};
EXPORT_SYMBOL_GPL(edac_mem_types);
-/**
- * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
- * @p: pointer to a pointer with the memory offset to be used. At
- * return, this will be incremented to point to the next offset
- * @size: Size of the data structure to be reserved
- * @n_elems: Number of elements that should be reserved
- *
- * If 'size' is a constant, the compiler will optimize this whole function
- * down to either a no-op or the addition of a constant to the value of '*p'.
- *
- * The 'p' pointer is absolutely needed to keep the proper advancing
- * further in memory to the proper offsets when allocating the struct along
- * with its embedded structs, as edac_device_alloc_ctl_info() does it
- * above, for example.
- *
- * At return, the pointer 'p' will be incremented to be used on a next call
- * to this function.
- */
-void *edac_align_ptr(void **p, unsigned int size, int n_elems)
-{
- unsigned int align, r;
- void *ptr = *p;
-
- *p += size * n_elems;
-
- /*
- * 'p' can possibly be an unaligned item X such that sizeof(X) is
- * 'size'. Adjust 'p' so that its alignment is at least as
- * stringent as what the compiler would provide for X and return
- * the aligned result.
- * Here we assume that the alignment of a "long long" is the most
- * stringent alignment that the compiler will ever provide by default.
- * As far as I know, this is a reasonable assumption.
- */
- if (size > sizeof(long))
- align = sizeof(long long);
- else if (size > sizeof(int))
- align = sizeof(long);
- else if (size > sizeof(short))
- align = sizeof(int);
- else if (size > sizeof(char))
- align = sizeof(short);
- else
- return ptr;
-
- r = (unsigned long)ptr % align;
-
- if (r == 0)
- return ptr;
-
- *p += align - r;
-
- return (void *)(((unsigned long)ptr) + align - r);
-}
-
static void _edac_mc_free(struct mem_ctl_info *mci)
{
put_device(&mci->dev);