Add Java and Python code for Image Segmentation with Distance Transform and Watershed...
authorcatree <catree.catreus@outlook.com>
Wed, 27 Jun 2018 16:48:32 +0000 (18:48 +0200)
committercatree <catree.catreus@outlook.com>
Wed, 27 Jun 2018 16:48:32 +0000 (18:48 +0200)
doc/tutorials/imgproc/imgtrans/distance_transformation/distance_transform.markdown
doc/tutorials/imgproc/table_of_content_imgproc.markdown
samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp
samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java [new file with mode: 0644]
samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py [new file with mode: 0644]
samples/python/tutorial_code/features2D/feature_flann_matcher/SURF_FLANN_matching_Demo.py
samples/python/tutorial_code/features2D/feature_homography/SURF_FLANN_matching_homography_Demo.py

index 12ef87f..ca1ec47 100644 (file)
@@ -16,42 +16,152 @@ Theory
 Code
 ----
 
+@add_toggle_cpp
 This tutorial code's is shown lines below. You can also download it from
-    [here](https://github.com/opencv/opencv/tree/3.4/samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp).
+[here](https://github.com/opencv/opencv/tree/3.4/samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp).
 @include samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp
+@end_toggle
+
+@add_toggle_java
+This tutorial code's is shown lines below. You can also download it from
+[here](https://github.com/opencv/opencv/tree/3.4/samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java)
+@include samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java
+@end_toggle
+
+@add_toggle_python
+This tutorial code's is shown lines below. You can also download it from
+[here](https://github.com/opencv/opencv/tree/3.4/samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py)
+@include samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py
+@end_toggle
 
 Explanation / Result
 --------------------
 
--#  Load the source image and check if it is loaded without any problem, then show it:
-    @snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp load_image
-    ![](images/source.jpeg)
+-   Load the source image and check if it is loaded without any problem, then show it:
+
+@add_toggle_cpp
+@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp load_image
+@end_toggle
+
+@add_toggle_java
+@snippet samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java load_image
+@end_toggle
+
+@add_toggle_python
+@snippet samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py load_image
+@end_toggle
+
+![](images/source.jpeg)
+
+-   Then if we have an image with a white background, it is good to transform it to black. This will help us to discriminate the foreground objects easier when we will apply the Distance Transform:
+
+@add_toggle_cpp
+@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp black_bg
+@end_toggle
+
+@add_toggle_java
+@snippet samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java black_bg
+@end_toggle
+
+@add_toggle_python
+@snippet samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py black_bg
+@end_toggle
+
+![](images/black_bg.jpeg)
+
+-   Afterwards we will sharpen our image in order to acute the edges of the foreground objects. We will apply a laplacian filter with a quite strong filter (an approximation of second derivative):
+
+@add_toggle_cpp
+@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp sharp
+@end_toggle
+
+@add_toggle_java
+@snippet samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java sharp
+@end_toggle
+
+@add_toggle_python
+@snippet samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py sharp
+@end_toggle
+
+![](images/laplace.jpeg)
+![](images/sharp.jpeg)
+
+-   Now we transform our new sharpened source image to a grayscale and a binary one, respectively:
+
+@add_toggle_cpp
+@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp bin
+@end_toggle
+
+@add_toggle_java
+@snippet samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java bin
+@end_toggle
+
+@add_toggle_python
+@snippet samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py bin
+@end_toggle
+
+![](images/bin.jpeg)
+
+-   We are ready now to apply the Distance Transform on the binary image. Moreover, we normalize the output image in order to be able visualize and threshold the result:
+
+@add_toggle_cpp
+@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp dist
+@end_toggle
+
+@add_toggle_java
+@snippet samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java dist
+@end_toggle
+
+@add_toggle_python
+@snippet samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py dist
+@end_toggle
+
+![](images/dist_transf.jpeg)
+
+-   We threshold the *dist* image and then perform some morphology operation (i.e. dilation) in order to extract the peaks from the above image:
+
+@add_toggle_cpp
+@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp peaks
+@end_toggle
+
+@add_toggle_java
+@snippet samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java peaks
+@end_toggle
+
+@add_toggle_python
+@snippet samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py peaks
+@end_toggle
+
+![](images/peaks.jpeg)
+
+-   From each blob then we create a seed/marker for the watershed algorithm with the help of the @ref cv::findContours function:
+
+@add_toggle_cpp
+@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp seeds
+@end_toggle
+
+@add_toggle_java
+@snippet samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java seeds
+@end_toggle
 
