public:
virtual ~ExposureCompensator() {}
- enum { NO, GAIN, GAIN_BLOCKS };
+ enum { NO, GAIN, GAIN_BLOCKS, CHANNELS, CHANNELS_BLOCKS };
CV_WRAP static Ptr<ExposureCompensator> createDefault(int type);
/**
class CV_EXPORTS_W GainCompensator : public ExposureCompensator
{
public:
+ // This Constructor only exists to make source level compatibility detector happy
CV_WRAP GainCompensator()
: GainCompensator(1) {}
CV_WRAP GainCompensator(int nr_feeds)
int nr_feeds_;
};
-/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image block
-intensities, see @cite UES01 for details.
+/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image
+intensities on each channel independantly.
*/
-class CV_EXPORTS_W BlocksGainCompensator : public ExposureCompensator
+class CV_EXPORTS_W ChannelsCompensator : public ExposureCompensator
{
public:
- CV_WRAP BlocksGainCompensator(int bl_width = 32, int bl_height = 32)
- : BlocksGainCompensator(bl_width, bl_height, 1) {}
- CV_WRAP BlocksGainCompensator(int bl_width, int bl_height, int nr_feeds)
- : bl_width_(bl_width), bl_height_(bl_height), nr_feeds_(nr_feeds) {setUpdateGain(true);}
+ CV_WRAP ChannelsCompensator(int nr_feeds=1) : nr_feeds_(nr_feeds) {}
void feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
const std::vector<std::pair<UMat,uchar> > &masks) CV_OVERRIDE;
CV_WRAP void apply(int index, Point corner, InputOutputArray image, InputArray mask) CV_OVERRIDE;
CV_WRAP void setMatGains(std::vector<Mat>& umv) CV_OVERRIDE;
CV_WRAP void setNrFeeds(int nr_feeds) { nr_feeds_ = nr_feeds; }
CV_WRAP int getNrFeeds() { return nr_feeds_; }
+ std::vector<Scalar> gains() const { return gains_; }
private:
+ std::vector<Scalar> gains_;
+ int nr_feeds_;
+};
+
+/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image blocks.
+ */
+class CV_EXPORTS_W BlocksCompensator : public ExposureCompensator
+{
+public:
+ BlocksCompensator(int bl_width=32, int bl_height=32, int nr_feeds=1)
+ : bl_width_(bl_width), bl_height_(bl_height), nr_feeds_(nr_feeds) {}
+ CV_WRAP void apply(int index, Point corner, InputOutputArray image, InputArray mask) CV_OVERRIDE;
+ CV_WRAP void getMatGains(CV_OUT std::vector<Mat>& umv) CV_OVERRIDE;
+ CV_WRAP void setMatGains(std::vector<Mat>& umv) CV_OVERRIDE;
+ CV_WRAP void setNrFeeds(int nr_feeds) { nr_feeds_ = nr_feeds; }
+ CV_WRAP int getNrFeeds() { return nr_feeds_; }
+
+protected:
+ template<class Compensator>
+ void feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
+ const std::vector<std::pair<UMat,uchar> > &masks);
+
+private:
+ UMat getGainMap(const GainCompensator& compensator, int bl_idx, Size bl_per_img);
+ UMat getGainMap(const ChannelsCompensator& compensator, int bl_idx, Size bl_per_img);
+
int bl_width_, bl_height_;
std::vector<UMat> gain_maps_;
int nr_feeds_;
};
+
+/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image block
+intensities, see @cite UES01 for details.
