};
/**
- * @brief Resize input 4-dimensional blob by nearest neighbor strategy.
+ * @brief Resize input 4-dimensional blob by nearest neighbor or bilinear strategy.
*
- * Layer is used to support TensorFlow's resize_nearest_neighbor op.
+ * Layer is used to support TensorFlow's resize_nearest_neighbor and resize_bilinear ops.
*/
- class CV_EXPORTS ResizeNearestNeighborLayer : public Layer
+ class CV_EXPORTS ResizeLayer : public Layer
{
public:
- static Ptr<ResizeNearestNeighborLayer> create(const LayerParams& params);
+ static Ptr<ResizeLayer> create(const LayerParams& params);
};
class CV_EXPORTS ProposalLayer : public Layer
processNet("dnn/yolov3.cfg", "dnn/yolov3.weights", "", inp / 255);
}
+PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
+{
+ if (backend == DNN_BACKEND_HALIDE ||
+ backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
+ throw SkipTestException("");
+ processNet("dnn/frozen_east_text_detection.pb", "", "", Mat(cv::Size(320, 320), CV_32FC3));
+}
+
const tuple<DNNBackend, DNNTarget> testCases[] = {
#ifdef HAVE_HALIDE
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
{
cv::dnn::LayerParams param;
param.name = "Upsample-name";
- param.type = "ResizeNearestNeighbor";
+ param.type = "Resize";
param.set<int>("zoom_factor", scaleFactor);
+ param.set<String>("interpolation", "nearest");
darknet::LayerParameter lp;
std::string layer_name = cv::format("upsample_%d", layer_id);
CV_DNN_REGISTER_LAYER_CLASS(Concat, ConcatLayer);
CV_DNN_REGISTER_LAYER_CLASS(Reshape, ReshapeLayer);
CV_DNN_REGISTER_LAYER_CLASS(Flatten, FlattenLayer);
- CV_DNN_REGISTER_LAYER_CLASS(ResizeNearestNeighbor, ResizeNearestNeighborLayer);
+ CV_DNN_REGISTER_LAYER_CLASS(Resize, ResizeLayer);
CV_DNN_REGISTER_LAYER_CLASS(CropAndResize, CropAndResizeLayer);
CV_DNN_REGISTER_LAYER_CLASS(Convolution, ConvolutionLayer);
{
float input_y = top * (inpHeight - 1) + y * heightScale;
int y0 = static_cast<int>(input_y);
- const float* inpData_row0 = (float*)inp.data + y0 * inpWidth;
+ const float* inpData_row0 = inp.ptr<float>(0, 0, y0);
const float* inpData_row1 = (y0 + 1 < inpHeight) ? (inpData_row0 + inpWidth) : inpData_row0;
for (int x = 0; x < outWidth; ++x)
{
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+
+// Copyright (C) 2017, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+#include "../precomp.hpp"
+#include "layers_common.hpp"
+#include "../op_inf_engine.hpp"
+#include <opencv2/imgproc.hpp>
+
+namespace cv { namespace dnn {
+
+class ResizeLayerImpl CV_FINAL : public ResizeLayer
+{
+public:
+ ResizeLayerImpl(const LayerParams& params)
+ {
+ setParamsFrom(params);
+ outWidth = params.get<float>("width", 0);
+ outHeight = params.get<float>("height", 0);
+ if (params.has("zoom_factor"))
+ {
+ CV_Assert(!params.has("zoom_factor_x") && !params.has("zoom_factor_y"));
+ zoomFactorWidth = zoomFactorHeight = params.get<int>("zoom_factor");
+ }
+ else if (params.has("zoom_factor_x") || params.has("zoom_factor_y"))
+ {
+ CV_Assert(params.has("zoom_factor_x") && params.has("zoom_factor_y"));
+ zoomFactorWidth = params.get<int>("zoom_factor_x");
+ zoomFactorHeight = params.get<int>("zoom_factor_y");
+ }
+ interpolation = params.get<String>("interpolation");
+ CV_Assert(interpolation == "nearest" || interpolation == "bilinear");
+
+ alignCorners = params.get<bool>("align_corners", false);
+ if (alignCorners)
+ CV_Error(Error::StsNotImplemented, "Resize with align_corners=true is not implemented");
+ }
+
+ bool getMemoryShapes(const std::vector<MatShape> &inputs,
+ const int requiredOutputs,
+ std::vector<MatShape> &outputs,
+ std::vector<MatShape> &internals) const CV_OVERRIDE
+ {
+ CV_Assert(inputs.size() == 1, inputs[0].size() == 4);
+ outputs.resize(1, inputs[0]);
+ outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight);
+ outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth);
+ // We can work in-place (do nothing) if input shape == output shape.