--#  Then if we have an image with a white background, it is good to transform it to black. This will help us to discriminate the foreground objects easier when we will apply the Distance Transform:
-    @snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp black_bg
-    ![](images/black_bg.jpeg)
+@add_toggle_python
+@snippet samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py seeds
+@end_toggle
 
--#  Afterwards we will sharpen our image in order to acute the edges of the foreground objects. We will apply a laplacian filter with a quite strong filter (an approximation of second derivative):
-    @snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp sharp
-    ![](images/laplace.jpeg)
-    ![](images/sharp.jpeg)
+![](images/markers.jpeg)
 
--#  Now we transform our new sharpened source image to a grayscale and a binary one, respectively:
-    @snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp bin
-    ![](images/bin.jpeg)
+-   Finally, we can apply the watershed algorithm, and visualize the result:
 
--#  We are ready now to apply the Distance Transform on the binary image. Moreover, we normalize the output image in order to be able visualize and threshold the result:
-    @snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp dist
-    ![](images/dist_transf.jpeg)
+@add_toggle_cpp
+@snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp watershed
+@end_toggle
 
--#  We threshold the *dist* image and then perform some morphology operation (i.e. dilation) in order to extract the peaks from the above image:
-    @snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp peaks
-    ![](images/peaks.jpeg)
+@add_toggle_java
+@snippet samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java watershed
+@end_toggle
 
--#  From each blob then we create a seed/marker for the watershed algorithm with the help of the @ref cv::findContours function:
-    @snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp seeds
-    ![](images/markers.jpeg)
+@add_toggle_python
+@snippet samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py watershed
+@end_toggle
 
--#  Finally, we can apply the watershed algorithm, and visualize the result:
-    @snippet samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp watershed
-    ![](images/final.jpeg)
\ No newline at end of file
+![](images/final.jpeg)
index e3fac55..59c985e 100644 (file)
@@ -285,6 +285,8 @@ In this section you will learn about the image processing (manipulation) functio
 
 -   @subpage tutorial_distance_transform
 
+    *Languages:* C++, Java, Python
+
     *Compatibility:* \> OpenCV 2.0
 
     *Author:* Theodore Tsesmelis
index 87a5436..d038cbd 100644 (file)
@@ -1,5 +1,4 @@
 /**
- * @function Watershed_and_Distance_Transform.cpp
  * @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation
  * @author OpenCV Team
  */
 using namespace std;
 using namespace cv;
 
-int main()
+int main(int argc, char *argv[])
 {
-//! [load_image]
+    //! [load_image]
     // Load the image
-    Mat src = imread("../data/cards.png");
-
-    // Check if everything was fine
-    if (!src.data)
+    CommandLineParser parser( argc, argv, "{@input | ../data/cards.png | input image}" );
+    Mat src = imread( parser.get<String>( "@input" ) );
+    if( src.empty() )
+    {
+        cout << "Could not open or find the image!\n" << endl;
+        cout << "Usage: " << argv[0] << " <Input image>" << endl;
         return -1;
+    }
 
     // Show source image
     imshow("Source Image", src);
-//! [load_image]
+    //! [load_image]
 
-//! [black_bg]
+    //! [black_bg]
     // Change the background from white to black, since that will help later to extract
     // better results during the use of Distance Transform
-    for( int x = 0; x < src.rows; x++ ) {
-      for( int y = 0; y < src.cols; y++ ) {
-          if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) {
-            src.at<Vec3b>(x, y)[0] = 0;
-            src.at<Vec3b>(x, y)[1] = 0;
-            src.at<Vec3b>(x, y)[2] = 0;
-          }
+    for ( int i = 0; i < src.rows; i++ ) {
+        for ( int j = 0; j < src.cols; j++ ) {
+            if ( src.at<Vec3b>(i, j) == Vec3b(255,255,255) )
+            {
+                src.at<Vec3b>(i, j)[0] = 0;
+                src.at<Vec3b>(i, j)[1] = 0;
+                src.at<Vec3b>(i, j)[2] = 0;
+            }
         }
     }
 
