# up by the Android.mk file in the root of ArmNN
COMMON_TEST_SOURCES := \
- test/WorkloadDataValidation.cpp \
+ test/JsonPrinterTestImpl.cpp \
+ test/LayerTests.cpp \
test/TensorCopyUtils.cpp \
- test/LayerTests.cpp
+ test/WorkloadDataValidation.cpp
EndToEndTestImpl.hpp
FullyConnectedTestImpl.hpp
IsLayerSupportedTestImpl.hpp
+ JsonPrinterTestImpl.cpp
JsonPrinterTestImpl.hpp
LayerReleaseConstantDataTest.cpp
LayerTests.cpp
--- /dev/null
+//
+// Copyright © 2017 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "JsonPrinterTestImpl.hpp"
+
+#include <Profiling.hpp>
+
+#include <armnn/Descriptors.hpp>
+#include <armnn/IRuntime.hpp>
+#include <armnn/INetwork.hpp>
+
+#include <boost/algorithm/string.hpp>
+#include <boost/lexical_cast.hpp>
+#include <boost/test/unit_test.hpp>
+
+#include <sstream>
+#include <stack>
+#include <string>
+
+inline bool AreMatchingPair(const char opening, const char closing)
+{
+ return (opening == '{' && closing == '}') || (opening == '[' && closing == ']');
+}
+
+bool AreParenthesesMatching(const std::string& exp)
+{
+ std::stack<char> expStack;
+ for (size_t i = 0; i < exp.length(); ++i)
+ {
+ if (exp[i] == '{' || exp[i] == '[')
+ {
+ expStack.push(exp[i]);
+ }
+ else if (exp[i] == '}' || exp[i] == ']')
+ {
+ if (expStack.empty() || !AreMatchingPair(expStack.top(), exp[i]))
+ {
+ return false;
+ }
+ else
+ {
+ expStack.pop();
+ }
+ }
+ }
+ return expStack.empty();
+}
+
+std::vector<double> ExtractMeasurements(const std::string& exp)
+{
+ std::vector<double> numbers;
+ bool inArray = false;
+ std::string numberString;
+ for (size_t i = 0; i < exp.size(); ++i)
+ {
+ if (exp[i] == '[')
+ {
+ inArray = true;
+ }
+ else if (exp[i] == ']' && inArray)
+ {
+ try
+ {
+ boost::trim_if(numberString, boost::is_any_of("\t,\n"));
+ numbers.push_back(std::stod(numberString));
+ }
+ catch (std::invalid_argument const& e)
+ {
+ BOOST_FAIL("Could not convert measurements to double: " + numberString);
+ }
+
+ numberString.clear();
+ inArray = false;
+ }
+ else if (exp[i] == ',' && inArray)
+ {
+ try
+ {
+ boost::trim_if(numberString, boost::is_any_of("\t,\n"));
+ numbers.push_back(std::stod(numberString));
+ }
+ catch (std::invalid_argument const& e)
+ {
+ BOOST_FAIL("Could not convert measurements to double: " + numberString);
+ }
+ numberString.clear();
+ }
+ else if (exp[i] != '[' && inArray && exp[i] != ',' && exp[i] != ' ')
+ {
+ numberString += exp[i];
+ }
+ }
+ return numbers;
+}
+
+std::vector<std::string> ExtractSections(const std::string& exp)
+{
+ std::vector<std::string> sections;
+
+ std::stack<size_t> s;
+ for (size_t i = 0; i < exp.size(); i++)
+ {
+ if (exp.at(i) == '{')
+ {
+ s.push(i);
+ }
+ else if (exp.at(i) == '}')
+ {
+ size_t from = s.top();
+ s.pop();
+ sections.push_back(exp.substr(from, i - from + 1));
+ }
+ }
+
+ return sections;
+}
+
+std::string GetSoftmaxProfilerJson(const std::vector<armnn::BackendId>& backends)
+{
+ using namespace armnn;
+
+ BOOST_CHECK(!backends.empty());
+
+ ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance();
+
+ // Create runtime in which test will run
+ IRuntime::CreationOptions options;
