xgerc.$(SUFFIX) xgerc.$(PSUFFIX) : zger.c
$(CC) -c $(CFLAGS) -DCONJ $< -o $(@F)
+ifndef USE_NETLIB_GEMV
sgemv.$(SUFFIX) sgemv.$(PSUFFIX): gemv.c
$(CC) -c $(CFLAGS) -o $(@F) $<
dgemv.$(SUFFIX) dgemv.$(PSUFFIX): gemv.c
$(CC) -c $(CFLAGS) -o $(@F) $<
+else
+sgemv.$(SUFFIX) sgemv.$(PSUFFIX): netlib/sgemv.f
+ $(FC) -c $(FFLAGS) -o $(@F) $<
+
+dgemv.$(SUFFIX) dgemv.$(PSUFFIX): netlib/dgemv.f
+ $(FC) -c $(FFLAGS) -o $(@F) $<
+endif
qgemv.$(SUFFIX) qgemv.$(PSUFFIX): gemv.c
$(CC) -c $(CFLAGS) -o $(@F) $<
-
+
+ifndef USE_NETLIB_GEMV
cgemv.$(SUFFIX) cgemv.$(PSUFFIX): zgemv.c
$(CC) -c $(CFLAGS) -o $(@F) $<
zgemv.$(SUFFIX) zgemv.$(PSUFFIX): zgemv.c
$(CC) -c $(CFLAGS) -o $(@F) $<
+else
+cgemv.$(SUFFIX) cgemv.$(PSUFFIX): netlib/cgemv.f
+ $(FC) -c $(FFLAGS) -o $(@F) $<
+
+zgemv.$(SUFFIX) zgemv.$(PSUFFIX): netlib/zgemv.f
+ $(FC) -c $(FFLAGS) -o $(@F) $<
+endif
xgemv.$(SUFFIX) xgemv.$(PSUFFIX): zgemv.c
$(CC) -c $(CFLAGS) -o $(@F) $<
--- /dev/null
+ SUBROUTINE CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
+* .. Scalar Arguments ..
+ COMPLEX ALPHA,BETA
+ INTEGER INCX,INCY,LDA,M,N
+ CHARACTER TRANS
+* ..
+* .. Array Arguments ..
+ COMPLEX A(LDA,*),X(*),Y(*)
+* ..
+*
+* Purpose
+* =======
+*
+* CGEMV performs one of the matrix-vector operations
+*
+* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
+*
+* y := alpha*A**H*x + beta*y,
+*
+* where alpha and beta are scalars, x and y are vectors and A is an
+* m by n matrix.
+*
+* Arguments
+* ==========
+*
+* TRANS - CHARACTER*1.
+* On entry, TRANS specifies the operation to be performed as
+* follows:
+*
+* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+*
+* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
+*
+* TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
+*
+* Unchanged on exit.
+*
+* M - INTEGER.
+* On entry, M specifies the number of rows of the matrix A.
+* M must be at least zero.
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the number of columns of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - COMPLEX .
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* A - COMPLEX array of DIMENSION ( LDA, n ).
+* Before entry, the leading m by n part of the array A must
+* contain the matrix of coefficients.
+* Unchanged on exit.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. LDA must be at least
+* max( 1, m ).
+* Unchanged on exit.
+*
+* X - COMPLEX array of DIMENSION at least
+* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+* Before entry, the incremented array X must contain the
+* vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* BETA - COMPLEX .
+* On entry, BETA specifies the scalar beta. When BETA is
+* supplied as zero then Y need not be set on input.
+* Unchanged on exit.
+*
+* Y - COMPLEX array of DIMENSION at least
+* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+* Before entry with BETA non-zero, the incremented array Y
+* must contain the vector y. On exit, Y is overwritten by the
+* updated vector y.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+* Further Details
+* ===============
+*
+* Level 2 Blas routine.
+* The vector and matrix arguments are not referenced when N = 0, or M = 0
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX ONE
+ PARAMETER (ONE= (1.0E+0,0.0E+0))
+ COMPLEX ZERO
+ PARAMETER (ZERO= (0.0E+0,0.0E+0))
+* ..
+* .. Local Scalars ..