     // Show output image
     imshow("Black Background Image", src);
-//! [black_bg]
+    //! [black_bg]
 
-//! [sharp]
-    // Create a kernel that we will use for accuting/sharpening our image
+    //! [sharp]
+    // Create a kernel that we will use to sharpen our image
     Mat kernel = (Mat_<float>(3,3) <<
-            1,  1, 1,
-            1, -8, 1,
-            1,  1, 1); // an approximation of second derivative, a quite strong kernel
+                  1,  1, 1,
+                  1, -8, 1,
+                  1,  1, 1); // an approximation of second derivative, a quite strong kernel
 
     // do the laplacian filtering as it is
     // well, we need to convert everything in something more deeper then CV_8U
@@ -57,8 +60,8 @@ int main()
     // BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
     // so the possible negative number will be truncated
     Mat imgLaplacian;
-    Mat sharp = src; // copy source image to another temporary one
-    filter2D(sharp, imgLaplacian, CV_32F, kernel);
+    filter2D(src, imgLaplacian, CV_32F, kernel);
+    Mat sharp;
     src.convertTo(sharp, CV_32F);
     Mat imgResult = sharp - imgLaplacian;
 
@@ -68,41 +71,39 @@ int main()
 
     // imshow( "Laplace Filtered Image", imgLaplacian );
     imshow( "New Sharped Image", imgResult );
-//! [sharp]
+    //! [sharp]
 
-    src = imgResult; // copy back
-
-//! [bin]
+    //! [bin]
     // Create binary image from source image
     Mat bw;
-    cvtColor(src, bw, COLOR_BGR2GRAY);
+    cvtColor(imgResult, bw, COLOR_BGR2GRAY);
     threshold(bw, bw, 40, 255, THRESH_BINARY | THRESH_OTSU);
     imshow("Binary Image", bw);
-//! [bin]
+    //! [bin]
 
-//! [dist]
+    //! [dist]
     // Perform the distance transform algorithm
     Mat dist;
     distanceTransform(bw, dist, DIST_L2, 3);
 
     // Normalize the distance image for range = {0.0, 1.0}
     // so we can visualize and threshold it
-    normalize(dist, dist, 0, 1., NORM_MINMAX);
+    normalize(dist, dist, 0, 1.0, NORM_MINMAX);
     imshow("Distance Transform Image", dist);
-//! [dist]
+    //! [dist]
 
-//! [peaks]
+    //! [peaks]
     // Threshold to obtain the peaks
     // This will be the markers for the foreground objects
-    threshold(dist, dist, .4, 1., THRESH_BINARY);
+    threshold(dist, dist, 0.4, 1.0, THRESH_BINARY);
 
     // Dilate a bit the dist image
-    Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
+    Mat kernel1 = Mat::ones(3, 3, CV_8U);
     dilate(dist, dist, kernel1);
     imshow("Peaks", dist);
-//! [peaks]
+    //! [peaks]
 
-//! [seeds]
+    //! [seeds]
     // Create the CV_8U version of the distance image
     // It is needed for findContours()
     Mat dist_8u;
@@ -113,34 +114,36 @@ int main()
     findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
 
     // Create the marker image for the watershed algorithm
-    Mat markers = Mat::zeros(dist.size(), CV_32SC1);
+    Mat markers = Mat::zeros(dist.size(), CV_32S);
 
     // Draw the foreground markers
     for (size_t i = 0; i < contours.size(); i++)
-        drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1);
+    {
+        drawContours(markers, contours, static_cast<int>(i), Scalar(static_cast<int>(i)+1), -1);
+    }
 
     // Draw the background marker
-    circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
+    circle(markers, Point(5,5), 3, Scalar(255), -1);
     imshow("Markers", markers*10000);
-//! [seeds]
+    //! [seeds]
 
-//! [watershed]
+    //! [watershed]
     // Perform the watershed algorithm
-    watershed(src, markers);
+    watershed(imgResult, markers);
 
