(address_space_mem, mainstone_binfo.ram_size, cpu_model);
memory_region_init_ram(rom, "mainstone.rom", MAINSTONE_ROM);
vmstate_register_ram_global(rom);
memory_region_set_readonly(rom, true);
}
mst_irq = sysbus_create_simple("mainstone-fpga", MST_FPGA_PHYS,
- qdev_get_gpio_in(cpu->gpio, 0));
+ qdev_get_gpio_in(mpu->gpio, 0));
/* setup keypad */
printf("map addr %p\n", &map);
- pxa27x_register_keypad(cpu->kp, map, 0xe0);
+ pxa27x_register_keypad(mpu->kp, map, 0xe0);
/* MMC/SD host */
- pxa2xx_mmci_handlers(cpu->mmc, NULL, qdev_get_gpio_in(mst_irq, MMC_IRQ));
+ pxa2xx_mmci_handlers(mpu->mmc, NULL, qdev_get_gpio_in(mst_irq, MMC_IRQ));
- pxa2xx_pcmcia_set_irq_cb(cpu->pcmcia[0],
+ pxa2xx_pcmcia_set_irq_cb(mpu->pcmcia[0],
qdev_get_gpio_in(mst_irq, S0_IRQ),
qdev_get_gpio_in(mst_irq, S0_CD_IRQ));
- pxa2xx_pcmcia_set_irq_cb(cpu->pcmcia[1],
+ pxa2xx_pcmcia_set_irq_cb(mpu->pcmcia[1],
qdev_get_gpio_in(mst_irq, S1_IRQ),
qdev_get_gpio_in(mst_irq, S1_CD_IRQ));
mainstone_binfo.kernel_cmdline = kernel_cmdline;
mainstone_binfo.initrd_filename = initrd_filename;
mainstone_binfo.board_id = arm_id;
- arm_load_kernel(&cpu->cpu->env, &mainstone_binfo);
+ arm_load_kernel(mpu->cpu, &mainstone_binfo);
}
static void mainstone_init(ram_addr_t ram_size,
.old_portio = cmos_portio
};
-// FIXME add int32 visitor
-static void visit_type_int32(Visitor *v, int *value, const char *name, Error **errp)
-{
- int64_t val = *value;
- visit_type_int(v, &val, name, errp);
-}
-
static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
- CPUARMState *env;
+ ARMCPU *cpu;
qemu_irq *cpu_pic;
qemu_irq pic[32];
DeviceState *dev;
if (!cpu_model) {
cpu_model = "arm926";
}
- env = cpu_init(cpu_model);
- if (!env) {
+ cpu = cpu_arm_init(cpu_model);
+ if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
- cpu_pic = arm_pic_init_cpu(env);
+ cpu_pic = arm_pic_init_cpu(cpu);
/* For now we use a fixed - the original - RAM size */
memory_region_init_ram(ram, "musicpal.ram", MP_RAM_DEFAULT_SIZE);
musicpal_binfo.kernel_filename = kernel_filename;
musicpal_binfo.kernel_cmdline = kernel_cmdline;
musicpal_binfo.initrd_filename = initrd_filename;
- arm_load_kernel(env, &musicpal_binfo);
+ arm_load_kernel(cpu, &musicpal_binfo);
}
static QEMUMachine musicpal_machine = {
/* Nokia N8x0 support */
struct n800_s {
- struct omap_mpu_state_s *cpu;
+ struct omap_mpu_state_s *mpu;
struct rfbi_chip_s blizzard;
struct {
static void n8x0_gpio_setup(struct n800_s *s)
{
- qemu_irq *mmc_cs = qemu_allocate_irqs(n800_mmc_cs_cb, s->cpu->mmc, 1);
- qdev_connect_gpio_out(s->cpu->gpio, N8X0_MMC_CS_GPIO, mmc_cs[0]);
+ qemu_irq *mmc_cs = qemu_allocate_irqs(n800_mmc_cs_cb, s->mpu->mmc, 1);
+ qdev_connect_gpio_out(s->mpu->gpio, N8X0_MMC_CS_GPIO, mmc_cs[0]);
- qemu_irq_lower(qdev_get_gpio_in(s->cpu->gpio, N800_BAT_COVER_GPIO));
+ qemu_irq_lower(qdev_get_gpio_in(s->mpu->gpio, N800_BAT_COVER_GPIO));
}
#define MAEMO_CAL_HEADER(...) \
}
qdev_init_nofail(s->nand);
sysbus_connect_irq(sysbus_from_qdev(s->nand), 0,
- qdev_get_gpio_in(s->cpu->gpio, N8X0_ONENAND_GPIO));
- omap_gpmc_attach(s->cpu->gpmc, N8X0_ONENAND_CS,
+ qdev_get_gpio_in(s->mpu->gpio, N8X0_ONENAND_GPIO));
+ omap_gpmc_attach(s->mpu->gpmc, N8X0_ONENAND_CS,
sysbus_mmio_get_region(sysbus_from_qdev(s->nand), 0));
otp_region = onenand_raw_otp(s->nand);
static void n8x0_i2c_setup(struct n800_s *s)
{
DeviceState *dev;
- qemu_irq tmp_irq = qdev_get_gpio_in(s->cpu->gpio, N8X0_TMP105_GPIO);
- i2c_bus *i2c = omap_i2c_bus(s->cpu->i2c[0]);
+ qemu_irq tmp_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TMP105_GPIO);
+ i2c_bus *i2c = omap_i2c_bus(s->mpu->i2c[0]);
/* Attach a menelaus PM chip */
dev = i2c_create_slave(i2c, "twl92230", N8X0_MENELAUS_ADDR);
qdev_connect_gpio_out(dev, 3,
- qdev_get_gpio_in(s->cpu->ih[0],
+ qdev_get_gpio_in(s->mpu->ih[0],
OMAP_INT_24XX_SYS_NIRQ));
qemu_system_powerdown = qdev_get_gpio_in(dev, 3);
/* XXX: are the three pins inverted inside the chip between the
* tsc and the cpu (N4111)? */
qemu_irq penirq = NULL; /* NC */
- qemu_irq kbirq = qdev_get_gpio_in(s->cpu->gpio, N800_TSC_KP_IRQ_GPIO);
- qemu_irq dav = qdev_get_gpio_in(s->cpu->gpio, N800_TSC_TS_GPIO);
+ qemu_irq kbirq = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_KP_IRQ_GPIO);
+ qemu_irq dav = qdev_get_gpio_in(s->mpu->gpio, N800_TSC_TS_GPIO);
s->ts.chip = tsc2301_init(penirq, kbirq, dav);
s->ts.opaque = s->ts.chip->opaque;
static void n810_tsc_setup(struct n800_s *s)
{
- qemu_irq pintdav = qdev_get_gpio_in(s->cpu->gpio, N810_TSC_TS_GPIO);
+ qemu_irq pintdav = qdev_get_gpio_in(s->mpu->gpio, N810_TSC_TS_GPIO);
s->ts.opaque = tsc2005_init(pintdav);
s->ts.txrx = tsc2005_txrx;
static void n810_kbd_setup(struct n800_s *s)
{
- qemu_irq kbd_irq = qdev_get_gpio_in(s->cpu->gpio, N810_KEYBOARD_GPIO);
+ qemu_irq kbd_irq = qdev_get_gpio_in(s->mpu->gpio, N810_KEYBOARD_GPIO);
int i;
for (i = 0; i < 0x80; i ++)
/* Attach the LM8322 keyboard to the I2C bus,
* should happen in n8x0_i2c_setup and s->kbd be initialised here. */
- s->kbd = i2c_create_slave(omap_i2c_bus(s->cpu->i2c[0]),
+ s->kbd = i2c_create_slave(omap_i2c_bus(s->mpu->i2c[0]),
"lm8323", N810_LM8323_ADDR);
qdev_connect_gpio_out(s->kbd, 0, kbd_irq);
}
void *tsc = s->ts.opaque;
void *mipid = mipid_init();
- omap_mcspi_attach(s->cpu->mcspi[0], s->ts.txrx, tsc, 0);
- omap_mcspi_attach(s->cpu->mcspi[0], mipid_txrx, mipid, 1);
+ omap_mcspi_attach(s->mpu->mcspi[0], s->ts.txrx, tsc, 0);
+ omap_mcspi_attach(s->mpu->mcspi[0], mipid_txrx, mipid, 1);
}
/* This task is normally performed by the bootloader. If we're loading
s->blizzard.write = s1d13745_write;
s->blizzard.read = s1d13745_read;
- omap_rfbi_attach(s->cpu->dss, 0, &s->blizzard);
+ omap_rfbi_attach(s->mpu->dss, 0, &s->blizzard);
}
static void n8x0_cbus_setup(struct n800_s *s)
{
- qemu_irq dat_out = qdev_get_gpio_in(s->cpu->gpio, N8X0_CBUS_DAT_GPIO);
- qemu_irq retu_irq = qdev_get_gpio_in(s->cpu->gpio, N8X0_RETU_GPIO);
- qemu_irq tahvo_irq = qdev_get_gpio_in(s->cpu->gpio, N8X0_TAHVO_GPIO);
+ qemu_irq dat_out = qdev_get_gpio_in(s->mpu->gpio, N8X0_CBUS_DAT_GPIO);
+ qemu_irq retu_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_RETU_GPIO);
+ qemu_irq tahvo_irq = qdev_get_gpio_in(s->mpu->gpio, N8X0_TAHVO_GPIO);
CBus *cbus = cbus_init(dat_out);
- qdev_connect_gpio_out(s->cpu->gpio, N8X0_CBUS_CLK_GPIO, cbus->clk);
- qdev_connect_gpio_out(s->cpu->gpio, N8X0_CBUS_DAT_GPIO, cbus->dat);
- qdev_connect_gpio_out(s->cpu->gpio, N8X0_CBUS_SEL_GPIO, cbus->sel);
+ qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_CLK_GPIO, cbus->clk);
+ qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_DAT_GPIO, cbus->dat);
+ qdev_connect_gpio_out(s->mpu->gpio, N8X0_CBUS_SEL_GPIO, cbus->sel);
cbus_attach(cbus, s->retu = retu_init(retu_irq, 1));
cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1));
static void n8x0_uart_setup(struct n800_s *s)
{
CharDriverState *radio = uart_hci_init(
- qdev_get_gpio_in(s->cpu->gpio, N8X0_BT_HOST_WKUP_GPIO));
+ qdev_get_gpio_in(s->mpu->gpio, N8X0_BT_HOST_WKUP_GPIO));
- qdev_connect_gpio_out(s->cpu->gpio, N8X0_BT_RESET_GPIO,
+ qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_RESET_GPIO,
csrhci_pins_get(radio)[csrhci_pin_reset]);
- qdev_connect_gpio_out(s->cpu->gpio, N8X0_BT_WKUP_GPIO,
+ qdev_connect_gpio_out(s->mpu->gpio, N8X0_BT_WKUP_GPIO,
csrhci_pins_get(radio)[csrhci_pin_wakeup]);
- omap_uart_attach(s->cpu->uart[BT_UART], radio);
+ omap_uart_attach(s->mpu->uart[BT_UART], radio);
}
static void n8x0_usb_setup(struct n800_s *s)
dev = sysbus_from_qdev(s->usb);
qdev_init_nofail(s->usb);
sysbus_connect_irq(dev, 0,
- qdev_get_gpio_in(s->cpu->gpio, N8X0_TUSB_INT_GPIO));
+ qdev_get_gpio_in(s->mpu->gpio, N8X0_TUSB_INT_GPIO));
/* Using the NOR interface */
- omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_ASYNC_CS,
+ omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_ASYNC_CS,
sysbus_mmio_get_region(dev, 0));
- omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_SYNC_CS,
+ omap_gpmc_attach(s->mpu->gpmc, N8X0_USB_SYNC_CS,
sysbus_mmio_get_region(dev, 1));
- qdev_connect_gpio_out(s->cpu->gpio, N8X0_TUSB_ENABLE_GPIO,
+ qdev_connect_gpio_out(s->mpu->gpio, N8X0_TUSB_ENABLE_GPIO,
qdev_get_gpio_in(s->usb, 0)); /* tusb_pwr */
}
n800_dss_init(&s->blizzard);
/* CPU setup */
- s->cpu->cpu->env.GE = 0x5;
+ s->mpu->cpu->env.GE = 0x5;
/* If the machine has a slided keyboard, open it */
if (s->kbd)
- qemu_irq_raise(qdev_get_gpio_in(s->cpu->gpio, N810_SLIDE_GPIO));
+ qemu_irq_raise(qdev_get_gpio_in(s->mpu->gpio, N810_SLIDE_GPIO));
}
#define OMAP_TAG_NOKIA_BT 0x4e01
int sdram_size = binfo->ram_size;
DisplayState *ds;
- s->cpu = omap2420_mpu_init(sysmem, sdram_size, cpu_model);
+ s->mpu = omap2420_mpu_init(sysmem, sdram_size, cpu_model);
/* Setup peripherals
*
binfo->kernel_filename = kernel_filename;
binfo->kernel_cmdline = kernel_cmdline;
binfo->initrd_filename = initrd_filename;
- arm_load_kernel(&s->cpu->cpu->env, binfo);
+ arm_load_kernel(s->mpu->cpu, binfo);
qemu_register_reset(n8x0_boot_init, s);
}
int rom_size;
uint8_t nolo_tags[0x10000];
/* No, wait, better start at the ROM. */
- s->cpu->cpu->env.regs[15] = OMAP2_Q2_BASE + 0x400000;
+ s->mpu->cpu->env.regs[15] = OMAP2_Q2_BASE + 0x400000;
/* This is intended for loading the `secondary.bin' program from
* Nokia images (the NOLO bootloader). The entry point seems
omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
- cpu_irq = arm_pic_init_cpu(&s->cpu->env);
+ cpu_irq = arm_pic_init_cpu(s->cpu);
s->ih[0] = qdev_create(NULL, "omap-intc");
qdev_prop_set_uint32(s->ih[0], "size", 0x100);
qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
s->l4 = omap_l4_init(sysmem, OMAP2_L4_BASE, 54);
/* Actually mapped at any 2K boundary in the ARM11 private-peripheral if */
- cpu_irq = arm_pic_init_cpu(&s->cpu->env);
+ cpu_irq = arm_pic_init_cpu(s->cpu);
s->ih[0] = qdev_create(NULL, "omap2-intc");
qdev_prop_set_uint8(s->ih[0], "revision", 0x21);
qdev_prop_set_ptr(s->ih[0], "fclk", omap_findclk(s, "mpu_intc_fclk"));
const char *initrd_filename, const char *cpu_model,
const int version)
{
- struct omap_mpu_state_s *cpu;
+ struct omap_mpu_state_s *mpu;
MemoryRegion *address_space = get_system_memory();
MemoryRegion *flash = g_new(MemoryRegion, 1);
MemoryRegion *flash_1 = g_new(MemoryRegion, 1);
flash_size = flash2_size;
}
- cpu = omap310_mpu_init(address_space, sx1_binfo.ram_size, cpu_model);
+ mpu = omap310_mpu_init(address_space, sx1_binfo.ram_size, cpu_model);
/* External Flash (EMIFS) */
memory_region_init_ram(flash, "omap_sx1.flash0-0", flash_size);
sx1_binfo.kernel_filename = kernel_filename;
sx1_binfo.kernel_cmdline = kernel_cmdline;
sx1_binfo.initrd_filename = initrd_filename;
- arm_load_kernel(&cpu->cpu->env, &sx1_binfo);
+ arm_load_kernel(mpu->cpu, &sx1_binfo);
}
/* TODO: fix next line */
const char *initrd_filename, const char *cpu_model)
{
MemoryRegion *address_space_mem = get_system_memory();
- struct omap_mpu_state_s *cpu;
+ struct omap_mpu_state_s *mpu;
int flash_size = 0x00800000;
int sdram_size = palmte_binfo.ram_size;
static uint32_t cs0val = 0xffffffff;
MemoryRegion *flash = g_new(MemoryRegion, 1);
MemoryRegion *cs = g_new(MemoryRegion, 4);
- cpu = omap310_mpu_init(address_space_mem, sdram_size, cpu_model);
+ mpu = omap310_mpu_init(address_space_mem, sdram_size, cpu_model);
/* External Flash (EMIFS) */
memory_region_init_ram(flash, "palmte.flash", flash_size);
OMAP_CS3_SIZE);
memory_region_add_subregion(address_space_mem, OMAP_CS3_BASE, &cs[3]);
- palmte_microwire_setup(cpu);
+ palmte_microwire_setup(mpu);
- qemu_add_kbd_event_handler(palmte_button_event, cpu);
+ qemu_add_kbd_event_handler(palmte_button_event, mpu);
- palmte_gpio_setup(cpu);
+ palmte_gpio_setup(mpu);
/* Setup initial (reset) machine state */
if (nb_option_roms) {
palmte_binfo.kernel_filename = kernel_filename;
palmte_binfo.kernel_cmdline = kernel_cmdline;
palmte_binfo.initrd_filename = initrd_filename;
- arm_load_kernel(&cpu->cpu->env, &palmte_binfo);
+ arm_load_kernel(mpu->cpu, &palmte_binfo);
}
/* FIXME: We shouldn't really be doing this here. The LCD controller
DeviceState *dev;
dev = qdev_create(&bus->qbus, name);
- qdev_prop_set_uint32(dev, "addr", devfn);
+ qdev_prop_set_int32(dev, "addr", devfn);
qdev_prop_set_bit(dev, "multifunction", multifunction);
return PCI_DEVICE(dev);
}
/* the following fields are read only */
PCIBus *bus;
- uint32_t devfn;
+ int32_t devfn;
char name[64];
PCIIORegion io_regions[PCI_NUM_REGIONS];
# define PXA2XX_INTERNAL_SIZE 0x40000
/* pxa2xx_pic.c */
-DeviceState *pxa2xx_pic_init(target_phys_addr_t base, CPUARMState *env);
+DeviceState *pxa2xx_pic_init(target_phys_addr_t base, ARMCPU *cpu);
/* pxa2xx_gpio.c */
DeviceState *pxa2xx_gpio_init(target_phys_addr_t base,
memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
&s->internal);
- s->pic = pxa2xx_pic_init(0x40d00000, &s->cpu->env);
+ s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
s->dma = pxa27x_dma_init(0x40000000,
qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
&s->internal);
- s->pic = pxa2xx_pic_init(0x40d00000, &s->cpu->env);
+ s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
s->dma = pxa255_dma_init(0x40000000,
qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
qemu_irq irq0, irq1, irqX;
int lines;
int ncpu;
- CPUARMState *cpu_env;
+ ARMCPU *cpu;
/* XXX: GNU C vectors are more suitable */
uint32_t ilevel[PXA2XX_GPIO_BANKS];
pxa2xx_gpio_irq_update(s);
/* Wake-up GPIOs */
- if (s->cpu_env->halted && (mask & ~s->dir[bank] & pxa2xx_gpio_wake[bank]))
- cpu_interrupt(s->cpu_env, CPU_INTERRUPT_EXITTB);
+ if (s->cpu->env.halted && (mask & ~s->dir[bank] & pxa2xx_gpio_wake[bank])) {
+ cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_EXITTB);
+ }
}
static void pxa2xx_gpio_handler_update(PXA2xxGPIOInfo *s) {
s = FROM_SYSBUS(PXA2xxGPIOInfo, dev);
- s->cpu_env = qemu_get_cpu(s->ncpu);
+ s->cpu = arm_env_get_cpu(qemu_get_cpu(s->ncpu));
qdev_init_gpio_in(&dev->qdev, pxa2xx_gpio_set, s->lines);
qdev_init_gpio_out(&dev->qdev, s->handler, s->lines);
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
- CPUARMState *cpu_env;
+ ARMCPU *cpu;
uint32_t int_enabled[2];
uint32_t int_pending[2];
uint32_t is_fiq[2];
uint32_t mask[2];
PXA2xxPICState *s = (PXA2xxPICState *) opaque;
- if (s->cpu_env->halted) {
+ if (s->cpu->env.halted) {
mask[0] = s->int_pending[0] & (s->int_enabled[0] | s->int_idle);
mask[1] = s->int_pending[1] & (s->int_enabled[1] | s->int_idle);
- if (mask[0] || mask[1])
- cpu_interrupt(s->cpu_env, CPU_INTERRUPT_EXITTB);
+ if (mask[0] || mask[1]) {
+ cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_EXITTB);
+ }
}
mask[0] = s->int_pending[0] & s->int_enabled[0];
mask[1] = s->int_pending[1] & s->int_enabled[1];
- if ((mask[0] & s->is_fiq[0]) || (mask[1] & s->is_fiq[1]))
- cpu_interrupt(s->cpu_env, CPU_INTERRUPT_FIQ);
- else
- cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_FIQ);
+ if ((mask[0] & s->is_fiq[0]) || (mask[1] & s->is_fiq[1])) {
+ cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_FIQ);
+ } else {
+ cpu_reset_interrupt(&s->cpu->env, CPU_INTERRUPT_FIQ);
+ }
- if ((mask[0] & ~s->is_fiq[0]) || (mask[1] & ~s->is_fiq[1]))
