Remove Polly's IndVarSimplify pass
authorTobias Grosser <tobias@grosser.es>
Sun, 30 Nov 2014 14:33:41 +0000 (14:33 +0000)
committerTobias Grosser <tobias@grosser.es>
Sun, 30 Nov 2014 14:33:41 +0000 (14:33 +0000)
Polly had a copy of this pass to create the canonical induction variables
necessary for the non-scev-based code generation. As we now always use SCEV
based code generation, canonical induction variables are not needed any more.

llvm-svn: 222979

polly/include/polly/LinkAllPasses.h
polly/lib/CMakeLists.txt
polly/lib/Makefile
polly/lib/Support/RegisterPasses.cpp
polly/lib/Transform/IndVarSimplify.cpp [deleted file]

index f813baf..943d653 100644 (file)
@@ -39,7 +39,6 @@ llvm::Pass *createDOTOnlyViewerPass();
 llvm::Pass *createDOTPrinterPass();
 llvm::Pass *createDOTViewerPass();
 llvm::Pass *createIndependentBlocksPass();
-llvm::Pass *createIndVarSimplifyPass();
 llvm::Pass *createJSONExporterPass();
 llvm::Pass *createJSONImporterPass();
 #ifdef PLUTO_FOUND
@@ -80,7 +79,6 @@ struct PollyForcePassLinking {
     polly::createDOTPrinterPass();
     polly::createDOTViewerPass();
     polly::createIndependentBlocksPass();
-    polly::createIndVarSimplifyPass();
     polly::createJSONExporterPass();
     polly::createJSONImporterPass();
     polly::createScopDetectionPass();
@@ -114,7 +112,6 @@ void initializeIslScheduleOptimizerPass(llvm::PassRegistry &);
 void initializePlutoOptimizerPass(llvm::PassRegistry &);
 #endif
 void initializePollyCanonicalizePass(llvm::PassRegistry &);
-void initializePollyIndVarSimplifyPass(llvm::PassRegistry &);
 }
 
 #endif
index 3cb146e..c9555a0 100644 (file)
@@ -52,7 +52,6 @@ add_polly_library(Polly
   Transform/CodePreparation.cpp
   Transform/DeadCodeElimination.cpp
   Transform/IndependentBlocks.cpp
-  Transform/IndVarSimplify.cpp
   Transform/ScheduleOptimizer.cpp
   ${POLLY_PLUTO_FILES}
   )
index c1e37d1..0090c07 100644 (file)
@@ -59,7 +59,6 @@ SOURCES= Polly.cpp \
         Transform/CodePreparation.cpp \
         Transform/DeadCodeElimination.cpp \
         Transform/IndependentBlocks.cpp \
-        Transform/IndVarSimplify.cpp \
         Transform/ScheduleOptimizer.cpp \
         ${GPGPU_FILES} \
         ${ISL_CODEGEN_FILES} \
index d40da37..1bf0d3e 100644 (file)
@@ -156,7 +156,6 @@ void initializePollyPasses(PassRegistry &Registry) {
   initializeJSONImporterPass(Registry);
   initializeIslAstInfoPass(Registry);
   initializeIslScheduleOptimizerPass(Registry);
-  initializePollyIndVarSimplifyPass(Registry);
   initializePollyCanonicalizePass(Registry);
   initializeScopDetectionPass(Registry);
   initializeScopInfoPass(Registry);
diff --git a/polly/lib/Transform/IndVarSimplify.cpp b/polly/lib/Transform/IndVarSimplify.cpp
deleted file mode 100644 (file)
index 6d049b6..0000000
+++ /dev/null
@@ -1,2009 +0,0 @@
-//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This transformation analyzes and transforms the induction variables (and
-// computations derived from them) into simpler forms suitable for subsequent
-// analysis and transformation.
-//
-// If the trip count of a loop is computable, this pass also makes the following
-// changes:
-//   1. The exit condition for the loop is canonicalized to compare the
-//      induction value against the exit value.  This turns loops like:
-//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
-//   2. Any use outside of the loop of an expression derived from the indvar
-//      is changed to compute the derived value outside of the loop, eliminating
-//      the dependence on the exit value of the induction variable.  If the only
-//      purpose of the loop is to compute the exit value of some derived
-//      expression, this transformation will make the loop dead.
-//
-//===----------------------------------------------------------------------===//
-
-#include "polly/LinkAllPasses.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/IVUsers.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Type.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "indvars"
-
-STATISTIC(NumRemoved, "Number of aux indvars removed");
-STATISTIC(NumWidened, "Number of indvars widened");
-STATISTIC(NumInserted, "Number of canonical indvars added");
-STATISTIC(NumReplaced, "Number of exit values replaced");
-STATISTIC(NumLFTR, "Number of loop exit tests replaced");
-STATISTIC(NumElimExt, "Number of IV sign/zero extends eliminated");
-STATISTIC(NumElimIV, "Number of congruent IVs eliminated");
-
-static const bool EnableIVRewrite = true;
-#ifndef NDEBUG
-static const bool VerifyIndvars = false;
-#endif
-
-namespace {
-class PollyIndVarSimplify : public LoopPass {
-  IVUsers *IU;
-  LoopInfo *LI;
-  ScalarEvolution *SE;
-  DominatorTree *DT;
-  const DataLayout *TD;
-
-  SmallVector<WeakVH, 16> DeadInsts;
-  bool Changed;
-
-public:
-  static char ID; // Pass identification, replacement for typeid
-  PollyIndVarSimplify()
-      : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), Changed(false) {
-    initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
-  }
-
-  virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
-
-  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-    AU.addRequired<DominatorTreeWrapperPass>();
-    AU.addRequired<LoopInfo>();
-    AU.addRequired<ScalarEvolution>();
-    AU.addRequiredID(LoopSimplifyID);
-    AU.addRequiredID(LCSSAID);
-    if (EnableIVRewrite)
-      AU.addRequired<IVUsers>();
-    AU.addPreserved<ScalarEvolution>();
-    AU.addPreservedID(LoopSimplifyID);
-    AU.addPreservedID(LCSSAID);
-    if (EnableIVRewrite)
-      AU.addPreserved<IVUsers>();
-    AU.setPreservesCFG();
-  }
-
-private:
-  virtual void releaseMemory() { DeadInsts.clear(); }
-
-  bool isValidRewrite(Value *FromVal, Value *ToVal);
-
-  void HandleFloatingPointIV(Loop *L, PHINode *PH);
-  void RewriteNonIntegerIVs(Loop *L);
-
-  void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
-
-  void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
-
-  void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
-
-  Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
-                                   PHINode *IndVar, SCEVExpander &Rewriter);
-
-  void SinkUnusedInvariants(Loop *L);
-};
-}
-
-char PollyIndVarSimplify::ID = 0;
-Pass *polly::createIndVarSimplifyPass() { return new PollyIndVarSimplify(); }
-
-/// isValidRewrite - Return true if the SCEV expansion generated by the
-/// rewriter can replace the original value. SCEV guarantees that it
-/// produces the same value, but the way it is produced may be illegal IR.
-/// Ideally, this function will only be called for verification.
-bool PollyIndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
-  // If an SCEV expression subsumed multiple pointers, its expansion could
-  // reassociate the GEP changing the base pointer. This is illegal because the
-  // final address produced by a GEP chain must be inbounds relative to its
-  // underlying object. Otherwise basic alias analysis, among other things,
-  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
-  // producing an expression involving multiple pointers. Until then, we must
-  // bail out here.
-  //
-  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
-  // because it understands lcssa phis while SCEV does not.
-  Value *FromPtr = FromVal;
-  Value *ToPtr = ToVal;
-  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
-    FromPtr = GEP->getPointerOperand();
-  }
-  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
-    ToPtr = GEP->getPointerOperand();
-  }
-  if (FromPtr != FromVal || ToPtr != ToVal) {
-    // Quickly check the common case
-    if (FromPtr == ToPtr)
-      return true;
-
-    // SCEV may have rewritten an expression that produces the GEP's pointer
-    // operand. That's ok as long as the pointer operand has the same base
-    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
-    // base of a recurrence. This handles the case in which SCEV expansion
-    // converts a pointer type recurrence into a nonrecurrent pointer base
-    // indexed by an integer recurrence.
-
-    // If the GEP base pointer is a vector of pointers, abort.
-    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
-      return false;
-
-    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
-    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
-    if (FromBase == ToBase)
-      return true;
-
-    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
-                 << " != " << *ToBase << "\n");
-
-    return false;
-  }
-  return true;
-}
-
-/// Determine the insertion point for this user. By default, insert immediately
-/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
-/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
-/// common dominator for the incoming blocks.