-    Mat mark = Mat::zeros(markers.size(), CV_8UC1);
-    markers.convertTo(mark, CV_8UC1);
+    Mat mark;
+    markers.convertTo(mark, CV_8U);
     bitwise_not(mark, mark);
-//    imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
-                                  // image looks like at that point
+    //    imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
+    // image looks like at that point
 
     // Generate random colors
     vector<Vec3b> colors;
     for (size_t i = 0; i < contours.size(); i++)
     {
-        int b = theRNG().uniform(0, 255);
-        int g = theRNG().uniform(0, 255);
-        int r = theRNG().uniform(0, 255);
+        int b = theRNG().uniform(0, 256);
+        int g = theRNG().uniform(0, 256);
+        int r = theRNG().uniform(0, 256);
 
         colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
     }
@@ -155,16 +158,16 @@ int main()
         {
             int index = markers.at<int>(i,j);
             if (index > 0 && index <= static_cast<int>(contours.size()))
+            {
                 dst.at<Vec3b>(i,j) = colors[index-1];
-            else
-                dst.at<Vec3b>(i,j) = Vec3b(0,0,0);
+            }
         }
     }
 
     // Visualize the final image
     imshow("Final Result", dst);
-//! [watershed]
+    //! [watershed]
 
-    waitKey(0);
+    waitKey();
     return 0;
 }
diff --git a/samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java b/samples/java/tutorial_code/ImgTrans/distance_transformation/ImageSegmentationDemo.java
new file mode 100644 (file)
index 0000000..1a26092
--- /dev/null
@@ -0,0 +1,215 @@
+import java.util.ArrayList;
+import java.util.List;
+import java.util.Random;
+
+import org.opencv.core.Core;
+import org.opencv.core.CvType;
+import org.opencv.core.Mat;
+import org.opencv.core.MatOfPoint;
+import org.opencv.core.Point;
+import org.opencv.core.Scalar;
+import org.opencv.highgui.HighGui;
+import org.opencv.imgcodecs.Imgcodecs;
+import org.opencv.imgproc.Imgproc;
+
+/**
+ *
+ * @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed
+ * and Distance Transformation
+ *
+ */
+class ImageSegmentation {
+    public void run(String[] args) {
+        //! [load_image]
+        // Load the image
+        String filename = args.length > 0 ? args[0] : "../data/cards.png";
+        Mat srcOriginal = Imgcodecs.imread(filename);
+        if (srcOriginal.empty()) {
+            System.err.println("Cannot read image: " + filename);
+            System.exit(0);
+        }
+
+        // Show source image
+        HighGui.imshow("Source Image", srcOriginal);
+        //! [load_image]
+
+        //! [black_bg]
+        // Change the background from white to black, since that will help later to
+        // extract
+        // better results during the use of Distance Transform
+        Mat src = srcOriginal.clone();
+        byte[] srcData = new byte[(int) (src.total() * src.channels())];
+        src.get(0, 0, srcData);
+        for (int i = 0; i < src.rows(); i++) {
+            for (int j = 0; j < src.cols(); j++) {
+                if (srcData[(i * src.cols() + j) * 3] == (byte) 255 && srcData[(i * src.cols() + j) * 3 + 1] == (byte) 255
+                        && srcData[(i * src.cols() + j) * 3 + 2] == (byte) 255) {
+                    srcData[(i * src.cols() + j) * 3] = 0;
+                    srcData[(i * src.cols() + j) * 3 + 1] = 0;
+                    srcData[(i * src.cols() + j) * 3 + 2] = 0;
+                }
+            }
+        }
+        src.put(0, 0, srcData);
+
+        // Show output image
+        HighGui.imshow("Black Background Image", src);
+        //! [black_bg]
+
+        //! [sharp]
+        // Create a kernel that we will use to sharpen our image
+        Mat kernel = new Mat(3, 3, CvType.CV_32F);
+        // an approximation of second derivative, a quite strong kernel
+        float[] kernelData = new float[(int) (kernel.total() * kernel.channels())];
+        kernelData[0] = 1; kernelData[1] = 1; kernelData[2] = 1;