- cpu_interrupt(s->cpu_env, CPU_INTERRUPT_HARD);
- else
- cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_HARD);
+ if ((mask[0] & ~s->is_fiq[0]) || (mask[1] & ~s->is_fiq[1])) {
+ cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HARD);
+ } else {
+ cpu_reset_interrupt(&s->cpu->env, CPU_INTERRUPT_HARD);
+ }
}
/* Note: Here level means state of the signal on a pin, not
return 0;
}
-DeviceState *pxa2xx_pic_init(target_phys_addr_t base, CPUARMState *env)
+DeviceState *pxa2xx_pic_init(target_phys_addr_t base, ARMCPU *cpu)
{
+ CPUARMState *env = &cpu->env;
DeviceState *dev = qdev_create(NULL, "pxa2xx_pic");
PXA2xxPICState *s = FROM_SYSBUS(PXA2xxPICState, sysbus_from_qdev(dev));
- s->cpu_env = env;
+ s->cpu = cpu;
s->int_pending[0] = 0;
s->int_pending[1] = 0;
int64_t value;
value = *ptr;
- visit_type_int(v, &value, name, errp);
+ visit_type_int64(v, &value, name, errp);
}
static void set_taddr(Object *obj, Visitor *v, void *opaque,
return;
}
- visit_type_int(v, &value, name, &local_err);
+ visit_type_int64(v, &value, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
/* --- 8bit integer --- */
-static void get_int8(Object *obj, Visitor *v, void *opaque,
- const char *name, Error **errp)
+static void get_uint8(Object *obj, Visitor *v, void *opaque,
+ const char *name, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
- int8_t *ptr = qdev_get_prop_ptr(dev, prop);
- int64_t value;
+ uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
- value = *ptr;
- visit_type_int(v, &value, name, errp);
+ visit_type_uint8(v, ptr, name, errp);
}
-static void set_int8(Object *obj, Visitor *v, void *opaque,
- const char *name, Error **errp)
+static void set_uint8(Object *obj, Visitor *v, void *opaque,
+ const char *name, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
- int8_t *ptr = qdev_get_prop_ptr(dev, prop);
- Error *local_err = NULL;
- int64_t value;
+ uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
if (dev->state != DEV_STATE_CREATED) {
error_set(errp, QERR_PERMISSION_DENIED);
return;
}
- visit_type_int(v, &value, name, &local_err);
- if (local_err) {
- error_propagate(errp, local_err);
- return;
- }
- if (value >= prop->info->min && value <= prop->info->max) {
- *ptr = value;
- } else {
- error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE,
- dev->id?:"", name, value, prop->info->min,
- prop->info->max);
- }
+ visit_type_uint8(v, ptr, name, errp);
}
PropertyInfo qdev_prop_uint8 = {
.name = "uint8",
- .get = get_int8,
- .set = set_int8,
- .min = 0,
- .max = 255,
+ .get = get_uint8,
+ .set = set_uint8,
};
/* --- 8bit hex value --- */
.legacy_name = "hex8",
.parse = parse_hex8,
.print = print_hex8,
- .get = get_int8,
- .set = set_int8,
- .min = 0,
- .max = 255,
+ .get = get_uint8,
+ .set = set_uint8,
};
/* --- 16bit integer --- */
-static void get_int16(Object *obj, Visitor *v, void *opaque,
- const char *name, Error **errp)
+static void get_uint16(Object *obj, Visitor *v, void *opaque,
+ const char *name, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
- int16_t *ptr = qdev_get_prop_ptr(dev, prop);
- int64_t value;
+ uint16_t *ptr = qdev_get_prop_ptr(dev, prop);
- value = *ptr;
- visit_type_int(v, &value, name, errp);
+ visit_type_uint16(v, ptr, name, errp);
}
-static void set_int16(Object *obj, Visitor *v, void *opaque,
- const char *name, Error **errp)
+static void set_uint16(Object *obj, Visitor *v, void *opaque,
+ const char *name, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
- int16_t *ptr = qdev_get_prop_ptr(dev, prop);
- Error *local_err = NULL;
- int64_t value;
+ uint16_t *ptr = qdev_get_prop_ptr(dev, prop);
if (dev->state != DEV_STATE_CREATED) {
error_set(errp, QERR_PERMISSION_DENIED);
return;
}
- visit_type_int(v, &value, name, &local_err);
- if (local_err) {
- error_propagate(errp, local_err);
- return;
- }
- if (value >= prop->info->min && value <= prop->info->max) {
- *ptr = value;
- } else {
- error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE,
- dev->id?:"", name, value, prop->info->min,
- prop->info->max);
- }
+ visit_type_uint16(v, ptr, name, errp);
}
PropertyInfo qdev_prop_uint16 = {
.name = "uint16",
- .get = get_int16,
- .set = set_int16,
- .min = 0,
- .max = 65535,
+ .get = get_uint16,
+ .set = set_uint16,
};
/* --- 32bit integer --- */
+static void get_uint32(Object *obj, Visitor *v, void *opaque,
+ const char *name, Error **errp)
+{
+ DeviceState *dev = DEVICE(obj);
+ Property *prop = opaque;
+ uint32_t *ptr = qdev_get_prop_ptr(dev, prop);
+
+ visit_type_uint32(v, ptr, name, errp);
+}
+
+static void set_uint32(Object *obj, Visitor *v, void *opaque,
+ const char *name, Error **errp)
+{
+ DeviceState *dev = DEVICE(obj);
+ Property *prop = opaque;
+ uint32_t *ptr = qdev_get_prop_ptr(dev, prop);
+
+ if (dev->state != DEV_STATE_CREATED) {
+ error_set(errp, QERR_PERMISSION_DENIED);
+ return;
+ }
+
+ visit_type_uint32(v, ptr, name, errp);
+}
+
static void get_int32(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
int32_t *ptr = qdev_get_prop_ptr(dev, prop);
- int64_t value;
- value = *ptr;
- visit_type_int(v, &value, name, errp);
+ visit_type_int32(v, ptr, name, errp);
}
static void set_int32(Object *obj, Visitor *v, void *opaque,
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
int32_t *ptr = qdev_get_prop_ptr(dev, prop);
- Error *local_err = NULL;
- int64_t value;
if (dev->state != DEV_STATE_CREATED) {
error_set(errp, QERR_PERMISSION_DENIED);
return;
}
- visit_type_int(v, &value, name, &local_err);
- if (local_err) {
- error_propagate(errp, local_err);
- return;
- }
- if (value >= prop->info->min && value <= prop->info->max) {
- *ptr = value;
- } else {
- error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE,
- dev->id?:"", name, value, prop->info->min,
- prop->info->max);
- }
+ visit_type_int32(v, ptr, name, errp);
}
PropertyInfo qdev_prop_uint32 = {
.name = "uint32",
- .get = get_int32,
- .set = set_int32,
- .min = 0,
- .max = 0xFFFFFFFFULL,
+ .get = get_uint32,
+ .set = set_uint32,
};
PropertyInfo qdev_prop_int32 = {
.name = "int32",
.get = get_int32,
.set = set_int32,
- .min = -0x80000000LL,
- .max = 0x7FFFFFFFLL,
};
/* --- 32bit hex value --- */
.legacy_name = "hex32",
.parse = parse_hex32,
.print = print_hex32,
- .get = get_int32,
- .set = set_int32,
- .min = 0,
- .max = 0xFFFFFFFFULL,
+ .get = get_uint32,
+ .set = set_uint32,
};
/* --- 64bit integer --- */
-static void get_int64(Object *obj, Visitor *v, void *opaque,
- const char *name, Error **errp)
+static void get_uint64(Object *obj, Visitor *v, void *opaque,
+ const char *name, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
- int64_t *ptr = qdev_get_prop_ptr(dev, prop);
+ uint64_t *ptr = qdev_get_prop_ptr(dev, prop);
- visit_type_int(v, ptr, name, errp);
+ visit_type_uint64(v, ptr, name, errp);
}
-static void set_int64(Object *obj, Visitor *v, void *opaque,
- const char *name, Error **errp)
+static void set_uint64(Object *obj, Visitor *v, void *opaque,
+ const char *name, Error **errp)
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
- int64_t *ptr = qdev_get_prop_ptr(dev, prop);
+ uint64_t *ptr = qdev_get_prop_ptr(dev, prop);
if (dev->state != DEV_STATE_CREATED) {
error_set(errp, QERR_PERMISSION_DENIED);
return;
}
- visit_type_int(v, ptr, name, errp);
+ visit_type_uint64(v, ptr, name, errp);
}
PropertyInfo qdev_prop_uint64 = {
.name = "uint64",
- .get = get_int64,
- .set = set_int64,
+ .get = get_uint64,
+ .set = set_uint64,
};
/* --- 64bit hex value --- */
.legacy_name = "hex64",
.parse = parse_hex64,
.print = print_hex64,
- .get = get_int64,
- .set = set_int64,
+ .get = get_uint64,
+ .set = set_uint64,
};
/* --- string --- */
int64_t id;
id = *ptr ? (*ptr)->id : -1;
- visit_type_int(v, &id, name, errp);
+ visit_type_int64(v, &id, name, errp);
}
static void set_vlan(Object *obj, Visitor *v, void *opaque,
return;
}
- visit_type_int(v, &id, name, &local_err);
+ visit_type_int64(v, &id, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
- uint32_t *ptr = qdev_get_prop_ptr(dev, prop);
+ int32_t value, *ptr = qdev_get_prop_ptr(dev, prop);
unsigned int slot, fn, n;
Error *local_err = NULL;
char *str;
visit_type_str(v, &str, name, &local_err);
if (local_err) {
error_free(local_err);
- return set_int32(obj, v, opaque, name, errp);
+ local_err = NULL;
+ visit_type_int32(v, &value, name, &local_err);
+ if (local_err) {
+ error_propagate(errp, local_err);
+ } else if (value < -1 || value > 255) {
+ error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null",
+ "pci_devfn");
+ } else {
+ *ptr = value;
+ }
+ return;
}
if (sscanf(str, "%x.%x%n", &slot, &fn, &n) != 2) {
static int print_pci_devfn(DeviceState *dev, Property *prop, char *dest, size_t len)
{
- uint32_t *ptr = qdev_get_prop_ptr(dev, prop);
+ int32_t *ptr = qdev_get_prop_ptr(dev, prop);
if (*ptr == -1) {
return snprintf(dest, len, "<unset>");
.print = print_pci_devfn,
.get = get_int32,
.set = set_pci_devfn,
- /* FIXME: this should be -1...255, but the address is stored
- * into an uint32_t rather than int32_t.
- */
- .min = 0,
- .max = 0xFFFFFFFFULL,
};
/* --- blocksize --- */
{
DeviceState *dev = DEVICE(obj);
Property *prop = opaque;
- int16_t *ptr = qdev_get_prop_ptr(dev, prop);
+ uint16_t value, *ptr = qdev_get_prop_ptr(dev, prop);
Error *local_err = NULL;
- int64_t value;
+ const int64_t min = 512;
+ const int64_t max = 32768;
if (dev->state != DEV_STATE_CREATED) {
error_set(errp, QERR_PERMISSION_DENIED);
return;
}
- visit_type_int(v, &value, name, &local_err);
+ visit_type_uint16(v, &value, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
- if (value < prop->info->min || value > prop->info->max) {
+ if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE,
- dev->id?:"", name, value, prop->info->min,
- prop->info->max);
+ dev->id?:"", name, (int64_t)value, min, max);
return;
}
/* We rely on power-of-2 blocksizes for bitmasks */
if ((value & (value - 1)) != 0) {
error_set(errp, QERR_PROPERTY_VALUE_NOT_POWER_OF_2,
- dev->id?:"", name, value);
+ dev->id?:"", name, (int64_t)value);
return;
}
PropertyInfo qdev_prop_blocksize = {
.name = "blocksize",
- .get = get_int16,
+ .get = get_uint16,
.set = set_blocksize,
- .min = 512,
- .max = 65024,
};
/* --- public helpers --- */
const char *name;
const char *legacy_name;
const char **enum_table;
- int64_t min;
- int64_t max;
int (*parse)(DeviceState *dev, Property *prop, const char *str);
int (*print)(DeviceState *dev, Property *prop, char *dest, size_t len);
ObjectPropertyAccessor *get;
#define DEFINE_PROP_HEX64(_n, _s, _f, _d) \
DEFINE_PROP_DEFAULT(_n, _s, _f, _d, qdev_prop_hex64, uint64_t)
#define DEFINE_PROP_PCI_DEVFN(_n, _s, _f, _d) \
- DEFINE_PROP_DEFAULT(_n, _s, _f, _d, qdev_prop_pci_devfn, uint32_t)
+ DEFINE_PROP_DEFAULT(_n, _s, _f, _d, qdev_prop_pci_devfn, int32_t)
#define DEFINE_PROP_PTR(_n, _s, _f) \
DEFINE_PROP(_n, _s, _f, qdev_prop_ptr, void*)
const char *initrd_filename, const char *cpu_model,
enum realview_board_type board_type)
{
- CPUARMState *env = NULL;
+ ARMCPU *cpu = NULL;
+ CPUARMState *env;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ram_lo = g_new(MemoryRegion, 1);
MemoryRegion *ram_hi = g_new(MemoryRegion, 1);
break;
}
for (n = 0; n < smp_cpus; n++) {
- env = cpu_init(cpu_model);
- if (!env) {
+ cpu = cpu_arm_init(cpu_model);
+ if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
- irqp = arm_pic_init_cpu(env);
+ irqp = arm_pic_init_cpu(cpu);
cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
}
+ env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_V7)) {
if (is_mpcore) {
proc_id = 0x0c000000;
realview_binfo.nb_cpus = smp_cpus;
realview_binfo.board_id = realview_board_id[board_type];
realview_binfo.loader_start = (board_type == BOARD_PB_A8 ? 0x70000000 : 0);
- arm_load_kernel(first_cpu, &realview_binfo);
+ arm_load_kernel(arm_env_get_cpu(first_cpu), &realview_binfo);
}
static void realview_eb_init(ram_addr_t ram_size,
s390_virtio_device_sync(dev);
s390_virtio_reset_idx(dev);
if (dev->qdev.hotplugged) {
- CPUS390XState *env = s390_cpu_addr2state(0);
+ S390CPU *cpu = s390_cpu_addr2state(0);
+ CPUS390XState *env = &cpu->env;
s390_virtio_irq(env, VIRTIO_PARAM_DEV_ADD, dev->dev_offs);
}
{
VirtIOS390Device *dev = (VirtIOS390Device*)opaque;
uint64_t token = s390_virtio_device_vq_token(dev, vector);
- CPUS390XState *env = s390_cpu_addr2state(0);
+ S390CPU *cpu = s390_cpu_addr2state(0);
+ CPUS390XState *env = &cpu->env;
s390_virtio_irq(env, 0, token);
}
#define MAX_BLK_DEVS 10
static VirtIOS390Bus *s390_bus;
-static CPUS390XState **ipi_states;
+static S390CPU **ipi_states;
-CPUS390XState *s390_cpu_addr2state(uint16_t cpu_addr)
+S390CPU *s390_cpu_addr2state(uint16_t cpu_addr)
{
if (cpu_addr >= smp_cpus) {
return NULL;
cpu_model = "host";
}
- ipi_states = g_malloc(sizeof(CPUS390XState *) * smp_cpus);
+ ipi_states = g_malloc(sizeof(S390CPU *) * smp_cpus);
for (i = 0; i < smp_cpus; i++) {
+ S390CPU *cpu;
CPUS390XState *tmp_env;
- tmp_env = cpu_init(cpu_model);
+ cpu = cpu_s390x_init(cpu_model);
+ tmp_env = &cpu->env;
if (!env) {
env = tmp_env;
}
- ipi_states[i] = tmp_env;
+ ipi_states[i] = cpu;
tmp_env->halted = 1;
tmp_env->exception_index = EXCP_HLT;
tmp_env->storage_keys = storage_keys;
QTAILQ_FOREACH(req, &s->requests, next) {
assert(!req->io_canceled);
assert(req->status == -1);
- assert(req->retry);
assert(req->enqueued);
- qemu_put_sbyte(f, 1);
+ qemu_put_sbyte(f, req->retry ? 1 : 2);
qemu_put_buffer(f, req->cmd.buf, sizeof(req->cmd.buf));
qemu_put_be32s(f, &req->tag);
qemu_put_be32s(f, &req->lun);
{
SCSIDevice *s = pv;
SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, s->qdev.parent_bus);
+ int8_t sbyte;
- while (qemu_get_sbyte(f)) {
+ while ((sbyte = qemu_get_sbyte(f)) > 0) {
uint8_t buf[SCSI_CMD_BUF_SIZE];
uint32_t tag;
uint32_t lun;
qemu_get_be32s(f, &tag);
qemu_get_be32s(f, &lun);
req = scsi_req_new(s, tag, lun, buf, NULL);
+ req->retry = (sbyte == 1);
if (bus->info->load_request) {
req->hba_private = bus->info->load_request(f, req);
}
}
/* Just restart it later. */
- req->retry = true;
scsi_req_enqueue_internal(req);
/* At this point, the request will be kept alive by the reference
qemu_put_be64s(f, &r->sector);
qemu_put_be32s(f, &r->sector_count);
qemu_put_be32s(f, &r->buflen);
- if (r->buflen && r->req.cmd.mode == SCSI_XFER_TO_DEV) {
- qemu_put_buffer(f, r->iov.iov_base, r->iov.iov_len);
+ if (r->buflen) {
+ if (r->req.cmd.mode == SCSI_XFER_TO_DEV) {
+ qemu_put_buffer(f, r->iov.iov_base, r->iov.iov_len);
+ } else if (!req->retry) {
+ uint32_t len = r->iov.iov_len;
+ qemu_put_be32s(f, &len);
+ qemu_put_buffer(f, r->iov.iov_base, r->iov.iov_len);
+ }
}
}
scsi_init_iovec(r, r->buflen);
if (r->req.cmd.mode == SCSI_XFER_TO_DEV) {
qemu_get_buffer(f, r->iov.iov_base, r->iov.iov_len);
+ } else if (!r->req.retry) {
+ uint32_t len;
+ qemu_get_be32s(f, &len);
+ r->iov.iov_len = len;
+ assert(r->iov.iov_len <= r->buflen);
+ qemu_get_buffer(f, r->iov.iov_base, r->iov.iov_len);
}
}
const char *kernel_cmdline, const char *initrd_filename,
const char *cpu_model, enum spitz_model_e model, int arm_id)
{
