Initial commit for the demo notebook (#18093)
authorDan Moldovan <mdan@google.com>
Thu, 29 Mar 2018 20:26:19 +0000 (16:26 -0400)
committerRasmus Munk Larsen <rmlarsen@google.com>
Thu, 29 Mar 2018 20:26:19 +0000 (13:26 -0700)
* Create touch.txt

Dummy file to create the branch and directory structure

* Add files via upload

Initial commit

* Delete touch.txt

tensorflow/contrib/autograph/examples/notebooks/dev_summit_2018_demo.ipynb [new file with mode: 0644]

diff --git a/tensorflow/contrib/autograph/examples/notebooks/dev_summit_2018_demo.ipynb b/tensorflow/contrib/autograph/examples/notebooks/dev_summit_2018_demo.ipynb
new file mode 100644 (file)
index 0000000..3129a39
--- /dev/null
@@ -0,0 +1,1970 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "name": "Dev Summit 2018 - Autograph",
+      "version": "0.3.2",
+      "views": {},
+      "default_view": {},
+      "provenance": [
+        {
+          "file_id": "1wCZUh73zTNs1jzzYjqoxMIdaBWCdKJ2K",
+          "timestamp": 1522238054357
+        },
+        {
+          "file_id": "1_HpC-RrmIv4lNaqeoslUeWaX8zH5IXaJ",
+          "timestamp": 1521743157199
+        },
+        {
+          "file_id": "1mjO2fQ2F9hxpAzw2mnrrUkcgfb7xSGW-",
+          "timestamp": 1520522344607
+        }
+      ],
+      "collapsed_sections": []
+    },
+    "kernelspec": {
+      "name": "python2",
+      "display_name": "Python 2"
+    }
+  },
+  "cells": [
+    {
+      "metadata": {
+        "id": "g7nGs4mzVUHP",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "# Experimental: TF Autograph\n",
+        "**TensorFlow Dev Summit, 2018.**\n",
+        "\n",
+        "This interactive notebook demonstrates **autograph**, an experimental source-code transformation library to automatically convert TF.Eager and Python code to TensorFlow graphs.\n",
+        "\n",
+        "**Note: this is pre-alpha software!** The notebook works best with Python 2, for now.\n",
+        "\n",
+        "> ![alt text](https://lh3.googleusercontent.com/QOvy0clmg7siaVKzwmSPAjicWWNQ0OeyaB16plDjSJMf35WD3vLjF6mz4CGrhSHw60HnlZPJjkyDCBzw5XOI0oBGSewyYw=s688)\n",
+        "\n",
+        "### Table of Contents\n",
+        "1. _Write Eager code that is fast and scalable._\n",
+        "2. _Case study: complex control flow._\n",
+        "3. _Case study: training MNIST with Keras._\n",
+        "4. _Case study: building an RNN._"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "uFcgBENZqkB2",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "# Install TensorFlow; note that Colab notebooks run remotely, on virtual\n",
+        "# instances provided by Google.\n",
+        "!pip install -U -q tf-nightly"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "Pa2qpEmoVOGe",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "import os\n",
+        "import time\n",
+        "\n",
+        "import tensorflow as tf\n",
+        "from tensorflow.contrib import autograph\n",
+        "\n",
+        "import matplotlib.pyplot as plt\n",
+        "import numpy as np\n",
+        "import six\n",
+        "\n",
+        "from google.colab import widgets"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "ZVKfj5ttVkqz",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "# 1. Write Eager code that is fast and scalable\n",
+        "\n",
+        "TF.Eager gives you more flexibility while coding, but at the cost of losing the benefits of TensorFlow graphs. For example, Eager does not currently support distributed training, exporting models, and a variety of memory and computation optimizations.\n",
+        "\n",
+        "Autograph gives you the best of both worlds: write your code in an Eager style, and we will automatically transform it into the equivalent TF graph code. The graph code can be executed eagerly (as a single op), included as part of a larger graph, or exported."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "snaZRFdWd9ym",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "For example, autograph can convert a function like this:"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "9__n8cSIeDnD",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def g(x):\n",
+        "  if x > 0:\n",
+        "    x = x * x\n",
+        "  else:\n",
+        "    x = 0\n",
+        "  return x"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "gq0eQcuReHET",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "... into a TF graph-building function:"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "sELSn599ePUF",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 1
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 413
+        },
+        "outputId": "bb0c7216-1ca3-4da1-d1fb-589902cdcd1a",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345737505,
+          "user_tz": 240,