+ COMPLEX TEMP
+ INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
+ LOGICAL NOCONJ
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC CONJG,MAX
+* ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ + .NOT.LSAME(TRANS,'C')) THEN
+ INFO = 1
+ ELSE IF (M.LT.0) THEN
+ INFO = 2
+ ELSE IF (N.LT.0) THEN
+ INFO = 3
+ ELSE IF (LDA.LT.MAX(1,M)) THEN
+ INFO = 6
+ ELSE IF (INCX.EQ.0) THEN
+ INFO = 8
+ ELSE IF (INCY.EQ.0) THEN
+ INFO = 11
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('CGEMV ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
+*
+ NOCONJ = LSAME(TRANS,'T')
+*
+* Set LENX and LENY, the lengths of the vectors x and y, and set
+* up the start points in X and Y.
+*
+ IF (LSAME(TRANS,'N')) THEN
+ LENX = N
+ LENY = M
+ ELSE
+ LENX = M
+ LENY = N
+ END IF
+ IF (INCX.GT.0) THEN
+ KX = 1
+ ELSE
+ KX = 1 - (LENX-1)*INCX
+ END IF
+ IF (INCY.GT.0) THEN
+ KY = 1
+ ELSE
+ KY = 1 - (LENY-1)*INCY
+ END IF
+*
+* Start the operations. In this version the elements of A are
+* accessed sequentially with one pass through A.
+*
+* First form y := beta*y.
+*
+ IF (BETA.NE.ONE) THEN
+ IF (INCY.EQ.1) THEN
+ IF (BETA.EQ.ZERO) THEN
+ DO 10 I = 1,LENY
+ Y(I) = ZERO
+ 10 CONTINUE
+ ELSE
+ DO 20 I = 1,LENY
+ Y(I) = BETA*Y(I)
+ 20 CONTINUE
+ END IF
+ ELSE
+ IY = KY
+ IF (BETA.EQ.ZERO) THEN
+ DO 30 I = 1,LENY
+ Y(IY) = ZERO
+ IY = IY + INCY
+ 30 CONTINUE
+ ELSE
+ DO 40 I = 1,LENY
+ Y(IY) = BETA*Y(IY)
+ IY = IY + INCY
+ 40 CONTINUE
+ END IF
+ END IF
+ END IF
+ IF (ALPHA.EQ.ZERO) RETURN
+ IF (LSAME(TRANS,'N')) THEN
+*
+* Form y := alpha*A*x + y.
+*
+ JX = KX
+ IF (INCY.EQ.1) THEN
+ DO 60 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ DO 50 I = 1,M
+ Y(I) = Y(I) + TEMP*A(I,J)
+ 50 CONTINUE
+ END IF
+ JX = JX + INCX
+ 60 CONTINUE
+ ELSE
+ DO 80 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ IY = KY
+ DO 70 I = 1,M
+ Y(IY) = Y(IY) + TEMP*A(I,J)
+ IY = IY + INCY
+ 70 CONTINUE
+ END IF
+ JX = JX + INCX
+ 80 CONTINUE
+ END IF
+ ELSE
+*
+* Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
+*
+ JY = KY
+ IF (INCX.EQ.1) THEN
+ DO 110 J = 1,N
+ TEMP = ZERO
+ IF (NOCONJ) THEN
+ DO 90 I = 1,M
+ TEMP = TEMP + A(I,J)*X(I)
+ 90 CONTINUE
+ ELSE
+ DO 100 I = 1,M
+ TEMP = TEMP + CONJG(A(I,J))*X(I)
+ 100 CONTINUE
+ END IF
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 110 CONTINUE
+ ELSE
+ DO 140 J = 1,N
+ TEMP = ZERO
+ IX = KX
+ IF (NOCONJ) THEN
+ DO 120 I = 1,M
+ TEMP = TEMP + A(I,J)*X(IX)
+ IX = IX + INCX
+ 120 CONTINUE
+ ELSE
+ DO 130 I = 1,M
+ TEMP = TEMP + CONJG(A(I,J))*X(IX)
+ IX = IX + INCX
+ 130 CONTINUE
+ END IF
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 140 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of CGEMV .
+*
+ END
--- /dev/null
+ SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
+* .. Scalar Arguments ..
+ DOUBLE PRECISION ALPHA,BETA
+ INTEGER INCX,INCY,LDA,M,N
+ CHARACTER TRANS
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A(LDA,*),X(*),Y(*)
+* ..
