input_array.name = _tensor_name(input_tensor)
input_array.shape.dims.extend(map(int, input_tensor.get_shape()))
- toco.inference_input_type = tflite_input_type
for output_tensor in output_tensors:
model.output_arrays.append(_tensor_name(output_tensor))
+ # TODO(aselle): Consider handling the case of allowing quantized
+ # inputs to be converted to float (via the toco.inference_input_type field).
data = toco_convert_protos(model.SerializeToString(),
toco.SerializeToString(),
input_data.SerializeToString())