+ options.m_EnableGpuProfiling = backends.front() == armnn::Compute::GpuAcc;
+ IRuntimePtr runtime(IRuntime::Create(options));
+
+ // build up the structure of the network
+ INetworkPtr net(INetwork::Create());
+
+ IConnectableLayer* input = net->AddInputLayer(0, "input");
+ IConnectableLayer* softmax = net->AddSoftmaxLayer(SoftmaxDescriptor(), "softmax");
+ IConnectableLayer* output = net->AddOutputLayer(0, "output");
+
+ input->GetOutputSlot(0).Connect(softmax->GetInputSlot(0));
+ softmax->GetOutputSlot(0).Connect(output->GetInputSlot(0));
+
+ // set the tensors in the network
+ TensorInfo inputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
+ inputTensorInfo.SetQuantizationOffset(100);
+ inputTensorInfo.SetQuantizationScale(10000.0f);
+ input->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
+
+ TensorInfo outputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
+ outputTensorInfo.SetQuantizationOffset(0);
+ outputTensorInfo.SetQuantizationScale(1.0f / 256.0f);
+ softmax->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
+
+ // optimize the network
+ IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
+ if(!optNet)
+ {
+ BOOST_FAIL("Error occurred during Optimization, Optimize() returned nullptr.");
+ }
+ // load it into the runtime
+ NetworkId netId;
+ auto error = runtime->LoadNetwork(netId, std::move(optNet));
+ BOOST_TEST(error == Status::Success);
+
+ // create structures for input & output
+ std::vector<uint8_t> inputData
+ {
+ 1, 10, 3, 200, 5
+ // one of inputs is sufficiently larger than the others to saturate softmax
+ };
+ std::vector<uint8_t> outputData(5);
+
+ armnn::InputTensors inputTensors
+ {
+ {0, armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
+ };
+ armnn::OutputTensors outputTensors
+ {
+ {0, armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
+ };
+
+ runtime->GetProfiler(netId)->EnableProfiling(true);
+
+ // do the inferences
+ runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
+ runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
+ runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
+
+ // retrieve the Profiler.Print() output
+ std::stringstream ss;
+ profilerManager.GetProfiler()->Print(ss);
+
+ return ss.str();
+}
+
+inline void ValidateProfilerJson(std::string& result, const std::string& testData)
+{
+ // ensure all measurements are greater than zero
+ std::vector<double> measurementsVector = ExtractMeasurements(result);
+ BOOST_CHECK(!measurementsVector.empty());
+
+ // check sections contain raw and unit tags
+ // first ensure Parenthesis are balanced
+ if (AreParenthesesMatching(result))
+ {
+ // remove parent sections that will not have raw or unit tag
+ std::vector<std::string> sectionVector = ExtractSections(result);
+ for (size_t i = 0; i < sectionVector.size(); ++i)
+ {
+ if (boost::contains(sectionVector[i], "\"ArmNN\":")
+ || boost::contains(sectionVector[i], "\"inference_measurements\":"))
+ {
+ sectionVector.erase(sectionVector.begin() + static_cast<int>(i));
+ }
+ }
+ BOOST_CHECK(!sectionVector.empty());
+
+ BOOST_CHECK(std::all_of(sectionVector.begin(), sectionVector.end(),
+ [](std::string i) { return boost::contains(i, "\"raw\":"); }));