+          "elapsed": 243,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "print(autograph.to_code(g))"
+      ],
+      "execution_count": 4,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "from __future__ import print_function\n",
+            "import tensorflow as tf\n",
+            "from tensorflow.contrib.autograph.impl import api as autograph_api\n",
+            "from tensorflow.contrib.autograph import utils as autograph_utils\n",
+            "\n",
+            "def tf__g(x):\n",
+            "  with tf.name_scope('g'):\n",
+            "\n",
+            "    def if_true():\n",
+            "      with tf.name_scope('if_true'):\n",
+            "        x_1, = x,\n",
+            "        x_1 = x_1 * x_1\n",
+            "        return x_1,\n",
+            "\n",
+            "    def if_false():\n",
+            "      with tf.name_scope('if_false'):\n",
+            "        x_1, = x,\n",
+            "        x_1 = 0\n",
+            "        return x_1,\n",
+            "    x = autograph_utils.run_cond(tf.greater(x, 0), if_true, if_false)\n",
+            "    return x\n",
+            "\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "j74n-8hEe6dk",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "You can then use the converted function as you would any regular TF op -- you can pass `Tensor` arguments and it will return `Tensor`s:"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "AkVaY0-dfEbH",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 1
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 53
+        },
+        "outputId": "4ffe3757-c44d-424c-c2a8-7ddc973bfcce",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345737841,
+          "user_tz": 240,
+          "elapsed": 257,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "tf_g = autograph.to_graph(g)\n",
+        "\n",
+        "with tf.Graph().as_default():  \n",
+        "\n",
+        "  g_ops = tf_g(tf.constant(9))\n",
+        "\n",
+        "  with tf.Session() as sess:\n",
+        "    tf_g_result = sess.run(g_ops)\n",
+        "\n",
+        "  print('g(9) = %s' % g(9))\n",
+        "  print('tf_g(9) = %s' % tf_g_result)"
+      ],
+      "execution_count": 5,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "g(9) = 81\n",
+            "tf_g(9) = 81\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "trrHQBM1VnD0",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "# 2. Case study: complex control flow\n",
+        "\n",
+        "Autograph can convert a large chunk of the Python language into graph-equivalent code, and we're adding new supported language features all the time. In this section, we'll give you a taste of some of the functionality in autograph.\n",
+        "Autograph will automatically convert most Python control flow statements into their correct graph equivalent.\n",
+        "  "
+      ]
+    },
+    {
+      "metadata": {
+        "id": "u0YG3DPgZxoW",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "We support common statements like `while`, `for`, `if`, `break`, `return` and more. You can even nest them as much as you like. Imagine trying to write the graph version of this code by hand:"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "xJYDzOcrZ8pI",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 1
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 35
+        },
+        "outputId": "6c244ee4-b141-4ad6-eefa-cfffa71f33c6",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345738402,
+          "user_tz": 240,
+          "elapsed": 483,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def sum_even(numbers):\n",
+        "  s = 0\n",
+        "  for n in numbers:\n",
+        "    if n % 2 > 0:\n",
+        "      continue\n",
+        "    s += n\n",
+        "  return s\n",
+        "\n",
+        "\n",
+        "tf_sum_even = autograph.to_graph(sum_even)\n",
+        "\n",
+        "with tf.Graph().as_default():  \n",
+        "  with tf.Session() as sess:\n",
+        "    result = sess.run(tf_sum_even(tf.constant([10, 12, 15, 20])))\n",
+        "\n",
+        "  print('Sum of even numbers: %s' % result)"
+      ],
+      "execution_count": 6,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "Sum of even numbers: 42\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "_YXo4KOcbKrn",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "Try replacing the `continue` in the above code with `break` -- Autograph supports that as well!"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "xHmC0rBIavW_",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "The Python code above is much more readable than the matching graph code. Autograph takes care of tediously converting every piece of Python code into the matching TensorFlow graph version for you, so that you can quickly write maintainable code, but still benefit from the optimizations and deployment benefits of graphs."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "UEHWGpBXbS7g",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "Let's try some other useful Python constructs, like `print` and `assert`. We automatically convert Python `assert` statements into the equivalent `tf.Assert` code.  "