+ */
+class CV_EXPORTS_W BlocksGainCompensator : public BlocksCompensator
+{
+public:
+ // This Constructor only exists to make source level compatibility detector happy
+ CV_WRAP BlocksGainCompensator(int bl_width = 32, int bl_height = 32)
+ : BlocksGainCompensator(bl_width, bl_height, 1) {}
+ CV_WRAP BlocksGainCompensator(int bl_width, int bl_height, int nr_feeds)
+ : BlocksCompensator(bl_width, bl_height, nr_feeds) {setUpdateGain(true);}
+
+ void feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
+ const std::vector<std::pair<UMat,uchar> > &masks) CV_OVERRIDE;
+
+ // This function only exists to make source level compatibility detector happy
+ CV_WRAP void apply(int index, Point corner, InputOutputArray image, InputArray mask) CV_OVERRIDE {
+ BlocksCompensator::apply(index, corner, image, mask); }
+ // This function only exists to make source level compatibility detector happy
+ CV_WRAP void getMatGains(CV_OUT std::vector<Mat>& umv) CV_OVERRIDE { BlocksCompensator::getMatGains(umv); }
+ // This function only exists to make source level compatibility detector happy
+ CV_WRAP void setMatGains(std::vector<Mat>& umv) CV_OVERRIDE { BlocksCompensator::setMatGains(umv); }
+};
+
+/** @brief Exposure compensator which tries to remove exposure related artifacts by adjusting image block
+on each channel.
+ */
+class CV_EXPORTS_W BlocksChannelsCompensator : public BlocksCompensator
+{
+public:
+ CV_WRAP BlocksChannelsCompensator(int bl_width=32, int bl_height=32, int nr_feeds=1)
+ : BlocksCompensator(bl_width, bl_height, nr_feeds) {setUpdateGain(true);}
+
+ void feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
+ const std::vector<std::pair<UMat,uchar> > &masks) CV_OVERRIDE;
+};
//! @}
} // namespace detail
e = makePtr<NoExposureCompensator>();
else if (type == GAIN)
e = makePtr<GainCompensator>();
- if (type == GAIN_BLOCKS)
+ else if (type == GAIN_BLOCKS)
e = makePtr<BlocksGainCompensator>();
+ else if (type == CHANNELS)
+ e = makePtr<ChannelsCompensator>();
+ else if (type == CHANNELS_BLOCKS)
+ e = makePtr<BlocksChannelsCompensator>();
if (e.get() != nullptr)
{
e->setUpdateGain(true);
{
CV_Assert(corners.size() == images.size() && images.size() == masks.size());
+ if (images.size() == 0)
+ return;
+
+ const int num_channels = images[0].channels();
+ CV_Assert(std::all_of(images.begin(), images.end(),
+ [num_channels](const UMat& image) { return image.channels() == num_channels; }));
+ CV_Assert(num_channels == 1 || num_channels == 3);
+
const int num_images = static_cast<int>(images.size());
Mat_<int> N(num_images, num_images); N.setTo(0);
Mat_<double> I(num_images, num_images); I.setTo(0);
Mat_<bool> skip(num_images, 1); skip.setTo(true);
- //Rect dst_roi = resultRoi(corners, images);
Mat subimg1, subimg2;
Mat_<uchar> submask1, submask2, intersect;
double Isum1 = 0, Isum2 = 0;
for (int y = 0; y < roi.height; ++y)
{
- const Point3_<uchar>* r1 = subimg1.ptr<Point3_<uchar> >(y);
- const Point3_<uchar>* r2 = subimg2.ptr<Point3_<uchar> >(y);
- for (int x = 0; x < roi.width; ++x)
+ if (num_channels == 3)
{
- if (intersect(y, x))
+ const Vec<uchar, 3>* r1 = subimg1.ptr<Vec<uchar, 3> >(y);
+ const Vec<uchar, 3>* r2 = subimg2.ptr<Vec<uchar, 3> >(y);
+ for (int x = 0; x < roi.width; ++x)
{
- Isum1 += std::sqrt(static_cast<double>(sqr(r1[x].x) + sqr(r1[x].y) + sqr(r1[x].z)));