-static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
-                                          DominatorTree *DT) {
-  PHINode *PHI = dyn_cast<PHINode>(User);
-  if (!PHI)
-    return User;
-
-  Instruction *InsertPt = 0;
-  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
-    if (PHI->getIncomingValue(i) != Def)
-      continue;
-
-    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
-    if (!InsertPt) {
-      InsertPt = InsertBB->getTerminator();
-      continue;
-    }
-    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
-    InsertPt = InsertBB->getTerminator();
-  }
-  assert(InsertPt && "Missing phi operand");
-  assert((!isa<Instruction>(Def) ||
-          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
-         "def does not dominate all uses");
-  return InsertPt;
-}
-
-//===----------------------------------------------------------------------===//
-// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
-//===----------------------------------------------------------------------===//
-
-/// ConvertToSInt - Convert APF to an integer, if possible.
-static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
-  bool isExact = false;
-  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
-    return false;
-  // See if we can convert this to an int64_t
-  uint64_t UIntVal;
-  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
-                           &isExact) != APFloat::opOK ||
-      !isExact)
-    return false;
-  IntVal = UIntVal;
-  return true;
-}
-
-/// HandleFloatingPointIV - If the loop has floating induction variable
-/// then insert corresponding integer induction variable if possible.
-/// For example,
-/// for(double i = 0; i < 10000; ++i)
-///   bar(i)
-/// is converted into
-/// for(int i = 0; i < 10000; ++i)
-///   bar((double)i);
-///
-void PollyIndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
-  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
-  unsigned BackEdge = IncomingEdge ^ 1;
-
-  // Check incoming value.
-  ConstantFP *InitValueVal =
-      dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
-
-  int64_t InitValue;
-  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
-    return;
-
-  // Check IV increment. Reject this PN if increment operation is not
-  // an add or increment value can not be represented by an integer.
-  BinaryOperator *Incr =
-      dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
-  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd)
-    return;
-
-  // If this is not an add of the PHI with a constantfp, or if the constant fp
-  // is not an integer, bail out.
-  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
-  int64_t IncValue;
-  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
-      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
-    return;
-
-  // Check Incr uses. One user is PN and the other user is an exit condition
-  // used by the conditional terminator.
-  Value::user_iterator IncrUse = Incr->user_begin();
-  Instruction *U1 = cast<Instruction>(*IncrUse++);
-  if (IncrUse == Incr->user_end())
-    return;
-  Instruction *U2 = cast<Instruction>(*IncrUse++);
-  if (IncrUse != Incr->user_end())
-    return;
-
-  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
-  // only used by a branch, we can't transform it.
-  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
-  if (!Compare)
-    Compare = dyn_cast<FCmpInst>(U2);
-  if (Compare == 0 || !Compare->hasOneUse() ||
-      !isa<BranchInst>(Compare->user_back()))
-    return;
-
-  BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
-
-  // We need to verify that the branch actually controls the iteration count
-  // of the loop.  If not, the new IV can overflow and no one will notice.
-  // The branch block must be in the loop and one of the successors must be out
-  // of the loop.
-  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
-  if (!L->contains(TheBr->getParent()) ||
-      (L->contains(TheBr->getSuccessor(0)) &&
-       L->contains(TheBr->getSuccessor(1))))
-    return;
-
-  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
-  // transform it.
-  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
-  int64_t ExitValue;
-  if (ExitValueVal == 0 ||
-      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
-    return;
-
-  // Find new predicate for integer comparison.
-  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
-  switch (Compare->getPredicate()) {
-  default:
-    return; // Unknown comparison.
-  case CmpInst::FCMP_OEQ:
-  case CmpInst::FCMP_UEQ:
-    NewPred = CmpInst::ICMP_EQ;
-    break;
-  case CmpInst::FCMP_ONE:
-  case CmpInst::FCMP_UNE:
-    NewPred = CmpInst::ICMP_NE;
-    break;
-  case CmpInst::FCMP_OGT:
-  case CmpInst::FCMP_UGT:
-    NewPred = CmpInst::ICMP_SGT;
-    break;
-  case CmpInst::FCMP_OGE:
-  case CmpInst::FCMP_UGE:
-    NewPred = CmpInst::ICMP_SGE;
-    break;
-  case CmpInst::FCMP_OLT:
-  case CmpInst::FCMP_ULT:
-    NewPred = CmpInst::ICMP_SLT;
-    break;
-  case CmpInst::FCMP_OLE:
-  case CmpInst::FCMP_ULE:
-    NewPred = CmpInst::ICMP_SLE;
-    break;
-  }
-
-  // We convert the floating point induction variable to a signed i32 value if
-  // we can.  This is only safe if the comparison will not overflow in a way
-  // that won't be trapped by the integer equivalent operations.  Check for this
-  // now.
-  // TODO: We could use i64 if it is native and the range requires it.
-
-  // The start/stride/exit values must all fit in signed i32.
-  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
-    return;
-
-  // If not actually striding (add x, 0.0), avoid touching the code.
-  if (IncValue == 0)
-    return;
-
-  // Positive and negative strides have different safety conditions.
-  if (IncValue > 0) {
-    // If we have a positive stride, we require the init to be less than the
-    // exit value.
-    if (InitValue >= ExitValue)
-      return;
-
-    uint32_t Range = uint32_t(ExitValue - InitValue);
-    // Check for infinite loop, either:
-    // while (i <= Exit) or until (i > Exit)
-    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
-      if (++Range == 0)
-        return; // Range overflows.
-    }
-
-    unsigned Leftover = Range % uint32_t(IncValue);
-
-    // If this is an equality comparison, we require that the strided value
-    // exactly land on the exit value, otherwise the IV condition will wrap
-    // around and do things the fp IV wouldn't.
-    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
-        Leftover != 0)
-      return;
-
-    // If the stride would wrap around the i32 before exiting, we can't
-    // transform the IV.
-    if (Leftover != 0 && int32_t(ExitValue + IncValue) < ExitValue)
-      return;
-
-  } else {
-    // If we have a negative stride, we require the init to be greater than the
-    // exit value.
-    if (InitValue <= ExitValue)
-      return;
-
-    uint32_t Range = uint32_t(InitValue - ExitValue);
-    // Check for infinite loop, either:
-    // while (i >= Exit) or until (i < Exit)
-    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
-      if (++Range == 0)
-        return; // Range overflows.
-    }
-
-    unsigned Leftover = Range % uint32_t(-IncValue);
-
-    // If this is an equality comparison, we require that the strided value
-    // exactly land on the exit value, otherwise the IV condition will wrap
-    // around and do things the fp IV wouldn't.
-    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
-        Leftover != 0)
-      return;
-
-    // If the stride would wrap around the i32 before exiting, we can't
-    // transform the IV.
-    if (Leftover != 0 && int32_t(ExitValue + IncValue) > ExitValue)
-      return;
-  }
-
-  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
-
-  // Insert new integer induction variable.
-  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName() + ".int", PN);
-  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
-                      PN->getIncomingBlock(IncomingEdge));
-
-  Value *NewAdd =
-      BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
-                                Incr->getName() + ".int", Incr);
-  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
-
-  ICmpInst *NewCompare =
-      new ICmpInst(TheBr, NewPred, NewAdd, ConstantInt::get(Int32Ty, ExitValue),
-                   Compare->getName());
-
-  // In the following deletions, PN may become dead and may be deleted.
-  // Use a WeakVH to observe whether this happens.
-  WeakVH WeakPH = PN;
-
-  // Delete the old floating point exit comparison.  The branch starts using the
-  // new comparison.
-  NewCompare->takeName(Compare);
-  Compare->replaceAllUsesWith(NewCompare);
-  RecursivelyDeleteTriviallyDeadInstructions(Compare);
-
-  // Delete the old floating point increment.
-  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
-  RecursivelyDeleteTriviallyDeadInstructions(Incr);
-
-  // If the FP induction variable still has uses, this is because something else
-  // in the loop uses its value.  In order to canonicalize the induction
-  // variable, we chose to eliminate the IV and rewrite it in terms of an
-  // int->fp cast.
-  //
-  // We give preference to sitofp over uitofp because it is faster on most
-  // platforms.
-  if (WeakPH) {
-    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
-                                 PN->getParent()->getFirstInsertionPt());
-    PN->replaceAllUsesWith(Conv);
-    RecursivelyDeleteTriviallyDeadInstructions(PN);
-  }
-
-  // Add a new IVUsers entry for the newly-created integer PHI.