+
+ BOOST_CHECK(std::all_of(sectionVector.begin(), sectionVector.end(),
+ [](std::string i) { return boost::contains(i, "\"unit\":"); }));
+ }
+
+ // remove the time measurements as they vary from test to test
+ result.erase(std::remove_if (result.begin(),result.end(),
+ [](char c) { return c == '.'; }), result.end());
+ result.erase(std::remove_if (result.begin(), result.end(), &isdigit), result.end());
+ result.erase(std::remove_if (result.begin(),result.end(),
+ [](char c) { return c == '\t'; }), result.end());
+
+ BOOST_CHECK(boost::contains(result, "ArmNN"));
+ BOOST_CHECK(boost::contains(result, "inference_measurements"));
+ BOOST_CHECK(boost::contains(result, "layer_measurements"));
+ BOOST_CHECK_EQUAL(result, testData);
+
+ // ensure no spare parenthesis present in print output
+ BOOST_CHECK(AreParenthesesMatching(result));
+}
+
+void RunSoftmaxProfilerJsonPrinterTest(const std::vector<armnn::BackendId>& backends)
+{
+ // setup the test fixture and obtain JSON Printer result
+ std::string result = GetSoftmaxProfilerJson(backends);
+
+ std::string backend = "Ref";
+ std::string changeLine31 = "\n},\n\"CopyMemGeneric_Execute\": {";
+ std::string changeLine39 = "us\"";
+ std::string changeLine40;
+ std::string changeLine45;
+
+ const armnn::BackendId& firstBackend = backends.at(0);
+ if (firstBackend == armnn::Compute::GpuAcc)
+ {
+ backend = "Cl";
+ changeLine31 = ",\n\"OpenClKernelTimer/: softmax_layer_max_shift_exp_sum_quantized_serial GWS[,,]\": {";
+ changeLine39 = R"(us"
+},
+"OpenClKernelTimer/: softmax_layer_norm_quantized GWS[,,]": {
+"raw": [
+,
+,
+
+],
+"unit": "us")";
+
+ changeLine40 = R"(
+},
+"CopyMemGeneric_Execute": {
+"raw": [
+,
+,
+
+],
+"unit": "us")";
+ changeLine45 = "}\n";
+ }
+ else if (firstBackend == armnn::Compute::CpuAcc)
+ {
+ backend = "Neon";
+ changeLine31 = ",\n\"NeonKernelTimer/: NEFillBorderKernel\": {";
+ changeLine39 = R"(us"
+},
+"NeonKernelTimer/: NELogitsDMaxKernel": {
+"raw": [
+,
+,
+
+],
+"unit": "us"
+},
+"NeonKernelTimer/: NELogitsDSoftmaxKernel": {
+"raw": [
+,
+,
+
+],
+"unit": "us")";
+ changeLine40 = R"(
+},
+"CopyMemGeneric_Execute": {
+"raw": [
+,
+,
+
+],
+"unit": "us")";
+ changeLine45 = "}\n";
+ }
+
+ std::string testData = R"({
+"ArmNN": {
+"inference_measurements": {
+"raw": [
+,
+,
+
+],
+"unit": "us",
+"layer_measurements": {
+"raw": [
+,
+,
+
+],
+"unit": "us",
+"CopyMemGeneric_Execute": {
+"raw": [
+,
+,
+
+],
+"unit": "us"
+},
+")" + backend + R"(SoftmaxUintWorkload_Execute": {
+"raw": [
+,
+,
+
+],
+"unit": "us")" + changeLine31 + R"(
+"raw": [
+,
+,
+
+],
+"unit": ")" + changeLine39 + R"(
+})" + changeLine40 + R"(
+}
+}
+}
+}
+)" + changeLine45 + R"()";
+
+ // validate the JSON Printer result
+ ValidateProfilerJson(result, testData);
+}
// SPDX-License-Identifier: MIT
//
-#include <Profiling.hpp>
+#pragma once
-#include <armnn/Descriptors.hpp>
-#include <armnn/IRuntime.hpp>
-#include <armnn/INetwork.hpp>
+#include <armnn/BackendId.hpp>
-#include <boost/test/unit_test.hpp>
-#include <boost/algorithm/string.hpp>
-#include <boost/lexical_cast.hpp>
-
-#include <sstream>
-#include <stack>
