--- /dev/null
+//===-- High Precision Decimal ----------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See httpss//llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LIBC_SRC_SUPPORT_HIGH_PRECISION_DECIMAL_H
+#define LIBC_SRC_SUPPORT_HIGH_PRECISION_DECIMAL_H
+
+#include "src/__support/ctype_utils.h"
+#include "src/__support/str_conv_utils.h"
+#include <stdint.h>
+
+namespace __llvm_libc {
+namespace internal {
+
+struct LShiftTableEntry {
+ uint32_t newDigits;
+ char const *powerOfFive;
+};
+
+// This is based on the HPD data structure described as part of the Simple
+// Decimal Conversion algorithm by Nigel Tao, described at this link:
+// https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html
+class HighPrecsisionDecimal {
+
+ // This precomputed table speeds up left shifts by having the number of new
+ // digits that will be added by multiplying 5^i by 2^i. If the number is less
+ // than 5^i then it will add one fewer digit. There are only 60 entries since
+ // that's the max shift amount.
+ // This table was generated by the script at
+ // libc/utils/mathtools/GenerateHPDConstants.py
+ static constexpr LShiftTableEntry LEFT_SHIFT_DIGIT_TABLE[] = {
+ {0, ""},
+ {1, "5"},
+ {1, "25"},
+ {1, "125"},
+ {2, "625"},
+ {2, "3125"},
+ {2, "15625"},
+ {3, "78125"},
+ {3, "390625"},
+ {3, "1953125"},
+ {4, "9765625"},
+ {4, "48828125"},
+ {4, "244140625"},
+ {4, "1220703125"},
+ {5, "6103515625"},
+ {5, "30517578125"},
+ {5, "152587890625"},
+ {6, "762939453125"},
+ {6, "3814697265625"},
+ {6, "19073486328125"},
+ {7, "95367431640625"},
+ {7, "476837158203125"},
+ {7, "2384185791015625"},
+ {7, "11920928955078125"},
+ {8, "59604644775390625"},
+ {8, "298023223876953125"},
+ {8, "1490116119384765625"},
+ {9, "7450580596923828125"},
+ {9, "37252902984619140625"},
+ {9, "186264514923095703125"},
+ {10, "931322574615478515625"},
+ {10, "4656612873077392578125"},
+ {10, "23283064365386962890625"},
+ {10, "116415321826934814453125"},
+ {11, "582076609134674072265625"},
+ {11, "2910383045673370361328125"},
+ {11, "14551915228366851806640625"},
+ {12, "72759576141834259033203125"},
+ {12, "363797880709171295166015625"},
+ {12, "1818989403545856475830078125"},
+ {13, "9094947017729282379150390625"},
+ {13, "45474735088646411895751953125"},
+ {13, "227373675443232059478759765625"},
+ {13, "1136868377216160297393798828125"},
+ {14, "5684341886080801486968994140625"},
+ {14, "28421709430404007434844970703125"},
+ {14, "142108547152020037174224853515625"},
+ {15, "710542735760100185871124267578125"},
+ {15, "3552713678800500929355621337890625"},
+ {15, "17763568394002504646778106689453125"},
+ {16, "88817841970012523233890533447265625"},
+ {16, "444089209850062616169452667236328125"},
+ {16, "2220446049250313080847263336181640625"},
+ {16, "11102230246251565404236316680908203125"},
+ {17, "55511151231257827021181583404541015625"},
+ {17, "277555756156289135105907917022705078125"},
+ {17, "1387778780781445675529539585113525390625"},
+ {18, "6938893903907228377647697925567626953125"},
+ {18, "34694469519536141888238489627838134765625"},
+ {18, "173472347597680709441192448139190673828125"},
+ {19, "867361737988403547205962240695953369140625"},
+ };
+
+ // The maximum amount we can shift is the number of bits used in the
+ // accumulator, minus the number of bits needed to represent the base (in this
+ // case 4).
+ static constexpr uint32_t MAX_SHIFT_AMOUNT = sizeof(uint64_t) - 4;
+
+ // 800 is an arbitrary number of digits, but should be
+ // large enough for any practical number.