- PXA2xxState *cpu;
+ PXA2xxState *mpu;
DeviceState *scp0, *scp1 = NULL;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *rom = g_new(MemoryRegion, 1);
cpu_model = (model == terrier) ? "pxa270-c5" : "pxa270-c0";
/* Setup CPU & memory */
- cpu = pxa270_init(address_space_mem, spitz_binfo.ram_size, cpu_model);
+ mpu = pxa270_init(address_space_mem, spitz_binfo.ram_size, cpu_model);
- sl_flash_register(cpu, (model == spitz) ? FLASH_128M : FLASH_1024M);
+ sl_flash_register(mpu, (model == spitz) ? FLASH_128M : FLASH_1024M);
memory_region_init_ram(rom, "spitz.rom", SPITZ_ROM);
vmstate_register_ram_global(rom);
memory_region_add_subregion(address_space_mem, 0, rom);
/* Setup peripherals */
- spitz_keyboard_register(cpu);
+ spitz_keyboard_register(mpu);
- spitz_ssp_attach(cpu);
+ spitz_ssp_attach(mpu);
scp0 = sysbus_create_simple("scoop", 0x10800000, NULL);
if (model != akita) {
scp1 = sysbus_create_simple("scoop", 0x08800040, NULL);
}
- spitz_scoop_gpio_setup(cpu, scp0, scp1);
+ spitz_scoop_gpio_setup(mpu, scp0, scp1);
- spitz_gpio_setup(cpu, (model == akita) ? 1 : 2);
+ spitz_gpio_setup(mpu, (model == akita) ? 1 : 2);
- spitz_i2c_setup(cpu);
+ spitz_i2c_setup(mpu);
if (model == akita)
- spitz_akita_i2c_setup(cpu);
+ spitz_akita_i2c_setup(mpu);
if (model == terrier)
/* A 6.0 GB microdrive is permanently sitting in CF slot 1. */
- spitz_microdrive_attach(cpu, 1);
+ spitz_microdrive_attach(mpu, 1);
else if (model != akita)
/* A 4.0 GB microdrive is permanently sitting in CF slot 0. */
- spitz_microdrive_attach(cpu, 0);
+ spitz_microdrive_attach(mpu, 0);
spitz_binfo.kernel_filename = kernel_filename;
spitz_binfo.kernel_cmdline = kernel_cmdline;
spitz_binfo.initrd_filename = initrd_filename;
spitz_binfo.board_id = arm_id;
- arm_load_kernel(&cpu->cpu->env, &spitz_binfo);
+ arm_load_kernel(mpu->cpu, &spitz_binfo);
sl_bootparam_write(SL_PXA_PARAM_BASE);
}
exit(1);
}
- s->env = cpu_init(rev);
+ s->cpu = cpu_arm_init(rev);
- if (!s->env) {
+ if (!s->cpu) {
error_report("Unable to find CPU definition");
exit(1);
}
vmstate_register_ram_global(&s->sdram);
memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
- pic = arm_pic_init_cpu(s->env);
+ pic = arm_pic_init_cpu(s->cpu);
s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
pic[ARM_PIC_CPU_IRQ], pic[ARM_PIC_CPU_FIQ], NULL);
};
typedef struct {
- CPUARMState *env;
+ ARMCPU *cpu;
MemoryRegion sdram;
DeviceState *pic;
DeviceState *gpio;
{
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *rom = g_new(MemoryRegion, 1);
- PXA2xxState *cpu;
+ PXA2xxState *mpu;
TC6393xbState *tmio;
DeviceState *scp0, *scp1;
if (!cpu_model)
cpu_model = "pxa255";
- cpu = pxa255_init(address_space_mem, tosa_binfo.ram_size);
+ mpu = pxa255_init(address_space_mem, tosa_binfo.ram_size);
memory_region_init_ram(rom, "tosa.rom", TOSA_ROM);
vmstate_register_ram_global(rom);
memory_region_add_subregion(address_space_mem, 0, rom);
tmio = tc6393xb_init(address_space_mem, 0x10000000,
- qdev_get_gpio_in(cpu->gpio, TOSA_GPIO_TC6393XB_INT));
+ qdev_get_gpio_in(mpu->gpio, TOSA_GPIO_TC6393XB_INT));
scp0 = sysbus_create_simple("scoop", 0x08800000, NULL);
scp1 = sysbus_create_simple("scoop", 0x14800040, NULL);
- tosa_gpio_setup(cpu, scp0, scp1, tmio);
+ tosa_gpio_setup(mpu, scp0, scp1, tmio);
- tosa_microdrive_attach(cpu);
+ tosa_microdrive_attach(mpu);
- tosa_tg_init(cpu);
+ tosa_tg_init(mpu);
tosa_binfo.kernel_filename = kernel_filename;
tosa_binfo.kernel_cmdline = kernel_cmdline;
tosa_binfo.initrd_filename = initrd_filename;
tosa_binfo.board_id = 0x208;
- arm_load_kernel(&cpu->cpu->env, &tosa_binfo);
+ arm_load_kernel(mpu->cpu, &tosa_binfo);
sl_bootparam_write(SL_PXA_PARAM_BASE);
}
typedef struct {
USBDevice dev;
enum USBMSDMode mode;
+ uint32_t scsi_off;
uint32_t scsi_len;
- uint8_t *scsi_buf;
uint32_t data_len;
- uint32_t residue;
struct usb_msd_csw csw;
SCSIRequest *req;
SCSIBus bus;
len = p->iov.size - p->result;
if (len > s->scsi_len)
len = s->scsi_len;
- usb_packet_copy(p, s->scsi_buf, len);
+ usb_packet_copy(p, scsi_req_get_buf(s->req) + s->scsi_off, len);
s->scsi_len -= len;
- s->scsi_buf += len;
+ s->scsi_off += len;
s->data_len -= len;
if (s->scsi_len == 0 || s->data_len == 0) {
scsi_req_continue(s->req);
memset(&s->csw, 0, sizeof(s->csw));
}
+static void usb_msd_packet_complete(MSDState *s)
+{
+ USBPacket *p = s->packet;
+
+ /* Set s->packet to NULL before calling usb_packet_complete
+ because another request may be issued before
+ usb_packet_complete returns. */
+ DPRINTF("Packet complete %p\n", p);
+ s->packet = NULL;
+ usb_packet_complete(&s->dev, p);
+}
+
static void usb_msd_transfer_data(SCSIRequest *req, uint32_t len)
{
MSDState *s = DO_UPCAST(MSDState, dev.qdev, req->bus->qbus.parent);
assert((s->mode == USB_MSDM_DATAOUT) == (req->cmd.mode == SCSI_XFER_TO_DEV));
s->scsi_len = len;
- s->scsi_buf = scsi_req_get_buf(req);
+ s->scsi_off = 0;
if (p) {
usb_msd_copy_data(s, p);
p = s->packet;
if (p && p->result == p->iov.size) {
- /* Set s->packet to NULL before calling usb_packet_complete
- because another request may be issued before
- usb_packet_complete returns. */
- DPRINTF("Packet complete %p\n", p);
- s->packet = NULL;
- usb_packet_complete(&s->dev, p);
+ usb_msd_packet_complete(s);
}
}
}
USBPacket *p = s->packet;
DPRINTF("Command complete %d tag 0x%x\n", status, req->tag);
- s->residue = s->data_len;
s->csw.sig = cpu_to_le32(0x53425355);
s->csw.tag = cpu_to_le32(req->tag);
- s->csw.residue = cpu_to_le32(s->residue);
+ s->csw.residue = cpu_to_le32(s->data_len);
s->csw.status = status != 0;
if (s->packet) {
s->mode = USB_MSDM_CSW;
}
}
- s->packet = NULL;
- usb_packet_complete(&s->dev, p);
+ usb_msd_packet_complete(s);
} else if (s->data_len == 0) {
s->mode = USB_MSDM_CSW;
}
assert(s->req == NULL);
if (s->packet) {
- USBPacket *p = s->packet;
- s->packet = NULL;
- p->result = USB_RET_STALL;
- usb_packet_complete(dev, p);
+ s->packet->result = USB_RET_STALL;
+ usb_msd_packet_complete(s);
}
s->mode = USB_MSDM_CBW;
}
DPRINTF("Command tag 0x%x flags %08x len %d data %d\n",
tag, cbw.flags, cbw.cmd_len, s->data_len);
- s->residue = 0;
+ assert(le32_to_cpu(s->csw.residue) == 0);
s->scsi_len = 0;
s->req = scsi_req_new(s->scsi_dev, tag, 0, cbw.cmd, NULL);
scsi_req_enqueue(s->req);
if (s->scsi_len) {
usb_msd_copy_data(s, p);
}
- if (s->residue) {
+ if (le32_to_cpu(s->csw.residue)) {
int len = p->iov.size - p->result;
if (len) {
usb_packet_skip(p, len);
if (s->scsi_len) {
usb_msd_copy_data(s, p);
}
- if (s->residue) {
+ if (le32_to_cpu(s->csw.residue)) {
int len = p->iov.size - p->result;
if (len) {
usb_packet_skip(p, len);
qdev_unplug(&s->dev.qdev, NULL);
}
+static void *usb_msd_load_request(QEMUFile *f, SCSIRequest *req)
+{
+ MSDState *s = DO_UPCAST(MSDState, dev.qdev, req->bus->qbus.parent);
+
+ /* nothing to load, just store req in our state struct */
+ assert(s->req == NULL);
+ scsi_req_ref(req);
+ s->req = req;
+ return NULL;
+}
+
static const struct SCSIBusInfo usb_msd_scsi_info = {
.tcq = false,
.max_target = 0,
.transfer_data = usb_msd_transfer_data,
.complete = usb_msd_command_complete,
- .cancel = usb_msd_request_cancelled
+ .cancel = usb_msd_request_cancelled,
+ .load_request = usb_msd_load_request,
};
static int usb_msd_initfn(USBDevice *dev)
static const VMStateDescription vmstate_usb_msd = {
.name = "usb-storage",
- .unmigratable = 1, /* FIXME: handle transactions which are in flight */
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField []) {
VMSTATE_USB_DEVICE(dev, MSDState),
+ VMSTATE_UINT32(mode, MSDState),
+ VMSTATE_UINT32(scsi_len, MSDState),
+ VMSTATE_UINT32(scsi_off, MSDState),
+ VMSTATE_UINT32(data_len, MSDState),
+ VMSTATE_UINT32(csw.sig, MSDState),
+ VMSTATE_UINT32(csw.tag, MSDState),
+ VMSTATE_UINT32(csw.residue, MSDState),
+ VMSTATE_UINT8(csw.status, MSDState),
VMSTATE_END_OF_LIST()
}
};
uint32_t backptr; // Standard next link pointer
} EHCIfstn;
+typedef struct EHCIPacket EHCIPacket;
typedef struct EHCIQueue EHCIQueue;
typedef struct EHCIState EHCIState;
EHCI_ASYNC_FINISHED,
};
+struct EHCIPacket {
+ EHCIQueue *queue;
+ QTAILQ_ENTRY(EHCIPacket) next;
+
+ EHCIqtd qtd; /* copy of current QTD (being worked on) */
+ uint32_t qtdaddr; /* address QTD read from */
+
+ USBPacket packet;
+ QEMUSGList sgl;
+ int pid;
+ uint32_t tbytes;
+ enum async_state async;
+ int usb_status;
+};
+
struct EHCIQueue {
EHCIState *ehci;
QTAILQ_ENTRY(EHCIQueue) next;
uint32_t seen;
uint64_t ts;
+ int async;
/* cached data from guest - needs to be flushed
* when guest removes an entry (doorbell, handshake sequence)
*/
- EHCIqh qh; // copy of current QH (being worked on)
- uint32_t qhaddr; // address QH read from
- EHCIqtd qtd; // copy of current QTD (being worked on)
- uint32_t qtdaddr; // address QTD read from
-
- USBPacket packet;
- QEMUSGList sgl;
- int pid;
- uint32_t tbytes;
- enum async_state async;
- int usb_status;
+ EHCIqh qh; /* copy of current QH (being worked on) */
+ uint32_t qhaddr; /* address QH read from */
+ uint32_t qtdaddr; /* address QTD read from */
+ USBDevice *dev;
+ QTAILQ_HEAD(, EHCIPacket) packets;
};
typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
int companion_count;
/* properties */
- uint32_t freq;
uint32_t maxframes;
/*
* Internal states, shadow registers, etc
*/
QEMUTimer *frame_timer;
- int attach_poll_counter;
+ QEMUBH *async_bh;
int astate; // Current state in asynchronous schedule
int pstate; // Current state in periodic schedule
USBPort ports[NB_PORTS];
QEMUSGList isgl;
uint64_t last_run_ns;
+ uint32_t async_stepdown;
};
#define SET_LAST_RUN_CLOCK(s) \
s->usbsts_pending = 0;
}
+static void ehci_update_halt(EHCIState *s)
+{
+ if (s->usbcmd & USBCMD_RUNSTOP) {
+ ehci_clear_usbsts(s, USBSTS_HALT);
+ } else {
+ if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
+ ehci_set_usbsts(s, USBSTS_HALT);
+ }
+ }
+}
+
static void ehci_set_state(EHCIState *s, int async, int state)
{
if (async) {
trace_usb_ehci_state("async", state2str(state));
s->astate = state;
+ if (s->astate == EST_INACTIVE) {
+ ehci_clear_usbsts(s, USBSTS_ASS);
+ ehci_update_halt(s);
+ } else {
+ ehci_set_usbsts(s, USBSTS_ASS);
+ }
} else {
trace_usb_ehci_state("periodic", state2str(state));
s->pstate = state;
+ if (s->pstate == EST_INACTIVE) {
+ ehci_clear_usbsts(s, USBSTS_PSS);
+ ehci_update_halt(s);
+ } else {
+ ehci_set_usbsts(s, USBSTS_PSS);
+ }
}
}
(bool)(sitd->results & SITD_RESULTS_ACTIVE));
}
+static inline bool ehci_enabled(EHCIState *s)
+{
+ return s->usbcmd & USBCMD_RUNSTOP;
+}
+
+static inline bool ehci_async_enabled(EHCIState *s)
+{
+ return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
+}
+
+static inline bool ehci_periodic_enabled(EHCIState *s)
+{
+ return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
+}
+
+/* packet management */
+
+static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
+{
+ EHCIPacket *p;
+
+ p = g_new0(EHCIPacket, 1);
+ p->queue = q;
+ usb_packet_init(&p->packet);
+ QTAILQ_INSERT_TAIL(&q->packets, p, next);
+ trace_usb_ehci_packet_action(p->queue, p, "alloc");
+ return p;
+}
+
+static void ehci_free_packet(EHCIPacket *p)
+{
+ trace_usb_ehci_packet_action(p->queue, p, "free");
+ if (p->async == EHCI_ASYNC_INFLIGHT) {
+ usb_cancel_packet(&p->packet);
+ }
+ QTAILQ_REMOVE(&p->queue->packets, p, next);
+ usb_packet_cleanup(&p->packet);
+ g_free(p);
+}
+
/* queue management */
-static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
+static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q;
q = g_malloc0(sizeof(*q));
q->ehci = ehci;
- usb_packet_init(&q->packet);
+ q->qhaddr = addr;
+ q->async = async;
+ QTAILQ_INIT(&q->packets);
QTAILQ_INSERT_HEAD(head, q, next);
trace_usb_ehci_queue_action(q, "alloc");
return q;
}
-static void ehci_free_queue(EHCIQueue *q, int async)
+static void ehci_free_queue(EHCIQueue *q)
{
- EHCIQueueHead *head = async ? &q->ehci->aqueues : &q->ehci->pqueues;
+ EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
+ EHCIPacket *p;
+
trace_usb_ehci_queue_action(q, "free");
- if (q->async == EHCI_ASYNC_INFLIGHT) {
- usb_cancel_packet(&q->packet);
+ while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
+ ehci_free_packet(p);
}
QTAILQ_REMOVE(head, q, next);
g_free(q);
static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
+ uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
q->ts = ehci->last_run_ns;
continue;
}
- if (!flush && ehci->last_run_ns < q->ts + 250000000) {
- /* allow 0.25 sec idle */
+ if (!flush && ehci->last_run_ns < q->ts + maxage) {
continue;
}
- ehci_free_queue(q, async);
+ ehci_free_queue(q);
}
}
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
- if (!usb_packet_is_inflight(&q->packet) ||
- q->packet.ep->dev != dev) {
+ if (q->dev != dev) {
continue;
}
- ehci_free_queue(q, async);
+ ehci_free_queue(q);
}
}
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
- ehci_free_queue(q, async);
+ ehci_free_queue(q);
}
}
USBPort *companion = s->companion_ports[port->index];
if (companion->ops->wakeup) {
companion->ops->wakeup(companion);
+ } else {
+ qemu_bh_schedule(s->async_bh);
}
}
}
s->astate = EST_INACTIVE;
s->pstate = EST_INACTIVE;
- s->attach_poll_counter = 0;
for(i = 0; i < NB_PORTS; i++) {
if (s->companion_ports[i]) {
ehci_queues_rip_all(s, 0);
ehci_queues_rip_all(s, 1);
qemu_del_timer(s->frame_timer);
+ qemu_bh_cancel(s->async_bh);
}
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
/* Do any register specific pre-write processing here. */
switch(addr) {
case USBCMD:
- if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
- qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
- SET_LAST_RUN_CLOCK(s);
- ehci_clear_usbsts(s, USBSTS_HALT);
- }
-
- if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
- qemu_del_timer(s->frame_timer);
- ehci_queues_rip_all(s, 0);
- ehci_queues_rip_all(s, 1);
- ehci_set_usbsts(s, USBSTS_HALT);
- }
-
if (val & USBCMD_HCRESET) {
ehci_reset(s);
val = s->usbcmd;
+ break;
+ }
+
+ if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) !=
+ ((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) {
+ if (s->pstate == EST_INACTIVE) {
+ SET_LAST_RUN_CLOCK(s);
+ }
+ ehci_update_halt(s);
+ s->async_stepdown = 0;
+ qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
}
/* not supporting dynamic frame list size at the moment */
break;
case PERIODICLISTBASE:
- if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
+ if (ehci_periodic_enabled(s)) {
fprintf(stderr,
"ehci: PERIODIC list base register set while periodic schedule\n"
" is enabled and HC is enabled\n");
break;
case ASYNCLISTADDR:
- if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
+ if (ehci_async_enabled(s)) {
fprintf(stderr,
"ehci: ASYNC list address register set while async schedule\n"
" is enabled and HC is enabled\n");
static int ehci_qh_do_overlay(EHCIQueue *q)
{
+ EHCIPacket *p = QTAILQ_FIRST(&q->packets);
int i;
int dtoggle;
int ping;
int eps;
int reload;
+ assert(p != NULL);
+ assert(p->qtdaddr == q->qtdaddr);
+
// remember values in fields to preserve in qh after overlay
dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
ping = q->qh.token & QTD_TOKEN_PING;
