// Takes the operands in edx and eax and loads them as integers in eax
// and ecx.
static void LoadAsIntegers(MacroAssembler* masm,
+ bool use_sse3,
Label* operand_conversion_failure);
// Test if operands are numbers (smi or HeapNumber objects), and load
// them into xmm0 and xmm1 if they are. Jump to label not_numbers if
Label operand_conversion_failure;
FloatingPointHelper::LoadAsIntegers(
masm,
+ use_sse3_,
&operand_conversion_failure);
switch (op_) {
case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
// trashed registers.
void IntegerConvert(MacroAssembler* masm,
Register source,
+ bool use_sse3,
Label* conversion_failure) {
Label done, right_exponent, normal_exponent;
Register scratch = ebx;
// Get exponent alone in scratch2.
__ mov(scratch2, scratch);
__ and_(scratch2, HeapNumber::kExponentMask);
- // Load ecx with zero. We use this either for the final shift or
- // for the answer.
- __ xor_(ecx, Operand(ecx));
- // Check whether the exponent matches a 32 bit signed int that cannot be
- // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the
- // exponent is 30 (biased). This is the exponent that we are fastest at and
- // also the highest exponent we can handle here.
- const uint32_t non_smi_exponent =
- (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
- __ cmp(Operand(scratch2), Immediate(non_smi_exponent));
- // If we have a match of the int32-but-not-Smi exponent then skip some logic.
- __ j(equal, &right_exponent);
- // If the exponent is higher than that then go to slow case. This catches
- // numbers that don't fit in a signed int32, infinities and NaNs.
- __ j(less, &normal_exponent);
-
- {
- // Handle a big exponent. The only reason we have this code is that the >>>
- // operator has a tendency to generate numbers with an exponent of 31.
- const uint32_t big_non_smi_exponent =
- (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
- __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent));
- __ j(not_equal, conversion_failure);
- // We have the big exponent, typically from >>>. This means the number is
- // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa.
- __ mov(scratch2, scratch);
- __ and_(scratch2, HeapNumber::kMantissaMask);
+ if (use_sse3) {
+ CpuFeatures::Scope scope(SSE3);
+ // Check whether the exponent is too big for a 64 bit signed integer.
+ const uint32_t too_big_exponent =
+ (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
+ __ cmp(Operand(scratch2), Immediate(too_big_exponent));
+ __ j(greater_equal, conversion_failure);
+ // Load x87 register with heap number.
+ __ fld_d(FieldOperand(source, HeapNumber::kValueOffset));
+ // Reserve space for 64 bit answer.
+ __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
+ // Do conversion, which cannot fail because we checked the exponent.
+ __ fisttp_d(Operand(esp, 0));
+ __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx.
+ __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
+ } else {
+ // Load ecx with zero. We use this either for the final shift or
+ // for the answer.
+ __ xor_(ecx, Operand(ecx));
+ // Check whether the exponent matches a 32 bit signed int that cannot be
+ // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the
+ // exponent is 30 (biased). This is the exponent that we are fastest at and
+ // also the highest exponent we can handle here.
+ const uint32_t non_smi_exponent =
+ (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
+ __ cmp(Operand(scratch2), Immediate(non_smi_exponent));
+ // If we have a match of the int32-but-not-Smi exponent then skip some
+ // logic.
+ __ j(equal, &right_exponent);
+ // If the exponent is higher than that then go to slow case. This catches
+ // numbers that don't fit in a signed int32, infinities and NaNs.
+ __ j(less, &normal_exponent);
+
+ {
+ // Handle a big exponent. The only reason we have this code is that the
+ // >>> operator has a tendency to generate numbers with an exponent of 31.
+ const uint32_t big_non_smi_exponent =
+ (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
+ __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent));
+ __ j(not_equal, conversion_failure);
+ // We have the big exponent, typically from >>>. This means the number is
+ // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa.
+ __ mov(scratch2, scratch);
+ __ and_(scratch2, HeapNumber::kMantissaMask);
+ // Put back the implicit 1.
+ __ or_(scratch2, 1 << HeapNumber::kExponentShift);
+ // Shift up the mantissa bits to take up the space the exponent used to
+ // take. We just orred in the implicit bit so that took care of one and
+ // we want to use the full unsigned range so we subtract 1 bit from the
+ // shift distance.
+ const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
+ __ shl(scratch2, big_shift_distance);
+ // Get the second half of the double.
+ __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset));
+ // Shift down 21 bits to get the most significant 11 bits or the low
+ // mantissa word.
+ __ shr(ecx, 32 - big_shift_distance);
+ __ or_(ecx, Operand(scratch2));
+ // We have the answer in ecx, but we may need to negate it.
+ __ test(scratch, Operand(scratch));
+ __ j(positive, &done);
+ __ neg(ecx);
+ __ jmp(&done);
+ }
+
+ __ bind(&normal_exponent);
+ // Exponent word in scratch, exponent part of exponent word in scratch2.
+ // Zero in ecx.
+ // We know the exponent is smaller than 30 (biased). If it is less than
+ // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
+ // it rounds to zero.
+ const uint32_t zero_exponent =
+ (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
+ __ sub(Operand(scratch2), Immediate(zero_exponent));
+ // ecx already has a Smi zero.