+ static constexpr uint32_t MAX_NUM_DIGITS = 800;
+
+ uint32_t numDigits = 0;
+ int32_t decimalPoint = 0;
+ bool truncated = false;
+ uint8_t digits[MAX_NUM_DIGITS];
+
+private:
+ bool shouldRoundUp(uint32_t roundToDigit) {
+ if (roundToDigit < 0 || roundToDigit >= this->numDigits) {
+ return false;
+ }
+
+ // If we're right in the middle and there are no extra digits
+ if (this->digits[roundToDigit] == 5 &&
+ roundToDigit + 1 == this->numDigits) {
+
+ // Round up if we've truncated (since that means the result is slightly
+ // higher than what's represented.)
+ if (this->truncated) {
+ return true;
+ }
+
+ // If this exactly halfway, round to even.
+ return this->digits[roundToDigit - 1] % 2 != 0;
+ }
+ // If there are digits after roundToDigit, they must be non-zero since we
+ // trim trailing zeroes after all operations that change digits.
+ return this->digits[roundToDigit] >= 5;
+ }
+
+ // Takes an amount to left shift and returns the number of new digits needed
+ // to store the result based on LEFT_SHIFT_DIGIT_TABLE.
+ uint32_t getNumNewDigits(uint32_t lShiftAmount) {
+ const char *powerOfFive = LEFT_SHIFT_DIGIT_TABLE[lShiftAmount].powerOfFive;
+ uint32_t newDigits = LEFT_SHIFT_DIGIT_TABLE[lShiftAmount].newDigits;
+ uint32_t digitIndex = 0;
+ while (powerOfFive[digitIndex] != 0) {
+ if (digitIndex >= this->numDigits) {
+ return newDigits - 1;
+ }
+ if (this->digits[digitIndex] != powerOfFive[digitIndex] - '0') {
+ return newDigits -
+ ((this->digits[digitIndex] < powerOfFive[digitIndex] - '0') ? 1
+ : 0);
+ }
+ ++digitIndex;
+ }
+ return newDigits;
+ }
+
+ // Trim all trailing 0s
+ void trimTrailingZeroes() {
+ while (this->numDigits > 0 && this->digits[this->numDigits - 1] == 0) {
+ --this->numDigits;
+ }
+ if (this->numDigits == 0) {
+ this->decimalPoint = 0;
+ }
+ }
+
+ // Perform a digitwise binary non-rounding right shift on this value by
+ // shiftAmount. The shiftAmount can't be more than MAX_SHIFT_AMOUNT to prevent
+ // overflow.
+ void rightShift(uint32_t shiftAmount) {
+ uint32_t readIndex = 0;
+ uint32_t writeIndex = 0;
+
+ uint64_t accumulator = 0;
+
+ const uint64_t shiftMask = (uint64_t(1) << shiftAmount) - 1;
+
+ // Warm Up phase: we don't have enough digits to start writing, so just
+ // read them into the accumulator.
+ while (accumulator >> shiftAmount == 0) {
+ uint64_t readDigit = 0;
+ // If there are still digits to read, read the next one, else the digit is
+ // assumed to be 0.
+ if (readIndex < this->numDigits) {
+ readDigit = this->digits[readIndex];
+ }
+ accumulator = accumulator * 10 + readDigit;
+ ++readIndex;
+ }
+
+ // Shift the decimal point by the number of digits it took to fill the
+ // accumulator.
+ this->decimalPoint -= readIndex - 1;
+
+ // Middle phase: we have enough digits to write, as well as more digits to
+ // read. Keep reading until we run out of digits.
+ while (readIndex < this->numDigits) {
+ uint64_t readDigit = this->digits[readIndex];
+ uint64_t writeDigit = accumulator >> shiftAmount;
+ accumulator &= shiftMask;
+ this->digits[writeIndex] = static_cast<uint8_t>(writeDigit);
+ accumulator = accumulator * 10 + readDigit;
+ ++readIndex;
+ ++writeIndex;
+ }
+
+ // Cool Down phase: All of the readable digits have been read, so just write
+ // the remainder, while treating any more digits as 0.