-  if (IU)
-    IU->AddUsersIfInteresting(NewPHI);
-
-  Changed = true;
-}
-
-void PollyIndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
-  // First step.  Check to see if there are any floating-point recurrences.
-  // If there are, change them into integer recurrences, permitting analysis by
-  // the SCEV routines.
-  //
-  BasicBlock *Header = L->getHeader();
-
-  SmallVector<WeakVH, 8> PHIs;
-  for (BasicBlock::iterator I = Header->begin();
-       PHINode *PN = dyn_cast<PHINode>(I); ++I)
-    PHIs.push_back(PN);
-
-  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
-    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
-      HandleFloatingPointIV(L, PN);
-
-  // If the loop previously had floating-point IV, ScalarEvolution
-  // may not have been able to compute a trip count. Now that we've done some
-  // re-writing, the trip count may be computable.
-  if (Changed)
-    SE->forgetLoop(L);
-}
-
-//===----------------------------------------------------------------------===//
-// RewriteLoopExitValues - Optimize IV users outside the loop.
-// As a side effect, reduces the amount of IV processing within the loop.
-//===----------------------------------------------------------------------===//
-
-/// RewriteLoopExitValues - Check to see if this loop has a computable
-/// loop-invariant execution count.  If so, this means that we can compute the
-/// final value of any expressions that are recurrent in the loop, and
-/// substitute the exit values from the loop into any instructions outside of
-/// the loop that use the final values of the current expressions.
-///
-/// This is mostly redundant with the regular IndVarSimplify activities that
-/// happen later, except that it's more powerful in some cases, because it's
-/// able to brute-force evaluate arbitrary instructions as long as they have
-/// constant operands at the beginning of the loop.
-void PollyIndVarSimplify::RewriteLoopExitValues(Loop *L,
-                                                SCEVExpander &Rewriter) {
-  // Verify the input to the pass in already in LCSSA form.
-  assert(L->isLCSSAForm(*DT));
-
-  SmallVector<BasicBlock *, 8> ExitBlocks;
-  L->getUniqueExitBlocks(ExitBlocks);
-
-  // Find all values that are computed inside the loop, but used outside of it.
-  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
-  // the exit blocks of the loop to find them.
-  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
-    BasicBlock *ExitBB = ExitBlocks[i];
-
-    // If there are no PHI nodes in this exit block, then no values defined
-    // inside the loop are used on this path, skip it.
-    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
-    if (!PN)
-      continue;
-
-    unsigned NumPreds = PN->getNumIncomingValues();
-
-    // Iterate over all of the PHI nodes.
-    BasicBlock::iterator BBI = ExitBB->begin();
-    while ((PN = dyn_cast<PHINode>(BBI++))) {
-      if (PN->use_empty())
-        continue; // dead use, don't replace it
-
-      // SCEV only supports integer expressions for now.
-      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
-        continue;
-
-      // It's necessary to tell ScalarEvolution about this explicitly so that
-      // it can walk the def-use list and forget all SCEVs, as it may not be
-      // watching the PHI itself. Once the new exit value is in place, there
-      // may not be a def-use connection between the loop and every instruction
-      // which got a SCEVAddRecExpr for that loop.
-      SE->forgetValue(PN);
-
-      // Iterate over all of the values in all the PHI nodes.
-      for (unsigned i = 0; i != NumPreds; ++i) {
-        // If the value being merged in is not integer or is not defined
-        // in the loop, skip it.
-        Value *InVal = PN->getIncomingValue(i);
-        if (!isa<Instruction>(InVal))
-          continue;
-
-        // If this pred is for a subloop, not L itself, skip it.
-        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
-          continue; // The Block is in a subloop, skip it.
-
-        // Check that InVal is defined in the loop.
-        Instruction *Inst = cast<Instruction>(InVal);
-        if (!L->contains(Inst))
-          continue;
-
-        // Okay, this instruction has a user outside of the current loop
-        // and varies predictably *inside* the loop.  Evaluate the value it
-        // contains when the loop exits, if possible.
-        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
-        if (!SE->isLoopInvariant(ExitValue, L))
-          continue;
-
-        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
-
-        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
-                     << "  LoopVal = " << *Inst << "\n");
-
-        if (!isValidRewrite(Inst, ExitVal)) {
-          DeadInsts.push_back(ExitVal);
-          continue;
-        }
-        Changed = true;
-        ++NumReplaced;
-
-        PN->setIncomingValue(i, ExitVal);
-
-        // If this instruction is dead now, delete it.
-        RecursivelyDeleteTriviallyDeadInstructions(Inst);
-
-        if (NumPreds == 1) {
-          // Completely replace a single-pred PHI. This is safe, because the
-          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
-          // node anymore.
-          PN->replaceAllUsesWith(ExitVal);
-          RecursivelyDeleteTriviallyDeadInstructions(PN);
-        }
-      }
-      if (NumPreds != 1) {
-        // Clone the PHI and delete the original one. This lets IVUsers and
-        // any other maps purge the original user from their records.
-        PHINode *NewPN = cast<PHINode>(PN->clone());
-        NewPN->takeName(PN);
-        NewPN->insertBefore(PN);
-        PN->replaceAllUsesWith(NewPN);
-        PN->eraseFromParent();
-      }
-    }
-  }
-
-  // The insertion point instruction may have been deleted; clear it out
-  // so that the rewriter doesn't trip over it later.
-  Rewriter.clearInsertPoint();
-}
-
-//===----------------------------------------------------------------------===//
-//  Rewrite IV users based on a canonical IV.
-//  Only for use with -enable-iv-rewrite.
-//===----------------------------------------------------------------------===//
-
-/// FIXME: It is an extremely bad idea to indvar substitute anything more
-/// complex than affine induction variables.  Doing so will put expensive
-/// polynomial evaluations inside of the loop, and the str reduction pass
-/// currently can only reduce affine polynomials.  For now just disable
-/// indvar subst on anything more complex than an affine addrec, unless
-/// it can be expanded to a trivial value.
-static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
-  // Loop-invariant values are safe.
-  if (SE->isLoopInvariant(S, L))
-    return true;
-
-  // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
-  // to transform them into efficient code.
-  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
-    return AR->isAffine();
-
-  // An add is safe it all its operands are safe.
-  if (const SCEVCommutativeExpr *Commutative =
-          dyn_cast<SCEVCommutativeExpr>(S)) {
-    for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
-                                          E = Commutative->op_end();
-         I != E; ++I)
-      if (!isSafe(*I, L, SE))
-        return false;
-    return true;
-  }
-
-  // A cast is safe if its operand is.
-  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
-    return isSafe(C->getOperand(), L, SE);
-
-  // A udiv is safe if its operands are.
-  if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
-    return isSafe(UD->getLHS(), L, SE) && isSafe(UD->getRHS(), L, SE);
-
-  // SCEVUnknown is always safe.
-  if (isa<SCEVUnknown>(S))
-    return true;
-
-  // Nothing else is safe.
-  return false;
-}
-
-void PollyIndVarSimplify::RewriteIVExpressions(Loop *L,
-                                               SCEVExpander &Rewriter) {
-  // Rewrite all induction variable expressions in terms of the canonical
-  // induction variable.
-  //
-  // If there were induction variables of other sizes or offsets, manually
-  // add the offsets to the primary induction variable and cast, avoiding
-  // the need for the code evaluation methods to insert induction variables
-  // of different sizes.
-  for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
-    Value *Op = UI->getOperandValToReplace();
-    Type *UseTy = Op->getType();
-    Instruction *User = UI->getUser();
-
-    // Compute the final addrec to expand into code.
-    const SCEV *AR = IU->getReplacementExpr(*UI);
-
-    // Evaluate the expression out of the loop, if possible.
-    if (!L->contains(UI->getUser())) {
-      const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
-      if (SE->isLoopInvariant(ExitVal, L))
-        AR = ExitVal;
-    }
-
-    // FIXME: It is an extremely bad idea to indvar substitute anything more
-    // complex than affine induction variables.  Doing so will put expensive
-    // polynomial evaluations inside of the loop, and the str reduction pass
-    // currently can only reduce affine polynomials.  For now just disable
-    // indvar subst on anything more complex than an affine addrec, unless
-    // it can be expanded to a trivial value.
-    if (!isSafe(AR, L, SE))
-      continue;
-
-    // Determine the insertion point for this user. By default, insert
-    // immediately before the user. The SCEVExpander class will automatically
-    // hoist loop invariants out of the loop. For PHI nodes, there may be
-    // multiple uses, so compute the nearest common dominator for the
-    // incoming blocks.
-    Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
-
-    // Now expand it into actual Instructions and patch it into place.