+ return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
+ }
+
+ virtual bool supportBackend(int backendId) CV_OVERRIDE
+ {
+ return backendId == DNN_BACKEND_OPENCV ||
+ backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && interpolation == "nearest";
+ }
+
+ virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
+ {
+ if (!outWidth && !outHeight)
+ {
+ outHeight = outputs[0].size[2];
+ outWidth = outputs[0].size[3];
+ }
+ }
+
+ void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
+ {
+ CV_TRACE_FUNCTION();
+ CV_TRACE_ARG_VALUE(name, "name", name.c_str());
+
+ Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
+ }
+
+ void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
+ {
+ CV_TRACE_FUNCTION();
+ CV_TRACE_ARG_VALUE(name, "name", name.c_str());
+
+ if (outHeight == inputs[0]->size[2] && outWidth == inputs[0]->size[3])
+ return;
+
+ Mat& inp = *inputs[0];
+ Mat& out = outputs[0];
+ if (interpolation == "nearest")
+ {
+ for (size_t n = 0; n < inputs[0]->size[0]; ++n)
+ {
+ for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch)
+ {
+ resize(getPlane(inp, n, ch), getPlane(out, n, ch),
+ Size(outWidth, outHeight), 0, 0, INTER_NEAREST);
+ }
+ }
+ }
+ else if (interpolation == "bilinear")
+ {
+ const int inpHeight = inp.size[2];
+ const int inpWidth = inp.size[3];
+ const int inpSpatialSize = inpHeight * inpWidth;
+ const int outSpatialSize = outHeight * outWidth;
+ const float heightScale = static_cast<float>(inpHeight) / (outHeight);
+ const float widthScale = static_cast<float>(inpWidth) / (outWidth);
+ const int numPlanes = inp.size[0] * inp.size[1];
+ CV_Assert(inp.isContinuous(), out.isContinuous());
+
+ Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight);
+ Mat outPlanes = out.reshape(1, numPlanes * outHeight);
+ for (int y = 0; y < outHeight; ++y)
+ {
+ float input_y = y * heightScale;
+ int y0 = static_cast<int>(input_y);
+ const float* inpData_row0 = inpPlanes.ptr<float>(y0);
+ const float* inpData_row1 = inpPlanes.ptr<float>(std::min(y0 + 1, inpHeight - 1));
+ for (int x = 0; x < outWidth; ++x)
+ {
+ float input_x = x * widthScale;
+ int x0 = static_cast<int>(input_x);
+ int x1 = std::min(x0 + 1, inpWidth - 1);
+
+ float* outData = outPlanes.ptr<float>(y, x);
+ const float* inpData_row0_c = inpData_row0;
+ const float* inpData_row1_c = inpData_row1;
+ for (int c = 0; c < numPlanes; ++c)
+ {
+ *outData = inpData_row0_c[x0] +
+ (input_y - y0) * (inpData_row1_c[x0] - inpData_row0_c[x0]) +
+ (input_x - x0) * (inpData_row0_c[x1] - inpData_row0_c[x0] +
+ (input_y - y0) * (inpData_row1_c[x1] - inpData_row0_c[x1] - inpData_row1_c[x0] + inpData_row0_c[x0]));
+
+ inpData_row0_c += inpSpatialSize;
+ inpData_row1_c += inpSpatialSize;
+ outData += outSpatialSize;
+ }
+ }
+ }
+ }
+ else
+ CV_Error(Error::StsNotImplemented, "Unknown interpolation: " + interpolation);
+ }
+
+ virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
+ {
+#ifdef HAVE_INF_ENGINE
+ InferenceEngine::LayerParams lp;
+ lp.name = name;
+ lp.type = "Resample";
+ lp.precision = InferenceEngine::Precision::FP32;
+
+ std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
+ ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST";
+ ieLayer->params["antialias"] = "0";
+ ieLayer->params["width"] = cv::format("%d", outWidth);
+ ieLayer->params["height"] = cv::format("%d", outHeight);
+
+ return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
+#endif // HAVE_INF_ENGINE
+ return Ptr<BackendNode>();
+ }
+
+private:
+ int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight;
+ String interpolation;
+ bool alignCorners;
+};
+
+
+Ptr<ResizeLayer> ResizeLayer::create(const LayerParams& params)
+{
+ return Ptr<ResizeLayer>(new ResizeLayerImpl(params));
+}
+
+} // namespace dnn
+} // namespace cv
+++ /dev/null
-// This file is part of OpenCV project.