+      ]
+    },
+    {
+      "metadata": {
+        "id": "qUU57xlEbauI",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 1
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 53
+        },
+        "outputId": "add3db4a-2077-4dd5-f7a7-a5b5a4529c26",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345738697,
+          "user_tz": 240,
+          "elapsed": 253,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def f(x):\n",
+        "  assert x != 0, 'Do not pass zero!'\n",
+        "  return x * x\n",
+        "\n",
+        "tf_f = autograph.to_graph(f)\n",
+        "with tf.Graph().as_default():  \n",
+        "  with tf.Session() as sess:\n",
+        "    try:\n",
+        "      print(sess.run(tf_f(tf.constant(0))))\n",
+        "    except tf.errors.InvalidArgumentError as e:\n",
+        "      print('Got error message: %s' % e.message)"
+      ],
+      "execution_count": 7,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "Got error message: assertion failed: [Do not pass zero!]\n",
+            "\t [[Node: f/Assert/Assert = Assert[T=[DT_STRING], summarize=3, _device=\"/job:localhost/replica:0/task:0/device:CPU:0\"](f/NotEqual, f/Assert/Assert/data_0)]]\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "w5hBZaVJbck4",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "You can also use `print` functions in-graph:"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "6NdzRKLEboRv",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 1
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 35
+        },
+        "outputId": "fb82dfc3-790f-4127-87f6-361805be9e9b",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345739013,
+          "user_tz": 240,
+          "elapsed": 247,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def print_sign(n):\n",
+        "  if n >= 0:\n",
+        "    print(n, 'is positive!')\n",
+        "  else:\n",
+        "    print(n, 'is negative!')\n",
+        "  return n\n",
+        "\n",
+        "\n",
+        "tf_print_sign = autograph.to_graph(print_sign)\n",
+        "with tf.Graph().as_default():\n",
+        "  with tf.Session() as sess:\n",
+        "    sess.run(tf_print_sign(tf.constant(1)))"
+      ],
+      "execution_count": 8,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "1 is positive!\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "9u_Z3i3AivLA",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "We can convert lists to TensorArray, so appending to lists also works, with a few modifications:"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "MjhCQJVuiTNR",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 1
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 35
+        },
+        "outputId": "dc320b87-595b-4392-d29c-994486fd8a0a",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345744470,
+          "user_tz": 240,
+          "elapsed": 5391,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def f(n):\n",
+        "  numbers = []\n",
+        "  # We ask you to tell us about the element dtype.\n",
+        "  autograph.utils.set_element_type(numbers, tf.int32)\n",
+        "  for i in range(n):\n",
+        "    numbers.append(i)\n",
+        "  return numbers.stack() # Stack the list so that it can be used as a Tensor\n",
+        "\n",
+        "\n",
+        "tf_f = autograph.to_graph(f)\n",
+        "with tf.Graph().as_default():\n",
+        "  with tf.Session() as sess:\n",
+        "    print(sess.run(tf_f(tf.constant(5))))"
+      ],
+      "execution_count": 9,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "[0 1 2 3 4]\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "UdG8ZFrkTAF2",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "And all of these functionalities, and more, can be composed into more complicated code:\n"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "DVs6wt8NKaGQ",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 1
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 53
+        },
+        "cellView": "code",
+        "outputId": "0a4b8d08-8f65-4bbc-85ba-dc4c60563519",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345745186,
+          "user_tz": 240,
+          "elapsed": 658,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def print_primes(n):\n",