-    Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
-
-    DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
-                 << "   into = " << *NewVal << "\n");
-
-    if (!isValidRewrite(Op, NewVal)) {
-      DeadInsts.push_back(NewVal);
-      continue;
-    }
-    // Inform ScalarEvolution that this value is changing. The change doesn't
-    // affect its value, but it does potentially affect which use lists the
-    // value will be on after the replacement, which affects ScalarEvolution's
-    // ability to walk use lists and drop dangling pointers when a value is
-    // deleted.
-    SE->forgetValue(User);
-
-    // Patch the new value into place.
-    if (Op->hasName())
-      NewVal->takeName(Op);
-    if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
-      NewValI->setDebugLoc(User->getDebugLoc());
-    User->replaceUsesOfWith(Op, NewVal);
-    UI->setOperandValToReplace(NewVal);
-
-    ++NumRemoved;
-    Changed = true;
-
-    // The old value may be dead now.
-    DeadInsts.push_back(Op);
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//  IV Widening - Extend the width of an IV to cover its widest uses.
-//===----------------------------------------------------------------------===//
-
-namespace {
-// Collect information about induction variables that are used by sign/zero
-// extend operations. This information is recorded by CollectExtend and
-// provides the input to WidenIV.
-struct WideIVInfo {
-  PHINode *NarrowIV;
-  Type *WidestNativeType; // Widest integer type created [sz]ext
-  bool IsSigned;          // Was an sext user seen before a zext?
-
-  WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
-};
-
-class WideIVVisitor : public IVVisitor {
-  ScalarEvolution *SE;
-  const DataLayout *TD;
-
-public:
-  WideIVInfo WI;
-
-  WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
-                const DataLayout *TData)
-      : SE(SCEV), TD(TData) {
-    WI.NarrowIV = NarrowIV;
-  }
-
-  // Implement the interface used by simplifyUsersOfIV.
-  virtual void visitCast(CastInst *Cast);
-};
-}
-
-/// visitCast - Update information about the induction variable that is
-/// extended by this sign or zero extend operation. This is used to determine
-/// the final width of the IV before actually widening it.
-void WideIVVisitor::visitCast(CastInst *Cast) {
-  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
-  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
-    return;
-
-  Type *Ty = Cast->getType();
-  uint64_t Width = SE->getTypeSizeInBits(Ty);
-  if (TD && !TD->isLegalInteger(Width))
-    return;
-
-  if (!WI.WidestNativeType) {
-    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
-    WI.IsSigned = IsSigned;
-    return;
-  }
-
-  // We extend the IV to satisfy the sign of its first user, arbitrarily.
-  if (WI.IsSigned != IsSigned)
-    return;
-
-  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
-    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
-}
-
-namespace {
-
-/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
-/// WideIV that computes the same value as the Narrow IV def.  This avoids
-/// caching Use* pointers.
-struct NarrowIVDefUse {
-  Instruction *NarrowDef;
-  Instruction *NarrowUse;
-  Instruction *WideDef;
-
-  NarrowIVDefUse() : NarrowDef(0), NarrowUse(0), WideDef(0) {}
-
-  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD)
-      : NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
-};
-
-/// WidenIV - The goal of this transform is to remove sign and zero extends
-/// without creating any new induction variables. To do this, it creates a new
-/// phi of the wider type and redirects all users, either removing extends or
-/// inserting truncs whenever we stop propagating the type.
-///
-class WidenIV {
-  // Parameters
-  PHINode *OrigPhi;
-  Type *WideType;
-  bool IsSigned;
-
-  // Context
-  LoopInfo *LI;
-  Loop *L;
-  ScalarEvolution *SE;
-  DominatorTree *DT;
-
-  // Result
-  PHINode *WidePhi;
-  Instruction *WideInc;
-  const SCEV *WideIncExpr;
-  SmallVectorImpl<WeakVH> &DeadInsts;
-
-  SmallPtrSet<Instruction *, 16> Widened;
-  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
-
-public:
-  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
-          DominatorTree *DTree, SmallVectorImpl<WeakVH> &DI)
-      : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType),
-        IsSigned(WI.IsSigned), LI(LInfo),
-        L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), WidePhi(0),
-        WideInc(0), WideIncExpr(0), DeadInsts(DI) {
-    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
-  }
-
-  PHINode *CreateWideIV(SCEVExpander &Rewriter);
-
-protected:
-  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
-                   Instruction *Use);
-
-  Instruction *CloneIVUser(NarrowIVDefUse DU);
-
-  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
-
-  const SCEVAddRecExpr *GetExtendedOperandRecurrence(NarrowIVDefUse DU);
-
-  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
-
-  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
-};
-} // anonymous namespace
-
-/// isLoopInvariant - Perform a quick domtree based check for loop invariance
-/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
-/// gratuitous for this purpose.
-static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
-  Instruction *Inst = dyn_cast<Instruction>(V);
-  if (!Inst)
-    return true;
-
-  return DT->properlyDominates(Inst->getParent(), L->getHeader());
-}
-
-Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
-                          Instruction *Use) {
-  // Set the debug location and conservative insertion point.
-  IRBuilder<> Builder(Use);
-  // Hoist the insertion point into loop preheaders as far as possible.
-  for (const Loop *L = LI->getLoopFor(Use->getParent());
-       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
-       L = L->getParentLoop())
-    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
-
-  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType)
-                  : Builder.CreateZExt(NarrowOper, WideType);
-}
-
-/// CloneIVUser - Instantiate a wide operation to replace a narrow
-/// operation. This only needs to handle operations that can evaluation to
-/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
-Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
-  unsigned Opcode = DU.NarrowUse->getOpcode();
-  switch (Opcode) {
-  default:
-    return 0;
-  case Instruction::Add:
-  case Instruction::Mul:
-  case Instruction::UDiv:
-  case Instruction::Sub:
-  case Instruction::And:
-  case Instruction::Or:
-  case Instruction::Xor:
-  case Instruction::Shl:
-  case Instruction::LShr:
-  case Instruction::AShr:
-    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
-
-    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
-    // anything about the narrow operand yet so must insert a [sz]ext. It is
-    // probably loop invariant and will be folded or hoisted. If it actually
-    // comes from a widened IV, it should be removed during a future call to
-    // WidenIVUse.
-    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef)
-                     ? DU.WideDef
-                     : getExtend(DU.NarrowUse->getOperand(0), WideType,
-                                 IsSigned, DU.NarrowUse);
-    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef)
-                     ? DU.WideDef
-                     : getExtend(DU.NarrowUse->getOperand(1), WideType,
-                                 IsSigned, DU.NarrowUse);
-
-    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
-    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS,
-                                                    RHS, NarrowBO->getName());
-    IRBuilder<> Builder(DU.NarrowUse);
-    Builder.Insert(WideBO);
-    if (const OverflowingBinaryOperator *OBO =
-            dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
-      if (OBO->hasNoUnsignedWrap())
-        WideBO->setHasNoUnsignedWrap();
-      if (OBO->hasNoSignedWrap())
-        WideBO->setHasNoSignedWrap();
-    }
-    return WideBO;
-  }
-  llvm_unreachable(0);
-}
-
-/// No-wrap operations can transfer sign extension of their result to their
-/// operands. Generate the SCEV value for the widened operation without
-/// actually modifying the IR yet. If the expression after extending the
-/// operands is an AddRec for this loop, return it.
-const SCEVAddRecExpr *WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
-  // Handle the common case of add<nsw/nuw>
-  if (DU.NarrowUse->getOpcode() != Instruction::Add)
-    return 0;
-
-  // One operand (NarrowDef) has already been extended to WideDef. Now determine
-  // if extending the other will lead to a recurrence.
-  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
-  assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
-         "bad DU");
-
-  const SCEV *ExtendOperExpr = 0;
-  const OverflowingBinaryOperator *OBO =
-      cast<OverflowingBinaryOperator>(DU.NarrowUse);
-  if (IsSigned && OBO->hasNoSignedWrap())
-    ExtendOperExpr = SE->getSignExtendExpr(
-        SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
-  else if (!IsSigned && OBO->hasNoUnsignedWrap())
-    ExtendOperExpr = SE->getZeroExtendExpr(
-        SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
-  else
-    return 0;
-
-  // When creating this AddExpr, don't apply the current operations NSW or NUW
-  // flags. This instruction may be guarded by control flow that the no-wrap
-  // behavior depends on. Non-control-equivalent instructions can be mapped to
-  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
-  // semantics to those operations.