-#include <string>
#include <vector>
-inline bool AreMatchingPair(const char opening, const char closing)
-{
- return (opening == '{' && closing == '}') || (opening == '[' && closing == ']');
-}
-
-inline bool AreParenthesesMatching(const std::string& exp)
-{
- std::stack<char> expStack;
- for (size_t i = 0; i < exp.length(); ++i)
- {
- if (exp[i] == '{' || exp[i] == '[')
- {
- expStack.push(exp[i]);
- }
- else if (exp[i] == '}' || exp[i] == ']')
- {
- if (expStack.empty() || !AreMatchingPair(expStack.top(), exp[i]))
- {
- return false;
- }
- else
- {
- expStack.pop();
- }
- }
- }
- return expStack.empty();
-}
-
-inline std::vector<double> ExtractMeasurements(const std::string& exp)
-{
- std::vector<double> numbers;
- bool inArray = false;
- std::string numberString;
- for (size_t i = 0; i < exp.size(); ++i)
- {
- if (exp[i] == '[')
- {
- inArray = true;
- }
- else if (exp[i] == ']' && inArray)
- {
- try
- {
- boost::trim_if(numberString, boost::is_any_of("\t,\n"));
- numbers.push_back(std::stod(numberString));
- }
- catch (std::invalid_argument const& e)
- {
- BOOST_FAIL("Could not convert measurements to double: " + numberString);
- }
-
- numberString.clear();
- inArray = false;
- }
- else if (exp[i] == ',' && inArray)
- {
- try
- {
- boost::trim_if(numberString, boost::is_any_of("\t,\n"));
- numbers.push_back(std::stod(numberString));
- }
- catch (std::invalid_argument const& e)
- {
- BOOST_FAIL("Could not convert measurements to double: " + numberString);
- }
- numberString.clear();
- }
- else if (exp[i] != '[' && inArray && exp[i] != ',' && exp[i] != ' ')
- {
- numberString += exp[i];
- }
- }
- return numbers;
-}
-
-inline std::vector<std::string> ExtractSections(const std::string& exp)
-{
- std::vector<std::string> sections;
-
- std::stack<size_t> s;
- for (size_t i = 0; i < exp.size(); i++)
- {
- if (exp.at(i) == '{')
- {
- s.push(i);
- }
- else if (exp.at(i) == '}')
- {
- size_t from = s.top();
- s.pop();
- sections.push_back(exp.substr(from, i - from + 1));
- }
- }
-
- return sections;
-}
-
-inline std::string SoftmaxProfilerTestSetupHelper(const std::vector<armnn::BackendId>& backends)
-{
- using namespace armnn;
-
- BOOST_CHECK(!backends.empty());
-
- ProfilerManager& profilerManager = armnn::ProfilerManager::GetInstance();
-
- // Create runtime in which test will run
- IRuntime::CreationOptions options;
- options.m_EnableGpuProfiling = backends.front() == armnn::Compute::GpuAcc;
- IRuntimePtr runtime(IRuntime::Create(options));
-
- // build up the structure of the network
- INetworkPtr net(INetwork::Create());
-
- IConnectableLayer* input = net->AddInputLayer(0, "input");
- IConnectableLayer* softmax = net->AddSoftmaxLayer(SoftmaxDescriptor(), "softmax");
- IConnectableLayer* output = net->AddOutputLayer(0, "output");
-
- input->GetOutputSlot(0).Connect(softmax->GetInputSlot(0));
- softmax->GetOutputSlot(0).Connect(output->GetInputSlot(0));
-
- // set the tensors in the network
- TensorInfo inputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
- inputTensorInfo.SetQuantizationOffset(100);
- inputTensorInfo.SetQuantizationScale(10000.0f);
