//===----------------------------------------------------------------------===//
namespace {
- /// SimpleValue - Instances of this struct represent available values in the
- /// scoped hash table.
- struct SimpleValue {
- Instruction *Inst;
+/// SimpleValue - Instances of this struct represent available values in the
+/// scoped hash table.
+struct SimpleValue {
+ Instruction *Inst;
- SimpleValue(Instruction *I) : Inst(I) {
- assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
- }
+ SimpleValue(Instruction *I) : Inst(I) {
+ assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
+ }
- bool isSentinel() const {
- return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
- Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
- }
+ bool isSentinel() const {
+ return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
+ Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
- static bool canHandle(Instruction *Inst) {
- // This can only handle non-void readnone functions.
- if (CallInst *CI = dyn_cast<CallInst>(Inst))
- return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
- return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
- isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
- isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
- isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
- isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
- }
- };
+ static bool canHandle(Instruction *Inst) {
+ // This can only handle non-void readnone functions.
+ if (CallInst *CI = dyn_cast<CallInst>(Inst))
+ return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
+ return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
+ isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
+ isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
+ isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
+ isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
+ }
+};
}
namespace llvm {
-template<> struct DenseMapInfo<SimpleValue> {
+template <> struct DenseMapInfo<SimpleValue> {
static inline SimpleValue getEmptyKey() {
- return DenseMapInfo<Instruction*>::getEmptyKey();
+ return DenseMapInfo<Instruction *>::getEmptyKey();
}
static inline SimpleValue getTombstoneKey() {
- return DenseMapInfo<Instruction*>::getTombstoneKey();
+ return DenseMapInfo<Instruction *>::getTombstoneKey();
}
static unsigned getHashValue(SimpleValue Val);
static bool isEqual(SimpleValue LHS, SimpleValue RHS);
unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers.
- if (BinaryOperator* BinOp = dyn_cast<BinaryOperator>(Inst)) {
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
Value *LHS = BinOp->getOperand(0);
Value *RHS = BinOp->getOperand(1);
if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
if (isa<OverflowingBinaryOperator>(BinOp)) {
// Hash the overflow behavior
unsigned Overflow =
- BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
- BinOp->hasNoUnsignedWrap() * OverflowingBinaryOperator::NoUnsignedWrap;
+ BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
+ BinOp->hasNoUnsignedWrap() *
+ OverflowingBinaryOperator::NoUnsignedWrap;
return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
}
assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
- isa<ShuffleVectorInst>(Inst)) && "Invalid/unknown instruction");
+ isa<ShuffleVectorInst>(Inst)) &&
+ "Invalid/unknown instruction");
// Mix in the opcode.
- return hash_combine(Inst->getOpcode(),
- hash_combine_range(Inst->value_op_begin(),
- Inst->value_op_end()));
+ return hash_combine(
+ Inst->getOpcode(),
+ hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
}
bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
- if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
- if (LHSI->isIdenticalTo(RHSI)) return true;
+ if (LHSI->getOpcode() != RHSI->getOpcode())
+ return false;
+ if (LHSI->isIdenticalTo(RHSI))
+ return true;
// If we're not strictly identical, we still might be a commutable instruction
if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
if (!LHSBinOp->isCommutative())
return false;
- assert(isa<BinaryOperator>(RHSI)
- && "same opcode, but different instruction type?");
+ assert(isa<BinaryOperator>(RHSI) &&
+ "same opcode, but different instruction type?");
BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
// Check overflow attributes
if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
- assert(isa<OverflowingBinaryOperator>(RHSBinOp)
- && "same opcode, but different operator type?");
+ assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
+ "same opcode, but different operator type?");
if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
return false;
// Commuted equality
return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
- LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
+ LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
}
if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
- assert(isa<CmpInst>(RHSI)
- && "same opcode, but different instruction type?");
+ assert(isa<CmpInst>(RHSI) &&
+ "same opcode, but different instruction type?");
CmpInst *RHSCmp = cast<CmpInst>(RHSI);
// Commuted equality
return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
- LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
- LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
+ LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
+ LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
}
return false;
//===----------------------------------------------------------------------===//
namespace {
- /// CallValue - Instances of this struct represent available call values in
- /// the scoped hash table.
- struct CallValue {
- Instruction *Inst;
+/// CallValue - Instances of this struct represent available call values in
+/// the scoped hash table.
+struct CallValue {
+ Instruction *Inst;
- CallValue(Instruction *I) : Inst(I) {
- assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
- }
+ CallValue(Instruction *I) : Inst(I) {
+ assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
+ }
- bool isSentinel() const {
- return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
- Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
- }
+ bool isSentinel() const {
+ return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
+ Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
- static bool canHandle(Instruction *Inst) {
- // Don't value number anything that returns void.