-  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
-      SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
-
-  if (!AddRec || AddRec->getLoop() != L)
-    return 0;
-  return AddRec;
-}
-
-/// GetWideRecurrence - Is this instruction potentially interesting from
-/// IVUsers' perspective after widening it's type? In other words, can the
-/// extend be safely hoisted out of the loop with SCEV reducing the value to a
-/// recurrence on the same loop. If so, return the sign or zero extended
-/// recurrence. Otherwise return nullptr.
-const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
-  if (!SE->isSCEVable(NarrowUse->getType()))
-    return 0;
-
-  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
-  if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
-      SE->getTypeSizeInBits(WideType)) {
-    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
-    // index. So don't follow this use.
-    return 0;
-  }
-
-  const SCEV *WideExpr = IsSigned ? SE->getSignExtendExpr(NarrowExpr, WideType)
-                                  : SE->getZeroExtendExpr(NarrowExpr, WideType);
-  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
-  if (!AddRec || AddRec->getLoop() != L)
-    return 0;
-  return AddRec;
-}
-
-/// WidenIVUse - Determine whether an individual user of the narrow IV can be
-/// widened. If so, return the wide clone of the user.
-Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
-  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
-  if (isa<PHINode>(DU.NarrowUse) &&
-      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
-    return 0;
-
-  // Our raison d'etre! Eliminate sign and zero extension.
-  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
-    Value *NewDef = DU.WideDef;
-    if (DU.NarrowUse->getType() != WideType) {
-      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
-      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
-      if (CastWidth < IVWidth) {
-        // The cast isn't as wide as the IV, so insert a Trunc.
-        IRBuilder<> Builder(DU.NarrowUse);
-        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
-      } else {
-        // A wider extend was hidden behind a narrower one. This may induce
-        // another round of IV widening in which the intermediate IV becomes
-        // dead. It should be very rare.
-        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
-                     << " not wide enough to subsume " << *DU.NarrowUse
-                     << "\n");
-        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
-        NewDef = DU.NarrowUse;
-      }
-    }
-    if (NewDef != DU.NarrowUse) {
-      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
-                   << " replaced by " << *DU.WideDef << "\n");
-      ++NumElimExt;
-      DU.NarrowUse->replaceAllUsesWith(NewDef);
-      DeadInsts.push_back(DU.NarrowUse);
-    }
-    // Now that the extend is gone, we want to expose it's uses for potential
-    // further simplification. We don't need to directly inform SimplifyIVUsers
-    // of the new users, because their parent IV will be processed later as a
-    // new loop phi. If we preserved IVUsers analysis, we would also want to
-    // push the uses of WideDef here.
-
-    // No further widening is needed. The deceased [sz]ext had done it for us.
-    return 0;
-  }
-
-  // Does this user itself evaluate to a recurrence after widening?
-  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
-  if (!WideAddRec) {
-    WideAddRec = GetExtendedOperandRecurrence(DU);
-  }
-  if (!WideAddRec) {
-    // This user does not evaluate to a recurence after widening, so don't
-    // follow it. Instead insert a Trunc to kill off the original use,
-    // eventually isolating the original narrow IV so it can be removed.
-    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
-    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
-    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
-    return 0;
-  }
-  // Assume block terminators cannot evaluate to a recurrence. We can't to
-  // insert a Trunc after a terminator if there happens to be a critical edge.
-  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
-         "SCEV is not expected to evaluate a block terminator");
-
-  // Reuse the IV increment that SCEVExpander created as long as it dominates
-  // NarrowUse.
-  Instruction *WideUse = 0;
-  if (WideAddRec == WideIncExpr && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
-    WideUse = WideInc;
-  else {
-    WideUse = CloneIVUser(DU);
-    if (!WideUse)
-      return 0;
-  }
-  // Evaluation of WideAddRec ensured that the narrow expression could be
-  // extended outside the loop without overflow. This suggests that the wide use
-  // evaluates to the same expression as the extended narrow use, but doesn't
-  // absolutely guarantee it. Hence the following failsafe check. In rare cases
-  // where it fails, we simply throw away the newly created wide use.
-  if (WideAddRec != SE->getSCEV(WideUse)) {
-    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
-                 << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
-    DeadInsts.push_back(WideUse);
-    return 0;
-  }
-
-  // Returning WideUse pushes it on the worklist.
-  return WideUse;
-}
-
-/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
-///
-void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
-  for (User *U : NarrowDef->users()) {
-    Instruction *NarrowUser = cast<Instruction>(U);
-
-    // Handle data flow merges and bizarre phi cycles.
-    if (!Widened.insert(NarrowUser).second)
-      continue;
-
-    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
-  }
-}
-
-/// CreateWideIV - Process a single induction variable. First use the
-/// SCEVExpander to create a wide induction variable that evaluates to the same
-/// recurrence as the original narrow IV. Then use a worklist to forward
-/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
-/// interesting IV users, the narrow IV will be isolated for removal by
-/// DeleteDeadPHIs.
-///
-/// It would be simpler to delete uses as they are processed, but we must avoid
-/// invalidating SCEV expressions.
-///
-PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
-  // Is this phi an induction variable?
-  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
-  if (!AddRec)
-    return nullptr;
-
-  // Widen the induction variable expression.
-  const SCEV *WideIVExpr = IsSigned ? SE->getSignExtendExpr(AddRec, WideType)
-                                    : SE->getZeroExtendExpr(AddRec, WideType);
-
-  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
-         "Expect the new IV expression to preserve its type");
-
-  // Can the IV be extended outside the loop without overflow?
-  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
-  if (!AddRec || AddRec->getLoop() != L)
-    return nullptr;
-
-  // An AddRec must have loop-invariant operands. Since this AddRec is
-  // materialized by a loop header phi, the expression cannot have any post-loop
-  // operands, so they must dominate the loop header.
-  assert(
-      SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
-      SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
-      "Loop header phi recurrence inputs do not dominate the loop");
-
-  // The rewriter provides a value for the desired IV expression. This may
-  // either find an existing phi or materialize a new one. Either way, we
-  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
-  // of the phi-SCC dominates the loop entry.
-  Instruction *InsertPt = L->getHeader()->begin();
-  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
-
-  // Remembering the WideIV increment generated by SCEVExpander allows
-  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
-  // employ a general reuse mechanism because the call above is the only call to
-  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
-  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
-    WideInc = cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
-    WideIncExpr = SE->getSCEV(WideInc);
-  }
-
-  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
-  ++NumWidened;
-
-  // Traverse the def-use chain using a worklist starting at the original IV.
-  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state");
-
-  Widened.insert(OrigPhi);
-  pushNarrowIVUsers(OrigPhi, WidePhi);
-
-  while (!NarrowIVUsers.empty()) {
-    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
-
-    // Process a def-use edge. This may replace the use, so don't hold a
-    // use_iterator across it.
-    Instruction *WideUse = WidenIVUse(DU, Rewriter);
-
-    // Follow all def-use edges from the previous narrow use.
-    if (WideUse)
-      pushNarrowIVUsers(DU.NarrowUse, WideUse);
-
-    // WidenIVUse may have removed the def-use edge.
-    if (DU.NarrowDef->use_empty())
-      DeadInsts.push_back(DU.NarrowDef);
-  }
-  return WidePhi;
-}
-
-//===----------------------------------------------------------------------===//
-//  Simplification of IV users based on SCEV evaluation.
-//===----------------------------------------------------------------------===//
-
-/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
-/// users. Each successive simplification may push more users which may
-/// themselves be candidates for simplification.
-///
-/// Sign/Zero extend elimination is interleaved with IV simplification.
-///
-void PollyIndVarSimplify::SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter,
-                                            LPPassManager &LPM) {
-  SmallVector<WideIVInfo, 8> WideIVs;
-
-  SmallVector<PHINode *, 8> LoopPhis;
-  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
-    LoopPhis.push_back(cast<PHINode>(I));
-  }
-  // Each round of simplification iterates through the SimplifyIVUsers worklist
-  // for all current phis, then determines whether any IVs can be
-  // widened. Widening adds new phis to LoopPhis, inducing another round of
-  // simplification on the wide IVs.
-  while (!LoopPhis.empty()) {
-    // Evaluate as many IV expressions as possible before widening any IVs. This
-    // forces SCEV to set no-wrap flags before evaluating sign/zero
-    // extension. The first time SCEV attempts to normalize sign/zero extension,
-    // the result becomes final. So for the most predictable results, we delay
-    // evaluation of sign/zero extend evaluation until needed, and avoid running
-    // other SCEV based analysis prior to SimplifyAndExtend.
-    do {
-      PHINode *CurrIV = LoopPhis.pop_back_val();
-
-      // Information about sign/zero extensions of CurrIV.