- input->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
-
- TensorInfo outputTensorInfo(TensorShape({1, 5}), DataType::QuantisedAsymm8);
- outputTensorInfo.SetQuantizationOffset(0);
- outputTensorInfo.SetQuantizationScale(1.0f / 256.0f);
- softmax->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
-
- // optimize the network
- IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
- if(!optNet)
- {
- BOOST_FAIL("Error occurred during Optimization, Optimize() returned nullptr.");
- }
- // load it into the runtime
- NetworkId netId;
- auto error = runtime->LoadNetwork(netId, std::move(optNet));
- BOOST_TEST(error == Status::Success);
-
- // create structures for input & output
- std::vector<uint8_t> inputData
- {
- 1, 10, 3, 200, 5
- // one of inputs is sufficiently larger than the others to saturate softmax
- };
- std::vector<uint8_t> outputData(5);
-
- armnn::InputTensors inputTensors
- {
- {0, armnn::ConstTensor(runtime->GetInputTensorInfo(netId, 0), inputData.data())}
- };
- armnn::OutputTensors outputTensors
- {
- {0, armnn::Tensor(runtime->GetOutputTensorInfo(netId, 0), outputData.data())}
- };
-
- runtime->GetProfiler(netId)->EnableProfiling(true);
-
- // do the inferences
- runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
- runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
- runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
-
- // retrieve the Profiler.Print() output
- std::stringstream ss;
- profilerManager.GetProfiler()->Print(ss);
-
- return ss.str();
-}
-
-inline void SoftmaxProfilerTestValidationHelper(std::string& result, const std::string& testData)
-{
- // ensure all measurements are greater than zero
- std::vector<double> measurementsVector = ExtractMeasurements(result);
- BOOST_CHECK(!measurementsVector.empty());
-
- // check sections contain raw and unit tags
- // first ensure Parenthesis are balanced
- if (AreParenthesesMatching(result))
- {
- // remove parent sections that will not have raw or unit tag
- std::vector<std::string> sectionVector = ExtractSections(result);
- for (size_t i = 0; i < sectionVector.size(); ++i)
- {
- if (boost::contains(sectionVector[i], "\"ArmNN\":")
- || boost::contains(sectionVector[i], "\"inference_measurements\":"))
- {
- sectionVector.erase(sectionVector.begin() + static_cast<int>(i));
- }
- }
- BOOST_CHECK(!sectionVector.empty());
-
- BOOST_CHECK(std::all_of(sectionVector.begin(), sectionVector.end(),
- [](std::string i) { return boost::contains(i, "\"raw\":"); }));
-
- BOOST_CHECK(std::all_of(sectionVector.begin(), sectionVector.end(),
- [](std::string i) { return boost::contains(i, "\"unit\":"); }));
- }
-
- // remove the time measurements as they vary from test to test
- result.erase(std::remove_if (result.begin(),result.end(),
- [](char c) { return c == '.'; }), result.end());
- result.erase(std::remove_if (result.begin(), result.end(), &isdigit), result.end());
- result.erase(std::remove_if (result.begin(),result.end(),
- [](char c) { return c == '\t'; }), result.end());
-
- BOOST_CHECK(boost::contains(result, "ArmNN"));
- BOOST_CHECK(boost::contains(result, "inference_measurements"));