- q->qh.current_qtd = q->qtdaddr;
- q->qh.next_qtd = q->qtd.next;
- q->qh.altnext_qtd = q->qtd.altnext;
- q->qh.token = q->qtd.token;
+ q->qh.current_qtd = p->qtdaddr;
+ q->qh.next_qtd = p->qtd.next;
+ q->qh.altnext_qtd = p->qtd.altnext;
+ q->qh.token = p->qtd.token;
eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
for (i = 0; i < 5; i++) {
- q->qh.bufptr[i] = q->qtd.bufptr[i];
+ q->qh.bufptr[i] = p->qtd.bufptr[i];
}
if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
return 0;
}
-static int ehci_init_transfer(EHCIQueue *q)
+static int ehci_init_transfer(EHCIPacket *p)
{
uint32_t cpage, offset, bytes, plen;
dma_addr_t page;
- cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
- bytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
- offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
- pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
+ cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
+ bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
+ offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
+ pci_dma_sglist_init(&p->sgl, &p->queue->ehci->dev, 5);
while (bytes > 0) {
if (cpage > 4) {
return USB_RET_PROCERR;
}
- page = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
+ page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
page += offset;
plen = bytes;
if (plen > 4096 - offset) {
cpage++;
}
- qemu_sglist_add(&q->sgl, page, plen);
+ qemu_sglist_add(&p->sgl, page, plen);
bytes -= plen;
}
return 0;
{
uint32_t cpage, offset;
- qemu_sglist_destroy(&q->sgl);
-
if (status > 0) {
/* update cpage & offset */
cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
{
- EHCIQueue *q;
+ EHCIPacket *p;
EHCIState *s = port->opaque;
uint32_t portsc = s->portsc[port->index];
return;
}
- q = container_of(packet, EHCIQueue, packet);
- trace_usb_ehci_queue_action(q, "wakeup");
- assert(q->async == EHCI_ASYNC_INFLIGHT);
- q->async = EHCI_ASYNC_FINISHED;
- q->usb_status = packet->result;
+ p = container_of(packet, EHCIPacket, packet);
+ trace_usb_ehci_packet_action(p->queue, p, "wakeup");
+ assert(p->async == EHCI_ASYNC_INFLIGHT);
+ p->async = EHCI_ASYNC_FINISHED;
+ p->usb_status = packet->result;
+
+ if (p->queue->async) {
+ qemu_bh_schedule(p->queue->ehci->async_bh);
+ }
}
static void ehci_execute_complete(EHCIQueue *q)
{
- assert(q->async != EHCI_ASYNC_INFLIGHT);
- q->async = EHCI_ASYNC_NONE;
+ EHCIPacket *p = QTAILQ_FIRST(&q->packets);
+
+ assert(p != NULL);
+ assert(p->qtdaddr == q->qtdaddr);
+ assert(p->async != EHCI_ASYNC_INFLIGHT);
+ p->async = EHCI_ASYNC_NONE;
DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
- if (q->usb_status < 0) {
- switch(q->usb_status) {
+ if (p->usb_status < 0) {
+ switch (p->usb_status) {
case USB_RET_IOERROR:
case USB_RET_NODEV:
q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
break;
default:
/* should not be triggerable */
- fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
+ fprintf(stderr, "USB invalid response %d\n", p->usb_status);
assert(0);
break;
}
- } else if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
- q->usb_status = USB_RET_BABBLE;
+ } else if ((p->usb_status > p->tbytes) && (p->pid == USB_TOKEN_IN)) {
+ p->usb_status = USB_RET_BABBLE;
q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
} else {
// TODO check 4.12 for splits
- if (q->tbytes && q->pid == USB_TOKEN_IN) {
- q->tbytes -= q->usb_status;
+ if (p->tbytes && p->pid == USB_TOKEN_IN) {
+ p->tbytes -= p->usb_status;
} else {
- q->tbytes = 0;
+ p->tbytes = 0;
}
- DPRINTF("updating tbytes to %d\n", q->tbytes);
- set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
+ DPRINTF("updating tbytes to %d\n", p->tbytes);
+ set_field(&q->qh.token, p->tbytes, QTD_TOKEN_TBYTES);
}
- ehci_finish_transfer(q, q->usb_status);
- usb_packet_unmap(&q->packet);
+ ehci_finish_transfer(q, p->usb_status);
+ qemu_sglist_destroy(&p->sgl);
+ usb_packet_unmap(&p->packet);
q->qh.token ^= QTD_TOKEN_DTOGGLE;
q->qh.token &= ~QTD_TOKEN_ACTIVE;
// 4.10.3
-static int ehci_execute(EHCIQueue *q)
+static int ehci_execute(EHCIPacket *p, const char *action)
{
- USBDevice *dev;
USBEndpoint *ep;
int ret;
int endp;
- int devadr;
- if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
- fprintf(stderr, "Attempting to execute inactive QH\n");
+ if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
+ fprintf(stderr, "Attempting to execute inactive qtd\n");
return USB_RET_PROCERR;
}
- q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
- if (q->tbytes > BUFF_SIZE) {
+ p->tbytes = (p->qtd.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
+ if (p->tbytes > BUFF_SIZE) {
fprintf(stderr, "Request for more bytes than allowed\n");
return USB_RET_PROCERR;
}
- q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
- switch(q->pid) {
- case 0: q->pid = USB_TOKEN_OUT; break;
- case 1: q->pid = USB_TOKEN_IN; break;
- case 2: q->pid = USB_TOKEN_SETUP; break;
- default: fprintf(stderr, "bad token\n"); break;
+ p->pid = (p->qtd.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
+ switch (p->pid) {
+ case 0:
+ p->pid = USB_TOKEN_OUT;
+ break;
+ case 1:
+ p->pid = USB_TOKEN_IN;
+ break;
+ case 2:
+ p->pid = USB_TOKEN_SETUP;
+ break;
+ default:
+ fprintf(stderr, "bad token\n");
+ break;
}
- if (ehci_init_transfer(q) != 0) {
+ if (ehci_init_transfer(p) != 0) {
return USB_RET_PROCERR;
}
- endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
- devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
+ endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
+ ep = usb_ep_get(p->queue->dev, p->pid, endp);
- /* TODO: associating device with ehci port */
- dev = ehci_find_device(q->ehci, devadr);
- ep = usb_ep_get(dev, q->pid, endp);
+ usb_packet_setup(&p->packet, p->pid, ep);
+ usb_packet_map(&p->packet, &p->sgl);
- usb_packet_setup(&q->packet, q->pid, ep);
- usb_packet_map(&q->packet, &q->sgl);
-
- ret = usb_handle_packet(dev, &q->packet);
+ trace_usb_ehci_packet_action(p->queue, p, action);
+ ret = usb_handle_packet(p->queue->dev, &p->packet);
DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
"(total %d) endp %x ret %d\n",
q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
return 0;
}
+
+/*
+ * Write the qh back to guest physical memory. This step isn't
+ * in the EHCI spec but we need to do it since we don't share
+ * physical memory with our guest VM.
+ *
+ * The first three dwords are read-only for the EHCI, so skip them
+ * when writing back the qh.
+ */
+static void ehci_flush_qh(EHCIQueue *q)
+{
+ uint32_t *qh = (uint32_t *) &q->qh;
+ uint32_t dwords = sizeof(EHCIqh) >> 2;
+ uint32_t addr = NLPTR_GET(q->qhaddr);
+
+ put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
+}
+
/* This state is the entry point for asynchronous schedule
* processing. Entry here consitutes a EHCI start event state (4.8.5)
*/
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
{
- uint32_t entry;
+ EHCIPacket *p;
+ uint32_t entry, devaddr;
EHCIQueue *q;
entry = ehci_get_fetch_addr(ehci, async);
q = ehci_find_queue_by_qh(ehci, entry, async);
if (NULL == q) {
- q = ehci_alloc_queue(ehci, async);
+ q = ehci_alloc_queue(ehci, entry, async);
}
- q->qhaddr = entry;
- q->seen++;
+ p = QTAILQ_FIRST(&q->packets);
+ q->seen++;
if (q->seen > 1) {
/* we are going in circles -- stop processing */
ehci_set_state(ehci, async, EST_ACTIVE);
(uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
- if (q->async == EHCI_ASYNC_INFLIGHT) {
+ devaddr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
+ if (q->dev != NULL && q->dev->addr != devaddr) {
+ if (!QTAILQ_EMPTY(&q->packets)) {
+ /* should not happen (guest bug) */
+ while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
+ ehci_free_packet(p);
+ }
+ }
+ q->dev = NULL;
+ }
+ if (q->dev == NULL) {
+ q->dev = ehci_find_device(q->ehci, devaddr);
+ }
+
+ if (p && p->async == EHCI_ASYNC_INFLIGHT) {
/* I/O still in progress -- skip queue */
ehci_set_state(ehci, async, EST_HORIZONTALQH);
goto out;
}
- if (q->async == EHCI_ASYNC_FINISHED) {
+ if (p && p->async == EHCI_ASYNC_FINISHED) {
/* I/O finished -- continue processing queue */
- trace_usb_ehci_queue_action(q, "resume");
+ trace_usb_ehci_packet_action(p->queue, p, "complete");
ehci_set_state(ehci, async, EST_EXECUTING);
goto out;
}
}
/* Section 4.10.2 - paragraph 3 */
-static int ehci_state_advqueue(EHCIQueue *q, int async)
+static int ehci_state_advqueue(EHCIQueue *q)
{
#if 0
/* TO-DO: 4.10.2 - paragraph 2
if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
(NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
q->qtdaddr = q->qh.altnext_qtd;
- ehci_set_state(q->ehci, async, EST_FETCHQTD);
+ ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
/*
* next qTD is valid
*/
} else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
q->qtdaddr = q->qh.next_qtd;
- ehci_set_state(q->ehci, async, EST_FETCHQTD);
+ ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
/*
* no valid qTD, try next QH
*/
} else {
- ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
+ ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
}
return 1;
}
/* Section 4.10.2 - paragraph 4 */
-static int ehci_state_fetchqtd(EHCIQueue *q, int async)
+static int ehci_state_fetchqtd(EHCIQueue *q)
{
+ EHCIqtd qtd;
+ EHCIPacket *p;
int again = 0;
- get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
+ get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd,
sizeof(EHCIqtd) >> 2);
- ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
+ ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
- if (q->qtd.token & QTD_TOKEN_ACTIVE) {
- ehci_set_state(q->ehci, async, EST_EXECUTE);
+ p = QTAILQ_FIRST(&q->packets);
+ while (p != NULL && p->qtdaddr != q->qtdaddr) {
+ /* should not happen (guest bug) */
+ ehci_free_packet(p);
+ p = QTAILQ_FIRST(&q->packets);
+ }
+ if (p != NULL) {
+ ehci_qh_do_overlay(q);
+ ehci_flush_qh(q);
+ if (p->async == EHCI_ASYNC_INFLIGHT) {
+ ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
+ } else {
+ ehci_set_state(q->ehci, q->async, EST_EXECUTING);
+ }
+ again = 1;
+ } else if (qtd.token & QTD_TOKEN_ACTIVE) {
+ p = ehci_alloc_packet(q);
+ p->qtdaddr = q->qtdaddr;
+ p->qtd = qtd;
+ ehci_set_state(q->ehci, q->async, EST_EXECUTE);
again = 1;
} else {
- ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
+ ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
}
return again;
}
-static int ehci_state_horizqh(EHCIQueue *q, int async)
+static int ehci_state_horizqh(EHCIQueue *q)
{
int again = 0;
- if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
- ehci_set_fetch_addr(q->ehci, async, q->qh.next);
- ehci_set_state(q->ehci, async, EST_FETCHENTRY);
+ if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
+ ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
+ ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
again = 1;
} else {
- ehci_set_state(q->ehci, async, EST_ACTIVE);
+ ehci_set_state(q->ehci, q->async, EST_ACTIVE);
}
return again;
}
-/*
- * Write the qh back to guest physical memory. This step isn't
- * in the EHCI spec but we need to do it since we don't share
- * physical memory with our guest VM.
- *
- * The first three dwords are read-only for the EHCI, so skip them
- * when writing back the qh.
- */
-static void ehci_flush_qh(EHCIQueue *q)
+static void ehci_fill_queue(EHCIPacket *p)
{
- uint32_t *qh = (uint32_t *) &q->qh;
- uint32_t dwords = sizeof(EHCIqh) >> 2;
- uint32_t addr = NLPTR_GET(q->qhaddr);
+ EHCIQueue *q = p->queue;
+ EHCIqtd qtd = p->qtd;
+ uint32_t qtdaddr;
- put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
+ for (;;) {
+ if (NLPTR_TBIT(qtd.altnext) == 0) {
+ break;
+ }
+ if (NLPTR_TBIT(qtd.next) != 0) {
+ break;
+ }
+ qtdaddr = qtd.next;
+ get_dwords(q->ehci, NLPTR_GET(qtdaddr),
+ (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
+ ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
+ if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
+ break;
+ }
+ p = ehci_alloc_packet(q);
+ p->qtdaddr = qtdaddr;
+ p->qtd = qtd;
+ p->usb_status = ehci_execute(p, "queue");
+ assert(p->usb_status = USB_RET_ASYNC);
+ p->async = EHCI_ASYNC_INFLIGHT;
+ }
}
-static int ehci_state_execute(EHCIQueue *q, int async)
+static int ehci_state_execute(EHCIQueue *q)
{
+ EHCIPacket *p = QTAILQ_FIRST(&q->packets);
int again = 0;
+ assert(p != NULL);
+ assert(p->qtdaddr == q->qtdaddr);
+
if (ehci_qh_do_overlay(q) != 0) {
return -1;
}
// TODO write back ptr to async list when done or out of time
// TODO Windows does not seem to ever set the MULT field
- if (!async) {
+ if (!q->async) {
int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
if (!transactCtr) {
- ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
+ ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
goto out;
}
}
- if (async) {
+ if (q->async) {
ehci_set_usbsts(q->ehci, USBSTS_REC);
}
- q->usb_status = ehci_execute(q);
- if (q->usb_status == USB_RET_PROCERR) {
+ p->usb_status = ehci_execute(p, "process");
+ if (p->usb_status == USB_RET_PROCERR) {
again = -1;
goto out;
}
- if (q->usb_status == USB_RET_ASYNC) {
+ if (p->usb_status == USB_RET_ASYNC) {
ehci_flush_qh(q);
- trace_usb_ehci_queue_action(q, "suspend");
- q->async = EHCI_ASYNC_INFLIGHT;
- ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
+ trace_usb_ehci_packet_action(p->queue, p, "async");
+ p->async = EHCI_ASYNC_INFLIGHT;
+ ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
+ ehci_fill_queue(p);
goto out;
}
- ehci_set_state(q->ehci, async, EST_EXECUTING);
+ ehci_set_state(q->ehci, q->async, EST_EXECUTING);
again = 1;
out:
return again;
}
-static int ehci_state_executing(EHCIQueue *q, int async)
+static int ehci_state_executing(EHCIQueue *q)
{
+ EHCIPacket *p = QTAILQ_FIRST(&q->packets);
int again = 0;
+ assert(p != NULL);
+ assert(p->qtdaddr == q->qtdaddr);
+
ehci_execute_complete(q);
- if (q->usb_status == USB_RET_ASYNC) {
+ if (p->usb_status == USB_RET_ASYNC) {
goto out;
}
- if (q->usb_status == USB_RET_PROCERR) {
+ if (p->usb_status == USB_RET_PROCERR) {
again = -1;
goto out;
}
// 4.10.3
- if (!async) {
+ if (!q->async) {
int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
transactCtr--;
set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
}
/* 4.10.5 */
- if (q->usb_status == USB_RET_NAK) {
- ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
+ if (p->usb_status == USB_RET_NAK) {
+ ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
} else {
- ehci_set_state(q->ehci, async, EST_WRITEBACK);
+ ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
}
again = 1;
}
-static int ehci_state_writeback(EHCIQueue *q, int async)
+static int ehci_state_writeback(EHCIQueue *q)
{
+ EHCIPacket *p = QTAILQ_FIRST(&q->packets);
int again = 0;
/* Write back the QTD from the QH area */
- ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
- put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
+ assert(p != NULL);
+ assert(p->qtdaddr == q->qtdaddr);
+
+ ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
+ put_dwords(q->ehci, NLPTR_GET(p->qtdaddr), (uint32_t *) &q->qh.next_qtd,
sizeof(EHCIqtd) >> 2);
+ ehci_free_packet(p);
/*
* EHCI specs say go horizontal here.
* bit is clear.