+ while (accumulator > 0) {
+ uint64_t writeDigit = accumulator >> shiftAmount;
+ accumulator &= shiftMask;
+ if (writeIndex < MAX_NUM_DIGITS) {
+ this->digits[writeIndex] = static_cast<uint8_t>(writeDigit);
+ ++writeIndex;
+ } else if (writeDigit > 0) {
+ this->truncated = true;
+ }
+ accumulator = accumulator * 10;
+ }
+ this->numDigits = writeIndex;
+ this->trimTrailingZeroes();
+ }
+
+ // Perform a digitwise binary non-rounding left shift on this value by
+ // shiftAmount. The shiftAmount can't be more than MAX_SHIFT_AMOUNT to prevent
+ // overflow.
+ void leftShift(uint32_t shiftAmount) {
+ uint32_t newDigits = this->getNumNewDigits(shiftAmount);
+
+ int32_t readIndex = this->numDigits - 1;
+ uint32_t writeIndex = this->numDigits + newDigits;
+
+ uint64_t accumulator = 0;
+
+ // No Warm Up phase. Since we're putting digits in at the top and taking
+ // digits from the bottom we don't have to wait for the accumulator to fill.
+
+ // Middle phase: while we have more digits to read, keep reading as well as
+ // writing.
+ while (readIndex >= 0) {
+ accumulator += static_cast<uint64_t>(this->digits[readIndex])
+ << shiftAmount;
+ uint64_t nextAccumulator = accumulator / 10;
+ uint64_t writeDigit = accumulator - (10 * nextAccumulator);
+ --writeIndex;
+ if (writeIndex < MAX_NUM_DIGITS) {
+ this->digits[writeIndex] = static_cast<uint8_t>(writeDigit);
+ } else if (writeDigit != 0) {
+ this->truncated = true;
+ }
+ accumulator = nextAccumulator;
+ --readIndex;
+ }
+
+ // Cool Down phase: there are no more digits to read, so just write the
+ // remaining digits in the accumulator.
+ while (accumulator > 0) {
+ uint64_t nextAccumulator = accumulator / 10;
+ uint64_t writeDigit = accumulator - (10 * nextAccumulator);
+ --writeIndex;
+ if (writeIndex < MAX_NUM_DIGITS) {
+ this->digits[writeIndex] = static_cast<uint8_t>(writeDigit);
+ } else if (writeDigit != 0) {
+ this->truncated = true;
+ }
+ accumulator = nextAccumulator;
+ }
+
+ this->numDigits += newDigits;
+ if (this->numDigits > MAX_NUM_DIGITS) {
+ this->numDigits = MAX_NUM_DIGITS;
+ }
+ this->decimalPoint += newDigits;
+ this->trimTrailingZeroes();
+ }
+
+public:
+ // numString is assumed to be a string of numeric characters. It doesn't
+ // handle leading spaces.
+ HighPrecsisionDecimal(const char *__restrict numString) {
+ bool sawDot = false;
+ bool sawDigit = false;
+ while (isdigit(*numString) || *numString == '.') {
+ if (*numString == '.') {
+ if (sawDot) {
+ break;
+ }
+ this->decimalPoint = this->numDigits;
+ sawDot = true;
+ } else {
+ sawDigit = true;
+ if (*numString == '0' && this->numDigits == 0) {
+ --this->decimalPoint;
+ continue;
+ }
+ if (this->numDigits < MAX_NUM_DIGITS) {
+ this->digits[this->numDigits] = *numString - '0';
+ ++this->numDigits;
+ } else if (*numString != '0') {
+ this->truncated = true;
+ }
+ }
+ ++numString;
+ }
+
+ if (!sawDot) {
+ this->decimalPoint = this->numDigits;
+ }
+
+ if ((*numString | 32) == 'e') {
+ ++numString;
+ if (isdigit(*numString) || *numString == '+' || *numString == '-') {
+ int32_t addToExp = strtointeger<int32_t>(numString, nullptr, 10);
+ this->decimalPoint += addToExp;
+ }
+ }
+
+ this->trimTrailingZeroes();
+ }
+
+ // Binary shift left (shiftAmount > 0) or right (shiftAmount < 0)
+ void shift(int shiftAmount) {
+ if (shiftAmount == 0) {
+ return;
+ }
+ // Left
+ else if (shiftAmount > 0) {
+ while (static_cast<uint32_t>(shiftAmount) > MAX_SHIFT_AMOUNT) {
+ this->leftShift(MAX_SHIFT_AMOUNT);
+ shiftAmount -= MAX_SHIFT_AMOUNT;
+ }
+ this->leftShift(shiftAmount);
+ }
+ // Right
+ else {
+ while (static_cast<uint32_t>(shiftAmount) < -MAX_SHIFT_AMOUNT) {
+ this->rightShift(MAX_SHIFT_AMOUNT);
+ shiftAmount += MAX_SHIFT_AMOUNT;
+ }
+ this->rightShift(-shiftAmount);
+ }
+ }
+
+ // Round the number represented to the closest value of unsigned int type T.