-      WideIVVisitor WIV(CurrIV, SE, TD);
-
-      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
-
-      if (WIV.WI.WidestNativeType) {
-        WideIVs.push_back(WIV.WI);
-      }
-    } while (!LoopPhis.empty());
-
-    for (; !WideIVs.empty(); WideIVs.pop_back()) {
-      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
-      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
-        Changed = true;
-        LoopPhis.push_back(WidePhi);
-      }
-    }
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
-//===----------------------------------------------------------------------===//
-
-/// Check for expressions that ScalarEvolution generates to compute
-/// BackedgeTakenInfo. If these expressions have not been reduced, then
-/// expanding them may incur additional cost (albeit in the loop preheader).
-static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
-                                SmallPtrSet<const SCEV *, 8> &Processed,
-                                ScalarEvolution *SE) {
-  if (!Processed.insert(S).second)
-    return false;
-
-  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
-  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
-  // precise expression, rather than a UDiv from the user's code. If we can't
-  // find a UDiv in the code with some simple searching, assume the former and
-  // forego rewriting the loop.
-  if (isa<SCEVUDivExpr>(S)) {
-    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
-    if (!OrigCond)
-      return true;
-    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
-    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
-    if (R != S) {
-      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
-      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
-      if (L != S)
-        return true;
-    }
-  }
-
-  if (EnableIVRewrite)
-    return false;
-
-  // Recurse past add expressions, which commonly occur in the
-  // BackedgeTakenCount. They may already exist in program code, and if not,
-  // they are not too expensive rematerialize.
-  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
-    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
-         I != E; ++I) {
-      if (isHighCostExpansion(*I, BI, Processed, SE))
-        return true;
-    }
-    return false;
-  }
-
-  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
-  // the exit condition.
-  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
-    return true;
-
-  // If we haven't recognized an expensive SCEV pattern, assume it's an
-  // expression produced by program code.
-  return false;
-}
-
-/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
-/// count expression can be safely and cheaply expanded into an instruction
-/// sequence that can be used by LinearFunctionTestReplace.
-///
-/// TODO: This fails for pointer-type loop counters with greater than one byte
-/// strides, consequently preventing LFTR from running. For the purpose of LFTR
-/// we could skip this check in the case that the LFTR loop counter (chosen by
-/// FindLoopCounter) is also pointer type. Instead, we could directly convert
-/// the loop test to an inequality test by checking the target data's alignment
-/// of element types (given that the initial pointer value originates from or is
-/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
-/// However, we don't yet have a strong motivation for converting loop tests
-/// into inequality tests.
-static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
-  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
-  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
-      BackedgeTakenCount->isZero())
-    return false;
-
-  if (!L->getExitingBlock())
-    return false;
-
-  // Can't rewrite non-branch yet.
-  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
-  if (!BI)
-    return false;
-
-  SmallPtrSet<const SCEV *, 8> Processed;
-  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
-    return false;
-
-  return true;
-}
-
-/// getBackedgeIVType - Get the widest type used by the loop test after peeking
-/// through Truncs.
-///
-/// TODO: Unnecessary when ForceLFTR is removed.
-static Type *getBackedgeIVType(Loop *L) {
-  if (!L->getExitingBlock())
-    return 0;
-
-  // Can't rewrite non-branch yet.
-  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
-  if (!BI)
-    return 0;
-
-  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
-  if (!Cond)
-    return 0;
-
-  Type *Ty = 0;
-  for (User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); OI != OE;
-       ++OI) {
-    assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
-    TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
-    if (!Trunc)
-      continue;
-
-    return Trunc->getSrcTy();
-  }
-  return Ty;
-}
-
-/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
-/// invariant value to the phi.
-static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
-  Instruction *IncI = dyn_cast<Instruction>(IncV);
-  if (!IncI)
-    return 0;
-
-  switch (IncI->getOpcode()) {
-  case Instruction::Add:
-  case Instruction::Sub:
-    break;
-  case Instruction::GetElementPtr:
-    // An IV counter must preserve its type.
-    if (IncI->getNumOperands() == 2)
-      break;
-  default:
-    return 0;
-  }
-
-  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
-  if (Phi && Phi->getParent() == L->getHeader()) {
-    if (isLoopInvariant(IncI->getOperand(1), L, DT))
-      return Phi;
-    return 0;
-  }
-  if (IncI->getOpcode() == Instruction::GetElementPtr)
-    return 0;
-
-  // Allow add/sub to be commuted.
-  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
-  if (Phi && Phi->getParent() == L->getHeader()) {
-    if (isLoopInvariant(IncI->getOperand(0), L, DT))
-      return Phi;
-  }
-  return 0;
-}
-
-/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
-/// that the current exit test is already sufficiently canonical.
-static bool needsLFTR(Loop *L, DominatorTree *DT) {
-  assert(L->getExitingBlock() && "expected loop exit");
-
-  BasicBlock *LatchBlock = L->getLoopLatch();
-  // Don't bother with LFTR if the loop is not properly simplified.
-  if (!LatchBlock)
-    return false;
-
-  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
-  assert(BI && "expected exit branch");
-
-  // Do LFTR to simplify the exit condition to an ICMP.
-  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
-  if (!Cond)
-    return true;
-
-  // Do LFTR to simplify the exit ICMP to EQ/NE
-  ICmpInst::Predicate Pred = Cond->getPredicate();
-  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
-    return true;
-
-  // Look for a loop invariant RHS
-  Value *LHS = Cond->getOperand(0);
-  Value *RHS = Cond->getOperand(1);
-  if (!isLoopInvariant(RHS, L, DT)) {
-    if (!isLoopInvariant(LHS, L, DT))
-      return true;
-    std::swap(LHS, RHS);
-  }
-  // Look for a simple IV counter LHS
-  PHINode *Phi = dyn_cast<PHINode>(LHS);
-  if (!Phi)
-    Phi = getLoopPhiForCounter(LHS, L, DT);
-
-  if (!Phi)
-    return true;
-
-  // Do LFTR if the exit condition's IV is *not* a simple counter.
-  Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
-  return Phi != getLoopPhiForCounter(IncV, L, DT);
-}
-
-/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
-/// be rewritten) loop exit test.
-static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
-  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
-  Value *IncV = Phi->getIncomingValue(LatchIdx);
-
-  for (User *U : Phi->users())
-    if (U != Cond && U != IncV)
-      return false;
-
-  for (User *U : IncV->users())
-    if (U != Cond && U != Phi)
-      return false;
-
-  return true;
-}
-
-/// FindLoopCounter - Find an affine IV in canonical form.
-///
-/// BECount may be an i8* pointer type. The pointer difference is already
-/// valid count without scaling the address stride, so it remains a pointer
-/// expression as far as SCEV is concerned.
-///
-/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
-///
-/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
-/// This is difficult in general for SCEV because of potential overflow. But we
-/// could at least handle constant BECounts.
-static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
-                                ScalarEvolution *SE, DominatorTree *DT,
-                                const DataLayout *TD) {
-  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
-
-  Value *Cond =
-      cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
-
-  // Loop over all of the PHI nodes, looking for a simple counter.
-  PHINode *BestPhi = 0;
-  const SCEV *BestInit = 0;
-  BasicBlock *LatchBlock = L->getLoopLatch();
-  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
-
-  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
-    PHINode *Phi = cast<PHINode>(I);
-    if (!SE->isSCEVable(Phi->getType()))
-      continue;
-
-    // Avoid comparing an integer IV against a pointer Limit.
-    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
-      continue;
-
-    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
-    if (!AR || AR->getLoop() != L || !AR->isAffine())
-      continue;
-
-    // AR may be a pointer type, while BECount is an integer type.
-    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
-    // AR may not be a narrower type, or we may never exit.
-    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
-    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
-      continue;
-
-    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
-    if (!Step || !Step->isOne())
-      continue;
-
-    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
-    Value *IncV = Phi->getIncomingValue(LatchIdx);
-    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
-      continue;
-
-    const SCEV *Init = AR->getStart();
-
-    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
-      // Don't force a live loop counter if another IV can be used.
-      if (AlmostDeadIV(Phi, LatchBlock, Cond))
-        continue;
-
-      // Prefer to count-from-zero. This is a more "canonical" counter form. It
-      // also prefers integer to pointer IVs.
-      if (BestInit->isZero() != Init->isZero()) {
-        if (BestInit->isZero())
-          continue;
-      }
-      // If two IVs both count from zero or both count from nonzero then the
-      // narrower is likely a dead phi that has been widened. Use the wider phi
-      // to allow the other to be eliminated.