+        "  \"\"\"Returns all the prime numbers less than n.\"\"\"\n",
+        "  assert n > 0\n",
+        "  \n",
+        "  primes = []\n",
+        "  autograph.utils.set_element_type(primes, tf.int32)\n",
+        "  for i in range(2, n):\n",
+        "    is_prime = True\n",
+        "    for k in range(2, i):\n",
+        "      if i % k == 0:\n",
+        "        is_prime = False\n",
+        "        break\n",
+        "    if not is_prime:\n",
+        "      continue\n",
+        "    primes.append(i)\n",
+        "  all_primes = primes.stack()\n",
+        "\n",
+        "  print('The prime numbers less than', n, 'are:')\n",
+        "  print(all_primes)\n",
+        "  return tf.no_op()\n",
+        "\n",
+        "    \n",
+        "tf_print_primes = autograph.to_graph(print_primes)\n",
+        "with tf.Graph().as_default():  \n",
+        "  with tf.Session() as sess:\n",
+        "    n = tf.constant(50)\n",
+        "    sess.run(tf_print_primes(n))"
+      ],
+      "execution_count": 10,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "The prime numbers less than 50 are:\n",
+            "[ 2  3  5  7 11 13 17 19 23 29 31 37 41 43 47]\n"
+          ],
+          "name": "stdout"
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "JQ8kQT99VqDk",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "# 3. Case study: training MNIST with Keras\n",
+        "\n",
+        "As we've seen, writing control flow in Autograph is easy. So running a training loop in graph should be easy as well!\n",
+        "\n",
+        "Here, we show an example of such a training loop for a simple Keras model that trains on MNIST."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "0CrtGWgwuLJr",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "import gzip\n",
+        "import shutil\n",
+        "\n",
+        "from six.moves import urllib\n",
+        "\n",
+        "\n",
+        "def download(directory, filename):\n",
+        "  filepath = os.path.join(directory, filename)\n",
+        "  if tf.gfile.Exists(filepath):\n",
+        "    return filepath\n",
+        "  if not tf.gfile.Exists(directory):\n",
+        "    tf.gfile.MakeDirs(directory)\n",
+        "  url = 'https://storage.googleapis.com/cvdf-datasets/mnist/' + filename + '.gz'\n",
+        "  zipped_filepath = filepath + '.gz'\n",
+        "  print('Downloading %s to %s' % (url, zipped_filepath))\n",
+        "  urllib.request.urlretrieve(url, zipped_filepath)\n",
+        "  with gzip.open(zipped_filepath, 'rb') as f_in, open(filepath, 'wb') as f_out:\n",
+        "    shutil.copyfileobj(f_in, f_out)\n",
+        "  os.remove(zipped_filepath)\n",
+        "  return filepath\n",
+        "\n",
+        "\n",
+        "def dataset(directory, images_file, labels_file):\n",
+        "  images_file = download(directory, images_file)\n",
+        "  labels_file = download(directory, labels_file)\n",
+        "\n",
+        "  def decode_image(image):\n",
+        "    # Normalize from [0, 255] to [0.0, 1.0]\n",
+        "    image = tf.decode_raw(image, tf.uint8)\n",
+        "    image = tf.cast(image, tf.float32)\n",
+        "    image = tf.reshape(image, [784])\n",
+        "    return image / 255.0\n",
+        "\n",
+        "  def decode_label(label):\n",
+        "    label = tf.decode_raw(label, tf.uint8)\n",
+        "    label = tf.reshape(label, [])\n",
+        "    return tf.to_int32(label)\n",
+        "\n",
+        "  images = tf.data.FixedLengthRecordDataset(\n",
+        "      images_file, 28 * 28, header_bytes=16).map(decode_image)\n",
+        "  labels = tf.data.FixedLengthRecordDataset(\n",
+        "      labels_file, 1, header_bytes=8).map(decode_label)\n",
+        "  return tf.data.Dataset.zip((images, labels))\n",
+        "\n",
+        "\n",
+        "def mnist_train(directory):\n",
+        "  return dataset(directory, 'train-images-idx3-ubyte',\n",
+        "                 'train-labels-idx1-ubyte')\n",
+        "\n",
+        "def mnist_test(directory):\n",
+        "  return dataset(directory, 't10k-images-idx3-ubyte', 't10k-labels-idx1-ubyte')"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "2zu1U9Nqir6L",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "First, we'll define a small three-layer neural network using the Keras API"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "x_MU13boiok2",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def mlp_model(input_shape):\n",
+        "  model = tf.keras.Sequential([\n",
+        "      tf.keras.layers.Dense(100, activation='relu', input_shape=input_shape),\n",
+        "      tf.keras.layers.Dense(100, activation='relu'),\n",
+        "      tf.keras.layers.Dense(10, activation='softmax')])\n",
+        "  model.build()\n",
