lapack_complex_float beta, lapack_complex_float* a,
lapack_int lda )
{
+
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_claset", -1 );
return -1;
}
+
+/*****************************************************************************
+* Note: we do not check NaNs in A since the goal of this subroutine is to
+* initialized A. It is OK if A has NaNs in input.
+*****************************************************************************/
+
#ifndef LAPACK_DISABLE_NAN_CHECK
/* Optionally check input matrices for NaNs */
- if( LAPACKE_cge_nancheck( matrix_layout, m, n, a, lda ) ) {
- return -7;
- }
if( LAPACKE_c_nancheck( 1, &alpha, 1 ) ) {
return -5;
}
return -6;
}
#endif
+
return LAPACKE_claset_work( matrix_layout, uplo, m, n, alpha, beta, a, lda );
}
lapack_int n, double alpha, double beta, double* a,
lapack_int lda )
{
+
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_dlaset", -1 );
return -1;
}
+
+/*****************************************************************************
+* Note: we do not check NaNs in A since the goal of this subroutine is to
+* initialized A. It is OK if A has NaNs in input.
+*****************************************************************************/
+
#ifndef LAPACK_DISABLE_NAN_CHECK
- /* Optionally check input matrices for NaNs */
- if( LAPACKE_dge_nancheck( matrix_layout, m, n, a, lda ) ) {
- return -7;
- }
if( LAPACKE_d_nancheck( 1, &alpha, 1 ) ) {
return -5;
}
return -6;
}
#endif
+
return LAPACKE_dlaset_work( matrix_layout, uplo, m, n, alpha, beta, a, lda );
}
lapack_int n, float alpha, float beta, float* a,
lapack_int lda )
{
+
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_slaset", -1 );
return -1;
}
+
+/*****************************************************************************
+* Note: we do not check NaNs in A since the goal of this subroutine is to
+* initialized A. It is OK if A has NaNs in input.
+*****************************************************************************/
+
#ifndef LAPACK_DISABLE_NAN_CHECK
/* Optionally check input matrices for NaNs */
- if( LAPACKE_sge_nancheck( matrix_layout, m, n, a, lda ) ) {
- return -7;
- }
if( LAPACKE_s_nancheck( 1, &alpha, 1 ) ) {
return -5;
}
return -6;
}
#endif
+
return LAPACKE_slaset_work( matrix_layout, uplo, m, n, alpha, beta, a, lda );
}
lapack_complex_double beta, lapack_complex_double* a,
lapack_int lda )
{
+
if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_zlaset", -1 );
return -1;
}
+
+/*****************************************************************************
+* Note: we do not check NaNs in A since the goal of this subroutine is to
+* initialized A. It is OK if A has NaNs in input.
+*****************************************************************************/
+
+
#ifndef LAPACK_DISABLE_NAN_CHECK
/* Optionally check input matrices for NaNs */
- if( LAPACKE_zge_nancheck( matrix_layout, m, n, a, lda ) ) {
- return -7;
- }
if( LAPACKE_z_nancheck( 1, &alpha, 1 ) ) {
return -5;
}
return -6;
}
#endif
+
return LAPACKE_zlaset_work( matrix_layout, uplo, m, n, alpha, beta, a, lda );
}
*> All the diagonal array elements are set to BETA.
*> \endverbatim
*>
-*> \param[in,out] A
+*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the m by n matrix A.
*> The constant to which the diagonal elements are to be set.
*> \endverbatim
*>
-*> \param[in,out] A
+*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On exit, the leading m-by-n submatrix of A is set as follows:
*> The constant to which the diagonal elements are to be set.
*> \endverbatim
*>
-*> \param[in,out] A
+*> \param[out] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> On exit, the leading m-by-n submatrix of A is set as follows:
*> All the diagonal array elements are set to BETA.
*> \endverbatim
*>
-*> \param[in,out] A
+*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the m by n matrix A.