+ __ j(less, &done);
+
+ // We have a shifted exponent between 0 and 30 in scratch2.
+ __ shr(scratch2, HeapNumber::kExponentShift);
+ __ mov(ecx, Immediate(30));
+ __ sub(ecx, Operand(scratch2));
+
+ __ bind(&right_exponent);
+ // Here ecx is the shift, scratch is the exponent word.
+ // Get the top bits of the mantissa.
+ __ and_(scratch, HeapNumber::kMantissaMask);
// Put back the implicit 1.
- __ or_(scratch2, 1 << HeapNumber::kExponentShift);
+ __ or_(scratch, 1 << HeapNumber::kExponentShift);
// Shift up the mantissa bits to take up the space the exponent used to
- // take. We just orred in the implicit bit so that took care of one and
- // we want to use the full unsigned range so we subtract 1 bit from the
- // shift distance.
- const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
- __ shl(scratch2, big_shift_distance);
- // Get the second half of the double.
- __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset));
- // Shift down 21 bits to get the most significant 11 bits or the low
+ // take. We have kExponentShift + 1 significant bits int he low end of the
+ // word. Shift them to the top bits.
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
+ __ shl(scratch, shift_distance);
+ // Get the second half of the double. For some exponents we don't
+ // actually need this because the bits get shifted out again, but
+ // it's probably slower to test than just to do it.
+ __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset));
+ // Shift down 22 bits to get the most significant 10 bits or the low
// mantissa word.
- __ shr(ecx, 32 - big_shift_distance);
- __ or_(ecx, Operand(scratch2));
- // We have the answer in ecx, but we may need to negate it.
- __ test(scratch, Operand(scratch));
- __ j(positive, &done);
- __ neg(ecx);
+ __ shr(scratch2, 32 - shift_distance);
+ __ or_(scratch2, Operand(scratch));
+ // Move down according to the exponent.
+ __ shr_cl(scratch2);
+ // Now the unsigned answer is in scratch2. We need to move it to ecx and
+ // we may need to fix the sign.
+ Label negative;
+ __ xor_(ecx, Operand(ecx));
+ __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset));
+ __ j(greater, &negative);
+ __ mov(ecx, scratch2);
__ jmp(&done);
+ __ bind(&negative);
+ __ sub(ecx, Operand(scratch2));
+ __ bind(&done);
}
-
- __ bind(&normal_exponent);
- // Exponent word in scratch, exponent part of exponent word in scratch2.
- // Zero in ecx.
- // We know the exponent is smaller than 30 (biased). If it is less than
- // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
- // it rounds to zero.
- const uint32_t zero_exponent =
- (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
- __ sub(Operand(scratch2), Immediate(zero_exponent));
- // ecx already has a Smi zero.
- __ j(less, &done);
-
- // We have a shifted exponent between 0 and 30 in scratch2.
- __ shr(scratch2, HeapNumber::kExponentShift);
- __ mov(ecx, Immediate(30));
- __ sub(ecx, Operand(scratch2));
-
- __ bind(&right_exponent);
- // Here ecx is the shift, scratch is the exponent word.
- // Get the top bits of the mantissa.
- __ and_(scratch, HeapNumber::kMantissaMask);
- // Put back the implicit 1.
- __ or_(scratch, 1 << HeapNumber::kExponentShift);
- // Shift up the mantissa bits to take up the space the exponent used to
- // take. We have kExponentShift + 1 significant bits int he low end of the
- // word. Shift them to the top bits.
- const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
- __ shl(scratch, shift_distance);
- // Get the second half of the double. For some exponents we don't
- // actually need this because the bits get shifted out again, but
- // it's probably slower to test than just to do it.
- __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset));
- // Shift down 22 bits to get the most significant 10 bits or the low mantissa
- // word.
- __ shr(scratch2, 32 - shift_distance);
- __ or_(scratch2, Operand(scratch));
- // Move down according to the exponent.
- __ shr_cl(scratch2);
- // Now the unsigned answer is in scratch2. We need to move it to ecx and
- // we may need to fix the sign.
- Label negative;
- __ xor_(ecx, Operand(ecx));
- __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset));
- __ j(greater, &negative);
- __ mov(ecx, scratch2);
- __ jmp(&done);
- __ bind(&negative);
- __ sub(ecx, Operand(scratch2));
- __ bind(&done);
}
// Input: edx, eax are the left and right objects of a bit op.
// Output: eax, ecx are left and right integers for a bit op.
void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
+ bool use_sse3,
Label* conversion_failure) {
// Check float operands.
Label arg1_is_object, arg2_is_object, load_arg2;
__ cmp(ebx, Factory::heap_number_map());
__ j(not_equal, conversion_failure);
// Get the untagged integer version of the edx heap number in ecx.
- IntegerConvert(masm, edx, conversion_failure);
+ IntegerConvert(masm, edx, use_sse3, conversion_failure);
__ mov(edx, ecx);
// Here edx has the untagged integer, eax has a Smi or a heap number.
__ cmp(ebx, Factory::heap_number_map());
__ j(not_equal, conversion_failure);
// Get the untagged integer version of the eax heap number in ecx.
- IntegerConvert(masm, eax, conversion_failure);
+ IntegerConvert(masm, eax, use_sse3, conversion_failure);
__ bind(&done);
__ mov(eax, edx);
}