+ // This is done ignoring overflow.
+ template <class T> T roundToIntegerType() {
+ T result = 0;
+ uint32_t curDigit = 0;
+
+ while (static_cast<int32_t>(curDigit) < this->decimalPoint &&
+ curDigit < this->numDigits) {
+ result = result * 10 + (this->digits[curDigit]);
+ ++curDigit;
+ }
+
+ // If there are implicit 0s at the end of the number, include those.
+ while (static_cast<int32_t>(curDigit) < this->decimalPoint) {
+ result *= 10;
+ ++curDigit;
+ }
+ if (this->shouldRoundUp(this->decimalPoint)) {
+ ++result;
+ }
+ return result;
+ }
+
+ // Extra functions for testing.
+
+ uint8_t *getDigits() { return this->digits; }
+ uint32_t getNumDigits() { return this->numDigits; }
+ int32_t getDecimalPoint() { return this->decimalPoint; }
+ void setTruncated(bool trunc) { this->truncated = trunc; }
+};
+
+} // namespace internal
+} // namespace __llvm_libc
+
+#endif // LIBC_SRC_SUPPORT_HIGH_PRECISION_DECIMAL_H
--- /dev/null
+//===-- Unittests for high_precision_decimal ------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "src/__support/high_precision_decimal.h"
+
+#include "utils/UnitTest/Test.h"
+
+TEST(LlvmLibcHighPrecisionDecimalTest, BasicInit) {
+ __llvm_libc::internal::HighPrecsisionDecimal hpd =
+ __llvm_libc::internal::HighPrecsisionDecimal("1.2345");
+ uint8_t *digits = hpd.getDigits();
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+ EXPECT_EQ(digits[1], uint8_t(2));
+ EXPECT_EQ(digits[2], uint8_t(3));
+ EXPECT_EQ(digits[3], uint8_t(4));
+ EXPECT_EQ(digits[4], uint8_t(5));
+ EXPECT_EQ(hpd.getNumDigits(), 5u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 1);
+}
+
+TEST(LlvmLibcHighPrecisionDecimalTest, BasicShift) {
+ __llvm_libc::internal::HighPrecsisionDecimal hpd =
+ __llvm_libc::internal::HighPrecsisionDecimal("1");
+ uint8_t *digits = hpd.getDigits();
+
+ hpd.shift(1); // shift left 1, equal to multiplying by 2.
+
+ EXPECT_EQ(digits[0], uint8_t(2));
+ EXPECT_EQ(hpd.getNumDigits(), 1u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 1);
+}
+
+TEST(LlvmLibcHighPrecisionDecimalTest, SmallShift) {
+ __llvm_libc::internal::HighPrecsisionDecimal hpd =
+ __llvm_libc::internal::HighPrecsisionDecimal("1.2345");
+ uint8_t *digits = hpd.getDigits();
+
+ hpd.shift(-1); // shift right one, equal to dividing by 2
+ // result should be 0.61725
+
+ EXPECT_EQ(digits[0], uint8_t(6));
+ EXPECT_EQ(digits[1], uint8_t(1));
+ EXPECT_EQ(digits[2], uint8_t(7));
+ EXPECT_EQ(digits[3], uint8_t(2));
+ EXPECT_EQ(digits[4], uint8_t(5));
+ EXPECT_EQ(hpd.getNumDigits(), 5u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 0);
+
+ hpd.shift(1); // shift left one, equal to multiplying by 2
+ // result should be 1.2345 again
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+ EXPECT_EQ(digits[1], uint8_t(2));
+ EXPECT_EQ(digits[2], uint8_t(3));
+ EXPECT_EQ(digits[3], uint8_t(4));
+ EXPECT_EQ(digits[4], uint8_t(5));
+ EXPECT_EQ(hpd.getNumDigits(), 5u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 1);
+
+ hpd.shift(1); // shift left one again