+*
+* Purpose
+* =======
+*
+* DGEMV performs one of the matrix-vector operations
+*
+* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
+*
+* where alpha and beta are scalars, x and y are vectors and A is an
+* m by n matrix.
+*
+* Arguments
+* ==========
+*
+* TRANS - CHARACTER*1.
+* On entry, TRANS specifies the operation to be performed as
+* follows:
+*
+* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+*
+* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
+*
+* TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
+*
+* Unchanged on exit.
+*
+* M - INTEGER.
+* On entry, M specifies the number of rows of the matrix A.
+* M must be at least zero.
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the number of columns of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - DOUBLE PRECISION.
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
+* Before entry, the leading m by n part of the array A must
+* contain the matrix of coefficients.
+* Unchanged on exit.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. LDA must be at least
+* max( 1, m ).
+* Unchanged on exit.
+*
+* X - DOUBLE PRECISION array of DIMENSION at least
+* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+* Before entry, the incremented array X must contain the
+* vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* BETA - DOUBLE PRECISION.
+* On entry, BETA specifies the scalar beta. When BETA is
+* supplied as zero then Y need not be set on input.
+* Unchanged on exit.
+*
+* Y - DOUBLE PRECISION array of DIMENSION at least
+* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+* Before entry with BETA non-zero, the incremented array Y
+* must contain the vector y. On exit, Y is overwritten by the
+* updated vector y.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+* Further Details
+* ===============
+*
+* Level 2 Blas routine.
+* The vector and matrix arguments are not referenced when N = 0, or M = 0
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE,ZERO
+ PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION TEMP
+ INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ + .NOT.LSAME(TRANS,'C')) THEN
+ INFO = 1
+ ELSE IF (M.LT.0) THEN
+ INFO = 2
+ ELSE IF (N.LT.0) THEN
+ INFO = 3
+ ELSE IF (LDA.LT.MAX(1,M)) THEN
+ INFO = 6
+ ELSE IF (INCX.EQ.0) THEN
+ INFO = 8
+ ELSE IF (INCY.EQ.0) THEN
+ INFO = 11
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('DGEMV ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
+*
+* Set LENX and LENY, the lengths of the vectors x and y, and set
+* up the start points in X and Y.
+*
+ IF (LSAME(TRANS,'N')) THEN
+ LENX = N
+ LENY = M
+ ELSE
+ LENX = M
+ LENY = N
+ END IF
+ IF (INCX.GT.0) THEN
+ KX = 1
+ ELSE
+ KX = 1 - (LENX-1)*INCX
+ END IF
+ IF (INCY.GT.0) THEN
+ KY = 1
+ ELSE
+ KY = 1 - (LENY-1)*INCY
+ END IF
+*
+* Start the operations. In this version the elements of A are
+* accessed sequentially with one pass through A.
+*
+* First form y := beta*y.
+*
+ IF (BETA.NE.ONE) THEN
+ IF (INCY.EQ.1) THEN
+ IF (BETA.EQ.ZERO) THEN
+ DO 10 I = 1,LENY
+ Y(I) = ZERO
+ 10 CONTINUE
+ ELSE
+ DO 20 I = 1,LENY
+ Y(I) = BETA*Y(I)
+ 20 CONTINUE
+ END IF
+ ELSE
+ IY = KY
+ IF (BETA.EQ.ZERO) THEN
+ DO 30 I = 1,LENY
+ Y(IY) = ZERO
+ IY = IY + INCY
+ 30 CONTINUE
+ ELSE
+ DO 40 I = 1,LENY
+ Y(IY) = BETA*Y(IY)
+ IY = IY + INCY
+ 40 CONTINUE
+ END IF
+ END IF
+ END IF
+ IF (ALPHA.EQ.ZERO) RETURN
+ IF (LSAME(TRANS,'N')) THEN
+*
+* Form y := alpha*A*x + y.
+*
+ JX = KX
+ IF (INCY.EQ.1) THEN
+ DO 60 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ DO 50 I = 1,M
+ Y(I) = Y(I) + TEMP*A(I,J)
+ 50 CONTINUE
+ END IF
+ JX = JX + INCX
+ 60 CONTINUE
+ ELSE
+ DO 80 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ IY = KY
+ DO 70 I = 1,M
+ Y(IY) = Y(IY) + TEMP*A(I,J)
+ IY = IY + INCY
+ 70 CONTINUE
+ END IF
+ JX = JX + INCX
+ 80 CONTINUE
+ END IF
+ ELSE
+*
+* Form y := alpha*A**T*x + y.