-// It is subject to the license terms in the LICENSE file found in the top-level directory
-// of this distribution and at http://opencv.org/license.html.
-
-// Copyright (C) 2017, Intel Corporation, all rights reserved.
-// Third party copyrights are property of their respective owners.
-#include "../precomp.hpp"
-#include "layers_common.hpp"
-#include "../op_inf_engine.hpp"
-#include <opencv2/imgproc.hpp>
-
-namespace cv { namespace dnn {
-
-class ResizeNearestNeighborLayerImpl CV_FINAL : public ResizeNearestNeighborLayer
-{
-public:
- ResizeNearestNeighborLayerImpl(const LayerParams& params)
- {
- setParamsFrom(params);
- CV_Assert(params.has("width") && params.has("height") || params.has("zoom_factor"));
- CV_Assert(!params.has("width") && !params.has("height") || !params.has("zoom_factor"));
- outWidth = params.get<float>("width", 0);
- outHeight = params.get<float>("height", 0);
- zoomFactor = params.get<int>("zoom_factor", 1);
- alignCorners = params.get<bool>("align_corners", false);
- if (alignCorners)
- CV_Error(Error::StsNotImplemented, "Nearest neighborhood resize with align_corners=true is not implemented");
- }
-
- bool getMemoryShapes(const std::vector<MatShape> &inputs,
- const int requiredOutputs,
- std::vector<MatShape> &outputs,
- std::vector<MatShape> &internals) const CV_OVERRIDE
- {
- CV_Assert(inputs.size() == 1, inputs[0].size() == 4);
- outputs.resize(1, inputs[0]);
- outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactor);
- outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactor);
- // We can work in-place (do nothing) if input shape == output shape.
- return (outputs[0][2] == inputs[0][2]) && (outputs[0][3] == inputs[0][3]);
- }
-
- virtual bool supportBackend(int backendId) CV_OVERRIDE
- {
- return backendId == DNN_BACKEND_OPENCV ||
- backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
- }
-
- virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
- {
- if (!outWidth && !outHeight)
- {
- outHeight = outputs[0].size[2];
- outWidth = outputs[0].size[3];
- }
- }
-
- void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
- {
- CV_TRACE_FUNCTION();
- CV_TRACE_ARG_VALUE(name, "name", name.c_str());
-
- Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
- }
-
- void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
- {
- CV_TRACE_FUNCTION();
- CV_TRACE_ARG_VALUE(name, "name", name.c_str());
-
- if (outHeight == inputs[0]->size[2] && outWidth == inputs[0]->size[3])
- return;
-
- Mat& inp = *inputs[0];
- Mat& out = outputs[0];
- for (size_t n = 0; n < inputs[0]->size[0]; ++n)
- {
- for (size_t ch = 0; ch < inputs[0]->size[1]; ++ch)
- {
- resize(getPlane(inp, n, ch), getPlane(out, n, ch),
- Size(outWidth, outHeight), 0, 0, INTER_NEAREST);
- }
- }
- }
-
- virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
- {
-#ifdef HAVE_INF_ENGINE
- InferenceEngine::LayerParams lp;
- lp.name = name;
- lp.type = "Resample";
- lp.precision = InferenceEngine::Precision::FP32;
-
- std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
- ieLayer->params["type"] = "caffe.ResampleParameter.NEAREST";
- ieLayer->params["antialias"] = "0";
- ieLayer->params["width"] = cv::format("%d", outWidth);
- ieLayer->params["height"] = cv::format("%d", outHeight);
-
- return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
-#endif // HAVE_INF_ENGINE
- return Ptr<BackendNode>();
- }
-
-private:
- int outWidth, outHeight, zoomFactor;
- bool alignCorners;
-};
-
-
-Ptr<ResizeNearestNeighborLayer> ResizeNearestNeighborLayer::create(const LayerParams& params)
-{