+ // result should be 2.469
+
+ EXPECT_EQ(digits[0], uint8_t(2));
+ EXPECT_EQ(digits[1], uint8_t(4));
+ EXPECT_EQ(digits[2], uint8_t(6));
+ EXPECT_EQ(digits[3], uint8_t(9));
+ EXPECT_EQ(hpd.getNumDigits(), 4u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 1);
+
+ hpd.shift(-1); // shift right one again
+ // result should be 1.2345 again
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+ EXPECT_EQ(digits[1], uint8_t(2));
+ EXPECT_EQ(digits[2], uint8_t(3));
+ EXPECT_EQ(digits[3], uint8_t(4));
+ EXPECT_EQ(digits[4], uint8_t(5));
+ EXPECT_EQ(hpd.getNumDigits(), 5u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 1);
+}
+
+TEST(LlvmLibcHighPrecisionDecimalTest, MediumShift) {
+ __llvm_libc::internal::HighPrecsisionDecimal hpd =
+ __llvm_libc::internal::HighPrecsisionDecimal(".299792458");
+ uint8_t *digits = hpd.getDigits();
+
+ hpd.shift(-3); // shift right three, equal to dividing by 8
+ // result should be 0.03747405725
+
+ EXPECT_EQ(digits[0], uint8_t(3));
+ EXPECT_EQ(digits[1], uint8_t(7));
+ EXPECT_EQ(digits[2], uint8_t(4));
+ EXPECT_EQ(digits[3], uint8_t(7));
+ EXPECT_EQ(digits[4], uint8_t(4));
+ EXPECT_EQ(digits[5], uint8_t(0));
+ EXPECT_EQ(digits[6], uint8_t(5));
+ EXPECT_EQ(digits[7], uint8_t(7));
+ EXPECT_EQ(digits[8], uint8_t(2));
+ EXPECT_EQ(digits[9], uint8_t(5));
+ EXPECT_EQ(hpd.getNumDigits(), 10u);
+ EXPECT_EQ(hpd.getDecimalPoint(), -1);
+
+ hpd.shift(3); // shift left three, equal to multiplying by 8
+ // result should be 0.299792458 again
+
+ EXPECT_EQ(digits[0], uint8_t(2));
+ EXPECT_EQ(digits[1], uint8_t(9));
+ EXPECT_EQ(digits[2], uint8_t(9));
+ EXPECT_EQ(digits[3], uint8_t(7));
+ EXPECT_EQ(digits[4], uint8_t(9));
+ EXPECT_EQ(digits[5], uint8_t(2));
+ EXPECT_EQ(digits[6], uint8_t(4));
+ EXPECT_EQ(digits[7], uint8_t(5));
+ EXPECT_EQ(digits[8], uint8_t(8));
+ EXPECT_EQ(hpd.getNumDigits(), 9u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 0);
+}
+
+TEST(LlvmLibcHighPrecisionDecimalTest, BigShift) {
+ __llvm_libc::internal::HighPrecsisionDecimal hpd =
+ __llvm_libc::internal::HighPrecsisionDecimal(".299792458");
+ uint8_t *digits = hpd.getDigits();
+
+ hpd.shift(-29); // shift right 29, equal to dividing by 536,870,912
+ // result should be 0.0000000005584069676697254180908203125
+
+ EXPECT_EQ(digits[0], uint8_t(5));
+ EXPECT_EQ(digits[1], uint8_t(5));
+ EXPECT_EQ(digits[2], uint8_t(8));
+ EXPECT_EQ(digits[3], uint8_t(4));
+ EXPECT_EQ(digits[4], uint8_t(0));
+ EXPECT_EQ(digits[5], uint8_t(6));
+ EXPECT_EQ(digits[6], uint8_t(9));
+ EXPECT_EQ(digits[7], uint8_t(6));
+ EXPECT_EQ(digits[8], uint8_t(7));
+ EXPECT_EQ(digits[9], uint8_t(6));
+ EXPECT_EQ(digits[10], uint8_t(6));
+ EXPECT_EQ(digits[11], uint8_t(9));
+ EXPECT_EQ(digits[12], uint8_t(7));
+ EXPECT_EQ(digits[13], uint8_t(2));
+ EXPECT_EQ(digits[14], uint8_t(5));
+ EXPECT_EQ(digits[15], uint8_t(4));
+ EXPECT_EQ(digits[16], uint8_t(1));
+ EXPECT_EQ(digits[17], uint8_t(8));
+ EXPECT_EQ(digits[18], uint8_t(0));
+ EXPECT_EQ(digits[19], uint8_t(9));