- if (Inst->getType()->isVoidTy())
- return false;
+ static bool canHandle(Instruction *Inst) {
+ // Don't value number anything that returns void.
+ if (Inst->getType()->isVoidTy())
+ return false;
- CallInst *CI = dyn_cast<CallInst>(Inst);
- if (!CI || !CI->onlyReadsMemory())
- return false;
- return true;
- }
- };
+ CallInst *CI = dyn_cast<CallInst>(Inst);
+ if (!CI || !CI->onlyReadsMemory())
+ return false;
+ return true;
+ }
+};
}
namespace llvm {
- template<> struct DenseMapInfo<CallValue> {
- static inline CallValue getEmptyKey() {
- return DenseMapInfo<Instruction*>::getEmptyKey();
- }
- static inline CallValue getTombstoneKey() {
- return DenseMapInfo<Instruction*>::getTombstoneKey();
- }
- static unsigned getHashValue(CallValue Val);
- static bool isEqual(CallValue LHS, CallValue RHS);
- };
+template <> struct DenseMapInfo<CallValue> {
+ static inline CallValue getEmptyKey() {
+ return DenseMapInfo<Instruction *>::getEmptyKey();
+ }
+ static inline CallValue getTombstoneKey() {
+ return DenseMapInfo<Instruction *>::getTombstoneKey();
+ }
+ static unsigned getHashValue(CallValue Val);
+ static bool isEqual(CallValue LHS, CallValue RHS);
+};
}
+
unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers.
return LHSI->isIdenticalTo(RHSI);
}
-
//===----------------------------------------------------------------------===//
// EarlyCSE pass.
//===----------------------------------------------------------------------===//
const TargetLibraryInfo *TLI;
DominatorTree *DT;
AssumptionCache *AC;
- typedef RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
- typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
+ typedef RecyclingAllocator<
+ BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
+ typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
AllocatorTy> ScopedHTType;
/// AvailableValues - This scoped hash table contains the current values of
/// the current generation count. The current generation count is
/// incremented after every possibly writing memory operation, which ensures
/// that we only CSE loads with other loads that have no intervening store.
- typedef RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
- typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
- DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
+ typedef RecyclingAllocator<
+ BumpPtrAllocator,
+ ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>>
+ LoadMapAllocator;
+ typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>,
+ DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType;
LoadHTType *AvailableLoads;
/// AvailableCalls - This scoped hash table contains the current values
/// of read-only call values. It uses the same generation count as loads.
- typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
+ typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
CallHTType *AvailableCalls;
/// CurrentGeneration - This is the current generation of the memory value.
bool runOnFunction(Function &F) override;
private:
-
// NodeScope - almost a POD, but needs to call the constructors for the
// scoped hash tables so that a new scope gets pushed on. These are RAII so
// that the scope gets popped when the NodeScope is destroyed.
class NodeScope {
- public:
- NodeScope(ScopedHTType *availableValues,
- LoadHTType *availableLoads,
- CallHTType *availableCalls) :
- Scope(*availableValues),
- LoadScope(*availableLoads),
- CallScope(*availableCalls) {}
-
- private:
- NodeScope(const NodeScope&) LLVM_DELETED_FUNCTION;
- void operator=(const NodeScope&) LLVM_DELETED_FUNCTION;
+ public:
+ NodeScope(ScopedHTType *availableValues, LoadHTType *availableLoads,
+ CallHTType *availableCalls)
+ : Scope(*availableValues), LoadScope(*availableLoads),
+ CallScope(*availableCalls) {}
+
+ private:
+ NodeScope(const NodeScope &) LLVM_DELETED_FUNCTION;
+ void operator=(const NodeScope &) LLVM_DELETED_FUNCTION;
ScopedHTType::ScopeTy Scope;
LoadHTType::ScopeTy LoadScope;
// values, loads, and calls as well as the generation. There is a child
// iterator so that the children do not need to be store spearately.
class StackNode {
- public:
- StackNode(ScopedHTType *availableValues,
- LoadHTType *availableLoads,
- CallHTType *availableCalls,
- unsigned cg, DomTreeNode *n,
- DomTreeNode::iterator child, DomTreeNode::iterator end) :
- CurrentGeneration(cg), ChildGeneration(cg), Node(n),
- ChildIter(child), EndIter(end),
- Scopes(availableValues, availableLoads, availableCalls),
- Processed(false) {}
+ public:
+ StackNode(ScopedHTType *availableValues, LoadHTType *availableLoads,
+ CallHTType *availableCalls, unsigned cg, DomTreeNode *n,
+ DomTreeNode::iterator child, DomTreeNode::iterator end)
+ : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
+ EndIter(end), Scopes(availableValues, availableLoads, availableCalls),
+ Processed(false) {}
// Accessors.