*/
if (q->qh.token & QTD_TOKEN_HALT) {
- ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
+ ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
} else {
- ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
+ ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
again = 1;
}
return again;
* This is the state machine that is common to both async and periodic
*/
-static void ehci_advance_state(EHCIState *ehci,
- int async)
+static void ehci_advance_state(EHCIState *ehci, int async)
{
EHCIQueue *q = NULL;
int again;
case EST_FETCHQH:
q = ehci_state_fetchqh(ehci, async);
- again = q ? 1 : 0;
+ if (q != NULL) {
+ assert(q->async == async);
+ again = 1;
+ } else {
+ again = 0;
+ }
break;
case EST_FETCHITD:
break;
case EST_ADVANCEQUEUE:
- again = ehci_state_advqueue(q, async);
+ again = ehci_state_advqueue(q);
break;
case EST_FETCHQTD:
- again = ehci_state_fetchqtd(q, async);
+ again = ehci_state_fetchqtd(q);
break;
case EST_HORIZONTALQH:
- again = ehci_state_horizqh(q, async);
+ again = ehci_state_horizqh(q);
break;
case EST_EXECUTE:
- again = ehci_state_execute(q, async);
+ again = ehci_state_execute(q);
+ if (async) {
+ ehci->async_stepdown = 0;
+ }
break;
case EST_EXECUTING:
assert(q != NULL);
- again = ehci_state_executing(q, async);
+ if (async) {
+ ehci->async_stepdown = 0;
+ }
+ again = ehci_state_executing(q);
break;
case EST_WRITEBACK:
assert(q != NULL);
- again = ehci_state_writeback(q, async);
+ again = ehci_state_writeback(q);
break;
default:
switch(ehci_get_state(ehci, async)) {
case EST_INACTIVE:
- if (!(ehci->usbcmd & USBCMD_ASE)) {
+ if (!ehci_async_enabled(ehci)) {
break;
}
- ehci_set_usbsts(ehci, USBSTS_ASS);
ehci_set_state(ehci, async, EST_ACTIVE);
// No break, fall through to ACTIVE
case EST_ACTIVE:
- if ( !(ehci->usbcmd & USBCMD_ASE)) {
+ if (!ehci_async_enabled(ehci)) {
ehci_queues_rip_all(ehci, async);
- ehci_clear_usbsts(ehci, USBSTS_ASS);
ehci_set_state(ehci, async, EST_INACTIVE);
break;
}
switch(ehci_get_state(ehci, async)) {
case EST_INACTIVE:
- if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
- ehci_set_usbsts(ehci, USBSTS_PSS);
+ if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
ehci_set_state(ehci, async, EST_ACTIVE);
// No break, fall through to ACTIVE
} else
break;
case EST_ACTIVE:
- if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
+ if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
ehci_queues_rip_all(ehci, async);
- ehci_clear_usbsts(ehci, USBSTS_PSS);
ehci_set_state(ehci, async, EST_INACTIVE);
break;
}
}
}
+static void ehci_update_frindex(EHCIState *ehci, int frames)
+{
+ int i;
+
+ if (!ehci_enabled(ehci)) {
+ return;
+ }
+
+ for (i = 0; i < frames; i++) {
+ ehci->frindex += 8;
+
+ if (ehci->frindex == 0x00002000) {
+ ehci_set_interrupt(ehci, USBSTS_FLR);
+ }
+
+ if (ehci->frindex == 0x00004000) {
+ ehci_set_interrupt(ehci, USBSTS_FLR);
+ ehci->frindex = 0;
+ }
+ }
+}
+
static void ehci_frame_timer(void *opaque)
{
EHCIState *ehci = opaque;
+ int schedules = 0;
int64_t expire_time, t_now;
uint64_t ns_elapsed;
- int frames;
+ int frames, skipped_frames;
int i;
- int skipped_frames = 0;
t_now = qemu_get_clock_ns(vm_clock);
- expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
-
ns_elapsed = t_now - ehci->last_run_ns;
frames = ns_elapsed / FRAME_TIMER_NS;
- for (i = 0; i < frames; i++) {
- if ( !(ehci->usbsts & USBSTS_HALT)) {
- ehci->frindex += 8;
-
- if (ehci->frindex == 0x00002000) {
- ehci_set_interrupt(ehci, USBSTS_FLR);
- }
+ if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) {
+ schedules++;
+ expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ);
- if (ehci->frindex == 0x00004000) {
- ehci_set_interrupt(ehci, USBSTS_FLR);
- ehci->frindex = 0;
- }
+ if (frames > ehci->maxframes) {
+ skipped_frames = frames - ehci->maxframes;
+ ehci_update_frindex(ehci, skipped_frames);
+ ehci->last_run_ns += FRAME_TIMER_NS * skipped_frames;
+ frames -= skipped_frames;
+ DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
}
- if (frames - i > ehci->maxframes) {
- skipped_frames++;
- } else {
+ for (i = 0; i < frames; i++) {
+ ehci_update_frindex(ehci, 1);
ehci_advance_periodic_state(ehci);
+ ehci->last_run_ns += FRAME_TIMER_NS;
}
-
- ehci->last_run_ns += FRAME_TIMER_NS;
- }
-
-#if 0
- if (skipped_frames) {
- DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
+ } else {
+ if (ehci->async_stepdown < ehci->maxframes / 2) {
+ ehci->async_stepdown++;
+ }
+ expire_time = t_now + (get_ticks_per_sec()
+ * ehci->async_stepdown / FRAME_TIMER_FREQ);
+ ehci_update_frindex(ehci, frames);
+ ehci->last_run_ns += FRAME_TIMER_NS * frames;
}
-#endif
/* Async is not inside loop since it executes everything it can once
* called
*/
- ehci_advance_async_state(ehci);
+ if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) {
+ schedules++;
+ qemu_bh_schedule(ehci->async_bh);
+ }
- qemu_mod_timer(ehci->frame_timer, expire_time);
+ if (schedules) {
+ qemu_mod_timer(ehci->frame_timer, expire_time);
+ }
}
+static void ehci_async_bh(void *opaque)
+{
+ EHCIState *ehci = opaque;
+ ehci_advance_async_state(ehci);
+}
static const MemoryRegionOps ehci_mem_ops = {
.old_mmio = {
};
static Property ehci_properties[] = {
- DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
DEFINE_PROP_END_OF_LIST(),
};
}
s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
+ s->async_bh = qemu_bh_new(ehci_async_bh, s);
QTAILQ_INIT(&s->aqueues);
QTAILQ_INIT(&s->pqueues);
uint8_t status2; /* bit 0 and 1 are used to generate UHCI_STS_USBINT */
int64_t expire_time;
QEMUTimer *frame_timer;
+ QEMUBH *bh;
+ uint32_t frame_bytes;
+ uint32_t frame_bandwidth;
UHCIPort ports[NB_PORTS];
/* Interrupts that should be raised at the end of the current frame. */
uint32_t pending_int_mask;
+ int irq_pin;
/* Active packets */
QTAILQ_HEAD(, UHCIQueue) queues;
} else {
level = 0;
}
- qemu_set_irq(s->dev.irq[3], level);
+ qemu_set_irq(s->dev.irq[s->irq_pin], level);
}
static void uhci_reset(void *opaque)
}
uhci_async_cancel_all(s);
+ qemu_bh_cancel(s->bh);
uhci_update_irq(s);
}
-static void uhci_pre_save(void *opaque)
-{
- UHCIState *s = opaque;
-
- uhci_async_cancel_all(s);
-}
-
static const VMStateDescription vmstate_uhci_port = {
.name = "uhci port",
.version_id = 1,
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
- .pre_save = uhci_pre_save,
.fields = (VMStateField []) {
VMSTATE_PCI_DEVICE(dev, UHCIState),
VMSTATE_UINT8_EQUAL(num_ports_vmstate, UHCIState),
uhci_async_free(async);
} else {
async->done = 1;
- uhci_process_frame(s);
+ if (s->frame_bytes < s->frame_bandwidth) {
+ qemu_bh_schedule(s->bh);
+ }
}
}
static void uhci_process_frame(UHCIState *s)
{
uint32_t frame_addr, link, old_td_ctrl, val, int_mask;
- uint32_t curr_qh, td_count = 0, bytes_count = 0;
+ uint32_t curr_qh, td_count = 0;
int cnt, ret;
UHCI_TD td;
UHCI_QH qh;
qhdb_reset(&qhdb);
for (cnt = FRAME_MAX_LOOPS; is_valid(link) && cnt; cnt--) {
+ if (s->frame_bytes >= s->frame_bandwidth) {
+ /* We've reached the usb 1.1 bandwidth, which is
+ 1280 bytes/frame, stop processing */
+ trace_usb_uhci_frame_stop_bandwidth();
+ break;
+ }
if (is_qh(link)) {
/* QH */
trace_usb_uhci_qh_load(link & ~0xf);
* We're going in circles. Which is not a bug because
* HCD is allowed to do that as part of the BW management.
*
- * Stop processing here if
- * (a) no transaction has been done since we've been
- * here last time, or
- * (b) we've reached the usb 1.1 bandwidth, which is
- * 1280 bytes/frame.
+ * Stop processing here if no transaction has been done
+ * since we've been here last time.
*/
if (td_count == 0) {
trace_usb_uhci_frame_loop_stop_idle();
break;
- } else if (bytes_count >= 1280) {
- trace_usb_uhci_frame_loop_stop_bandwidth();
- break;
} else {
trace_usb_uhci_frame_loop_continue();
td_count = 0;
trace_usb_uhci_td_complete(curr_qh & ~0xf, link & ~0xf);
link = td.link;
td_count++;
- bytes_count += (td.ctrl & 0x7ff) + 1;
+ s->frame_bytes += (td.ctrl & 0x7ff) + 1;
if (curr_qh) {
/* update QH element link */
s->pending_int_mask |= int_mask;
}
+static void uhci_bh(void *opaque)
+{
+ UHCIState *s = opaque;
+ uhci_process_frame(s);
+}
+
static void uhci_frame_timer(void *opaque)
{
UHCIState *s = opaque;
/* prepare the timer for the next frame */
s->expire_time += (get_ticks_per_sec() / FRAME_TIMER_FREQ);
+ s->frame_bytes = 0;
+ qemu_bh_cancel(s->bh);
if (!(s->cmd & UHCI_CMD_RS)) {
/* Full stop */
static int usb_uhci_common_initfn(PCIDevice *dev)
{
+ PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev);
UHCIState *s = DO_UPCAST(UHCIState, dev, dev);
uint8_t *pci_conf = s->dev.config;
int i;
pci_conf[PCI_CLASS_PROG] = 0x00;
/* TODO: reset value should be 0. */
- pci_conf[PCI_INTERRUPT_PIN] = 4; /* interrupt pin D */
pci_conf[USB_SBRN] = USB_RELEASE_1; // release number
+ switch (pc->device_id) {
+ case PCI_DEVICE_ID_INTEL_82801I_UHCI1:
+ s->irq_pin = 0; /* A */
+ break;
+ case PCI_DEVICE_ID_INTEL_82801I_UHCI2:
+ s->irq_pin = 1; /* B */
+ break;
+ case PCI_DEVICE_ID_INTEL_82801I_UHCI3:
+ s->irq_pin = 2; /* C */
+ break;
+ default:
+ s->irq_pin = 3; /* D */
+ break;
+ }
+ pci_config_set_interrupt_pin(pci_conf, s->irq_pin + 1);
+
if (s->masterbus) {
USBPort *ports[NB_PORTS];
for(i = 0; i < NB_PORTS; i++) {
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL);
}
}
+ s->bh = qemu_bh_new(uhci_bh, s);
s->frame_timer = qemu_new_timer_ns(vm_clock, uhci_frame_timer, s);
s->num_ports_vmstate = NB_PORTS;
QTAILQ_INIT(&s->queues);
static Property uhci_properties[] = {
DEFINE_PROP_STRING("masterbus", UHCIState, masterbus),
DEFINE_PROP_UINT32("firstport", UHCIState, firstport, 0),
+ DEFINE_PROP_UINT32("bandwidth", UHCIState, frame_bandwidth, 1280),
DEFINE_PROP_END_OF_LIST(),
};
#include "hw/usb.h"
#include "hw/pci.h"
#include "hw/msi.h"
+#include "trace.h"
//#define DEBUG_XHCI
//#define DEBUG_DATA
uint32_t rsvd;
} XHCIEvRingSeg;
-#ifdef DEBUG_XHCI
static const char *TRBType_names[] = {
[TRB_RESERVED] = "TRB_RESERVED",
[TR_NORMAL] = "TR_NORMAL",
return lookup_name(TRB_TYPE(*trb), TRBType_names,
ARRAY_SIZE(TRBType_names));
}
-#endif
static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid,
unsigned int epid);
level = 1;
}
- DPRINTF("xhci_irq_update(): %d\n", level);
-
if (xhci->msi && msi_enabled(&xhci->pci_dev)) {
if (level) {
- DPRINTF("xhci_irq_update(): MSI signal\n");
+ trace_usb_xhci_irq_msi(0);
msi_notify(&xhci->pci_dev, 0);
}
} else {
+ trace_usb_xhci_irq_intx(level);
qemu_set_irq(xhci->irq, level);
}
}
}
ev_trb.control = cpu_to_le32(ev_trb.control);
- DPRINTF("xhci_write_event(): [%d] %016"PRIx64" %08x %08x %s\n",
- xhci->er_ep_idx, ev_trb.parameter, ev_trb.status, ev_trb.control,
- trb_name(&ev_trb));
+ trace_usb_xhci_queue_event(xhci->er_ep_idx, trb_name(&ev_trb),
+ ev_trb.parameter, ev_trb.status, ev_trb.control);
addr = xhci->er_start + TRB_SIZE*xhci->er_ep_idx;
pci_dma_write(&xhci->pci_dev, addr, &ev_trb, TRB_SIZE);
le32_to_cpus(&trb->status);
le32_to_cpus(&trb->control);
- DPRINTF("xhci: TRB fetched [" DMA_ADDR_FMT "]: "
- "%016" PRIx64 " %08x %08x %s\n",
- ring->dequeue, trb->parameter, trb->status, trb->control,
- trb_name(trb));
+ trace_usb_xhci_fetch_trb(ring->dequeue, trb_name(trb),
+ trb->parameter, trb->status, trb->control);
if ((trb->control & TRB_C) != ring->ccs) {
return 0;
le32_to_cpus(&trb.status);
le32_to_cpus(&trb.control);
- DPRINTF("xhci: TRB peeked [" DMA_ADDR_FMT "]: "
- "%016" PRIx64 " %08x %08x\n",
- dequeue, trb.parameter, trb.status, trb.control);
-
if ((trb.control & TRB_C) != ccs) {
return -length;
}
static void xhci_run(XHCIState *xhci)
{
- DPRINTF("xhci_run()\n");
-
+ trace_usb_xhci_run();
xhci->usbsts &= ~USBSTS_HCH;
}
static void xhci_stop(XHCIState *xhci)
{
- DPRINTF("xhci_stop()\n");
+ trace_usb_xhci_stop();
xhci->usbsts |= USBSTS_HCH;
xhci->crcr_low &= ~CRCR_CRR;
}
dma_addr_t dequeue;
int i;
+ trace_usb_xhci_ep_enable(slotid, epid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
assert(epid >= 1 && epid <= 31);
- DPRINTF("xhci_enable_ep(%d, %d)\n", slotid, epid);
-
slot = &xhci->slots[slotid-1];
if (slot->eps[epid-1]) {
fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid);
XHCISlot *slot;
XHCIEPContext *epctx;
+ trace_usb_xhci_ep_disable(slotid, epid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
assert(epid >= 1 && epid <= 31);
- DPRINTF("xhci_disable_ep(%d, %d)\n", slotid, epid);
-
slot = &xhci->slots[slotid-1];
if (!slot->eps[epid-1]) {
XHCISlot *slot;
XHCIEPContext *epctx;
- DPRINTF("xhci_stop_ep(%d, %d)\n", slotid, epid);
-
+ trace_usb_xhci_ep_stop(slotid, epid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
if (epid < 1 || epid > 31) {
XHCIEPContext *epctx;
USBDevice *dev;
+ trace_usb_xhci_ep_reset(slotid, epid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
- DPRINTF("xhci_reset_ep(%d, %d)\n", slotid, epid);
-
if (epid < 1 || epid > 31) {
fprintf(stderr, "xhci: bad ep %d\n", epid);
return CC_TRB_ERROR;
static int xhci_complete_packet(XHCITransfer *xfer, int ret)
{
if (ret == USB_RET_ASYNC) {
+ trace_usb_xhci_xfer_async(xfer);
xfer->running_async = 1;
xfer->running_retry = 0;
xfer->complete = 0;
xfer->cancelled = 0;
return 0;
} else if (ret == USB_RET_NAK) {
+ trace_usb_xhci_xfer_nak(xfer);
xfer->running_async = 0;
xfer->running_retry = 1;
xfer->complete = 0;
if (ret >= 0) {
xfer->status = CC_SUCCESS;
xhci_xfer_data(xfer, xfer->data, ret, xfer->in_xfer, 0, 1);
+ trace_usb_xhci_xfer_success(xfer, ret);
return 0;
}
/* error */
+ trace_usb_xhci_xfer_error(xfer, ret);
switch (ret) {
case USB_RET_NODEV:
xfer->status = CC_USB_TRANSACTION_ERROR;
USBDevice *dev;
int ret;
- DPRINTF("xhci_fire_ctl_transfer(slot=%d)\n", xfer->slotid);
-
trb_setup = &xfer->trbs[0];
trb_status = &xfer->trbs[xfer->trb_count-1];
+ trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid,
+ trb_setup->parameter >> 48);
+
/* at most one Event Data TRB allowed after STATUS */
if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) {
trb_status--;
unsigned int length = 0;
XHCITRB *trb;
- DPRINTF("xhci_fire_transfer(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid);
-
for (i = 0; i < xfer->trb_count; i++) {
trb = &xfer->trbs[i];
if (TRB_TYPE(*trb) == TR_NORMAL || TRB_TYPE(*trb) == TR_ISOCH) {
length += trb->status & 0x1ffff;
}
}
- DPRINTF("xhci: total TD length=%d\n", length);
+
+ trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid, length);
if (!epctx->has_bg) {
xfer->data_length = length;
int length;
int i;
+ trace_usb_xhci_ep_kick(slotid, epid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
assert(epid >= 1 && epid <= 31);
- DPRINTF("xhci_kick_ep(%d, %d)\n", slotid, epid);
if (!xhci->slots[slotid-1].enabled) {
fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid);
XHCITransfer *xfer = epctx->retry;
int result;
- DPRINTF("xhci: retry nack'ed transfer ...\n");
+ trace_usb_xhci_xfer_retry(xfer);
assert(xfer->running_retry);
xhci_setup_packet(xfer, xfer->packet.ep->dev);
result = usb_handle_packet(xfer->packet.ep->dev, &xfer->packet);
if (result == USB_RET_NAK) {
- DPRINTF("xhci: ... xfer still nacked\n");
return;
}
- DPRINTF("xhci: ... result %d\n", result);
xhci_complete_packet(xfer, result);
assert(!xfer->running_retry);
epctx->retry = NULL;
while (1) {
XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer];
if (xfer->running_async || xfer->running_retry || xfer->backgrounded) {
- DPRINTF("xhci: ep is busy (#%d,%d,%d,%d)\n",
- epctx->next_xfer, xfer->running_async,
- xfer->running_retry, xfer->backgrounded);
break;
- } else {
- DPRINTF("xhci: ep: using #%d\n", epctx->next_xfer);
}
length = xhci_ring_chain_length(xhci, &epctx->ring);
if (length < 0) {
- DPRINTF("xhci: incomplete TD (%d TRBs)\n", -length);
break;
} else if (length == 0) {
break;
}
- DPRINTF("xhci: fetching %d-TRB TD\n", length);
if (xfer->trbs && xfer->trb_alloced < length) {
xfer->trb_count = 0;
xfer->trb_alloced = 0;
}
if (epctx->state == EP_HALTED) {
- DPRINTF("xhci: ep halted, stopping schedule\n");
break;
}
if (xfer->running_retry) {
static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid)
{
+ trace_usb_xhci_slot_enable(slotid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
- DPRINTF("xhci_enable_slot(%d)\n", slotid);
xhci->slots[slotid-1].enabled = 1;
xhci->slots[slotid-1].port = 0;
memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31);
{
int i;
+ trace_usb_xhci_slot_disable(slotid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
- DPRINTF("xhci_disable_slot(%d)\n", slotid);
for (i = 1; i <= 31; i++) {
if (xhci->slots[slotid-1].eps[i-1]) {
int i;
TRBCCode res;
+ trace_usb_xhci_slot_address(slotid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
- DPRINTF("xhci_address_slot(%d)\n", slotid);
dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high);
pci_dma_read(&xhci->pci_dev, dcbaap + 8*slotid, &poctx, sizeof(poctx));
int i;
TRBCCode res;
+ trace_usb_xhci_slot_configure(slotid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
- DPRINTF("xhci_configure_slot(%d)\n", slotid);
ictx = xhci_mask64(pictx);
octx = xhci->slots[slotid-1].ctx;
uint32_t islot_ctx[4];
uint32_t slot_ctx[4];
+ trace_usb_xhci_slot_evaluate(slotid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
- DPRINTF("xhci_evaluate_slot(%d)\n", slotid);
ictx = xhci_mask64(pictx);
octx = xhci->slots[slotid-1].ctx;
dma_addr_t octx;
int i;
+ trace_usb_xhci_slot_reset(slotid);