+ EXPECT_EQ(digits[20], uint8_t(0));
+ EXPECT_EQ(digits[21], uint8_t(8));
+ EXPECT_EQ(digits[22], uint8_t(2));
+ EXPECT_EQ(digits[23], uint8_t(0));
+ EXPECT_EQ(digits[24], uint8_t(3));
+ EXPECT_EQ(digits[25], uint8_t(1));
+ EXPECT_EQ(digits[26], uint8_t(2));
+ EXPECT_EQ(digits[27], uint8_t(5));
+ EXPECT_EQ(hpd.getNumDigits(), 28u);
+ EXPECT_EQ(hpd.getDecimalPoint(), -9);
+
+ hpd.shift(29); // shift left 29, equal to multiplying by 536,870,912
+ // result should be 0.299792458 again
+
+ EXPECT_EQ(digits[0], uint8_t(2));
+ EXPECT_EQ(digits[1], uint8_t(9));
+ EXPECT_EQ(digits[2], uint8_t(9));
+ EXPECT_EQ(digits[3], uint8_t(7));
+ EXPECT_EQ(digits[4], uint8_t(9));
+ EXPECT_EQ(digits[5], uint8_t(2));
+ EXPECT_EQ(digits[6], uint8_t(4));
+ EXPECT_EQ(digits[7], uint8_t(5));
+ EXPECT_EQ(digits[8], uint8_t(8));
+ EXPECT_EQ(hpd.getNumDigits(), 9u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 0);
+}
+
+TEST(LlvmLibcHighPrecisionDecimalTest, BigShiftInSteps) {
+ __llvm_libc::internal::HighPrecsisionDecimal hpd =
+ __llvm_libc::internal::HighPrecsisionDecimal("1");
+ uint8_t *digits = hpd.getDigits();
+
+ hpd.shift(60); // shift left 60, equal to multiplying by
+ // 1152921504606846976.
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+ EXPECT_EQ(digits[1], uint8_t(1));
+ EXPECT_EQ(digits[2], uint8_t(5));
+ EXPECT_EQ(digits[3], uint8_t(2));
+ EXPECT_EQ(digits[4], uint8_t(9));
+ EXPECT_EQ(digits[5], uint8_t(2));
+ EXPECT_EQ(digits[6], uint8_t(1));
+ EXPECT_EQ(digits[7], uint8_t(5));
+ EXPECT_EQ(digits[8], uint8_t(0));
+ EXPECT_EQ(digits[9], uint8_t(4));
+ EXPECT_EQ(digits[10], uint8_t(6));
+ EXPECT_EQ(digits[11], uint8_t(0));
+ EXPECT_EQ(digits[12], uint8_t(6));
+ EXPECT_EQ(digits[13], uint8_t(8));
+ EXPECT_EQ(digits[14], uint8_t(4));
+ EXPECT_EQ(digits[15], uint8_t(6));
+ EXPECT_EQ(digits[16], uint8_t(9));
+ EXPECT_EQ(digits[17], uint8_t(7));
+ EXPECT_EQ(digits[18], uint8_t(6));
+ EXPECT_EQ(hpd.getNumDigits(), 19u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 19);
+
+ hpd.shift(40); // shift left 40, equal to multiplying by
+ // 1099511627776. Result should be 2^100
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+ EXPECT_EQ(digits[1], uint8_t(2));
+ EXPECT_EQ(digits[2], uint8_t(6));
+ EXPECT_EQ(digits[3], uint8_t(7));
+ EXPECT_EQ(digits[4], uint8_t(6));
+ EXPECT_EQ(digits[5], uint8_t(5));
+ EXPECT_EQ(digits[6], uint8_t(0));
+ EXPECT_EQ(digits[7], uint8_t(6));
+ EXPECT_EQ(digits[8], uint8_t(0));
+ EXPECT_EQ(digits[9], uint8_t(0));
+ EXPECT_EQ(digits[10], uint8_t(2));
+ EXPECT_EQ(digits[11], uint8_t(2));
+ EXPECT_EQ(digits[12], uint8_t(8));
+ EXPECT_EQ(digits[13], uint8_t(2));
+ EXPECT_EQ(digits[14], uint8_t(2));
+ EXPECT_EQ(digits[15], uint8_t(9));
+ EXPECT_EQ(digits[16], uint8_t(4));
+ EXPECT_EQ(digits[17], uint8_t(0));
+ EXPECT_EQ(digits[18], uint8_t(1));
+ EXPECT_EQ(digits[19], uint8_t(4));
+ EXPECT_EQ(digits[20], uint8_t(9));
+ EXPECT_EQ(digits[21], uint8_t(6));
+ EXPECT_EQ(digits[22], uint8_t(7));
+ EXPECT_EQ(digits[23], uint8_t(0));