+*
+ JY = KY
+ IF (INCX.EQ.1) THEN
+ DO 100 J = 1,N
+ TEMP = ZERO
+ DO 90 I = 1,M
+ TEMP = TEMP + A(I,J)*X(I)
+ 90 CONTINUE
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 100 CONTINUE
+ ELSE
+ DO 120 J = 1,N
+ TEMP = ZERO
+ IX = KX
+ DO 110 I = 1,M
+ TEMP = TEMP + A(I,J)*X(IX)
+ IX = IX + INCX
+ 110 CONTINUE
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 120 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of DGEMV .
+*
+ END
--- /dev/null
+ SUBROUTINE SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
+* .. Scalar Arguments ..
+ REAL ALPHA,BETA
+ INTEGER INCX,INCY,LDA,M,N
+ CHARACTER TRANS
+* ..
+* .. Array Arguments ..
+ REAL A(LDA,*),X(*),Y(*)
+* ..
+*
+* Purpose
+* =======
+*
+* SGEMV performs one of the matrix-vector operations
+*
+* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y,
+*
+* where alpha and beta are scalars, x and y are vectors and A is an
+* m by n matrix.
+*
+* Arguments
+* ==========
+*
+* TRANS - CHARACTER*1.
+* On entry, TRANS specifies the operation to be performed as
+* follows:
+*
+* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+*
+* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
+*
+* TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.
+*
+* Unchanged on exit.
+*
+* M - INTEGER.
+* On entry, M specifies the number of rows of the matrix A.
+* M must be at least zero.
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the number of columns of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - REAL .
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* A - REAL array of DIMENSION ( LDA, n ).
+* Before entry, the leading m by n part of the array A must
+* contain the matrix of coefficients.
+* Unchanged on exit.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. LDA must be at least
+* max( 1, m ).
+* Unchanged on exit.
+*
+* X - REAL array of DIMENSION at least
+* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+* Before entry, the incremented array X must contain the
+* vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* BETA - REAL .
+* On entry, BETA specifies the scalar beta. When BETA is
+* supplied as zero then Y need not be set on input.
+* Unchanged on exit.
+*
+* Y - REAL array of DIMENSION at least
+* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+* Before entry with BETA non-zero, the incremented array Y
+* must contain the vector y. On exit, Y is overwritten by the
+* updated vector y.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+* Further Details
+* ===============
+*
+* Level 2 Blas routine.
+* The vector and matrix arguments are not referenced when N = 0, or M = 0
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ONE,ZERO
+ PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
+* ..
+* .. Local Scalars ..
+ REAL TEMP
+ INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX
+* ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ + .NOT.LSAME(TRANS,'C')) THEN
+ INFO = 1
+ ELSE IF (M.LT.0) THEN
+ INFO = 2
+ ELSE IF (N.LT.0) THEN
+ INFO = 3
+ ELSE IF (LDA.LT.MAX(1,M)) THEN
+ INFO = 6
+ ELSE IF (INCX.EQ.0) THEN
+ INFO = 8
+ ELSE IF (INCY.EQ.0) THEN
+ INFO = 11
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('SGEMV ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
+*
+* Set LENX and LENY, the lengths of the vectors x and y, and set
+* up the start points in X and Y.
+*
+ IF (LSAME(TRANS,'N')) THEN
+ LENX = N
+ LENY = M
+ ELSE
+ LENX = M
+ LENY = N
+ END IF
+ IF (INCX.GT.0) THEN
+ KX = 1
+ ELSE
+ KX = 1 - (LENX-1)*INCX
+ END IF
+ IF (INCY.GT.0) THEN
+ KY = 1
+ ELSE
+ KY = 1 - (LENY-1)*INCY
+ END IF
+*
+* Start the operations. In this version the elements of A are
+* accessed sequentially with one pass through A.
+*
+* First form y := beta*y.