assert(slotid >= 1 && slotid <= MAXSLOTS);
- DPRINTF("xhci_reset_slot(%d)\n", slotid);
octx = xhci->slots[slotid-1].ctx;
}
}
-static void xhci_reset(void *opaque)
+static void xhci_reset(DeviceState *dev)
{
- XHCIState *xhci = opaque;
+ XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev.qdev, dev);
int i;
- DPRINTF("xhci: full reset\n");
+ trace_usb_xhci_reset();
if (!(xhci->usbsts & USBSTS_HCH)) {
fprintf(stderr, "xhci: reset while running!\n");
}
static uint32_t xhci_cap_read(XHCIState *xhci, uint32_t reg)
{
- DPRINTF("xhci_cap_read(0x%x)\n", reg);
+ uint32_t ret;
switch (reg) {
case 0x00: /* HCIVERSION, CAPLENGTH */
- return 0x01000000 | LEN_CAP;
+ ret = 0x01000000 | LEN_CAP;
+ break;
case 0x04: /* HCSPARAMS 1 */
- return (MAXPORTS<<24) | (MAXINTRS<<8) | MAXSLOTS;
+ ret = (MAXPORTS<<24) | (MAXINTRS<<8) | MAXSLOTS;
+ break;
case 0x08: /* HCSPARAMS 2 */
- return 0x0000000f;
+ ret = 0x0000000f;
+ break;
case 0x0c: /* HCSPARAMS 3 */
- return 0x00000000;
+ ret = 0x00000000;
+ break;
case 0x10: /* HCCPARAMS */
-#if TARGET_PHYS_ADDR_BITS > 32
- return 0x00081001;
-#else
- return 0x00081000;
-#endif
+ if (sizeof(dma_addr_t) == 4) {
+ ret = 0x00081000;
+ } else {
+ ret = 0x00081001;
+ }
+ break;
case 0x14: /* DBOFF */
- return OFF_DOORBELL;
+ ret = OFF_DOORBELL;
+ break;
case 0x18: /* RTSOFF */
- return OFF_RUNTIME;
+ ret = OFF_RUNTIME;
+ break;
/* extended capabilities */
case 0x20: /* Supported Protocol:00 */
-#if USB3_PORTS > 0
- return 0x02000402; /* USB 2.0 */
-#else
- return 0x02000002; /* USB 2.0 */
-#endif
+ ret = 0x02000402; /* USB 2.0 */
+ break;
case 0x24: /* Supported Protocol:04 */
- return 0x20425455; /* "USB " */
+ ret = 0x20425455; /* "USB " */
+ break;
case 0x28: /* Supported Protocol:08 */
- return 0x00000001 | (USB2_PORTS<<8);
+ ret = 0x00000001 | (USB2_PORTS<<8);
+ break;
case 0x2c: /* Supported Protocol:0c */
- return 0x00000000; /* reserved */
-#if USB3_PORTS > 0
+ ret = 0x00000000; /* reserved */
+ break;
case 0x30: /* Supported Protocol:00 */
- return 0x03000002; /* USB 3.0 */
+ ret = 0x03000002; /* USB 3.0 */
+ break;
case 0x34: /* Supported Protocol:04 */
- return 0x20425455; /* "USB " */
+ ret = 0x20425455; /* "USB " */
+ break;
case 0x38: /* Supported Protocol:08 */
- return 0x00000000 | (USB2_PORTS+1) | (USB3_PORTS<<8);
+ ret = 0x00000000 | (USB2_PORTS+1) | (USB3_PORTS<<8);
+ break;
case 0x3c: /* Supported Protocol:0c */
- return 0x00000000; /* reserved */
-#endif
+ ret = 0x00000000; /* reserved */
+ break;
default:
fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", reg);
+ ret = 0;
}
- return 0;
+
+ trace_usb_xhci_cap_read(reg, ret);
+ return ret;
}
static uint32_t xhci_port_read(XHCIState *xhci, uint32_t reg)
{
uint32_t port = reg >> 4;
+ uint32_t ret;
+
if (port >= MAXPORTS) {
fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
- return 0;
+ ret = 0;
+ goto out;
}
switch (reg & 0xf) {
case 0x00: /* PORTSC */
- return xhci->ports[port].portsc;
+ ret = xhci->ports[port].portsc;
+ break;
case 0x04: /* PORTPMSC */
case 0x08: /* PORTLI */
- return 0;
+ ret = 0;
+ break;
case 0x0c: /* reserved */
default:
fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n",
port, reg);
- return 0;
+ ret = 0;
}
+
+out:
+ trace_usb_xhci_port_read(port, reg & 0x0f, ret);
+ return ret;
}
static void xhci_port_write(XHCIState *xhci, uint32_t reg, uint32_t val)
uint32_t port = reg >> 4;
uint32_t portsc;
+ trace_usb_xhci_port_write(port, reg & 0x0f, val);
+
if (port >= MAXPORTS) {
fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port);
return;
static uint32_t xhci_oper_read(XHCIState *xhci, uint32_t reg)
{
- DPRINTF("xhci_oper_read(0x%x)\n", reg);
+ uint32_t ret;
if (reg >= 0x400) {
return xhci_port_read(xhci, reg - 0x400);
switch (reg) {
case 0x00: /* USBCMD */
- return xhci->usbcmd;
+ ret = xhci->usbcmd;
+ break;
case 0x04: /* USBSTS */
- return xhci->usbsts;
+ ret = xhci->usbsts;
+ break;
case 0x08: /* PAGESIZE */
- return 1; /* 4KiB */
+ ret = 1; /* 4KiB */
+ break;
case 0x14: /* DNCTRL */
- return xhci->dnctrl;
+ ret = xhci->dnctrl;
+ break;
case 0x18: /* CRCR low */
- return xhci->crcr_low & ~0xe;
+ ret = xhci->crcr_low & ~0xe;
+ break;
case 0x1c: /* CRCR high */
- return xhci->crcr_high;
+ ret = xhci->crcr_high;
+ break;
case 0x30: /* DCBAAP low */
- return xhci->dcbaap_low;
+ ret = xhci->dcbaap_low;
+ break;
case 0x34: /* DCBAAP high */
- return xhci->dcbaap_high;
+ ret = xhci->dcbaap_high;
+ break;
case 0x38: /* CONFIG */
- return xhci->config;
+ ret = xhci->config;
+ break;
default:
fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", reg);
+ ret = 0;
}
- return 0;
+
+ trace_usb_xhci_oper_read(reg, ret);
+ return ret;
}
static void xhci_oper_write(XHCIState *xhci, uint32_t reg, uint32_t val)
{
- DPRINTF("xhci_oper_write(0x%x, 0x%08x)\n", reg, val);
-
if (reg >= 0x400) {
xhci_port_write(xhci, reg - 0x400, val);
return;
}
+ trace_usb_xhci_oper_write(reg, val);
+
switch (reg) {
case 0x00: /* USBCMD */
if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) {
}
xhci->usbcmd = val & 0xc0f;
if (val & USBCMD_HCRST) {
- xhci_reset(xhci);
+ xhci_reset(&xhci->pci_dev.qdev);
}
xhci_irq_update(xhci);
break;
static uint32_t xhci_runtime_read(XHCIState *xhci, uint32_t reg)
{
- DPRINTF("xhci_runtime_read(0x%x)\n", reg);
+ uint32_t ret;
switch (reg) {
case 0x00: /* MFINDEX */
fprintf(stderr, "xhci_runtime_read: MFINDEX not yet implemented\n");
- return xhci->mfindex;
+ ret = xhci->mfindex;
+ break;
case 0x20: /* IMAN */
- return xhci->iman;
+ ret = xhci->iman;
+ break;
case 0x24: /* IMOD */
- return xhci->imod;
+ ret = xhci->imod;
+ break;
case 0x28: /* ERSTSZ */
- return xhci->erstsz;
+ ret = xhci->erstsz;
+ break;
case 0x30: /* ERSTBA low */
- return xhci->erstba_low;
+ ret = xhci->erstba_low;
+ break;
case 0x34: /* ERSTBA high */
- return xhci->erstba_high;
+ ret = xhci->erstba_high;
+ break;
case 0x38: /* ERDP low */
- return xhci->erdp_low;
+ ret = xhci->erdp_low;
+ break;
case 0x3c: /* ERDP high */
- return xhci->erdp_high;
+ ret = xhci->erdp_high;
+ break;
default:
fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", reg);
+ ret = 0;
}
- return 0;
+
+ trace_usb_xhci_runtime_read(reg, ret);
+ return ret;
}
static void xhci_runtime_write(XHCIState *xhci, uint32_t reg, uint32_t val)
{
- DPRINTF("xhci_runtime_write(0x%x, 0x%08x)\n", reg, val);
+ trace_usb_xhci_runtime_read(reg, val);
switch (reg) {
case 0x20: /* IMAN */
static uint32_t xhci_doorbell_read(XHCIState *xhci, uint32_t reg)
{
- DPRINTF("xhci_doorbell_read(0x%x)\n", reg);
/* doorbells always read as 0 */
+ trace_usb_xhci_doorbell_read(reg, 0);
return 0;
}
static void xhci_doorbell_write(XHCIState *xhci, uint32_t reg, uint32_t val)
{
- DPRINTF("xhci_doorbell_write(0x%x, 0x%08x)\n", reg, val);
+ trace_usb_xhci_doorbell_write(reg, val);
if (!xhci_running(xhci)) {
fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n");
for (i = 0; i < MAXSLOTS; i++) {
xhci->slots[i].enabled = 0;
}
-
- qemu_register_reset(xhci_reset, xhci);
}
static int usb_xhci_initfn(struct PCIDevice *dev)
dc->vmsd = &vmstate_xhci;
dc->props = xhci_properties;
+ dc->reset = xhci_reset;
k->init = usb_xhci_initfn;
k->vendor_id = PCI_VENDOR_ID_NEC;
k->device_id = PCI_DEVICE_ID_NEC_UPD720200;
const char *initrd_filename, const char *cpu_model,
int board_id)
{
- CPUARMState *env;
+ ARMCPU *cpu;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
qemu_irq *cpu_pic;
int done_smc = 0;
DriveInfo *dinfo;
- if (!cpu_model)
+ if (!cpu_model) {
cpu_model = "arm926";
- env = cpu_init(cpu_model);
- if (!env) {
+ }
+ cpu = cpu_arm_init(cpu_model);
+ if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
qdev_init_nofail(sysctl);
sysbus_mmio_map(sysbus_from_qdev(sysctl), 0, 0x10000000);
- cpu_pic = arm_pic_init_cpu(env);
+ cpu_pic = arm_pic_init_cpu(cpu);
dev = sysbus_create_varargs("pl190", 0x10140000,
cpu_pic[0], cpu_pic[1], NULL);
for (n = 0; n < 32; n++) {
versatile_binfo.kernel_cmdline = kernel_cmdline;
versatile_binfo.initrd_filename = initrd_filename;
versatile_binfo.board_id = board_id;
- arm_load_kernel(env, &versatile_binfo);
+ arm_load_kernel(cpu, &versatile_binfo);
}
static void vpb_init(ram_addr_t ram_size,
const char *cpu_model,
qemu_irq *pic, uint32_t *proc_id)
{
- CPUARMState *env = NULL;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *lowram = g_new(MemoryRegion, 1);
*proc_id = 0x0c000191;
for (n = 0; n < smp_cpus; n++) {
- env = cpu_init(cpu_model);
- if (!env) {
+ ARMCPU *cpu = cpu_arm_init(cpu_model);
+ if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
- irqp = arm_pic_init_cpu(env);
+ irqp = arm_pic_init_cpu(cpu);
cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
}
qemu_irq *pic, uint32_t *proc_id)
{
int n;
- CPUARMState *env = NULL;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *sram = g_new(MemoryRegion, 1);
*proc_id = 0x14000217;
for (n = 0; n < smp_cpus; n++) {
+ ARMCPU *cpu;
qemu_irq *irqp;
- env = cpu_init(cpu_model);
- if (!env) {
+
+ cpu = cpu_arm_init(cpu_model);
+ if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
- irqp = arm_pic_init_cpu(env);
+ irqp = arm_pic_init_cpu(cpu);
cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ];
}
vexpress_binfo.smp_loader_start = map[VE_SRAM];
vexpress_binfo.smp_bootreg_addr = map[VE_SYSREGS] + 0x30;
vexpress_binfo.gic_cpu_if_addr = daughterboard->gic_cpu_if_addr;
- arm_load_kernel(first_cpu, &vexpress_binfo);
+ arm_load_kernel(arm_env_get_cpu(first_cpu), &vexpress_binfo);
}
static void vexpress_a9_init(ram_addr_t ram_size,
blk_handle_requests(blkdev);
}
+/*
+ * We need to account for the grant allocations requiring contiguous
+ * chunks; the worst case number would be
+ * max_req * max_seg + (max_req - 1) * (max_seg - 1) + 1,
+ * but in order to keep things simple just use
+ * 2 * max_req * max_seg.
+ */
+#define MAX_GRANTS(max_req, max_seg) (2 * (max_req) * (max_seg))
+
static void blk_alloc(struct XenDevice *xendev)
{
struct XenBlkDev *blkdev = container_of(xendev, struct XenBlkDev, xendev);
if (xen_mode != XEN_EMULATE) {
batch_maps = 1;
}
+ if (xc_gnttab_set_max_grants(xendev->gnttabdev,
+ MAX_GRANTS(max_requests, BLKIF_MAX_SEGMENTS_PER_REQUEST)) < 0) {
+ xen_be_printf(xendev, 0, "xc_gnttab_set_max_grants failed: %s\n",
+ strerror(errno));
+ }
}
static int blk_init(struct XenDevice *xendev)
const char *initrd_filename,
const char *cpu_model)
{
+ X86CPU *cpu;
CPUX86State *env;
DriveInfo *dinfo;
int i;
cpu_model = "qemu32";
#endif
}
- env = cpu_init(cpu_model);
+ cpu = cpu_x86_init(cpu_model);
+ env = &cpu->env;
env->halted = 1;
/* Initialize backend core & drivers */
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
- CPUARMState *env = NULL;
+ ARMCPU *cpu;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ext_ram = g_new(MemoryRegion, 1);
MemoryRegion *ocm_ram = g_new(MemoryRegion, 1);
cpu_model = "cortex-a9";
}
- env = cpu_init(cpu_model);
- if (!env) {
+ cpu = cpu_arm_init(cpu_model);
+ if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
- irqp = arm_pic_init_cpu(env);
+ irqp = arm_pic_init_cpu(cpu);
cpu_irq = irqp[ARM_PIC_CPU_IRQ];
/* max 2GB ram */
zynq_binfo.nb_cpus = 1;
zynq_binfo.board_id = 0xd32;
zynq_binfo.loader_start = 0;
- arm_load_kernel(first_cpu, &zynq_binfo);
+ arm_load_kernel(arm_env_get_cpu(first_cpu), &zynq_binfo);
}
static QEMUMachine zynq_machine = {
{
MemoryRegion *address_space_mem = get_system_memory();
uint32_t sector_len = 0x10000;
- PXA2xxState *cpu;
+ PXA2xxState *mpu;
DriveInfo *dinfo;
int be;
void *z2_lcd;
}
/* Setup CPU & memory */
- cpu = pxa270_init(address_space_mem, z2_binfo.ram_size, cpu_model);
+ mpu = pxa270_init(address_space_mem, z2_binfo.ram_size, cpu_model);
#ifdef TARGET_WORDS_BIGENDIAN
be = 1;
}
/* setup keypad */
- pxa27x_register_keypad(cpu->kp, map, 0x100);
+ pxa27x_register_keypad(mpu->kp, map, 0x100);
/* MMC/SD host */
- pxa2xx_mmci_handlers(cpu->mmc,
+ pxa2xx_mmci_handlers(mpu->mmc,
NULL,
- qdev_get_gpio_in(cpu->gpio, Z2_GPIO_SD_DETECT));
+ qdev_get_gpio_in(mpu->gpio, Z2_GPIO_SD_DETECT));
type_register_static(&zipit_lcd_info);
type_register_static(&aer915_info);
- z2_lcd = ssi_create_slave(cpu->ssp[1], "zipit-lcd");
- bus = pxa2xx_i2c_bus(cpu->i2c[0]);
+ z2_lcd = ssi_create_slave(mpu->ssp[1], "zipit-lcd");
+ bus = pxa2xx_i2c_bus(mpu->i2c[0]);
i2c_create_slave(bus, "aer915", 0x55);
wm = i2c_create_slave(bus, "wm8750", 0x1b);
- cpu->i2s->opaque = wm;
- cpu->i2s->codec_out = wm8750_dac_dat;
- cpu->i2s->codec_in = wm8750_adc_dat;
- wm8750_data_req_set(wm, cpu->i2s->data_req, cpu->i2s);
+ mpu->i2s->opaque = wm;
+ mpu->i2s->codec_out = wm8750_dac_dat;
+ mpu->i2s->codec_in = wm8750_adc_dat;
+ wm8750_data_req_set(wm, mpu->i2s->data_req, mpu->i2s);
- qdev_connect_gpio_out(cpu->gpio, Z2_GPIO_LCD_CS,
+ qdev_connect_gpio_out(mpu->gpio, Z2_GPIO_LCD_CS,
qemu_allocate_irqs(z2_lcd_cs, z2_lcd, 1)[0]);
if (kernel_filename) {
z2_binfo.kernel_cmdline = kernel_cmdline;
z2_binfo.initrd_filename = initrd_filename;
z2_binfo.board_id = 0x6dd;
- arm_load_kernel(&cpu->cpu->env, &z2_binfo);
+ arm_load_kernel(mpu->cpu, &z2_binfo);
}
}
}
}
+void visit_type_uint8(Visitor *v, uint8_t *obj, const char *name, Error **errp)
+{
+ int64_t value;
+ if (!error_is_set(errp)) {
+ if (v->type_uint8) {
+ v->type_uint8(v, obj, name, errp);
+ } else {
+ value = *obj;
+ v->type_int(v, &value, name, errp);
+ if (value < 0 || value > UINT8_MAX) {
+ error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null",
+ "uint8_t");
+ return;
+ }
+ *obj = value;
+ }
+ }
+}
+
+void visit_type_uint16(Visitor *v, uint16_t *obj, const char *name, Error **errp)
+{
+ int64_t value;
+ if (!error_is_set(errp)) {
+ if (v->type_uint16) {
+ v->type_uint16(v, obj, name, errp);
+ } else {
+ value = *obj;
+ v->type_int(v, &value, name, errp);
+ if (value < 0 || value > UINT16_MAX) {
+ error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null",
+ "uint16_t");
+ return;
+ }
+ *obj = value;
+ }
+ }
+}
+
+void visit_type_uint32(Visitor *v, uint32_t *obj, const char *name, Error **errp)
+{
+ int64_t value;
+ if (!error_is_set(errp)) {
+ if (v->type_uint32) {
+ v->type_uint32(v, obj, name, errp);
+ } else {
+ value = *obj;
+ v->type_int(v, &value, name, errp);
+ if (value < 0 || value > UINT32_MAX) {
+ error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null",
+ "uint32_t");
+ return;
+ }
+ *obj = value;
+ }
+ }
+}
+
+void visit_type_uint64(Visitor *v, uint64_t *obj, const char *name, Error **errp)
+{
+ int64_t value;
+ if (!error_is_set(errp)) {
+ if (v->type_uint64) {
+ v->type_uint64(v, obj, name, errp);
+ } else {
+ value = *obj;
+ v->type_int(v, &value, name, errp);
+ *obj = value;
+ }
+ }
+}
+
+void visit_type_int8(Visitor *v, int8_t *obj, const char *name, Error **errp)
+{
+ int64_t value;
+ if (!error_is_set(errp)) {
+ if (v->type_int8) {
+ v->type_int8(v, obj, name, errp);
+ } else {
+ value = *obj;
+ v->type_int(v, &value, name, errp);
+ if (value < INT8_MIN || value > INT8_MAX) {
+ error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null",
+ "int8_t");
+ return;
+ }
+ *obj = value;
+ }
+ }
+}
+
+void visit_type_int16(Visitor *v, int16_t *obj, const char *name, Error **errp)
+{
+ int64_t value;
+ if (!error_is_set(errp)) {
+ if (v->type_int16) {
+ v->type_int16(v, obj, name, errp);
+ } else {
+ value = *obj;
+ v->type_int(v, &value, name, errp);
+ if (value < INT16_MIN || value > INT16_MAX) {
+ error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null",
+ "int16_t");
+ return;
+ }
+ *obj = value;
+ }
+ }
+}
+
+void visit_type_int32(Visitor *v, int32_t *obj, const char *name, Error **errp)
+{
+ int64_t value;
+ if (!error_is_set(errp)) {
+ if (v->type_int32) {
+ v->type_int32(v, obj, name, errp);
+ } else {
+ value = *obj;
+ v->type_int(v, &value, name, errp);
+ if (value < INT32_MIN || value > INT32_MAX) {
+ error_set(errp, QERR_INVALID_PARAMETER_VALUE, name ? name : "null",
+ "int32_t");
+ return;
+ }
+ *obj = value;
+ }
+ }
+}
+
+void visit_type_int64(Visitor *v, int64_t *obj, const char *name, Error **errp)
+{
+ if (!error_is_set(errp)) {
+ if (v->type_int64) {
+ v->type_int64(v, obj, name, errp);
+ } else {
+ v->type_int(v, obj, name, errp);
+ }
+ }
+}
+
void visit_type_bool(Visitor *v, bool *obj, const char *name, Error **errp)
{
if (!error_is_set(errp)) {
void (*start_handle)(Visitor *v, void **obj, const char *kind,
const char *name, Error **errp);
void (*end_handle)(Visitor *v, Error **errp);
+ void (*type_uint8)(Visitor *v, uint8_t *obj, const char *name, Error **errp);
+ void (*type_uint16)(Visitor *v, uint16_t *obj, const char *name, Error **errp);
+ void (*type_uint32)(Visitor *v, uint32_t *obj, const char *name, Error **errp);
+ void (*type_uint64)(Visitor *v, uint64_t *obj, const char *name, Error **errp);
+ void (*type_int8)(Visitor *v, int8_t *obj, const char *name, Error **errp);
+ void (*type_int16)(Visitor *v, int16_t *obj, const char *name, Error **errp);
+ void (*type_int32)(Visitor *v, int32_t *obj, const char *name, Error **errp);
+ void (*type_int64)(Visitor *v, int64_t *obj, const char *name, Error **errp);
};
void visit_start_handle(Visitor *v, void **obj, const char *kind,
void visit_type_enum(Visitor *v, int *obj, const char *strings[],
const char *kind, const char *name, Error **errp);
void visit_type_int(Visitor *v, int64_t *obj, const char *name, Error **errp);