-      if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
-        continue;
-    }
-    BestPhi = Phi;
-    BestInit = Init;
-  }
-  return BestPhi;
-}
-
-/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
-/// holds the RHS of the new loop test.
-static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
-                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
-  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
-  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
-  const SCEV *IVInit = AR->getStart();
-
-  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
-  // finds a valid pointer IV. Sign extend BECount in order to materialize a
-  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
-  // the existing GEPs whenever possible.
-  if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
-    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
-    const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
-
-    // Expand the code for the iteration count.
-    assert(SE->isLoopInvariant(IVOffset, L) &&
-           "Computed iteration count is not loop invariant!");
-    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
-    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
-
-    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
-    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
-    // We could handle pointer IVs other than i8*, but we need to compensate for
-    // gep index scaling. See canExpandBackedgeTakenCount comments.
-    assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
-                             cast<PointerType>(GEPBase->getType())
-                                 ->getElementType())->isOne() &&
-           "unit stride pointer IV must be i8*");
-
-    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
-    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
-  } else {
-    // In any other case, convert both IVInit and IVCount to integers before
-    // comparing. This may result in SCEV expension of pointers, but in practice
-    // SCEV will fold the pointer arithmetic away as such:
-    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
-    //
-    // Valid Cases: (1) both integers is most common; (2) both may be pointers
-    // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
-    // pointer may occur when enable-iv-rewrite generates a canonical IV on top
-    // of case #2.
-
-    const SCEV *IVLimit = 0;
-    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
-    // For non-zero Start, compute IVCount here.
-    if (AR->getStart()->isZero())
-      IVLimit = IVCount;
-    else {
-      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
-      const SCEV *IVInit = AR->getStart();
-
-      // For integer IVs, truncate the IV before computing IVInit + BECount.
-      if (SE->getTypeSizeInBits(IVInit->getType()) >
-          SE->getTypeSizeInBits(IVCount->getType()))
-        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
-
-      IVLimit = SE->getAddExpr(IVInit, IVCount);
-    }
-    // Expand the code for the iteration count.
-    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
-    IRBuilder<> Builder(BI);
-    assert(SE->isLoopInvariant(IVLimit, L) &&
-           "Computed iteration count is not loop invariant!");
-    // Ensure that we generate the same type as IndVar, or a smaller integer
-    // type. In the presence of null pointer values, we have an integer type
-    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
-    Type *LimitTy = IVCount->getType()->isPointerTy() ? IndVar->getType()
-                                                      : IVCount->getType();
-    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
-  }
-}
-
-/// LinearFunctionTestReplace - This method rewrites the exit condition of the
-/// loop to be a canonical != comparison against the incremented loop induction
-/// variable.  This pass is able to rewrite the exit tests of any loop where the
-/// SCEV analysis can determine a loop-invariant trip count of the loop, which
-/// is actually a much broader range than just linear tests.
-Value *PollyIndVarSimplify::LinearFunctionTestReplace(
-    Loop *L, const SCEV *BackedgeTakenCount, PHINode *IndVar,
-    SCEVExpander &Rewriter) {
-  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
-
-  // LFTR can ignore IV overflow and truncate to the width of
-  // BECount. This avoids materializing the add(zext(add)) expression.
-  Type *CntTy =
-      !EnableIVRewrite ? BackedgeTakenCount->getType() : IndVar->getType();
-
-  const SCEV *IVCount = BackedgeTakenCount;
-
-  // If the exiting block is the same as the backedge block, we prefer to
-  // compare against the post-incremented value, otherwise we must compare
-  // against the preincremented value.
-  Value *CmpIndVar;
-  if (L->getExitingBlock() == L->getLoopLatch()) {
-    // Add one to the "backedge-taken" count to get the trip count.
-    // If this addition may overflow, we have to be more pessimistic and
-    // cast the induction variable before doing the add.
-    const SCEV *N =
-        SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
-    if (CntTy == IVCount->getType())
-      IVCount = N;
-    else {
-      const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
-      if ((isa<SCEVConstant>(N) && !N->isZero()) ||
-          SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
-        // No overflow. Cast the sum.
-        IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
-      } else {
-        // Potential overflow. Cast before doing the add.
-        IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
-        IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
-      }
-    }
-    // The BackedgeTaken expression contains the number of times that the
-    // backedge branches to the loop header.  This is one less than the
-    // number of times the loop executes, so use the incremented indvar.
-    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
-  } else {
-    // We must use the preincremented value...
-    IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
-    CmpIndVar = IndVar;
-  }
-
-  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
-  assert(ExitCnt->getType()->isPointerTy() ==
-             IndVar->getType()->isPointerTy() &&
-         "genLoopLimit missed a cast");
-
-  // Insert a new icmp_ne or icmp_eq instruction before the branch.
-  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
-  ICmpInst::Predicate P;
-  if (L->contains(BI->getSuccessor(0)))
-    P = ICmpInst::ICMP_NE;
-  else
-    P = ICmpInst::ICMP_EQ;
-
-  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
-               << "      LHS:" << *CmpIndVar << '\n' << "       op:\t"
-               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
-               << "      RHS:\t" << *ExitCnt << "\n"
-               << "  IVCount:\t" << *IVCount << "\n");
-
-  IRBuilder<> Builder(BI);
-  if (SE->getTypeSizeInBits(CmpIndVar->getType()) >
-      SE->getTypeSizeInBits(ExitCnt->getType())) {
-    CmpIndVar =
-        Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), "lftr.wideiv");
-  }
-
-  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
-  Value *OrigCond = BI->getCondition();
-  // It's tempting to use replaceAllUsesWith here to fully replace the old
-  // comparison, but that's not immediately safe, since users of the old
-  // comparison may not be dominated by the new comparison. Instead, just
-  // update the branch to use the new comparison; in the common case this
-  // will make old comparison dead.
-  BI->setCondition(Cond);
-  DeadInsts.push_back(OrigCond);
-
-  ++NumLFTR;
-  Changed = true;
-  return Cond;
-}
-
-//===----------------------------------------------------------------------===//
-//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
-//===----------------------------------------------------------------------===//
-
-/// If there's a single exit block, sink any loop-invariant values that
-/// were defined in the preheader but not used inside the loop into the
-/// exit block to reduce register pressure in the loop.
-void PollyIndVarSimplify::SinkUnusedInvariants(Loop *L) {
-  BasicBlock *ExitBlock = L->getExitBlock();
-  if (!ExitBlock)
-    return;
-
-  BasicBlock *Preheader = L->getLoopPreheader();
-  if (!Preheader)
-    return;
-
-  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
-  BasicBlock::iterator I = Preheader->getTerminator();
-  while (I != Preheader->begin()) {
-    --I;
-    // New instructions were inserted at the end of the preheader.
-    if (isa<PHINode>(I))
-      break;
-
-    // Don't move instructions which might have side effects, since the side
-    // effects need to complete before instructions inside the loop.  Also don't
-    // move instructions which might read memory, since the loop may modify
-    // memory. Note that it's okay if the instruction might have undefined
-    // behavior: LoopSimplify guarantees that the preheader dominates the exit
-    // block.
-    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
-      continue;
-
-    // Skip debug info intrinsics.
-    if (isa<DbgInfoIntrinsic>(I))
-      continue;
-
-    // Skip landingpad instructions.
-    if (isa<LandingPadInst>(I))
-      continue;
-
-    // Don't sink alloca: we never want to sink static alloca's out of the
-    // entry block, and correctly sinking dynamic alloca's requires
-    // checks for stacksave/stackrestore intrinsics.
-    // FIXME: Refactor this check somehow?
-    if (isa<AllocaInst>(I))
-      continue;
-
-    // Determine if there is a use in or before the loop (direct or
-    // otherwise).
-    bool UsedInLoop = false;
-    for (Use &U : I->uses()) {
-      Instruction *UI = cast<Instruction>(U.getUser());
-      BasicBlock *UseBB = UI->getParent();
-      if (PHINode *P = dyn_cast<PHINode>(UI)) {
-        unsigned i = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
-        UseBB = P->getIncomingBlock(i);
-      }
-      if (UseBB == Preheader || L->contains(UseBB)) {
-        UsedInLoop = true;
-        break;
-      }
-    }
-
-    // If there is, the def must remain in the preheader.
-    if (UsedInLoop)
-      continue;
-
-    // Otherwise, sink it to the exit block.
-    Instruction *ToMove = I;
-    bool Done = false;
-
-    if (I != Preheader->begin()) {
-      // Skip debug info intrinsics.