+        kernelData[3] = 1; kernelData[4] = -8; kernelData[5] = 1;
+        kernelData[6] = 1; kernelData[7] = 1; kernelData[8] = 1;
+        kernel.put(0, 0, kernelData);
+
+        // do the laplacian filtering as it is
+        // well, we need to convert everything in something more deeper then CV_8U
+        // because the kernel has some negative values,
+        // and we can expect in general to have a Laplacian image with negative values
+        // BUT a 8bits unsigned int (the one we are working with) can contain values
+        // from 0 to 255
+        // so the possible negative number will be truncated
+        Mat imgLaplacian = new Mat();
+        Imgproc.filter2D(src, imgLaplacian, CvType.CV_32F, kernel);
+        Mat sharp = new Mat();
+        src.convertTo(sharp, CvType.CV_32F);
+        Mat imgResult = new Mat();
+        Core.subtract(sharp, imgLaplacian, imgResult);
+
+        // convert back to 8bits gray scale
+        imgResult.convertTo(imgResult, CvType.CV_8UC3);
+        imgLaplacian.convertTo(imgLaplacian, CvType.CV_8UC3);
+
+        // imshow( "Laplace Filtered Image", imgLaplacian );
+        HighGui.imshow("New Sharped Image", imgResult);
+        //! [sharp]
+
+        //! [bin]
+        // Create binary image from source image
+        Mat bw = new Mat();
+        Imgproc.cvtColor(imgResult, bw, Imgproc.COLOR_BGR2GRAY);
+        Imgproc.threshold(bw, bw, 40, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
+        HighGui.imshow("Binary Image", bw);
+        //! [bin]
+
+        //! [dist]
+        // Perform the distance transform algorithm
+        Mat dist = new Mat();
+        Imgproc.distanceTransform(bw, dist, Imgproc.DIST_L2, 3);
+
+        // Normalize the distance image for range = {0.0, 1.0}
+        // so we can visualize and threshold it
+        Core.normalize(dist, dist, 0, 1., Core.NORM_MINMAX);
+        Mat distDisplayScaled = dist.mul(dist, 255);
+        Mat distDisplay = new Mat();
+        distDisplayScaled.convertTo(distDisplay, CvType.CV_8U);
+        HighGui.imshow("Distance Transform Image", distDisplay);
+        //! [dist]
+
+        //! [peaks]
+        // Threshold to obtain the peaks
+        // This will be the markers for the foreground objects
+        Imgproc.threshold(dist, dist, .4, 1., Imgproc.THRESH_BINARY);
+
+        // Dilate a bit the dist image
+        Mat kernel1 = Mat.ones(3, 3, CvType.CV_8U);
+        Imgproc.dilate(dist, dist, kernel1);
+        Mat distDisplay2 = new Mat();
+        dist.convertTo(distDisplay2, CvType.CV_8U);
+        distDisplay2 = distDisplay2.mul(distDisplay2, 255);
+        HighGui.imshow("Peaks", distDisplay2);
+        //! [peaks]
+
+        //! [seeds]
+        // Create the CV_8U version of the distance image
+        // It is needed for findContours()
+        Mat dist_8u = new Mat();
+        dist.convertTo(dist_8u, CvType.CV_8U);
+
+        // Find total markers
+        List<MatOfPoint> contours = new ArrayList<>();
+        Mat hierarchy = new Mat();
+        Imgproc.findContours(dist_8u, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
+
+        // Create the marker image for the watershed algorithm
+        Mat markers = Mat.zeros(dist.size(), CvType.CV_32S);
+
+        // Draw the foreground markers
+        for (int i = 0; i < contours.size(); i++) {
+            Imgproc.drawContours(markers, contours, i, new Scalar(i + 1), -1);
+        }
+
+        // Draw the background marker
+        Imgproc.circle(markers, new Point(5, 5), 3, new Scalar(255, 255, 255), -1);
+        Mat markersScaled = markers.mul(markers, 10000);
+        Mat markersDisplay = new Mat();
+        markersScaled.convertTo(markersDisplay, CvType.CV_8U);
+        HighGui.imshow("Markers", markersDisplay);
+        //! [seeds]
+
+        //! [watershed]
+        // Perform the watershed algorithm
+        Imgproc.watershed(imgResult, markers);
+
+        Mat mark = Mat.zeros(markers.size(), CvType.CV_8U);
+        markers.convertTo(mark, CvType.CV_8UC1);