- return Ptr<ResizeNearestNeighborLayer>(new ResizeNearestNeighborLayerImpl(params));
-}
-
-} // namespace dnn
-} // namespace cv
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 0);
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
}
- else if (type == "ResizeNearestNeighbor")
+ else if (type == "ResizeNearestNeighbor" || type == "ResizeBilinear")
{
- Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1));
- CV_Assert(outSize.type() == CV_32SC1, outSize.total() == 2);
+ if (layer.input_size() == 2)
+ {
+ Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1));
+ CV_Assert(outSize.type() == CV_32SC1, outSize.total() == 2);
+ layerParams.set("height", outSize.at<int>(0, 0));
+ layerParams.set("width", outSize.at<int>(0, 1));
+ }
+ else if (layer.input_size() == 3)
+ {
+ Mat factorHeight = getTensorContent(getConstBlob(layer, value_id, 1));
+ Mat factorWidth = getTensorContent(getConstBlob(layer, value_id, 2));
+ CV_Assert(factorHeight.type() == CV_32SC1, factorHeight.total() == 1,
+ factorWidth.type() == CV_32SC1, factorWidth.total() == 1);
+ layerParams.set("zoom_factor_x", factorWidth.at<int>(0));
+ layerParams.set("zoom_factor_y", factorHeight.at<int>(0));
+ }
+ else
+ CV_Assert(layer.input_size() == 2 || layer.input_size() == 3);
- layerParams.set("height", outSize.at<int>(0, 0));
- layerParams.set("width", outSize.at<int>(0, 1));
+ if (type == "ResizeNearestNeighbor")
+ layerParams.set("interpolation", "nearest");
+ else
+ layerParams.set("interpolation", "bilinear");
if (hasLayerAttr(layer, "align_corners"))
layerParams.set("align_corners", getLayerAttr(layer, "align_corners").b());
- int id = dstNet.addLayer(name, "ResizeNearestNeighbor", layerParams);
+ int id = dstNet.addLayer(name, "Resize", layerParams);
layer_id[name] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
normAssertDetections(ref, out, "", 0.9, 3.4e-3, 1e-2);
}
+// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
+// inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
+// outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
+// sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
+// feed_dict={'input_images:0': inp})
+// scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
+// geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
+// np.save('east_text_detection.scores.npy', scores)
+// np.save('east_text_detection.geometry.npy', geometry)
+TEST_P(Test_TensorFlow_nets, EAST_text_detection)
+{
+ std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
+ std::string imgPath = findDataFile("cv/ximgproc/sources/08.png", false);
+ std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy", false);
+ std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy", false);
+
+ Net net = readNet(findDataFile("dnn/frozen_east_text_detection.pb", false));
+
+ net.setPreferableTarget(GetParam());
+
+ Mat img = imread(imgPath);
+ Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
+ net.setInput(inp);
+
+ std::vector<Mat> outs;
+ std::vector<String> outNames(2);
+ outNames[0] = "feature_fusion/Conv_7/Sigmoid";
+ outNames[1] = "feature_fusion/concat_3";
+ net.forward(outs, outNames);
+
+ Mat scores = outs[0];
+ Mat geometry = outs[1];
+
+ normAssert(scores, blobFromNPY(refScoresPath), "scores");
+ normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", 1e-4, 3e-3);
+}
+
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, availableDnnTargets());
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_fp16;
runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true, l1, lInf, true);
}
-// Test a custom layer.