+ EXPECT_EQ(digits[24], uint8_t(3));
+ EXPECT_EQ(digits[25], uint8_t(2));
+ EXPECT_EQ(digits[26], uint8_t(0));
+ EXPECT_EQ(digits[27], uint8_t(5));
+ EXPECT_EQ(digits[28], uint8_t(3));
+ EXPECT_EQ(digits[29], uint8_t(7));
+ EXPECT_EQ(digits[30], uint8_t(6));
+
+ EXPECT_EQ(hpd.getNumDigits(), 31u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 31);
+
+ hpd.shift(-60); // shift right 60, equal to dividing by
+ // 1152921504606846976. Result should be 2^40
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+ EXPECT_EQ(digits[1], uint8_t(0));
+ EXPECT_EQ(digits[2], uint8_t(9));
+ EXPECT_EQ(digits[3], uint8_t(9));
+ EXPECT_EQ(digits[4], uint8_t(5));
+ EXPECT_EQ(digits[5], uint8_t(1));
+ EXPECT_EQ(digits[6], uint8_t(1));
+ EXPECT_EQ(digits[7], uint8_t(6));
+ EXPECT_EQ(digits[8], uint8_t(2));
+ EXPECT_EQ(digits[9], uint8_t(7));
+ EXPECT_EQ(digits[10], uint8_t(7));
+ EXPECT_EQ(digits[11], uint8_t(7));
+ EXPECT_EQ(digits[12], uint8_t(6));
+
+ EXPECT_EQ(hpd.getNumDigits(), 13u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 13);
+
+ hpd.shift(-40); // shift right 40, equal to dividing by
+ // 1099511627776. Result should be 1
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+
+ EXPECT_EQ(hpd.getNumDigits(), 1u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 1);
+}
+
+TEST(LlvmLibcHighPrecisionDecimalTest, VeryBigShift) {
+ __llvm_libc::internal::HighPrecsisionDecimal hpd =
+ __llvm_libc::internal::HighPrecsisionDecimal("1");
+ uint8_t *digits = hpd.getDigits();
+
+ hpd.shift(100); // shift left 100, equal to multiplying by
+ // 1267650600228229401496703205376.
+ // result should be 2^100
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+ EXPECT_EQ(digits[1], uint8_t(2));
+ EXPECT_EQ(digits[2], uint8_t(6));
+ EXPECT_EQ(digits[3], uint8_t(7));
+ EXPECT_EQ(digits[4], uint8_t(6));
+ EXPECT_EQ(digits[5], uint8_t(5));
+ EXPECT_EQ(digits[6], uint8_t(0));
+ EXPECT_EQ(digits[7], uint8_t(6));
+ EXPECT_EQ(digits[8], uint8_t(0));
+ EXPECT_EQ(digits[9], uint8_t(0));
+ EXPECT_EQ(digits[10], uint8_t(2));
+ EXPECT_EQ(digits[11], uint8_t(2));
+ EXPECT_EQ(digits[12], uint8_t(8));
+ EXPECT_EQ(digits[13], uint8_t(2));
+ EXPECT_EQ(digits[14], uint8_t(2));
+ EXPECT_EQ(digits[15], uint8_t(9));
+ EXPECT_EQ(digits[16], uint8_t(4));
+ EXPECT_EQ(digits[17], uint8_t(0));
+ EXPECT_EQ(digits[18], uint8_t(1));
+ EXPECT_EQ(digits[19], uint8_t(4));
+ EXPECT_EQ(digits[20], uint8_t(9));
+ EXPECT_EQ(digits[21], uint8_t(6));
+ EXPECT_EQ(digits[22], uint8_t(7));
+ EXPECT_EQ(digits[23], uint8_t(0));
+ EXPECT_EQ(digits[24], uint8_t(3));
+ EXPECT_EQ(digits[25], uint8_t(2));
+ EXPECT_EQ(digits[26], uint8_t(0));
+ EXPECT_EQ(digits[27], uint8_t(5));
+ EXPECT_EQ(digits[28], uint8_t(3));
+ EXPECT_EQ(digits[29], uint8_t(7));
+ EXPECT_EQ(digits[30], uint8_t(6));
+
+ EXPECT_EQ(hpd.getNumDigits(), 31u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 31);
+
+ hpd.shift(-100); // shift right 100, equal to dividing by
+ // 1267650600228229401496703205376.