+void visit_type_uint8(Visitor *v, uint8_t *obj, const char *name, Error **errp);
+void visit_type_uint16(Visitor *v, uint16_t *obj, const char *name, Error **errp);
+void visit_type_uint32(Visitor *v, uint32_t *obj, const char *name, Error **errp);
+void visit_type_uint64(Visitor *v, uint64_t *obj, const char *name, Error **errp);
+void visit_type_int8(Visitor *v, int8_t *obj, const char *name, Error **errp);
+void visit_type_int16(Visitor *v, int16_t *obj, const char *name, Error **errp);
+void visit_type_int32(Visitor *v, int32_t *obj, const char *name, Error **errp);
+void visit_type_int64(Visitor *v, int64_t *obj, const char *name, Error **errp);
void visit_type_bool(Visitor *v, bool *obj, const char *name, Error **errp);
void visit_type_str(Visitor *v, char **obj, const char *name, Error **errp);
void visit_type_number(Visitor *v, double *obj, const char *name, Error **errp);
Error **errp)
{
StringOutputVisitor *sov = DO_UPCAST(StringOutputVisitor, visitor, v);
- string_output_set(sov, g_strdup_printf("%g", *obj));
+ string_output_set(sov, g_strdup_printf("%f", *obj));
}
char *string_output_get_string(StringOutputVisitor *sov)
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
- int64_t value;
- value = cpu->env.cpuid_level;
- /* TODO Use visit_type_uint32() once available */
- visit_type_int(v, &value, name, errp);
+ visit_type_uint32(v, &cpu->env.cpuid_level, name, errp);
}
static void x86_cpuid_set_level(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
- const int64_t min = 0;
- const int64_t max = UINT32_MAX;
- int64_t value;
-
- /* TODO Use visit_type_uint32() once available */
- visit_type_int(v, &value, name, errp);
- if (error_is_set(errp)) {
- return;
- }
- if (value < min || value > max) {
- error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
- name ? name : "null", value, min, max);
- return;
- }
- cpu->env.cpuid_level = value;
+ visit_type_uint32(v, &cpu->env.cpuid_level, name, errp);
}
static void x86_cpuid_get_xlevel(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
- int64_t value;
- value = cpu->env.cpuid_xlevel;
- /* TODO Use visit_type_uint32() once available */
- visit_type_int(v, &value, name, errp);
+ visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp);
}
static void x86_cpuid_set_xlevel(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
- const int64_t min = 0;
- const int64_t max = UINT32_MAX;
- int64_t value;
-
- /* TODO Use visit_type_uint32() once available */
- visit_type_int(v, &value, name, errp);
- if (error_is_set(errp)) {
- return;
- }
- if (value < min || value > max) {
- error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
- name ? name : "null", value, min, max);
- return;
- }
- cpu->env.cpuid_xlevel = value;
+ visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp);
}
static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
-#include "cpu-qom.h"
+#include "cpu.h"
#include "qemu-common.h"
#include "qemu-timer.h"
QEMUTimer *cpu_timer;
} CPUS390XState;
+#include "cpu-qom.h"
+
#if defined(CONFIG_USER_ONLY)
static inline void cpu_clone_regs(CPUS390XState *env, target_ulong newsp)
{
#define ILC_LATER_INC_2 0x22
-CPUS390XState *cpu_s390x_init(const char *cpu_model);
+S390CPU *cpu_s390x_init(const char *cpu_model);
void s390x_translate_init(void);
int cpu_s390x_exec(CPUS390XState *s);
void cpu_s390x_close(CPUS390XState *s);
{
}
#endif
-CPUS390XState *s390_cpu_addr2state(uint16_t cpu_addr);
+S390CPU *s390_cpu_addr2state(uint16_t cpu_addr);
void s390_add_running_cpu(CPUS390XState *env);
unsigned s390_del_running_cpu(CPUS390XState *env);
env->aregs[1] = newtls & 0xffffffffULL;
}
-#define cpu_init cpu_s390x_init
+#define cpu_init(model) (&cpu_s390x_init(model)->env)
#define cpu_exec cpu_s390x_exec
#define cpu_gen_code cpu_s390x_gen_code
#define cpu_signal_handler cpu_s390x_signal_handler
env->psw.addr = tb->pc;
}
-#include "cpu-qom.h"
-
#endif
}
#endif
-CPUS390XState *cpu_s390x_init(const char *cpu_model)
+S390CPU *cpu_s390x_init(const char *cpu_model)
{
S390CPU *cpu;
CPUS390XState *env;
env->cpu_model_str = cpu_model;
qemu_init_vcpu(env);
- return env;
+ return cpu;
}
#if defined(CONFIG_USER_ONLY)
return r;
}
-static int s390_cpu_restart(CPUS390XState *env)
+static int s390_cpu_restart(S390CPU *cpu)
{
+ CPUS390XState *env = &cpu->env;
+
kvm_s390_interrupt(env, KVM_S390_RESTART, 0);
s390_add_running_cpu(env);
qemu_cpu_kick(env);
uint16_t cpu_addr;
uint8_t t;
int r = -1;
+ S390CPU *target_cpu;
CPUS390XState *target_env;
cpu_synchronize_state(env);
parameter = env->regs[t] & 0x7ffffe00;
cpu_addr = env->regs[ipa1 & 0x0f];
- target_env = s390_cpu_addr2state(cpu_addr);
- if (!target_env) {
+ target_cpu = s390_cpu_addr2state(cpu_addr);
+ if (target_cpu == NULL) {
goto out;
}
+ target_env = &target_cpu->env;
switch (order_code) {
case SIGP_RESTART:
- r = s390_cpu_restart(target_env);
+ r = s390_cpu_restart(target_cpu);
break;
case SIGP_STORE_STATUS_ADDR:
r = s390_store_status(target_env, parameter);
check-unit-y += tests/test-string-input-visitor$(EXESUF)
check-unit-y += tests/test-string-output-visitor$(EXESUF)
check-unit-y += tests/test-coroutine$(EXESUF)
+check-unit-y += tests/test-visitor-serialization$(EXESUF)
check-block-$(CONFIG_POSIX) += tests/qemu-iotests-quick.sh
tests/test-coroutine.o tests/test-string-output-visitor.o \
tests/test-string-input-visitor.o tests/test-qmp-output-visitor.o \
tests/test-qmp-input-visitor.o tests/test-qmp-input-strict.o \
- tests/test-qmp-commands.o
+ tests/test-qmp-commands.o tests/test-visitor-serialization.o
test-qapi-obj-y = $(qobject-obj-y) $(qapi-obj-y) $(tools-obj-y)
test-qapi-obj-y += tests/test-qapi-visit.o tests/test-qapi-types.o
tests/test-qmp-input-visitor$(EXESUF): tests/test-qmp-input-visitor.o $(test-qapi-obj-y)
tests/test-qmp-input-strict$(EXESUF): tests/test-qmp-input-strict.o $(test-qapi-obj-y)
tests/test-qmp-commands$(EXESUF): tests/test-qmp-commands.o tests/test-qmp-marshal.o $(test-qapi-obj-y)
+tests/test-visitor-serialization$(EXESUF): tests/test-visitor-serialization.o $(test-qapi-obj-y)
tests/rtc-test$(EXESUF): tests/rtc-test.o $(trace-obj-y)
tests/m48t59-test$(EXESUF): tests/m48t59-test.o $(trace-obj-y)
str = string_output_get_string(data->sov);
g_assert(str != NULL);
- g_assert_cmpstr(str, ==, "3.14");
+ g_assert_cmpstr(str, ==, "3.140000");
g_free(str);
}
--- /dev/null
+/*
+ * Unit-tests for visitor-based serialization
+ *
+ * Copyright IBM, Corp. 2012
+ *
+ * Authors:
+ * Michael Roth <mdroth@linux.vnet.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#include <glib.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <float.h>
+#include "test-qapi-types.h"
+#include "test-qapi-visit.h"
+#include "qemu-objects.h"
+#include "qapi/qmp-input-visitor.h"
+#include "qapi/qmp-output-visitor.h"
+#include "qapi/string-input-visitor.h"
+#include "qapi/string-output-visitor.h"
+
+typedef struct PrimitiveType {
+ union {
+ const char *string;
+ bool boolean;
+ double number;
+ int64_t integer;
+ uint8_t u8;
+ uint16_t u16;
+ uint32_t u32;
+ uint64_t u64;
+ int8_t s8;
+ int16_t s16;
+ int32_t s32;
+ int64_t s64;
+ intmax_t max;
+ } value;
+ enum {
+ PTYPE_STRING = 0,
+ PTYPE_BOOLEAN,
+ PTYPE_NUMBER,
+ PTYPE_INTEGER,
+ PTYPE_U8,
+ PTYPE_U16,
+ PTYPE_U32,
+ PTYPE_U64,
+ PTYPE_S8,
+ PTYPE_S16,
+ PTYPE_S32,
+ PTYPE_S64,
+ PTYPE_EOL,
+ } type;
+ const char *description;
+} PrimitiveType;
+
+/* test helpers */
+
+static void visit_primitive_type(Visitor *v, void **native, Error **errp)
+{
+ PrimitiveType *pt = *native;
+ switch(pt->type) {
+ case PTYPE_STRING:
+ visit_type_str(v, (char **)&pt->value.string, NULL, errp);
+ break;
+ case PTYPE_BOOLEAN:
+ visit_type_bool(v, &pt->value.boolean, NULL, errp);
+ break;
+ case PTYPE_NUMBER:
+ visit_type_number(v, &pt->value.number, NULL, errp);
+ break;
+ case PTYPE_INTEGER:
+ visit_type_int(v, &pt->value.integer, NULL, errp);
+ break;
+ case PTYPE_U8:
+ visit_type_uint8(v, &pt->value.u8, NULL, errp);
+ break;
+ case PTYPE_U16:
+ visit_type_uint16(v, &pt->value.u16, NULL, errp);
+ break;
+ case PTYPE_U32:
+ visit_type_uint32(v, &pt->value.u32, NULL, errp);
+ break;
+ case PTYPE_U64:
+ visit_type_uint64(v, &pt->value.u64, NULL, errp);
+ break;
+ case PTYPE_S8:
+ visit_type_int8(v, &pt->value.s8, NULL, errp);
+ break;
+ case PTYPE_S16:
+ visit_type_int16(v, &pt->value.s16, NULL, errp);
+ break;
+ case PTYPE_S32:
+ visit_type_int32(v, &pt->value.s32, NULL, errp);
+ break;
+ case PTYPE_S64:
+ visit_type_int64(v, &pt->value.s64, NULL, errp);
+ break;
+ case PTYPE_EOL:
+ g_assert(false);
+ }
+}
+
+typedef struct TestStruct
+{
+ int64_t integer;
+ bool boolean;
+ char *string;
+} TestStruct;
+
+static void visit_type_TestStruct(Visitor *v, TestStruct **obj,
+ const char *name, Error **errp)
+{
+ visit_start_struct(v, (void **)obj, NULL, name, sizeof(TestStruct), errp);
+
+ visit_type_int(v, &(*obj)->integer, "integer", errp);
+ visit_type_bool(v, &(*obj)->boolean, "boolean", errp);
+ visit_type_str(v, &(*obj)->string, "string", errp);
+
+ visit_end_struct(v, errp);
+}
+
+static TestStruct *struct_create(void)
+{
+ TestStruct *ts = g_malloc0(sizeof(*ts));
+ ts->integer = -42;
+ ts->boolean = true;
+ ts->string = strdup("test string");
+ return ts;
+}
+
+static void struct_compare(TestStruct *ts1, TestStruct *ts2)
+{
+ g_assert(ts1);
+ g_assert(ts2);
+ g_assert_cmpint(ts1->integer, ==, ts2->integer);
+ g_assert(ts1->boolean == ts2->boolean);
+ g_assert_cmpstr(ts1->string, ==, ts2->string);
+}
+
+static void struct_cleanup(TestStruct *ts)
+{
+ g_free(ts->string);
+ g_free(ts);
+}
+
+static void visit_struct(Visitor *v, void **native, Error **errp)
+{
+ visit_type_TestStruct(v, (TestStruct **)native, NULL, errp);
+}
+
+static UserDefNested *nested_struct_create(void)
+{
+ UserDefNested *udnp = g_malloc0(sizeof(*udnp));
+ udnp->string0 = strdup("test_string0");
+ udnp->dict1.string1 = strdup("test_string1");
+ udnp->dict1.dict2.userdef1 = g_malloc0(sizeof(UserDefOne));
+ udnp->dict1.dict2.userdef1->integer = 42;
+ udnp->dict1.dict2.userdef1->string = strdup("test_string");
+ udnp->dict1.dict2.string2 = strdup("test_string2");
+ udnp->dict1.has_dict3 = true;
+ udnp->dict1.dict3.userdef2 = g_malloc0(sizeof(UserDefOne));
+ udnp->dict1.dict3.userdef2->integer = 43;
+ udnp->dict1.dict3.userdef2->string = strdup("test_string");
+ udnp->dict1.dict3.string3 = strdup("test_string3");
+ return udnp;
+}
+
+static void nested_struct_compare(UserDefNested *udnp1, UserDefNested *udnp2)
+{
+ g_assert(udnp1);
+ g_assert(udnp2);
+ g_assert_cmpstr(udnp1->string0, ==, udnp2->string0);
+ g_assert_cmpstr(udnp1->dict1.string1, ==, udnp2->dict1.string1);
+ g_assert_cmpint(udnp1->dict1.dict2.userdef1->integer, ==,
+ udnp2->dict1.dict2.userdef1->integer);
+ g_assert_cmpstr(udnp1->dict1.dict2.userdef1->string, ==,
+ udnp2->dict1.dict2.userdef1->string);
+ g_assert_cmpstr(udnp1->dict1.dict2.string2, ==, udnp2->dict1.dict2.string2);
+ g_assert(udnp1->dict1.has_dict3 == udnp2->dict1.has_dict3);
+ g_assert_cmpint(udnp1->dict1.dict3.userdef2->integer, ==,
+ udnp2->dict1.dict3.userdef2->integer);
+ g_assert_cmpstr(udnp1->dict1.dict3.userdef2->string, ==,
+ udnp2->dict1.dict3.userdef2->string);
+ g_assert_cmpstr(udnp1->dict1.dict3.string3, ==, udnp2->dict1.dict3.string3);
+}
+
+static void nested_struct_cleanup(UserDefNested *udnp)
+{
+ qapi_free_UserDefNested(udnp);
+}
+
+static void visit_nested_struct(Visitor *v, void **native, Error **errp)
+{
+ visit_type_UserDefNested(v, (UserDefNested **)native, NULL, errp);
+}
+
+static void visit_nested_struct_list(Visitor *v, void **native, Error **errp)
+{
+ visit_type_UserDefNestedList(v, (UserDefNestedList **)native, NULL, errp);
+}
+
+/* test cases */
+
+typedef void (*VisitorFunc)(Visitor *v, void **native, Error **errp);
+
+typedef enum VisitorCapabilities {
+ VCAP_PRIMITIVES = 1,
+ VCAP_STRUCTURES = 2,
+ VCAP_LISTS = 4,
+} VisitorCapabilities;
+
+typedef struct SerializeOps {
+ void (*serialize)(void *native_in, void **datap,
+ VisitorFunc visit, Error **errp);
+ void (*deserialize)(void **native_out, void *datap,
+ VisitorFunc visit, Error **errp);
+ void (*cleanup)(void *datap);
+ const char *type;
+ VisitorCapabilities caps;
+} SerializeOps;
+
+typedef struct TestArgs {
+ const SerializeOps *ops;
+ void *test_data;
+} TestArgs;
+
+#define FLOAT_STRING_PRECISION 6 /* corresponding to n in %.nf formatting */
+static gsize calc_float_string_storage(double value)
+{
+ int whole_value = value;
+ gsize i = 0;
+ do {
+ i++;
+ } while (whole_value /= 10);
+ return i + 2 + FLOAT_STRING_PRECISION;
+}
+
+static void test_primitives(gconstpointer opaque)
+{
+ TestArgs *args = (TestArgs *) opaque;
+ const SerializeOps *ops = args->ops;
+ PrimitiveType *pt = args->test_data;
+ PrimitiveType *pt_copy = g_malloc0(sizeof(*pt_copy));
+ Error *err = NULL;
+ void *serialize_data;
+ char *double1, *double2;
+
+ pt_copy->type = pt->type;
+ ops->serialize(pt, &serialize_data, visit_primitive_type, &err);
+ ops->deserialize((void **)&pt_copy, serialize_data, visit_primitive_type, &err);
+
+ g_assert(err == NULL);
+ g_assert(pt_copy != NULL);
+ if (pt->type == PTYPE_STRING) {
+ g_assert_cmpstr(pt->value.string, ==, pt_copy->value.string);
+ } else if (pt->type == PTYPE_NUMBER) {
+ /* we serialize with %f for our reference visitors, so rather than fuzzy
+ * floating math to test "equality", just compare the formatted values
+ */
+ double1 = g_malloc0(calc_float_string_storage(pt->value.number));
+ double2 = g_malloc0(calc_float_string_storage(pt_copy->value.number));
+ g_assert_cmpstr(double1, ==, double2);
+ g_free(double1);
+ g_free(double2);
+ } else if (pt->type == PTYPE_BOOLEAN) {
+ g_assert_cmpint(!!pt->value.max, ==, !!pt->value.max);
+ } else {
+ g_assert_cmpint(pt->value.max, ==, pt_copy->value.max);
+ }
+
+ ops->cleanup(serialize_data);
+ g_free(args);
+}
+
+static void test_struct(gconstpointer opaque)
+{
+ TestArgs *args = (TestArgs *) opaque;
+ const SerializeOps *ops = args->ops;
+ TestStruct *ts = struct_create();
+ TestStruct *ts_copy = NULL;
+ Error *err = NULL;
+ void *serialize_data;
+
+ ops->serialize(ts, &serialize_data, visit_struct, &err);
+ ops->deserialize((void **)&ts_copy, serialize_data, visit_struct, &err);
+
+ g_assert(err == NULL);
+ struct_compare(ts, ts_copy);
+
+ struct_cleanup(ts);
+ struct_cleanup(ts_copy);
+
+ ops->cleanup(serialize_data);
+ g_free(args);
+}
+
+static void test_nested_struct(gconstpointer opaque)
+{
+ TestArgs *args = (TestArgs *) opaque;
+ const SerializeOps *ops = args->ops;
+ UserDefNested *udnp = nested_struct_create();
+ UserDefNested *udnp_copy = NULL;
+ Error *err = NULL;
+ void *serialize_data;
+
+ ops->serialize(udnp, &serialize_data, visit_nested_struct, &err);
+ ops->deserialize((void **)&udnp_copy, serialize_data, visit_nested_struct, &err);
+
+ g_assert(err == NULL);
+ nested_struct_compare(udnp, udnp_copy);
+
+ nested_struct_cleanup(udnp);
+ nested_struct_cleanup(udnp_copy);
+
+ ops->cleanup(serialize_data);
+ g_free(args);
+}
+
+static void test_nested_struct_list(gconstpointer opaque)
+{
+ TestArgs *args = (TestArgs *) opaque;
+ const SerializeOps *ops = args->ops;
+ UserDefNestedList *listp = NULL, *tmp, *tmp_copy, *listp_copy = NULL;
+ Error *err = NULL;
+ void *serialize_data;
+ int i = 0;
+
+ for (i = 0; i < 8; i++) {
+ tmp = g_malloc0(sizeof(UserDefNestedList));
+ tmp->value = nested_struct_create();
+ tmp->next = listp;
+ listp = tmp;
+ }
+
+ ops->serialize(listp, &serialize_data, visit_nested_struct_list, &err);
+ ops->deserialize((void **)&listp_copy, serialize_data,
+ visit_nested_struct_list, &err);
+
+ g_assert(err == NULL);
+
+ tmp = listp;
+ tmp_copy = listp_copy;
+ while (listp_copy) {
+ g_assert(listp);
+ nested_struct_compare(listp->value, listp_copy->value);
+ listp = listp->next;
+ listp_copy = listp_copy->next;
+ }
+
+ qapi_free_UserDefNestedList(tmp);
+ qapi_free_UserDefNestedList(tmp_copy);
+
+ ops->cleanup(serialize_data);
+ g_free(args);
+}
+
+PrimitiveType pt_values[] = {
+ /* string tests */
+ {
+ .description = "string_empty",
+ .type = PTYPE_STRING,
+ .value.string = "",
+ },
+ {
+ .description = "string_whitespace",
+ .type = PTYPE_STRING,
+ .value.string = "a b c\td",
+ },
+ {
+ .description = "string_newlines",
+ .type = PTYPE_STRING,
+ .value.string = "a\nb\n",
+ },
+ {
+ .description = "string_commas",
+ .type = PTYPE_STRING,
+ .value.string = "a,b, c,d",
+ },
+ {
+ .description = "string_single_quoted",
+ .type = PTYPE_STRING,
+ .value.string = "'a b',cd",
+ },
+ {
+ .description = "string_double_quoted",
+ .type = PTYPE_STRING,
+ .value.string = "\"a b\",cd",
+ },
+ /* boolean tests */
+ {
+ .description = "boolean_true1",
+ .type = PTYPE_BOOLEAN,
+ .value.boolean = true,
+ },
+ {
+ .description = "boolean_true2",
+ .type = PTYPE_BOOLEAN,
+ .value.boolean = 8,
+ },
+ {
+ .description = "boolean_true3",
+ .type = PTYPE_BOOLEAN,
+ .value.boolean = -1,
+ },
+ {
+ .description = "boolean_false1",
+ .type = PTYPE_BOOLEAN,
+ .value.boolean = false,
+ },
+ {
+ .description = "boolean_false2",
+ .type = PTYPE_BOOLEAN,
+ .value.boolean = 0,
+ },
+ /* number tests (double) */
+ /* note: we format these to %.6f before comparing, since that's how
+ * we serialize them and it doesn't make sense to check precision
+ * beyond that.