- BOOST_CHECK(boost::contains(result, "layer_measurements"));
- BOOST_CHECK_EQUAL(result, testData);
-
- // ensure no spare parenthesis present in print output
- BOOST_CHECK(AreParenthesesMatching(result));
-}
-
-inline void SetupSoftmaxProfilerWithSpecifiedBackendsAndValidateJsonPrinterResult(
- const std::vector<armnn::BackendId>& backends)
-{
- // setup the test fixture and obtain JSON Printer result
- std::string result = SoftmaxProfilerTestSetupHelper(backends);
-
- std::string backend = "Ref";
- std::string changeLine31 = "\n},\n\"CopyMemGeneric_Execute\": {";
- std::string changeLine39 = "us\"";
- std::string changeLine40;
- std::string changeLine45;
-
- if (backends[0] == armnn::Compute::GpuAcc) {
- backend = "Cl";
- changeLine31 = ",\n\"OpenClKernelTimer/: softmax_layer_max_shift_exp_sum_quantized_serial GWS[,,]\": {";
- changeLine39 = R"(us"
-},
-"OpenClKernelTimer/: softmax_layer_norm_quantized GWS[,,]": {
-"raw": [
-,
-,
-
-],
-"unit": "us")";
-
- changeLine40 = R"(
-},
-"CopyMemGeneric_Execute": {
-"raw": [
-,
-,
-
-],
-"unit": "us")";
- changeLine45 = "}\n";
- }
- else if (backends[0] == armnn::Compute::CpuAcc)
- {
- backend = "Neon";
- changeLine31 = ",\n\"NeonKernelTimer/: NEFillBorderKernel\": {";
- changeLine39 = R"(us"
-},
-"NeonKernelTimer/: NELogitsDMaxKernel": {
-"raw": [
-,
-,
-
-],
-"unit": "us"
-},
-"NeonKernelTimer/: NELogitsDSoftmaxKernel": {
-"raw": [
-,
-,
-
-],
-"unit": "us")";
- changeLine40 = R"(
-},
-"CopyMemGeneric_Execute": {
-"raw": [
-,
-,
-
-],
-"unit": "us")";
- changeLine45 = "}\n";
- }
-
- std::string testData = R"({
-"ArmNN": {
-"inference_measurements": {
-"raw": [
-,
-,
-
-],
-"unit": "us",
-"layer_measurements": {
-"raw": [
-,
-,
-
-],
-"unit": "us",
-"CopyMemGeneric_Execute": {
-"raw": [
-,
-,
-
-],
-"unit": "us"
-},
-")" + backend + R"(SoftmaxUintWorkload_Execute": {
-"raw": [
-,
-,
-
-],
-"unit": "us")" + changeLine31 + R"(
-"raw": [
-,
-,
-
-],
-"unit": ")" + changeLine39 + R"(
-})" + changeLine40 + R"(
-}
-}
-}
-}
-)" + changeLine45 + R"()";
-
- // validate the JSON Printer result
- SoftmaxProfilerTestValidationHelper(result, testData);
-}
+void RunSoftmaxProfilerJsonPrinterTest(const std::vector<armnn::BackendId>& backends);
BOOST_AUTO_TEST_CASE(SoftmaxProfilerJsonPrinterGpuAccTest)
{
std::vector<armnn::BackendId> backends = {armnn::Compute::GpuAcc};
- SetupSoftmaxProfilerWithSpecifiedBackendsAndValidateJsonPrinterResult(backends);
+ RunSoftmaxProfilerJsonPrinterTest(backends);
}
BOOST_AUTO_TEST_SUITE_END()
\ No newline at end of file
BOOST_AUTO_TEST_CASE(SoftmaxProfilerJsonPrinterCpuAccTest)
{
std::vector<armnn::BackendId> backends = {armnn::Compute::CpuAcc};
- SetupSoftmaxProfilerWithSpecifiedBackendsAndValidateJsonPrinterResult(backends);
+ RunSoftmaxProfilerJsonPrinterTest(backends);
}
BOOST_AUTO_TEST_SUITE_END()
\ No newline at end of file
BOOST_AUTO_TEST_CASE(SoftmaxProfilerJsonPrinterCpuRefTest)
{
std::vector<armnn::BackendId> backends = {armnn::Compute::CpuRef};
- SetupSoftmaxProfilerWithSpecifiedBackendsAndValidateJsonPrinterResult(backends);
+ RunSoftmaxProfilerJsonPrinterTest(backends);
}
BOOST_AUTO_TEST_SUITE_END()
\ No newline at end of file