unsigned currentGeneration() { return CurrentGeneration; }
bool isProcessed() { return Processed; }
void process() { Processed = true; }
- private:
- StackNode(const StackNode&) LLVM_DELETED_FUNCTION;
- void operator=(const StackNode&) LLVM_DELETED_FUNCTION;
+ private:
+ StackNode(const StackNode &) LLVM_DELETED_FUNCTION;
+ void operator=(const StackNode &) LLVM_DELETED_FUNCTION;
// Members.
unsigned CurrentGeneration;
char EarlyCSE::ID = 0;
// createEarlyCSEPass - The public interface to this file.
-FunctionPass *llvm::createEarlyCSEPass() {
- return new EarlyCSE();
-}
+FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSE(); }
INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
// See if any instructions in the block can be eliminated. If so, do it. If
// not, add them to AvailableValues.
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
Instruction *Inst = I++;
// Dead instructions should just be removed.
// If we have an available version of this load, and if it is the right
// generation, replace this instruction.
- std::pair<Value*, unsigned> InVal =
- AvailableLoads->lookup(Inst->getOperand(0));
+ std::pair<Value *, unsigned> InVal =
+ AvailableLoads->lookup(Inst->getOperand(0));
if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
- DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
- << *InVal.first << '\n');
- if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
+ DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
+ << " to: " << *InVal.first << '\n');
+ if (!Inst->use_empty())
+ Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSELoad;
}
// Otherwise, remember that we have this instruction.
- AvailableLoads->insert(Inst->getOperand(0),
- std::pair<Value*, unsigned>(Inst, CurrentGeneration));
+ AvailableLoads->insert(Inst->getOperand(0), std::pair<Value *, unsigned>(
+ Inst, CurrentGeneration));
LastStore = nullptr;
continue;
}
if (CallValue::canHandle(Inst)) {
// If we have an available version of this call, and if it is the right
// generation, replace this instruction.
- std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
+ std::pair<Value *, unsigned> InVal = AvailableCalls->lookup(Inst);
if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
- DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
- << *InVal.first << '\n');
- if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
+ DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
+ << " to: " << *InVal.first << '\n');
+ if (!Inst->use_empty())
+ Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSECall;
}
// Otherwise, remember that we have this instruction.
- AvailableCalls->insert(Inst,
- std::pair<Value*, unsigned>(Inst, CurrentGeneration));
+ AvailableCalls->insert(
+ Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
continue;
}
// location with no intervening loads. Delete the earlier store.
if (LastStore &&
LastStore->getPointerOperand() == SI->getPointerOperand()) {
- DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: "
- << *Inst << '\n');
+ DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
+ << " due to: " << *Inst << '\n');
LastStore->eraseFromParent();
Changed = true;
++NumDSE;
// to non-volatile loads, so we don't have to check for volatility of
// the store.
AvailableLoads->insert(SI->getPointerOperand(),
- std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
+ std::pair<Value *, unsigned>(
+ SI->getValueOperand(), CurrentGeneration));
// Remember that this was the last store we saw for DSE.
if (SI->isSimple())
return Changed;
}
-
bool EarlyCSE::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
- // Note, deque is being used here because there is significant performance gains
- // over vector when the container becomes very large due to the specific access
- // patterns. For more information see the mailing list discussion on this:
+ // Note, deque is being used here because there is significant performance
+ // gains over vector when the container becomes very large due to the
+ // specific access patterns. For more information see the mailing list
+ // discussion on this:
// http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
std::deque<StackNode *> nodesToProcess;
bool Changed = false;
// Process the root node.
- nodesToProcess.push_back(
- new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
- CurrentGeneration, DT->getRootNode(),
- DT->getRootNode()->begin(),
- DT->getRootNode()->end()));
+ nodesToProcess.push_back(new StackNode(
+ AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
+ DT->getRootNode(), DT->getRootNode()->begin(), DT->getRootNode()->end()));
// Save the current generation.
unsigned LiveOutGeneration = CurrentGeneration;
// Push the next child onto the stack.
DomTreeNode *child = NodeToProcess->nextChild();
nodesToProcess.push_back(
- new StackNode(AvailableValues,
- AvailableLoads,
- AvailableCalls,
- NodeToProcess->childGeneration(), child,
- child->begin(), child->end()));
+ new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
+ NodeToProcess->childGeneration(), child, child->begin(),
+ child->end()));
} else {
// It has been processed, and there are no more children to process,
// so delete it and pop it off the stack.