-class ResizeBilinearLayer CV_FINAL : public Layer
-{
-public:
- ResizeBilinearLayer(const LayerParams ¶ms) : Layer(params),
- outWidth(0), outHeight(0), factorWidth(1), factorHeight(1)
- {
- CV_Assert(!params.get<bool>("align_corners", false));
- CV_Assert(!blobs.empty());
-
- for (size_t i = 0; i < blobs.size(); ++i)
- CV_Assert(blobs[i].type() == CV_32SC1);
-
- if (blobs.size() == 1)
- {
- CV_Assert(blobs[0].total() == 2);
- outHeight = blobs[0].at<int>(0, 0);
- outWidth = blobs[0].at<int>(0, 1);
- }
- else
- {
- CV_Assert(blobs.size() == 2, blobs[0].total() == 1, blobs[1].total() == 1);
- factorHeight = blobs[0].at<int>(0, 0);
- factorWidth = blobs[1].at<int>(0, 0);
- outHeight = outWidth = 0;
- }
- }
-
- static Ptr<Layer> create(LayerParams& params)
- {
- return Ptr<Layer>(new ResizeBilinearLayer(params));
- }
-
- virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
- const int requiredOutputs,
- std::vector<std::vector<int> > &outputs,
- std::vector<std::vector<int> > &internals) const CV_OVERRIDE
- {
- std::vector<int> outShape(4);
- outShape[0] = inputs[0][0]; // batch size
- outShape[1] = inputs[0][1]; // number of channels
- outShape[2] = outHeight != 0 ? outHeight : (inputs[0][2] * factorHeight);
- outShape[3] = outWidth != 0 ? outWidth : (inputs[0][3] * factorWidth);
- outputs.assign(1, outShape);
- return false;
- }
-
- virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
- {
- if (!outWidth && !outHeight)
- {
- outHeight = outputs[0].size[2];
- outWidth = outputs[0].size[3];
- }
- }
-
- // This implementation is based on a reference implementation from
- // https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
- virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
- {
- Mat& inp = *inputs[0];
- Mat& out = outputs[0];
- const float* inpData = (float*)inp.data;
- float* outData = (float*)out.data;
-
- const int batchSize = inp.size[0];
- const int numChannels = inp.size[1];
- const int inpHeight = inp.size[2];
- const int inpWidth = inp.size[3];
-
- float heightScale = static_cast<float>(inpHeight) / outHeight;
- float widthScale = static_cast<float>(inpWidth) / outWidth;
- for (int b = 0; b < batchSize; ++b)
- {
- for (int y = 0; y < outHeight; ++y)
- {
- float input_y = y * heightScale;
- int y0 = static_cast<int>(std::floor(input_y));
- int y1 = std::min(y0 + 1, inpHeight - 1);
- for (int x = 0; x < outWidth; ++x)
- {
- float input_x = x * widthScale;
- int x0 = static_cast<int>(std::floor(input_x));
- int x1 = std::min(x0 + 1, inpWidth - 1);
- for (int c = 0; c < numChannels; ++c)
- {
- float interpolation =
- inpData[offset(inp.size, c, x0, y0, b)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) +
- inpData[offset(inp.size, c, x0, y1, b)] * (input_y - y0) * (1 - (input_x - x0)) +
- inpData[offset(inp.size, c, x1, y0, b)] * (1 - (input_y - y0)) * (input_x - x0) +
- inpData[offset(inp.size, c, x1, y1, b)] * (input_y - y0) * (input_x - x0);
- outData[offset(out.size, c, x, y, b)] = interpolation;
- }
- }
- }
- }
- }
-
- virtual void forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE {}
-
-private:
- static inline int offset(const MatSize& size, int c, int x, int y, int b)
- {
- return x + size[3] * (y + size[2] * (c + size[1] * b));
- }
-
- int outWidth, outHeight, factorWidth, factorHeight;
-};
-
TEST(Test_TensorFlow, resize_bilinear)
{
- CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
runTensorFlowNet("resize_bilinear");
runTensorFlowNet("resize_bilinear_factor");
- LayerFactory::unregisterLayer("ResizeBilinear");
-}
-
-// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
-// inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
-// outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
-// sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
-// feed_dict={'input_images:0': inp})
-// scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
-// geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
-// np.save('east_text_detection.scores.npy', scores)
-// np.save('east_text_detection.geometry.npy', geometry)
-TEST(Test_TensorFlow, EAST_text_detection)
-{
- CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
- std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
- std::string imgPath = findDataFile("cv/ximgproc/sources/08.png", false);
- std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy", false);
- std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy", false);
-
- Net net = readNet(findDataFile("dnn/frozen_east_text_detection.pb", false));
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
-
- Mat img = imread(imgPath);
- Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
- net.setInput(inp);
-
- std::vector<Mat> outs;
- std::vector<String> outNames(2);
- outNames[0] = "feature_fusion/Conv_7/Sigmoid";
- outNames[1] = "feature_fusion/concat_3";
- net.forward(outs, outNames);
-
- Mat scores = outs[0];
- Mat geometry = outs[1];
-
- normAssert(scores, blobFromNPY(refScoresPath), "scores");
- normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", 1e-4, 3e-3);
- LayerFactory::unregisterLayer("ResizeBilinear");
}
}
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
-#include "custom_layers.hpp"
-
using namespace cv;
using namespace cv::dnn;
CV_Assert(parser.has("model"));
String model = parser.get<String>("model");
- // Register a custom layer.
- CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
-
// Load network.
Net net = readNet(model);