-      do {
-        --I;
-      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
-
-      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
-        Done = true;
-    } else {
-      Done = true;
-    }
-
-    ToMove->moveBefore(InsertPt);
-    if (Done)
-      break;
-    InsertPt = ToMove;
-  }
-}
-
-//===----------------------------------------------------------------------===//
-//  IndVarSimplify driver. Manage several subpasses of IV simplification.
-//===----------------------------------------------------------------------===//
-
-bool PollyIndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
-  // If LoopSimplify form is not available, stay out of trouble. Some notes:
-  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
-  //    canonicalization can be a pessimization without LSR to "clean up"
-  //    afterwards.
-  //  - We depend on having a preheader; in particular,
-  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
-  //    and we're in trouble if we can't find the induction variable even when
-  //    we've manually inserted one.
-  if (!L->isLoopSimplifyForm())
-    return false;
-
-  if (EnableIVRewrite)
-    IU = &getAnalysis<IVUsers>();
-  LI = &getAnalysis<LoopInfo>();
-  SE = &getAnalysis<ScalarEvolution>();
-  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
-  TD = DLP ? &DLP->getDataLayout() : 0;
-
-  DeadInsts.clear();
-  Changed = false;
-
-  // If there are any floating-point recurrences, attempt to
-  // transform them to use integer recurrences.
-  RewriteNonIntegerIVs(L);
-
-  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
-
-  // Create a rewriter object which we'll use to transform the code with.
-  SCEVExpander Rewriter(*SE, "indvars");
-#ifndef NDEBUG
-  Rewriter.setDebugType(DEBUG_TYPE);
-#endif
-
-  // Eliminate redundant IV users.
-  //
-  // Simplification works best when run before other consumers of SCEV. We
-  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
-  // other expressions involving loop IVs have been evaluated. This helps SCEV
-  // set no-wrap flags before normalizing sign/zero extension.
-  if (!EnableIVRewrite) {
-    Rewriter.disableCanonicalMode();
-    SimplifyAndExtend(L, Rewriter, LPM);
-  }
-
-  // Check to see if this loop has a computable loop-invariant execution count.
-  // If so, this means that we can compute the final value of any expressions
-  // that are recurrent in the loop, and substitute the exit values from the
-  // loop into any instructions outside of the loop that use the final values of
-  // the current expressions.
-  //
-  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
-    RewriteLoopExitValues(L, Rewriter);
-
-  // Eliminate redundant IV users.
-  // FIXME: Disabled as the function was removed from LLVM trunk. We may get
-  //        along with this, as Polly does not need a lot of simplifications,
-  //        but just a canonical induction variable. In the near future, we
-  //        should remove the need of canonical induction variables all
-  //        together.
-  // if (EnableIVRewrite)
-  //  Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
-
-  // Eliminate redundant IV cycles.
-  if (!EnableIVRewrite)
-    NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
-
-  // Compute the type of the largest recurrence expression, and decide whether
-  // a canonical induction variable should be inserted.
-  Type *LargestType = 0;
-  bool NeedCannIV = false;
-  bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
-  if (EnableIVRewrite && ExpandBECount) {
-    // If we have a known trip count and a single exit block, we'll be
-    // rewriting the loop exit test condition below, which requires a
-    // canonical induction variable.
-    NeedCannIV = true;
-    Type *Ty = BackedgeTakenCount->getType();
-    if (!EnableIVRewrite) {
-      // In this mode, SimplifyIVUsers may have already widened the IV used by
-      // the backedge test and inserted a Trunc on the compare's operand. Get
-      // the wider type to avoid creating a redundant narrow IV only used by the
-      // loop test.
-      LargestType = getBackedgeIVType(L);
-    }
-    if (!LargestType ||
-        SE->getTypeSizeInBits(Ty) > SE->getTypeSizeInBits(LargestType))
-      LargestType = SE->getEffectiveSCEVType(Ty);
-  }
-  if (EnableIVRewrite) {
-    for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
-      NeedCannIV = true;
-      Type *Ty =
-          SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
-      if (!LargestType ||
-          SE->getTypeSizeInBits(Ty) > SE->getTypeSizeInBits(LargestType))
-        LargestType = Ty;
-    }
-  }
-
-  // Now that we know the largest of the induction variable expressions
-  // in this loop, insert a canonical induction variable of the largest size.
-  PHINode *IndVar = 0;
-  if (NeedCannIV) {
-    // Check to see if the loop already has any canonical-looking induction
-    // variables. If any are present and wider than the planned canonical
-    // induction variable, temporarily remove them, so that the Rewriter
-    // doesn't attempt to reuse them.
-    SmallVector<PHINode *, 2> OldCannIVs;
-    while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
-      if (SE->getTypeSizeInBits(OldCannIV->getType()) >
-          SE->getTypeSizeInBits(LargestType))
-        OldCannIV->removeFromParent();
-      else
-        break;
-      OldCannIVs.push_back(OldCannIV);
-    }
-
-    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
-
-    ++NumInserted;
-    Changed = true;
-    DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
-
-    // Now that the official induction variable is established, reinsert
-    // any old canonical-looking variables after it so that the IR remains
-    // consistent. They will be deleted as part of the dead-PHI deletion at
-    // the end of the pass.
-    while (!OldCannIVs.empty()) {
-      PHINode *OldCannIV = OldCannIVs.pop_back_val();
-      OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
-    }
-  } else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
-    IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
-  }
-  // If we have a trip count expression, rewrite the loop's exit condition
-  // using it.  We can currently only handle loops with a single exit.
-  Value *NewICmp = 0;
-  if (ExpandBECount && IndVar) {
-    // Check preconditions for proper SCEVExpander operation. SCEV does not
-    // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
-    // pass that uses the SCEVExpander must do it. This does not work well for
-    // loop passes because SCEVExpander makes assumptions about all loops, while
-    // LoopPassManager only forces the current loop to be simplified.
-    //
-    // FIXME: SCEV expansion has no way to bail out, so the caller must
-    // explicitly check any assumptions made by SCEV. Brittle.
-    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
-    if (!AR || AR->getLoop()->getLoopPreheader())
-      NewICmp =
-          LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
-  }
-  // Rewrite IV-derived expressions.
-  if (EnableIVRewrite)
-    RewriteIVExpressions(L, Rewriter);
-
-  // Clear the rewriter cache, because values that are in the rewriter's cache
-  // can be deleted in the loop below, causing the AssertingVH in the cache to
-  // trigger.
-  Rewriter.clear();
-
-  // Now that we're done iterating through lists, clean up any instructions
-  // which are now dead.
-  while (!DeadInsts.empty())
-    if (Instruction *Inst =
-            dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
-      RecursivelyDeleteTriviallyDeadInstructions(Inst);
-
-  // The Rewriter may not be used from this point on.
-
-  // Loop-invariant instructions in the preheader that aren't used in the
-  // loop may be sunk below the loop to reduce register pressure.
-  SinkUnusedInvariants(L);
-
-  // For completeness, inform IVUsers of the IV use in the newly-created
-  // loop exit test instruction.
-  if (IU && NewICmp) {
-    ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
-    if (NewICmpInst)
-      IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
-  }
-  // Clean up dead instructions.
-  Changed |= DeleteDeadPHIs(L->getHeader());
-  // Check a post-condition.
-  assert(L->isLCSSAForm(*DT) &&
-         "Indvars did not leave the loop in lcssa form!");
-
-// Verify that LFTR, and any other change have not interfered with SCEV's
-// ability to compute trip count.
-#ifndef NDEBUG
-  if (!EnableIVRewrite && VerifyIndvars &&
-      !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
-    SE->forgetLoop(L);
-    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
-    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
-        SE->getTypeSizeInBits(NewBECount->getType()))
-      NewBECount =
-          SE->getTruncateOrNoop(NewBECount, BackedgeTakenCount->getType());
-    else
-      BackedgeTakenCount =
-          SE->getTruncateOrNoop(BackedgeTakenCount, NewBECount->getType());
-    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
-  }
-#endif
-
-  return Changed;
-}
-
-INITIALIZE_PASS_BEGIN(PollyIndVarSimplify, "polly-indvars",
-                      "Induction Variable Simplification (Polly version)",
-                      false, false);
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
-INITIALIZE_PASS_DEPENDENCY(LoopInfo);
-INITIALIZE_PASS_DEPENDENCY(ScalarEvolution);
-INITIALIZE_PASS_DEPENDENCY(LoopSimplify);
-INITIALIZE_PASS_DEPENDENCY(LCSSA);
-INITIALIZE_PASS_DEPENDENCY(IVUsers);
-INITIALIZE_PASS_END(PollyIndVarSimplify, "polly-indvars",
-                    "Induction Variable Simplification (Polly version)", false,
-                    false)