spin_lock(&producer_lock);
unsigned long head = buffer->head;
+ /* The spin_unlock() and next spin_lock() provide needed ordering. */
unsigned long tail = ACCESS_ONCE(buffer->tail);
if (CIRC_SPACE(head, tail, buffer->size) >= 1) {
produce_item(item);
- smp_wmb(); /* commit the item before incrementing the head */
-
- ACCESS_ONCE(buffer->head) = (head + 1) & (buffer->size - 1);
+ smp_store_release(buffer->head,
+ (head + 1) & (buffer->size - 1));
/* wake_up() will make sure that the head is committed before
* waking anyone up */
spin_lock(&consumer_lock);
- unsigned long head = ACCESS_ONCE(buffer->head);
+ /* Read index before reading contents at that index. */
+ unsigned long head = smp_load_acquire(buffer->head);
unsigned long tail = buffer->tail;
if (CIRC_CNT(head, tail, buffer->size) >= 1) {
- /* read index before reading contents at that index */
- smp_rmb();
/* extract one item from the buffer */
struct item *item = buffer[tail];
consume_item(item);
- smp_mb(); /* finish reading descriptor before incrementing tail */
-
- ACCESS_ONCE(buffer->tail) = (tail + 1) & (buffer->size - 1);
+ /* Finish reading descriptor before incrementing tail. */
+ smp_store_release(buffer->tail,
+ (tail + 1) & (buffer->size - 1));
}
spin_unlock(&consumer_lock);
the new item, and then it shall make sure the CPU has finished reading the item
before it writes the new tail pointer, which will erase the item.
-
-Note the use of ACCESS_ONCE() in both algorithms to read the opposition index.
-This prevents the compiler from discarding and reloading its cached value -
-which some compilers will do across smp_read_barrier_depends(). This isn't
-strictly needed if you can be sure that the opposition index will _only_ be
-used the once. Similarly, ACCESS_ONCE() is used in both algorithms to
-write the thread's index. This documents the fact that we are writing
-to something that can be read concurrently and also prevents the compiler
-from tearing the store.
+Note the use of ACCESS_ONCE() and smp_load_acquire() to read the
+opposition index. This prevents the compiler from discarding and
+reloading its cached value - which some compilers will do across
+smp_read_barrier_depends(). This isn't strictly needed if you can
+be sure that the opposition index will _only_ be used the once.
+The smp_load_acquire() additionally forces the CPU to order against
+subsequent memory references. Similarly, smp_store_release() is used
+in both algorithms to write the thread's index. This documents the
+fact that we are writing to something that can be read concurrently,
+prevents the compiler from tearing the store, and enforces ordering
+against previous accesses.
===============