+        "  return model"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "Wuqg3H8mi0Xj",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "Let's connect the model definition (here abbreviated as `m`) to a loss function, so that we can train our model."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "W51sfbONiz_5",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def predict(m, x, y):\n",
+        "  y_p = m(x)\n",
+        "  losses = tf.keras.losses.categorical_crossentropy(y, y_p)\n",
+        "  l = tf.reduce_mean(losses)\n",
+        "  accuracies = tf.keras.metrics.categorical_accuracy(y, y_p)\n",
+        "  accuracy = tf.reduce_mean(accuracies)\n",
+        "  return l, accuracy"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "035tNWQki9tr",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "Now the final piece of the problem specification (before loading data, and clicking everything together) is backpropagating the loss through the model, and optimizing the weights using the gradient."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "CsAD0ajbi9iZ",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def fit(m, x, y, opt):\n",
+        "  l, accuracy = predict(m, x, y)\n",
+        "  opt.minimize(l)\n",
+        "  return l, accuracy"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "PcVRIacKjSwb",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "These are some utility functions to download data and generate batches for training"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "RVw57HdTjPzi",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def setup_mnist_data(is_training, hp, batch_size):\n",
+        "  if is_training:\n",
+        "    ds = mnist_train('/tmp/autograph_mnist_data')\n",
+        "    ds = ds.shuffle(batch_size * 10)\n",
+        "  else:\n",
+        "    ds = mnist_test('/tmp/autograph_mnist_data')\n",
+        "  ds = ds.repeat()\n",
+        "  ds = ds.batch(batch_size)\n",
+        "  return ds\n",
+        "\n",
+        "def get_next_batch(ds):\n",
+        "  itr = ds.make_one_shot_iterator()\n",
+        "  image, label = itr.get_next()\n",
+        "  x = tf.to_float(tf.reshape(image, (-1, 28 * 28)))\n",
+        "  y = tf.one_hot(tf.squeeze(label), 10)\n",
+        "  return x, y"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "2zEJH5XNjgFz",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "This function specifies the main training loop. We instantiate the model (using the code above), instantiate an optimizer (here we'll use SGD with momentum, nothing too fancy), and we'll instantiate some lists to keep track of training and test loss and accuracy over time.\n",
+        "\n",
+        "In the loop inside this function, we'll grab a batch of data, apply an update to the weights of our model to improve its performance, and then record its current training loss and accuracy. Every so often, we'll log some information about training as well."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "UUI0566FjZPx",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def train(train_ds, test_ds, hp):\n",
+        "  m = mlp_model((28 * 28,))\n",
+        "  opt = tf.train.MomentumOptimizer(hp.learning_rate, 0.9)\n",
+        "  train_losses = []\n",
+        "  train_losses = autograph.utils.set_element_type(train_losses, tf.float32)\n",
+        "  test_losses = []\n",
+        "  test_losses = autograph.utils.set_element_type(test_losses, tf.float32)\n",
+        "  train_accuracies = []\n",
+        "  train_accuracies = autograph.utils.set_element_type(train_accuracies,\n",
+        "                                                      tf.float32)\n",
+        "  test_accuracies = []\n",
+        "  test_accuracies = autograph.utils.set_element_type(test_accuracies,\n",
+        "                                                     tf.float32)\n",
+        "  i = tf.constant(0)\n",
+        "  while i < hp.max_steps:\n",
+        "    train_x, train_y = get_next_batch(train_ds)\n",
+        "    test_x, test_y = get_next_batch(test_ds)\n",
+        "    step_train_loss, step_train_accuracy = fit(m, train_x, train_y, opt)\n",
+        "    step_test_loss, step_test_accuracy = predict(m, test_x, test_y)\n",
+        "    if i % (hp.max_steps // 10) == 0:\n",
+        "      print('Step', i, 'train loss:', step_train_loss, 'test loss:',\n",
+        "            step_test_loss, 'train accuracy:', step_train_accuracy,\n",
+        "            'test accuracy:', step_test_accuracy)\n",
+        "    train_losses.append(step_train_loss)\n",
+        "    test_losses.append(step_test_loss)\n",
+        "    train_accuracies.append(step_train_accuracy)\n",
+        "    test_accuracies.append(step_test_accuracy)\n",
+        "    i += 1\n",