+ */
+ {
+ .description = "number_sanity1",
+ .type = PTYPE_NUMBER,
+ .value.number = -1,
+ },
+ {
+ .description = "number_sanity2",
+ .type = PTYPE_NUMBER,
+ .value.number = 3.14159265,
+ },
+ {
+ .description = "number_min",
+ .type = PTYPE_NUMBER,
+ .value.number = DBL_MIN,
+ },
+ {
+ .description = "number_max",
+ .type = PTYPE_NUMBER,
+ .value.number = DBL_MAX,
+ },
+ /* integer tests (int64) */
+ {
+ .description = "integer_sanity1",
+ .type = PTYPE_INTEGER,
+ .value.integer = -1,
+ },
+ {
+ .description = "integer_sanity2",
+ .type = PTYPE_INTEGER,
+ .value.integer = INT64_MAX / 2 + 1,
+ },
+ {
+ .description = "integer_min",
+ .type = PTYPE_INTEGER,
+ .value.integer = INT64_MIN,
+ },
+ {
+ .description = "integer_max",
+ .type = PTYPE_INTEGER,
+ .value.integer = INT64_MAX,
+ },
+ /* uint8 tests */
+ {
+ .description = "uint8_sanity1",
+ .type = PTYPE_U8,
+ .value.u8 = 1,
+ },
+ {
+ .description = "uint8_sanity2",
+ .type = PTYPE_U8,
+ .value.u8 = UINT8_MAX / 2 + 1,
+ },
+ {
+ .description = "uint8_min",
+ .type = PTYPE_U8,
+ .value.u8 = 0,
+ },
+ {
+ .description = "uint8_max",
+ .type = PTYPE_U8,
+ .value.u8 = UINT8_MAX,
+ },
+ /* uint16 tests */
+ {
+ .description = "uint16_sanity1",
+ .type = PTYPE_U16,
+ .value.u16 = 1,
+ },
+ {
+ .description = "uint16_sanity2",
+ .type = PTYPE_U16,
+ .value.u16 = UINT16_MAX / 2 + 1,
+ },
+ {
+ .description = "uint16_min",
+ .type = PTYPE_U16,
+ .value.u16 = 0,
+ },
+ {
+ .description = "uint16_max",
+ .type = PTYPE_U16,
+ .value.u16 = UINT16_MAX,
+ },
+ /* uint32 tests */
+ {
+ .description = "uint32_sanity1",
+ .type = PTYPE_U32,
+ .value.u32 = 1,
+ },
+ {
+ .description = "uint32_sanity2",
+ .type = PTYPE_U32,
+ .value.u32 = UINT32_MAX / 2 + 1,
+ },
+ {
+ .description = "uint32_min",
+ .type = PTYPE_U32,
+ .value.u32 = 0,
+ },
+ {
+ .description = "uint32_max",
+ .type = PTYPE_U32,
+ .value.u32 = UINT32_MAX,
+ },
+ /* uint64 tests */
+ {
+ .description = "uint64_sanity1",
+ .type = PTYPE_U64,
+ .value.u64 = 1,
+ },
+ {
+ .description = "uint64_sanity2",
+ .type = PTYPE_U64,
+ .value.u64 = UINT64_MAX / 2 + 1,
+ },
+ {
+ .description = "uint64_min",
+ .type = PTYPE_U64,
+ .value.u64 = 0,
+ },
+ {
+ .description = "uint64_max",
+ .type = PTYPE_U64,
+ .value.u64 = UINT64_MAX,
+ },
+ /* int8 tests */
+ {
+ .description = "int8_sanity1",
+ .type = PTYPE_S8,
+ .value.s8 = -1,
+ },
+ {
+ .description = "int8_sanity2",
+ .type = PTYPE_S8,
+ .value.s8 = INT8_MAX / 2 + 1,
+ },
+ {
+ .description = "int8_min",
+ .type = PTYPE_S8,
+ .value.s8 = INT8_MIN,
+ },
+ {
+ .description = "int8_max",
+ .type = PTYPE_S8,
+ .value.s8 = INT8_MAX,
+ },
+ /* int16 tests */
+ {
+ .description = "int16_sanity1",
+ .type = PTYPE_S16,
+ .value.s16 = -1,
+ },
+ {
+ .description = "int16_sanity2",
+ .type = PTYPE_S16,
+ .value.s16 = INT16_MAX / 2 + 1,
+ },
+ {
+ .description = "int16_min",
+ .type = PTYPE_S16,
+ .value.s16 = INT16_MIN,
+ },
+ {
+ .description = "int16_max",
+ .type = PTYPE_S16,
+ .value.s16 = INT16_MAX,
+ },
+ /* int32 tests */
+ {
+ .description = "int32_sanity1",
+ .type = PTYPE_S32,
+ .value.s32 = -1,
+ },
+ {
+ .description = "int32_sanity2",
+ .type = PTYPE_S32,
+ .value.s32 = INT32_MAX / 2 + 1,
+ },
+ {
+ .description = "int32_min",
+ .type = PTYPE_S32,
+ .value.s32 = INT32_MIN,
+ },
+ {
+ .description = "int32_max",
+ .type = PTYPE_S32,
+ .value.s32 = INT32_MAX,
+ },
+ /* int64 tests */
+ {
+ .description = "int64_sanity1",
+ .type = PTYPE_S64,
+ .value.s64 = -1,
+ },
+ {
+ .description = "int64_sanity2",
+ .type = PTYPE_S64,
+ .value.s64 = INT64_MAX / 2 + 1,
+ },
+ {
+ .description = "int64_min",
+ .type = PTYPE_S64,
+ .value.s64 = INT64_MIN,
+ },
+ {
+ .description = "int64_max",
+ .type = PTYPE_S64,
+ .value.s64 = INT64_MAX,
+ },
+ { .type = PTYPE_EOL }
+};
+
+/* visitor-specific op implementations */
+
+typedef struct QmpSerializeData {
+ QmpOutputVisitor *qov;
+ QmpInputVisitor *qiv;
+} QmpSerializeData;
+
+static void qmp_serialize(void *native_in, void **datap,
+ VisitorFunc visit, Error **errp)
+{
+ QmpSerializeData *d = g_malloc0(sizeof(*d));
+
+ d->qov = qmp_output_visitor_new();
+ visit(qmp_output_get_visitor(d->qov), &native_in, errp);
+ *datap = d;
+}
+
+static void qmp_deserialize(void **native_out, void *datap,
+ VisitorFunc visit, Error **errp)
+{
+ QmpSerializeData *d = datap;
+ QString *output_json = qobject_to_json(qmp_output_get_qobject(d->qov));
+ QObject *obj = qobject_from_json(qstring_get_str(output_json));
+
+ QDECREF(output_json);
+ d->qiv = qmp_input_visitor_new(obj);
+ visit(qmp_input_get_visitor(d->qiv), native_out, errp);
+}
+
+static void qmp_cleanup(void *datap)
+{
+ QmpSerializeData *d = datap;
+ qmp_output_visitor_cleanup(d->qov);
+ qmp_input_visitor_cleanup(d->qiv);
+}
+
+typedef struct StringSerializeData {
+ StringOutputVisitor *sov;
+ StringInputVisitor *siv;
+} StringSerializeData;
+
+static void string_serialize(void *native_in, void **datap,
+ VisitorFunc visit, Error **errp)
+{
+ StringSerializeData *d = g_malloc0(sizeof(*d));
+
+ d->sov = string_output_visitor_new();
+ visit(string_output_get_visitor(d->sov), &native_in, errp);
+ *datap = d;
+}
+
+static void string_deserialize(void **native_out, void *datap,
+ VisitorFunc visit, Error **errp)
+{
+ StringSerializeData *d = datap;
+
+ d->siv = string_input_visitor_new(string_output_get_string(d->sov));
+ visit(string_input_get_visitor(d->siv), native_out, errp);
+}
+
+static void string_cleanup(void *datap)
+{
+ StringSerializeData *d = datap;
+ string_output_visitor_cleanup(d->sov);
+ string_input_visitor_cleanup(d->siv);
+}
+
+/* visitor registration, test harness */
+
+/* note: to function interchangeably as a serialization mechanism your
+ * visitor test implementation should pass the test cases for all visitor
+ * capabilities: primitives, structures, and lists
+ */
+static const SerializeOps visitors[] = {
+ {
+ .type = "QMP",
+ .serialize = qmp_serialize,
+ .deserialize = qmp_deserialize,
+ .cleanup = qmp_cleanup,
+ .caps = VCAP_PRIMITIVES | VCAP_STRUCTURES | VCAP_LISTS
+ },
+ {
+ .type = "String",
+ .serialize = string_serialize,
+ .deserialize = string_deserialize,
+ .cleanup = string_cleanup,
+ .caps = VCAP_PRIMITIVES
+ },
+ { NULL }
+};
+
+static void add_visitor_type(const SerializeOps *ops)
+{
+ char testname_prefix[128];
+ char testname[128];
+ TestArgs *args;
+ int i = 0;
+
+ sprintf(testname_prefix, "/visitor/serialization/%s", ops->type);
+
+ if (ops->caps & VCAP_PRIMITIVES) {
+ while (pt_values[i].type != PTYPE_EOL) {
+ sprintf(testname, "%s/primitives/%s", testname_prefix,
+ pt_values[i].description);
+ args = g_malloc0(sizeof(*args));
+ args->ops = ops;
+ args->test_data = &pt_values[i];
+ g_test_add_data_func(testname, args, test_primitives);
+ i++;
+ }
+ }
+
+ if (ops->caps & VCAP_STRUCTURES) {
+ sprintf(testname, "%s/struct", testname_prefix);
+ args = g_malloc0(sizeof(*args));
+ args->ops = ops;
+ args->test_data = NULL;
+ g_test_add_data_func(testname, args, test_struct);
+
+ sprintf(testname, "%s/nested_struct", testname_prefix);
+ args = g_malloc0(sizeof(*args));
+ args->ops = ops;
+ args->test_data = NULL;
+ g_test_add_data_func(testname, args, test_nested_struct);
+ }
+
+ if (ops->caps & VCAP_LISTS) {
+ sprintf(testname, "%s/nested_struct_list", testname_prefix);
+ args = g_malloc0(sizeof(*args));
+ args->ops = ops;
+ args->test_data = NULL;
+ g_test_add_data_func(testname, args, test_nested_struct_list);
+ }
+}
+
+int main(int argc, char **argv)
+{
+ int i = 0;
+
+ g_test_init(&argc, &argv, NULL);
+
+ while (visitors[i].type != NULL) {
+ add_visitor_type(&visitors[i]);
+ i++;
+ }
+
+ g_test_run();
+
+ return 0;
+}
usb_ehci_port_reset(uint32_t port, int enable) "reset port #%d - %d"
usb_ehci_data(int rw, uint32_t cpage, uint32_t offset, uint32_t addr, uint32_t len, uint32_t bufpos) "write %d, cpage %d, offset 0x%03x, addr 0x%08x, len %d, bufpos %d"
usb_ehci_queue_action(void *q, const char *action) "q %p: %s"
+usb_ehci_packet_action(void *q, void *p, const char *action) "q %p p %p: %s"
# hw/usb/hcd-uhci.c
usb_uhci_reset(void) "=== RESET ==="
usb_uhci_schedule_start(void) ""
usb_uhci_schedule_stop(void) ""
usb_uhci_frame_start(uint32_t num) "nr %d"
+usb_uhci_frame_stop_bandwidth(void) ""
usb_uhci_frame_loop_stop_idle(void) ""
-usb_uhci_frame_loop_stop_bandwidth(void) ""
usb_uhci_frame_loop_continue(void) ""
-usb_uhci_mmio_readw(uint32_t addr, uint32_t val) "addr %04x, ret 0x04%x"
-usb_uhci_mmio_writew(uint32_t addr, uint32_t val) "addr %04x, val 0x04%x"
-usb_uhci_mmio_readl(uint32_t addr, uint32_t val) "addr %04x, ret 0x08%x"
-usb_uhci_mmio_writel(uint32_t addr, uint32_t val) "addr %04x, val 0x08%x"
+usb_uhci_mmio_readw(uint32_t addr, uint32_t val) "addr 0x%04x, ret 0x%04x"
+usb_uhci_mmio_writew(uint32_t addr, uint32_t val) "addr 0x%04x, val 0x%04x"
+usb_uhci_mmio_readl(uint32_t addr, uint32_t val) "addr 0x%04x, ret 0x%08x"
+usb_uhci_mmio_writel(uint32_t addr, uint32_t val) "addr 0x%04x, val 0x%08x"
usb_uhci_queue_add(uint32_t token) "token 0x%x"
usb_uhci_queue_del(uint32_t token) "token 0x%x"
usb_uhci_packet_add(uint32_t token, uint32_t addr) "token 0x%x, td 0x%x"
usb_uhci_td_async(uint32_t qh, uint32_t td) "qh 0x%x, td 0x%x"
usb_uhci_td_complete(uint32_t qh, uint32_t td) "qh 0x%x, td 0x%x"
+# hw/usb/hcd-xhci.c
+usb_xhci_reset(void) "=== RESET ==="
+usb_xhci_run(void) ""
+usb_xhci_stop(void) ""
+usb_xhci_cap_read(uint32_t off, uint32_t val) "off 0x%04x, ret 0x%08x"
+usb_xhci_oper_read(uint32_t off, uint32_t val) "off 0x%04x, ret 0x%08x"
+usb_xhci_port_read(uint32_t port, uint32_t off, uint32_t val) "port %d, off 0x%04x, ret 0x%08x"
+usb_xhci_runtime_read(uint32_t off, uint32_t val) "off 0x%04x, ret 0x%08x"
+usb_xhci_doorbell_read(uint32_t off, uint32_t val) "off 0x%04x, ret 0x%08x"
+usb_xhci_oper_write(uint32_t off, uint32_t val) "off 0x%04x, val 0x%08x"
+usb_xhci_port_write(uint32_t port, uint32_t off, uint32_t val) "port %d, off 0x%04x, val 0x%08x"
+usb_xhci_runtime_write(uint32_t off, uint32_t val) "off 0x%04x, val 0x%08x"
+usb_xhci_doorbell_write(uint32_t off, uint32_t val) "off 0x%04x, val 0x%08x"
+usb_xhci_irq_intx(uint32_t level) "level %d"
+usb_xhci_irq_msi(uint32_t nr) "nr %d"
+usb_xhci_queue_event(uint32_t idx, const char *name, uint64_t param, uint32_t status, uint32_t control) "idx %d, %s, p %016" PRIx64 ", s %08x, c 0x%08x"
+usb_xhci_fetch_trb(uint64_t addr, const char *name, uint64_t param, uint32_t status, uint32_t control) "addr %016" PRIx64 ", %s, p %016" PRIx64 ", s %08x, c 0x%08x"
+usb_xhci_slot_enable(uint32_t slotid) "slotid %d"
+usb_xhci_slot_disable(uint32_t slotid) "slotid %d"
+usb_xhci_slot_address(uint32_t slotid) "slotid %d"
+usb_xhci_slot_configure(uint32_t slotid) "slotid %d"
+usb_xhci_slot_evaluate(uint32_t slotid) "slotid %d"
+usb_xhci_slot_reset(uint32_t slotid) "slotid %d"
+usb_xhci_ep_enable(uint32_t slotid, uint32_t epid) "slotid %d, epid %d"
+usb_xhci_ep_disable(uint32_t slotid, uint32_t epid) "slotid %d, epid %d"
+usb_xhci_ep_kick(uint32_t slotid, uint32_t epid) "slotid %d, epid %d"
+usb_xhci_ep_stop(uint32_t slotid, uint32_t epid) "slotid %d, epid %d"
+usb_xhci_ep_reset(uint32_t slotid, uint32_t epid) "slotid %d, epid %d"
+usb_xhci_xfer_start(void *xfer, uint32_t slotid, uint32_t epid, uint32_t length) "%p: slotid %d, epid %d, length %d"
+usb_xhci_xfer_async(void *xfer) "%p"
+usb_xhci_xfer_nak(void *xfer) "%p"
+usb_xhci_xfer_retry(void *xfer) "%p"
+usb_xhci_xfer_success(void *xfer, uint32_t bytes) "%p: len %d"
+usb_xhci_xfer_error(void *xfer, uint32_t ret) "%p: ret %d"
+
# hw/usb/desc.c
usb_desc_device(int addr, int len, int ret) "dev %d query device, len %d, ret %d"
usb_desc_device_qualifier(int addr, int len, int ret) "dev %d query device qualifier, len %d, ret %d"
}
timestamp = get_clock();
-
+#if GLIB_CHECK_VERSION(2, 30, 0)
+ idx = g_atomic_int_add((gint *)&trace_idx, 1) % TRACE_BUF_LEN;
+#else
idx = g_atomic_int_exchange_and_add((gint *)&trace_idx, 1) % TRACE_BUF_LEN;
+#endif
trace_buf[idx] = (TraceRecord){
.event = event,
.timestamp_ns = timestamp,