+ // result should be 1
+
+ EXPECT_EQ(digits[0], uint8_t(1));
+ EXPECT_EQ(hpd.getNumDigits(), 1u);
+ EXPECT_EQ(hpd.getDecimalPoint(), 1);
+}
+
+TEST(LlvmLibcHighPrecisionDecimalTest, RoundingTest) {
+ __llvm_libc::internal::HighPrecsisionDecimal hpd =
+ __llvm_libc::internal::HighPrecsisionDecimal("1.2345");
+
+ EXPECT_EQ(hpd.roundToIntegerType<uint32_t>(), uint32_t(1));
+ EXPECT_EQ(hpd.roundToIntegerType<uint64_t>(), uint64_t(1));
+ EXPECT_EQ(hpd.roundToIntegerType<__uint128_t>(), __uint128_t(1));
+
+ hpd.shift(1); // shift left 1 to get 2.469 (rounds to 2)
+
+ EXPECT_EQ(hpd.roundToIntegerType<uint32_t>(), uint32_t(2));
+ EXPECT_EQ(hpd.roundToIntegerType<uint64_t>(), uint64_t(2));
+ EXPECT_EQ(hpd.roundToIntegerType<__uint128_t>(), __uint128_t(2));
+
+ hpd.shift(1); // shift left 1 to get 4.938 (rounds to 5)
+
+ EXPECT_EQ(hpd.roundToIntegerType<uint32_t>(), uint32_t(5));
+ EXPECT_EQ(hpd.roundToIntegerType<uint64_t>(), uint64_t(5));
+ EXPECT_EQ(hpd.roundToIntegerType<__uint128_t>(), __uint128_t(5));
+
+ // 2.5 is right between two integers, so we round to even (2)
+ hpd = __llvm_libc::internal::HighPrecsisionDecimal("2.5");
+
+ EXPECT_EQ(hpd.roundToIntegerType<uint32_t>(), uint32_t(2));
+ EXPECT_EQ(hpd.roundToIntegerType<uint64_t>(), uint64_t(2));
+ EXPECT_EQ(hpd.roundToIntegerType<__uint128_t>(), __uint128_t(2));
+
+ // unless it's marked as having truncated, which means it's actually slightly
+ // higher, forcing a round up (3)
+ hpd.setTruncated(true);
+
+ EXPECT_EQ(hpd.roundToIntegerType<uint32_t>(), uint32_t(3));
+ EXPECT_EQ(hpd.roundToIntegerType<uint64_t>(), uint64_t(3));
+ EXPECT_EQ(hpd.roundToIntegerType<__uint128_t>(), __uint128_t(3));
+
+ // Check that the larger int types are being handled properly (overflow is not
+ // handled, so int types that are too small are ignored for this test.)
+
+ // 1099511627776 = 2^40
+ hpd = __llvm_libc::internal::HighPrecsisionDecimal("1099511627776");
+
+ EXPECT_EQ(hpd.roundToIntegerType<uint64_t>(), uint64_t(1099511627776));
+ EXPECT_EQ(hpd.roundToIntegerType<__uint128_t>(), __uint128_t(1099511627776));
+
+ // 1267650600228229401496703205376 = 2^100
+ hpd = __llvm_libc::internal::HighPrecsisionDecimal(
+ "1267650600228229401496703205376");
+
+ __uint128_t result = __uint128_t(1) << 100;
+
+ EXPECT_EQ(hpd.roundToIntegerType<__uint128_t>(), result);
+}