+        Core.bitwise_not(mark, mark);
+        // imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
+        // image looks like at that point
+
+        // Generate random colors
+        Random rng = new Random(12345);
+        List<Scalar> colors = new ArrayList<>(contours.size());
+        for (int i = 0; i < contours.size(); i++) {
+            int b = rng.nextInt(256);
+            int g = rng.nextInt(256);
+            int r = rng.nextInt(256);
+
+            colors.add(new Scalar(b, g, r));
+        }
+
+        // Create the result image
+        Mat dst = Mat.zeros(markers.size(), CvType.CV_8UC3);
+        byte[] dstData = new byte[(int) (dst.total() * dst.channels())];
+        dst.get(0, 0, dstData);
+
+        // Fill labeled objects with random colors
+        int[] markersData = new int[(int) (markers.total() * markers.channels())];
+        markers.get(0, 0, markersData);
+        for (int i = 0; i < markers.rows(); i++) {
+            for (int j = 0; j < markers.cols(); j++) {
+                int index = markersData[i * markers.cols() + j];
+                if (index > 0 && index <= contours.size()) {
+                    dstData[(i * dst.cols() + j) * 3 + 0] = (byte) colors.get(index - 1).val[0];
+                    dstData[(i * dst.cols() + j) * 3 + 1] = (byte) colors.get(index - 1).val[1];
+                    dstData[(i * dst.cols() + j) * 3 + 2] = (byte) colors.get(index - 1).val[2];
+                } else {
+                    dstData[(i * dst.cols() + j) * 3 + 0] = 0;
+                    dstData[(i * dst.cols() + j) * 3 + 1] = 0;
+                    dstData[(i * dst.cols() + j) * 3 + 2] = 0;
+                }
+            }
+        }
+        dst.put(0, 0, dstData);
+
+        // Visualize the final image
+        HighGui.imshow("Final Result", dst);
+        //! [watershed]
+
+        HighGui.waitKey();
+        System.exit(0);
+    }
+}
+
+public class ImageSegmentationDemo {
+    public static void main(String[] args) {
+        // Load the native OpenCV library
+        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
+
+        new ImageSegmentation().run(args);
+    }
+}
diff --git a/samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py b/samples/python/tutorial_code/ImgTrans/distance_transformation/imageSegmentation.py
new file mode 100644 (file)
index 0000000..e679001
--- /dev/null
@@ -0,0 +1,138 @@
+from __future__ import print_function
+import cv2 as cv
+import numpy as np
+import argparse
+import random as rng
+
+rng.seed(12345)
+
+## [load_image]
+# Load the image
+parser = argparse.ArgumentParser(description='Code for Image Segmentation with Distance Transform and Watershed Algorithm.\
+    Sample code showing how to segment overlapping objects using Laplacian filtering, \
+    in addition to Watershed and Distance Transformation')
+parser.add_argument('--input', help='Path to input image.', default='../data/cards.png')
+args = parser.parse_args()
+
+src = cv.imread(args.input)
+if src is None:
+    print('Could not open or find the image:', args.input)
+    exit(0)
+
+# Show source image
+cv.imshow('Source Image', src)
+## [load_image]
+
+## [black_bg]
+# Change the background from white to black, since that will help later to extract
+# better results during the use of Distance Transform
+src[np.all(src == 255, axis=2)] = 0
+
+# Show output image
+cv.imshow('Black Background Image', src)
+## [black_bg]
+
+## [sharp]
+# Create a kernel that we will use to sharpen our image
+# an approximation of second derivative, a quite strong kernel
+kernel = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]], dtype=np.float32)
+
+# do the laplacian filtering as it is
+# well, we need to convert everything in something more deeper then CV_8U
+# because the kernel has some negative values,
+# and we can expect in general to have a Laplacian image with negative values
+# BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
+# so the possible negative number will be truncated