+        "  return (train_losses.stack(), test_losses.stack(),  train_accuracies.stack(),\n",
+        "          test_accuracies.stack())"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "cYiUQ1ppkHzk",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "Everything is ready to go, let's train the model and plot its performance!"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "K1m8TwOKjdNd",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 13
+            },
+            {
+              "item_id": 14
+            },
+            {
+              "item_id": 15
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 988
+        },
+        "outputId": "f9d3eef3-5bea-45c1-ddf9-4edee73e4436",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345800262,
+          "user_tz": 240,
+          "elapsed": 52391,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "with tf.Graph().as_default():\n",
+        "  hp = tf.contrib.training.HParams(\n",
+        "      learning_rate=0.05,\n",
+        "      max_steps=500,\n",
+        "  )\n",
+        "  train_ds = setup_mnist_data(True, hp, 50)\n",
+        "  test_ds = setup_mnist_data(False, hp, 1000)\n",
+        "  tf_train = autograph.to_graph(train)\n",
+        "  (train_losses, test_losses, train_accuracies,\n",
+        "   test_accuracies) = tf_train(train_ds, test_ds, hp)\n",
+        "\n",
+        "  with tf.Session() as sess:\n",
+        "    sess.run(tf.global_variables_initializer())\n",
+        "    (train_losses, test_losses, train_accuracies,\n",
+        "     test_accuracies) = sess.run([train_losses, test_losses, train_accuracies,\n",
+        "                                  test_accuracies])\n",
+        "    plt.title('MNIST train/test losses')\n",
+        "    plt.plot(train_losses, label='train loss')\n",
+        "    plt.plot(test_losses, label='test loss')\n",
+        "    plt.legend()\n",
+        "    plt.xlabel('Training step')\n",
+        "    plt.ylabel('Loss')\n",
+        "    plt.show()\n",
+        "    plt.title('MNIST train/test accuracies')\n",
+        "    plt.plot(train_accuracies, label='train accuracy')\n",
+        "    plt.plot(test_accuracies, label='test accuracy')\n",
+        "    plt.legend(loc='lower right')\n",
+        "    plt.xlabel('Training step')\n",
+        "    plt.ylabel('Accuracy')\n",
+        "    plt.show()"
+      ],
+      "execution_count": 17,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "Downloading https://storage.googleapis.com/cvdf-datasets/mnist/train-images-idx3-ubyte.gz to /tmp/autograph_mnist_data/train-images-idx3-ubyte.gz\n",
+            "Downloading https://storage.googleapis.com/cvdf-datasets/mnist/train-labels-idx1-ubyte.gz to /tmp/autograph_mnist_data/train-labels-idx1-ubyte.gz\n",
+            "Downloading https://storage.googleapis.com/cvdf-datasets/mnist/t10k-images-idx3-ubyte.gz to /tmp/autograph_mnist_data/t10k-images-idx3-ubyte.gz\n",
+            "Downloading https://storage.googleapis.com/cvdf-datasets/mnist/t10k-labels-idx1-ubyte.gz to /tmp/autograph_mnist_data/t10k-labels-idx1-ubyte.gz\n",
+            "Step 0 train loss: 2.244329 test loss: 2.2499208 train accuracy: 0.12 test accuracy: 0.161\n",
+            "Step 50 train loss: 0.64771986 test loss: 0.56013924 train accuracy: 0.82 test accuracy: 0.836\n",
+            "Step 100 train loss: 0.49011207 test loss: 0.42143965 train accuracy: 0.84 test accuracy: 0.879\n",
+            "Step 150 train loss: 0.3768609 test loss: 0.39319593 train accuracy: 0.88 test accuracy: 0.883\n",
+            "Step 200 train loss: 0.36007702 test loss: 0.37089333 train accuracy: 0.9 test accuracy: 0.881\n",
+            "Step 250 train loss: 0.182115 test loss: 0.28543878 train accuracy: 0.94 test accuracy: 0.915\n",
+            "Step 300 train loss: 0.2119576 test loss: 0.22305593 train accuracy: 0.92 test accuracy: 0.93\n",
+            "Step 350 train loss: 0.12932214 test loss: 0.29057172 train accuracy: 0.96 test accuracy: 0.906\n",
+            "Step 400 train loss: 0.22937602 test loss: 0.2200287 train accuracy: 0.92 test accuracy: 0.925\n",
+            "Step 450 train loss: 0.23444137 test loss: 0.19857481 train accuracy: 0.94 test accuracy: 0.94\n"
+          ],
+          "name": "stdout"