+*
+ IF (BETA.NE.ONE) THEN
+ IF (INCY.EQ.1) THEN
+ IF (BETA.EQ.ZERO) THEN
+ DO 10 I = 1,LENY
+ Y(I) = ZERO
+ 10 CONTINUE
+ ELSE
+ DO 20 I = 1,LENY
+ Y(I) = BETA*Y(I)
+ 20 CONTINUE
+ END IF
+ ELSE
+ IY = KY
+ IF (BETA.EQ.ZERO) THEN
+ DO 30 I = 1,LENY
+ Y(IY) = ZERO
+ IY = IY + INCY
+ 30 CONTINUE
+ ELSE
+ DO 40 I = 1,LENY
+ Y(IY) = BETA*Y(IY)
+ IY = IY + INCY
+ 40 CONTINUE
+ END IF
+ END IF
+ END IF
+ IF (ALPHA.EQ.ZERO) RETURN
+ IF (LSAME(TRANS,'N')) THEN
+*
+* Form y := alpha*A*x + y.
+*
+ JX = KX
+ IF (INCY.EQ.1) THEN
+ DO 60 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ DO 50 I = 1,M
+ Y(I) = Y(I) + TEMP*A(I,J)
+ 50 CONTINUE
+ END IF
+ JX = JX + INCX
+ 60 CONTINUE
+ ELSE
+ DO 80 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ IY = KY
+ DO 70 I = 1,M
+ Y(IY) = Y(IY) + TEMP*A(I,J)
+ IY = IY + INCY
+ 70 CONTINUE
+ END IF
+ JX = JX + INCX
+ 80 CONTINUE
+ END IF
+ ELSE
+*
+* Form y := alpha*A**T*x + y.
+*
+ JY = KY
+ IF (INCX.EQ.1) THEN
+ DO 100 J = 1,N
+ TEMP = ZERO
+ DO 90 I = 1,M
+ TEMP = TEMP + A(I,J)*X(I)
+ 90 CONTINUE
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 100 CONTINUE
+ ELSE
+ DO 120 J = 1,N
+ TEMP = ZERO
+ IX = KX
+ DO 110 I = 1,M
+ TEMP = TEMP + A(I,J)*X(IX)
+ IX = IX + INCX
+ 110 CONTINUE
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 120 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of SGEMV .
+*
+ END
--- /dev/null
+ SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
+* .. Scalar Arguments ..
+ DOUBLE COMPLEX ALPHA,BETA
+ INTEGER INCX,INCY,LDA,M,N
+ CHARACTER TRANS
+* ..
+* .. Array Arguments ..
+ DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
+* ..
+*
+* Purpose
+* =======
+*
+* ZGEMV performs one of the matrix-vector operations
+*
+* y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
+*
+* y := alpha*A**H*x + beta*y,
+*
+* where alpha and beta are scalars, x and y are vectors and A is an
+* m by n matrix.
+*
+* Arguments
+* ==========
+*
+* TRANS - CHARACTER*1.
+* On entry, TRANS specifies the operation to be performed as
+* follows:
+*
+* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
+*
+* TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
+*
+* TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
+*
+* Unchanged on exit.
+*
+* M - INTEGER.
+* On entry, M specifies the number of rows of the matrix A.
+* M must be at least zero.
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the number of columns of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - COMPLEX*16 .
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
+* Before entry, the leading m by n part of the array A must
+* contain the matrix of coefficients.
+* Unchanged on exit.
+*
+* LDA - INTEGER.
+* On entry, LDA specifies the first dimension of A as declared
+* in the calling (sub) program. LDA must be at least
+* max( 1, m ).
+* Unchanged on exit.
+*
+* X - COMPLEX*16 array of DIMENSION at least
+* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
+* Before entry, the incremented array X must contain the
+* vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* BETA - COMPLEX*16 .
+* On entry, BETA specifies the scalar beta. When BETA is
+* supplied as zero then Y need not be set on input.
+* Unchanged on exit.
+*
+* Y - COMPLEX*16 array of DIMENSION at least
+* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
+* and at least
+* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
+* Before entry with BETA non-zero, the incremented array Y
+* must contain the vector y. On exit, Y is overwritten by the
+* updated vector y.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+* Further Details
+* ===============
+*
+* Level 2 Blas routine.
+* The vector and matrix arguments are not referenced when N = 0, or M = 0
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE COMPLEX ONE
+ PARAMETER (ONE= (1.0D+0,0.0D+0))
+ DOUBLE COMPLEX ZERO
+ PARAMETER (ZERO= (0.0D+0,0.0D+0))
+* ..
+* .. Local Scalars ..