- Isum2 += std::sqrt(static_cast<double>(sqr(r2[x].x) + sqr(r2[x].y) + sqr(r2[x].z)));
+ if (intersect(y, x))
+ {
+ Isum1 += norm(r1[x]);
+ Isum2 += norm(r2[x]);
+ }
+ }
+ }
+ else // if (num_channels == 1)
+ {
+ const uchar* r1 = subimg1.ptr<uchar>(y);
+ const uchar* r2 = subimg2.ptr<uchar>(y);
+ for (int x = 0; x < roi.width; ++x)
+ {
+ if (intersect(y, x))
+ {
+ Isum1 += r1[x];
+ Isum2 += r2[x];
+ }
}
}
}
}
}
+void ChannelsCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
+ const std::vector<std::pair<UMat,uchar> > &masks)
+{
+ std::array<std::vector<UMat>, 3> images_channels;
-void BlocksGainCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
- const std::vector<std::pair<UMat,uchar> > &masks)
+ // Split channels of each input image
+ for (const UMat& image: images)
+ {
+ std::vector<UMat> image_channels;
+ image_channels.resize(3);
+ split(image, image_channels);
+
+ for (int i = 0; i < int(images_channels.size()); ++i)
+ images_channels[i].emplace_back(std::move(image_channels[i]));
+ }
+
+ // For each channel, feed the channel of each image in a GainCompensator
+ gains_.clear();
+ gains_.resize(images.size());
+ for (int c = 0; c < 3; ++c)
+ {
+ const std::vector<UMat>& channels = images_channels[c];
+
+ GainCompensator compensator(getNrFeeds());
+ compensator.feed(corners, channels, masks);
+
+ std::vector<double> gains = compensator.gains();
+ for (int i = 0; i < int(gains.size()); ++i)
+ gains_.at(i)[c] = gains[i];
+ }
+}
+
+void ChannelsCompensator::apply(int index, Point /*corner*/, InputOutputArray image, InputArray /*mask*/)
+{
+ CV_INSTRUMENT_REGION();
+
+ multiply(image, gains_.at(index), image);
+}
+
+void ChannelsCompensator::getMatGains(std::vector<Mat>& umv)
+{
+ umv.clear();
+ for (int i = 0; i < static_cast<int>(gains_.size()); ++i)
+ {
+ Mat m;
+ Mat(gains_[i]).copyTo(m);
+ umv.push_back(m);
+ }
+}
+
+void ChannelsCompensator::setMatGains(std::vector<Mat>& umv)
+{
+ for (int i = 0; i < static_cast<int>(umv.size()); i++)
+ {
+ Scalar s;
+ umv[i].copyTo(s);
+ gains_.push_back(s);
+ }
+}
+
+
+template<class Compensator>
+void BlocksCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
+ const std::vector<std::pair<UMat,uchar> > &masks)
{
CV_Assert(corners.size() == images.size() && images.size() == masks.size());
}
}
- if (getUpdateGain())
+ if (getUpdateGain() || int(gain_maps_.size()) != num_images)
{
- GainCompensator compensator(nr_feeds_);
+ Compensator compensator;
+ compensator.setNrFeeds(getNrFeeds());
compensator.feed(block_corners, block_images, block_masks);
- std::vector<double> gains = compensator.gains();
+
+ gain_maps_.clear();
gain_maps_.resize(num_images);
Mat_<float> ker(1, 3);
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
Size bl_per_img = bl_per_imgs[img_idx];
- gain_maps_[img_idx].create(bl_per_img, CV_32F);
+ UMat gain_map = getGainMap(compensator, bl_idx, bl_per_img);
+ bl_idx += bl_per_img.width*bl_per_img.height;
- {
- Mat_<float> gain_map = gain_maps_[img_idx].getMat(ACCESS_WRITE);
- for (int by = 0; by < bl_per_img.height; ++by)
- for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx)
- gain_map(by, bx) = static_cast<float>(gains[bl_idx]);
- }
+ sepFilter2D(gain_map, gain_map, CV_32F, ker, ker);
+ sepFilter2D(gain_map, gain_map, CV_32F, ker, ker);
- sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker);
- sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker);
+ gain_maps_[img_idx] = gain_map;
}
}
}
+UMat BlocksCompensator::getGainMap(const GainCompensator& compensator, int bl_idx, Size bl_per_img)
+{
+ std::vector<double> gains = compensator.gains();
+
+ UMat u_gain_map(bl_per_img, CV_32F);
+ Mat_<float> gain_map = u_gain_map.getMat(ACCESS_WRITE);
+
+ for (int by = 0; by < bl_per_img.height; ++by)
+ for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx)
+ gain_map(by, bx) = static_cast<float>(gains[bl_idx]);
+
+ return u_gain_map;
+}
+
+UMat BlocksCompensator::getGainMap(const ChannelsCompensator& compensator, int bl_idx, Size bl_per_img)
+{
+ std::vector<Scalar> gains = compensator.gains();
+
+ UMat u_gain_map(bl_per_img, CV_32FC3);
+ Mat_<Vec3f> gain_map = u_gain_map.getMat(ACCESS_WRITE);
+
+ for (int by = 0; by < bl_per_img.height; ++by)
+ for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx)
+ for (int c = 0; c < 3; ++c)
+ gain_map(by, bx)[c] = static_cast<float>(gains[bl_idx][c]);
-void BlocksGainCompensator::apply(int index, Point /*corner*/, InputOutputArray _image, InputArray /*mask*/)
+ return u_gain_map;
+}
+
+void BlocksCompensator::apply(int index, Point /*corner*/, InputOutputArray _image, InputArray /*mask*/)
{
CV_INSTRUMENT_REGION();
CV_Assert(_image.type() == CV_8UC3);
UMat u_gain_map;
- if (gain_maps_[index].size() == _image.size())
- u_gain_map = gain_maps_[index];
+ if (gain_maps_.at(index).size() == _image.size())
+ u_gain_map = gain_maps_.at(index);
else
- resize(gain_maps_[index], u_gain_map, _image.size(), 0, 0, INTER_LINEAR);
+ resize(gain_maps_.at(index), u_gain_map, _image.size(), 0, 0, INTER_LINEAR);
- Mat_<float> gain_map = u_gain_map.getMat(ACCESS_READ);
- Mat image = _image.getMat();
- for (int y = 0; y < image.rows; ++y)
+ if (u_gain_map.channels() != 3)
{
- const float* gain_row = gain_map.ptr<float>(y);
- Point3_<uchar>* row = image.ptr<Point3_<uchar> >(y);
- for (int x = 0; x < image.cols; ++x)
- {
- row[x].x = saturate_cast<uchar>(row[x].x * gain_row[x]);
- row[x].y = saturate_cast<uchar>(row[x].y * gain_row[x]);
- row[x].z = saturate_cast<uchar>(row[x].z * gain_row[x]);
- }
+ std::vector<UMat> gains_channels;
+ gains_channels.push_back(u_gain_map);
+ gains_channels.push_back(u_gain_map);
+ gains_channels.push_back(u_gain_map);
+ merge(gains_channels, u_gain_map);
}
+
+ multiply(_image, u_gain_map, _image, 1, _image.type());
}
-void BlocksGainCompensator::getMatGains(std::vector<Mat>& umv)
+void BlocksCompensator::getMatGains(std::vector<Mat>& umv)
{
umv.clear();
for (int i = 0; i < static_cast<int>(gain_maps_.size()); ++i)
umv.push_back(m);
}
}
-void BlocksGainCompensator::setMatGains(std::vector<Mat>& umv)
+
+void BlocksCompensator::setMatGains(std::vector<Mat>& umv)
{
for (int i = 0; i < static_cast<int>(umv.size()); i++)
{
}
}
+void BlocksGainCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
+ const std::vector<std::pair<UMat,uchar> > &masks)
+{
+ BlocksCompensator::feed<GainCompensator>(corners, images, masks);
+}
+
+void BlocksChannelsCompensator::feed(const std::vector<Point> &corners, const std::vector<UMat> &images,
+ const std::vector<std::pair<UMat,uchar> > &masks)
+{
+ BlocksCompensator::feed<ChannelsCompensator>(corners, images, masks);
+}
+
} // namespace detail
} // namespace cv