+imgLaplacian = cv.filter2D(src, cv.CV_32F, kernel)
+sharp = np.float32(src)
+imgResult = sharp - imgLaplacian
+
+# convert back to 8bits gray scale
+imgResult = np.clip(imgResult, 0, 255)
+imgResult = imgResult.astype('uint8')
+imgLaplacian = np.clip(imgLaplacian, 0, 255)
+imgLaplacian = np.uint8(imgLaplacian)
+
+#cv.imshow('Laplace Filtered Image', imgLaplacian)
+cv.imshow('New Sharped Image', imgResult)
+## [sharp]
+
+## [bin]
+# Create binary image from source image
+bw = cv.cvtColor(imgResult, cv.COLOR_BGR2GRAY)
+_, bw = cv.threshold(bw, 40, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
+cv.imshow('Binary Image', bw)
+## [bin]
+
+## [dist]
+# Perform the distance transform algorithm
+dist = cv.distanceTransform(bw, cv.DIST_L2, 3)
+
+# Normalize the distance image for range = {0.0, 1.0}
+# so we can visualize and threshold it
+cv.normalize(dist, dist, 0, 1.0, cv.NORM_MINMAX)
+cv.imshow('Distance Transform Image', dist)
+## [dist]
+
+## [peaks]
+# Threshold to obtain the peaks
+# This will be the markers for the foreground objects
+_, dist = cv.threshold(dist, 0.4, 1.0, cv.THRESH_BINARY)
+
+# Dilate a bit the dist image
+kernel1 = np.ones((3,3), dtype=np.uint8)
+dist = cv.dilate(dist, kernel1)
+cv.imshow('Peaks', dist)
+## [peaks]
+
+## [seeds]
+# Create the CV_8U version of the distance image
+# It is needed for findContours()
+dist_8u = dist.astype('uint8')
+
+# Find total markers
+_, contours, _ = cv.findContours(dist_8u, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
+
+# Create the marker image for the watershed algorithm
+markers = np.zeros(dist.shape, dtype=np.int32)
+
+# Draw the foreground markers
+for i in range(len(contours)):
+    cv.drawContours(markers, contours, i, (i+1), -1)
+
+# Draw the background marker
+cv.circle(markers, (5,5), 3, (255,255,255), -1)
+cv.imshow('Markers', markers*10000)
+## [seeds]
+
+## [watershed]
+# Perform the watershed algorithm
+cv.watershed(imgResult, markers)
+
+#mark = np.zeros(markers.shape, dtype=np.uint8)
+mark = markers.astype('uint8')
+mark = cv.bitwise_not(mark)
+# uncomment this if you want to see how the mark
+# image looks like at that point
+#cv.imshow('Markers_v2', mark)
+
+# Generate random colors
+colors = []
+for contour in contours:
+    colors.append((rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)))
+
+# Create the result image
+dst = np.zeros((markers.shape[0], markers.shape[1], 3), dtype=np.uint8)
+
+# Fill labeled objects with random colors
+for i in range(markers.shape[0]):
+    for j in range(markers.shape[1]):
+        index = markers[i,j]
+        if index > 0 and index <= len(contours):
+            dst[i,j,:] = colors[index-1]
+
+# Visualize the final image
+cv.imshow('Final Result', dst)
+## [watershed]
+
+cv.waitKey()
index d22f9a8..1a65d32 100644 (file)
@@ -28,10 +28,9 @@ knn_matches = matcher.knnMatch(descriptors1, descriptors2, 2)
 #-- Filter matches using the Lowe's ratio test
 ratio_thresh = 0.7
 good_matches = []
-for matches in knn_matches:
-    if len(matches) > 1:
-        if matches[0].distance / matches[1].distance <= ratio_thresh:
-            good_matches.append(matches[0])
+for m,n in knn_matches:
+    if m.distance / n.distance <= ratio_thresh:
+        good_matches.append(m)
 
 #-- Draw matches
 img_matches = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
index 8820add..5172b4f 100644 (file)
@@ -28,10 +28,9 @@ knn_matches = matcher.knnMatch(descriptors_obj, descriptors_scene, 2)
 #-- Filter matches using the Lowe's ratio test
 ratio_thresh = 0.75
 good_matches = []
-for matches in knn_matches:
-    if len(matches) > 1:
-        if matches[0].distance / matches[1].distance <= ratio_thresh:
-            good_matches.append(matches[0])
+for m,n in knn_matches:
+    if m.distance / n.distance <= ratio_thresh:
+        good_matches.append(m)
 
 #-- Draw matches
 img_matches = np.empty((max(img_object.shape[0], img_scene.shape[0]), img_object.shape[1]+img_scene.shape[1], 3), dtype=np.uint8)