+ DOUBLE COMPLEX TEMP
+ INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
+ LOGICAL NOCONJ
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DCONJG,MAX
+* ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ + .NOT.LSAME(TRANS,'C')) THEN
+ INFO = 1
+ ELSE IF (M.LT.0) THEN
+ INFO = 2
+ ELSE IF (N.LT.0) THEN
+ INFO = 3
+ ELSE IF (LDA.LT.MAX(1,M)) THEN
+ INFO = 6
+ ELSE IF (INCX.EQ.0) THEN
+ INFO = 8
+ ELSE IF (INCY.EQ.0) THEN
+ INFO = 11
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('ZGEMV ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
+*
+ NOCONJ = LSAME(TRANS,'T')
+*
+* Set LENX and LENY, the lengths of the vectors x and y, and set
+* up the start points in X and Y.
+*
+ IF (LSAME(TRANS,'N')) THEN
+ LENX = N
+ LENY = M
+ ELSE
+ LENX = M
+ LENY = N
+ END IF
+ IF (INCX.GT.0) THEN
+ KX = 1
+ ELSE
+ KX = 1 - (LENX-1)*INCX
+ END IF
+ IF (INCY.GT.0) THEN
+ KY = 1
+ ELSE
+ KY = 1 - (LENY-1)*INCY
+ END IF
+*
+* Start the operations. In this version the elements of A are
+* accessed sequentially with one pass through A.
+*
+* First form y := beta*y.
+*
+ IF (BETA.NE.ONE) THEN
+ IF (INCY.EQ.1) THEN
+ IF (BETA.EQ.ZERO) THEN
+ DO 10 I = 1,LENY
+ Y(I) = ZERO
+ 10 CONTINUE
+ ELSE
+ DO 20 I = 1,LENY
+ Y(I) = BETA*Y(I)
+ 20 CONTINUE
+ END IF
+ ELSE
+ IY = KY
+ IF (BETA.EQ.ZERO) THEN
+ DO 30 I = 1,LENY
+ Y(IY) = ZERO
+ IY = IY + INCY
+ 30 CONTINUE
+ ELSE
+ DO 40 I = 1,LENY
+ Y(IY) = BETA*Y(IY)
+ IY = IY + INCY
+ 40 CONTINUE
+ END IF
+ END IF
+ END IF
+ IF (ALPHA.EQ.ZERO) RETURN
+ IF (LSAME(TRANS,'N')) THEN
+*
+* Form y := alpha*A*x + y.
+*
+ JX = KX
+ IF (INCY.EQ.1) THEN
+ DO 60 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ DO 50 I = 1,M
+ Y(I) = Y(I) + TEMP*A(I,J)
+ 50 CONTINUE
+ END IF
+ JX = JX + INCX
+ 60 CONTINUE
+ ELSE
+ DO 80 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = ALPHA*X(JX)
+ IY = KY
+ DO 70 I = 1,M
+ Y(IY) = Y(IY) + TEMP*A(I,J)
+ IY = IY + INCY
+ 70 CONTINUE
+ END IF
+ JX = JX + INCX
+ 80 CONTINUE
+ END IF
+ ELSE
+*
+* Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
+*
+ JY = KY
+ IF (INCX.EQ.1) THEN
+ DO 110 J = 1,N
+ TEMP = ZERO
+ IF (NOCONJ) THEN
+ DO 90 I = 1,M
+ TEMP = TEMP + A(I,J)*X(I)
+ 90 CONTINUE
+ ELSE
+ DO 100 I = 1,M
+ TEMP = TEMP + DCONJG(A(I,J))*X(I)
+ 100 CONTINUE
+ END IF
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 110 CONTINUE
+ ELSE
+ DO 140 J = 1,N
+ TEMP = ZERO
+ IX = KX
+ IF (NOCONJ) THEN
+ DO 120 I = 1,M
+ TEMP = TEMP + A(I,J)*X(IX)
+ IX = IX + INCX
+ 120 CONTINUE
+ ELSE
+ DO 130 I = 1,M
+ TEMP = TEMP + DCONJG(A(I,J))*X(IX)
+ IX = IX + INCX
+ 130 CONTINUE
+ END IF
+ Y(JY) = Y(JY) + ALPHA*TEMP
+ JY = JY + INCY
+ 140 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of ZGEMV .
+*
+ END