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAFnCAYAAACPasF4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmAFNW9Pvynlt5mYdhmQMHggnGN\nS9zCD0ElKug1edUY9ZoQTYze3GuiRk1uYjRqRHNj4n5NrhKjiUYlbihGQFRUFDSoKIvgICAO6+xL\n711V5/2jlq7qZaZnpnumZ3g+/zjTXV1dXSP91PecU+dIQggBIiIiGjLkwT4AIiIi6h2GNxER0RDD\n8CYiIhpiGN5ERERDDMObiIhoiGF4ExERDTEMb6JeOOigg3DllVdmPf6rX/0KBx10kGe766+/3rPN\ne++9h9mzZwMAtm3bhkMPPdR57osvvsCPfvQjzJw5EzNnzsTZZ5+NV199FQBw0003YdasWZg1axYO\nO+wwnHLKKc7v4XDY8x7JZBLz58/v9edavXo1Lr300oK2XbBgAebMmdPn97J19/rZs2fjhRde6PO+\niYY7hjdRL3366aee0Ewmk1izZk3WditXrsQnn3xS0D6vu+46TJs2DYsXL8bixYtxyy234LrrrsPO\nnTtxyy23YNGiRVi0aBHGjRuH3//+987vVVVVnv188sknfQrUI444Ag8//HBB2y5fvhxTpkzp83vZ\n+vt6oj0Zw5uol0444QQsWbLE+f3tt9/GV77ylaztrrnmGtx+++0F7bO+vh5HHnmk8/uRRx6JxYsX\nY/z48QUfV3NzM3784x/jo48+wkUXXQTAbAF48MEHMXPmTOi6jlWrVuHcc8/FrFmzcOaZZ2L58uUA\nzFaB0047DQBw//334ze/+Q2uuOIKfP3rX8d5552HxsZG533ee+89HHzwwVnv9cEHH+Bb3/oWTjvt\nNJx//vloaGgAAOzevRsXX3wxzjzzTJx66qm4++67cx5rPu+99x7OOecczJo1C9/+9redC6Vc++3u\ncSEE/vd//xczZ87EKaecgjlz5kDXdQDAwoULcdZZZ+GMM87AN77xDbz33nsFn3eiwcDwJuqlM844\nAy+99JLz+z//+U/MmjUr53ZCCCxatKjHfU6fPh1XXnkl/va3v2HTpk0AgHHjxkGSpIKPa+zYsbjm\nmmtw1FFH4YknnnAeF0Jg8eLFUBQFv/71r3HppZdi0aJFuPzyy3HTTTfl3NeiRYtw/fXX49VXX8WY\nMWPw7LPPAgA2bdqE2tpaTJgwwfNe4XAY//mf/4lrrrkGS5Yswfe+9z1cddVVAIBHH30Uxx13HF5+\n+WUsWLAADQ0NMAwj57FmikQiuOqqq3DDDTdg0aJF+OEPf4jrrrsOhmHk3G9jY2Pex1944QUsWrQI\nzzzzDJYsWYKGhgY8+eSTAIBbbrkFDz74IBYuXIibbroJr7/+esHnnWgwMLyJeun444/Hxo0b0dLS\nglgshlWrVmHKlCk5t73++uvxhz/8AYlEott9/v73v8d3vvMdLFiwAGeddRZmzJjhBEt/nXzyyc7P\n8+fPxxlnnAEAOOaYY5zqONOxxx6LCRMmQJIkHHLIIdi5cycAYMWKFTk/6wcffIBx48Zh6tSpAICz\nzjoLX3zxBXbs2IExY8bg7bffxvvvvw+/34+77roLdXV1BR376tWrMX78eBxzzDEAgJkzZ6KtrQ3b\nt2/Pu998jy9duhTf+ta3UF1dDVVV8e1vfxuvvPIKAGDMmDF46qmnsH37dhx77LH45S9/WdjJJRok\n6mAfANFQoygKTj/9dCxcuBCjR4/GiSeeCFXN/U/psMMOw3HHHYdHHnkERx99dN59BgIBXHrppbj0\n0kvR2dmJRYsW4fbbb8fEiRMxbdq0fh3vyJEjnZ8XLFiAv/3tb4hEIjAMA/mWNqiurnZ+VhTFaV5+\n5513cMkll2Rt39nZiYaGBk8LhN/vR2trKy655BIYhoFbbrkFjY2N+M53voOf/OQnBR17a2srRowY\nkXVsLS0tefeb7/Guri48/PDDmDdvHgBA13WMHj0aAPCnP/0Jf/rTn3Duuedir732wvXXX4/jjz++\noGMkGgwMb6I+OPPMM3H33Xdj1KhRPfbZ/vSnP8W5556LiRMn5ny+tbUV69evd6rWESNG4Pzzz8ey\nZctQX1/f7/C27d69GzfccAOefvppHHLIIfj8888xc+bMgl+vaRrWrFmT8yKkrq4O+++/P5577rmc\nr7388stx+eWXY8uWLbjsssucSronY8aMQXt7u/O7EAIdHR0YM2YMVFXNud+pU6fmfLyurg4zZszA\nd7/73az3+dKXvoTf/va3MAwD8+fPx7XXXotly5YVeGaIBh6bzYn64Oijj0ZjYyM2btzYY4VWV1eH\n73znO7j//vtzPh+Px3HllVd6wmLr1q34+OOPceyxx/bquFRVRTgczllRt7a2oqKiAvvvvz80TXMq\n0EgkUtC+V69ejYMOOgh+vz/rvY488kg0NTXh448/BgA0NDTgZz/7GYQQ+PWvf4133nkHgBmSY8eO\nhSRJ3R6r7YgjjkBzczNWrVoFwBxfMH78eEycODHvfvM9/vWvfx0vvPACYrEYAOCpp57C888/j9bW\nVnz/+99HOByGLMs48sgjezXWgGgwsPIm6gNJknDaaachFotBlnu+Bv7BD36Ap59+Oudze++9N/70\npz/hvvvuw5w5cyCEQFVVFX75y196RqAX4phjjsEf/vAHTJs2DW+++abnuYMPPhjTp0/HzJkzMWbM\nGPziF7/Ahx9+iNmzZ+O///u/e9y3fYtYvve67777cOuttyISicDn8+Gqq66CJEm48MIL8etf/xq3\n3norhBCYMWMGpkyZgh07dnheryhK1ntWVFTgnnvuwa233opoNIrRo0fjrrvu6na/I0eOzPk4AGzc\nuBHnnHMOADPYb7vtNowePRrTpk3Dt771LSiKAp/Ph9tuu61X551ooElcz5uIiGhoYbM5ERHREMPw\nJiIiGmIY3kREREMMw5uIiGiIYXgTERENMUPmVrGmpq6i7m/UqAq0tUWLus89Ec9j//Ec9h/PYXHw\nPPZfsc9hbW11zsf32MpbVbPvKaXe43nsP57D/uM5LA6ex/4bqHO4x4Y3ERHRUMXwJiIiGmIY3kRE\nREMMw5uIiGiIYXgTERENMQxvIiKiIYbhTURENMQwvImIaNh6443XCt723nvvxI4d23vc7sMP38cN\nN/y8P4fVbwxvIiIalnbu3IFXX11c8PZXXXUt9t57QgmPqHiGzPSoREREvXHXXb/D+vXr8Mgjc2EY\nBnbs2I6dO3fgnnv+iN/+9jdoampELBbDD35wOaZOnYYf//hyXHPNz7F06WuIRML44out2L59G668\n8lpMmTI153u89toSzJv3dyiKgoMOOgS33XYL6us34M47fwefzwe/349bbvktdu7cnvVYdXXuqU8L\nsceGd0c4gfc3NOLYg+sG+1CIiIa9f7z+GVZuaCzqPo87uA7nz5ic9/l///fZeO65f+D7378MDz/8\nIDQthT/+8c9oa2vF8cd/DWeccRa2b9+GG2/8BaZOneZ5bWPjbvzhD/fh3XeX44UXns0Z3tFoFA89\n9AAeeeQJVFRU4Oc//yneffddvPzyyzjnnPMwa9a/4YMPVqK1tQUvv7wg6zGGdx9ceecbaO2M46ZL\njsOk8X0/gURENDQccshhAIDq6hFYv34dXnzxOUiSjM7OjqxtjzjiKABAXV0dwuFwzv01NHyBiRO/\nhIqKCgDA0Ucfg/Xr1+PEE0/CH/7wP2ho+AJf//ppmDRp35yP9cceGd5b23YiPOFNSMnD0dwRZ3gT\nEZXY+TMmd1slDwSfzwcAWLJkETo7O/HAA39GZ2cnfvjD2VnbKkp6gREhRM79SZL3OU1LQZJCOPbY\n4/HnP/8Ny5cvw5w5N+PHP74652Nf/eqxff4se2R4f7ztCyjVbTBG70RLZ3ywD4eIiEpAlmXoup71\neHt7O/baa2/Isow333wdqVSqT/vfZ59J2LbtC0SjEVRUVGLVqg9x1VU/xrPPzsOUKSfi9NPPgBAC\n9fUbsGXLpqzHGN69dPykA7G4CZArO9DSwfAmIhqOJk3aD59+ugH33XcnKiurnMdPPnkGfvGLa/DJ\nJ2vxb//2TdTV1eGRR+b2ev+hUAhXXHEVrr32J5AkGUcccRSOPfZY7NzZghtv/AWqqqrg8/lw/fU3\nob7+06zH+kMS+doDykxTU1dR93fjit+ipTOCQyLn4yfnHlHUfe9Jamuri/632dPwHPYfz2Fx8Dz2\nX7HPYW1t7m7dPfY+7y+P2Q+SL4mmcOtgHwoREVGv7LHhPbFmPACgLdk2yEdCRETUO3tseI8JjQIA\nxBFGPKkN8tEQEREVbs8N74rRAADJH+egNSIiGlL22PAeW2FW3pI/xtvFiIhoSNljw3uME96svImI\naGjZY8M75AvCLwcg+eNoZuVNRDQs9WZJUNtHH32ItjbvnUjlsAyo2x4b3gAwMlDDypuIaJjq7ZKg\ntn/+88Ws8C43e+QMa7a6ijFojDWiqSt7UnoiIhra3EuCXnDBRbj99lvQ1dUFXddx9dU/w+TJB+Lx\nxx/Fm28uhSzLmDp1Gg455FAsW/YGtmzZjDlz7sD48eOz9pu5DOjVV1/nLANaWRkCIJdkGVC3PTy8\nxwItQKfWPtiHQkQ0rD332UtY1bimqPs8uu4rOHfyWXmfdy8J+uijf8YJJ/w/fOMbZ2PLls24994/\n4J57/oinnnoc8+cvgqIomD//WRx33NcwefKXcc01P88Z3LmWAf3ww/fx1ltLcc4552H27AuxaNHr\nJVkG1G2PDu/a0FgAQAysvImIhrM1a1ajvb0Nixe/DABIJMzu0pNP/jquvvq/cNpps3D66bN63E+u\nZUDr6zc4S362tOzClCknlWQZULc9OrzrKszwTildMISALEmDfERERMPTuZPP6rZKLjWfT8VPf/oz\nHH64dy2L6677JbZu/Ryvv74EP/nJf+Chh/7a7X5yLQMaCAScJT/XrFlZsmVA3fboAWt25Y1gFNE4\nZ1kjIhpO3EuCHnro4XjrrTcAAFu2bMZTTz2OcDiMRx6Zi0mT9sX3v38ZqqtrEI1G8i4lCniXAQWA\nVas+xEEHHYpnn52Hzs4OfPOb38QFF1yE+voNzmOnn36G81ix7NGV96hgDSQhQw5EEYmnUBXyDfYh\nERFRkbiXBP3hD3+E2267Gf/1Xz+EYRi4+urrUFVVhfb2Nlx22fcQClXg8MOPwIgRNTjqqK/ihhv+\nG7/97Z3Yf/8DPPvMtQzokUcehVgsihtv/AVGjaoBIJdkGVC3PXZJUHvZtp++fgvicQM/O+pa7L/3\niKK+x56ASwj2H89h//EcFgfPY/9xSdABEpCCkNQUIvHUYB8KERFRQfb48A4qIUiqhs4oJ2ohIqKh\nYY8P7wo1BABoj4YH+UiIiIgKs8eHd6XPvFevIxEZ5CMhIiIqzB4f3iMClQCAjjjDm4iIhoY9PrxH\nVZgj+Xa1tw3ykRARERVmjw/v0RXm7WE7OjrQHk4M8tEQERH1bI8P70qfOWBNUpNYvallkI+GiIio\nZwxvn9nnDSWFpvbY4B4MERFRAUo6Peodd9yBDz74AJqm4T/+4z9w+umnO88tX74cd911FxRFwfTp\n03HFFVeU8lDysm8Vk9QUWjvZbE5EROWvZOH97rvvYuPGjZg3bx7a2tpwzjnneMJ7zpw5ePjhhzFu\n3Dh897vfxcyZMzF58uRSHU5eITVo/qBoaOviRC1ERFT+Shbexx13HI44wlx6bcSIEYjFYtB1HYqi\noKGhATU1Ndhrr70AACeddBJWrFgxKOHtV/wAAJ9foK2NlTcREZW/koW3oijOYuXPPPMMpk+fDkVR\nAABNTU0YPXq0s+3o0aPR0NDQ7f5GjaqAqipFPcba2mqM1M3K2+8XaI8kMXZsFSSu690r+SbOp8Lx\nHPYfz2Fx8Dz230Ccw5IvCfrqq6/imWeewV/+8pd+7aetLVqkIzLZK78IISBLMiTFQCKpY+u2NlQG\nuTRoobgKUf/xHPYfz2Fx8Dz237BYVWzZsmX4v//7P8ydOxfV1ekDqKurQ3Nzs/P77t27UVdXV8pD\nyUuSJPhlP2TVXHi9jYPWiIiozJUsvLu6unDHHXfgwQcfxMiRIz3PTZw4EeFwGNu2bYOmaVi6dCmm\nTp1aqkPpkV/xAbIZ3h2R5KAdBxERUSFK1mz+8ssvo62tDVdffbXz2AknnICDDjoIp512Gm6++WZc\ne+21AIAzzzwT++23X6kOpUd+xY9kyhxpHo5xXW8iIipvJQvvCy64ABdccEHe54877jjMmzevVG/f\nKwHFjw6YS4IyvImIqNzt8TOsAYBf9kMXZmhHGN5ERFTmGN4w+7wNGIBksPImIqKyx/BGeqIWyDrC\ncYY3ERGVN4Y3zD5vAGZ4s/ImIqIyx/CG2ecNAKrPYJ83ERGVPYY3rPu8AYRCEitvIiIqewxvpPu8\nQyEgHNMG+WiIiIi6x/BGus87GABiCQ26YQzyEREREeXH8Ea68g5YS3tH46y+iYiofDG8Afhls89b\nVc2KO57UB/NwiIiIusXwRrryllUBwGw6JyIiKlcMbwABJQAAzrKgrLyJiKicMbwBhFQzvCXVrLjj\nSVbeRERUvhjeAIKKNVJNNu/xjiVYeRMRUflieAMIWpW3IZkVd4yVNxERlTGGN4CQGgIAGJJZecdZ\neRMRURljeAMIWgPWdCQBsM+biIjKG8MbgCqrUCQFmhXe7PMmIqJyxvAGIEkSgmoAKWGFNytvIiIq\nYwxvS1AJImkkAABxTtJCRERljOFtCaoBJHQrvDlJCxERlTGGtyWkBpHQk1BkNpsTEVF5Y3hbgkoQ\nAgKBoOCtYkREVNYY3hZ7opZgCIiyz5uIiMoYw9sSVM0pUitCQCSWGuSjISIiyo/hbQlZ85sHQwJJ\nzUAixaZzIiIqTwxvi115B4IGAFbfRERUvhjeFrvP2+c3wzvM8CYiojLF8LbYzeYqw5uIiMocw9ti\nV96yz+zrZngTEVG5YnhbglblLavmbWIMbyIiKlcMb4tdeUNheBMRUXljeFtC1mhzQzJDm+FNRETl\niuFtCTK8iYhoiGB4W+w+b3tNb85vTkRE5YrhbfHJKmRJdtb0TunGIB8RERFRbgxviyRJCClBZ01v\nneFNRERliuHtElQDiGlxKLLEypuIiMoWw9slqAYR1xJQFRmaJgb7cIiIiHJieLsErWZzRQE0Vt5E\nRFSmGN4uITUAAQHVLxjeRERUthjeLj7Fb/5XNRjeRERUthjeLn7ZBwCQVYGUzj5vIiIqTwxvF5+s\nAgAU1YCm9b/ybutK4MEX16G5I9bvfREREdkY3i4+xay8FaU4fd5PvFqP9z7Zjb8u3NDvfREREdkY\n3i4+u9ncZ0ArQrN5PKl7/ktERFQMDG8Xu89bUQwYQsAw2O9NRETlh+HtYjebS4rZZM5Z1oiIqBwx\nvF2c0eayGdq8XYyIiMoRw9vF7vO2K+9i9HsTEREVG8PbxWk2tyvvItwuRkREVGwlDe/6+nqceuqp\nePzxx7OemzFjBi666CLMnj0bs2fPxu7du0t5KAWxK2/I5ujwfjebC1buRERUfGqpdhyNRnHrrbdi\nypQpebeZO3cuKisrS3UIvebPCG8OWCMionJUssrb7/dj7ty5qKurK9VbFF1Ws3mxwlsqzm6IiIiA\nElbeqqpCVbvf/U033YTt27fjmGOOwbXXXgtJGtyUs6dHFZLdbM5mbyIiKj8lC++eXHnllZg2bRpq\nampwxRVXYPHixZg1a1be7UeNqoCqKkU9htraas/vcf9IAIBqLi6Gqqpg1ja94fObp9enKv3aT7kb\nzp9toPAc9h/PYXHwPPbfQJzDQQvvs88+2/l5+vTpqK+v7za829qiRX3/2tpqNDV1eR4Lx1IAgJSW\nBAA0t4TRVBPo83ukkpq1Pz3rvYaLXOeReofnsP94DouD57H/in0O810IDMqtYl1dXbj00kuRTJoh\nuXLlShx44IGDcSge9mhzQ+KANSIiKl8lq7zXrl2L3/3ud9i+fTtUVcXixYsxY8YMTJw4Eaeddhqm\nT5+OCy64AIFAAIceemi3VfdA8St2n7dZMevs8yYiojJUsvA+/PDD8dhjj+V9/uKLL8bFF19cqrfv\nE6fyBitvIiIqX5xhzUWRFEiQYMCsvDnDGhERlSOGt4skSfApPqfy7uk+7x3hXXjsk38grsUH4vCI\niIgADOJo83Lll33QhTVKvIc+7/s+eghdyTDGVdTi9H1PGYjDIyIiYuWdKagEkDQSAAC9m8p7W2MY\nXckwACBpJAfk2IiIiACGd5bairGIGREEv/oqtic3593ulfcbnJ8lzn9KREQDiOGdYXyFORe7pGpY\nrb2af0N3i/ogT+tKRER7FoZ3hnGV6YVUVPjzbifAe8CJiGhwMLwzjK+oTf8iCquoZTabExHRAGJ4\nZxhfOc75OYEINEPLvaGn8GZ4ExHRwGF4Z6j2V+EHX/4h9I4xgCTQGm/r8TXs8iYiooHE8M5h/5pJ\nMLpGAQCaYq05t/GMV8tTebNXnIiISoHhnYOqSBApc7BaLJV7KVLhSmbeKkZERAOJ4Z2DqsiAYU4+\nl8g7AYsnvYmIiAYMwzsHVZEhDAUAkNBzh3chzeZERESlwPDOQVUkQDfDO5knvHuD4U5ERMXE8M5B\nkiQo1pot21o6cm8kvNsTERENFIZ3Hgp8AICV9TuwsyWS9TxHkhMR0WBheOdhhzdkHZ2R7pvO2SxO\nREQDieGdhyqlwzsX4bpXzBD5lw4lIiIqNoZ3HnZ4S0qe6VFd3EFORERUagzvPHyKz5yIRdaR1Lqv\nrA2w8iYiooHD8M5DlRXAUCApOpKp7KZzd7HNZnMiIhpIDO88fKp1r7esI5nqofJmszkREQ0ghnce\n5ixrKiRFQ0LLUXm7f2blTUREA4jhnYeqyAVX3nqe8GZBTkREpcDwzkOWJXN+c1lHIpljxLn7VjEO\nWCMiogHE8M7DMIQ5YE0WSGiprOe9zeY9lNicw4WIiIqI4Z2HYQhAN+c3j2mJ7rdlnzcREQ0ghnce\nuiGcZUFjqXj2Bp5bxdi5TUREA6eg8F67di2WLl0KALj77rtx8cUX4/333y/pgQ023RAQyQAAIKKH\nu92Wfd5ERDSQCgrvOXPmYL/99sP777+PNWvW4MYbb8R9991X6mMbVIYhIBIhAEBMdGU9z1vFiIho\nsBQU3oFAAPvuuy9ee+01nH/++Zg8eTJkeXi3uJuVdzfh7VmYhM3mREQ0cApK4FgshoULF+LVV1/F\niSeeiPb2dnR2dpb62AaVIQREMggASCLXet7pwK7f1pZzxDkXLCEiolIoKLyvueYaLFiwAD/96U9R\nVVWFxx57DJdcckmJD21w6a5m86Scq8873VS+uy2CpvZY9hZ2djPDiYioiNRCNvra176Gww8/HFVV\nVWhubsaUKVPw1a9+tdTHNqgMwwAMFUJToSvRrOfdlTckkQ5q9zZW5c0KnIiIiqmgyvvWW2/FwoUL\n0d7ejgsvvBCPP/44br755hIf2uD60rhqAIBIhKCrkawAzry3O3ezub1taY6RiIj2TAWF9yeffIJv\nf/vbWLhwIc455xzcc8892Lp1a6mPbVBdcsbB+N7Mg+DTqwFZR0cyo49fSieyxMqbiIgGUEHhbYfP\nG2+8gRkzZgAAkslk6Y6qDFQGfTj56AkIiBEAgMZok+d54b63WxI5VyGxA53ZTURExVRQeO+33344\n88wzEYlEcMghh2D+/Pmoqakp9bGVhZAwP+fOsDe8vROziJwBzcqbiIhKoaABa3PmzEF9fT0OOOAA\nAMDkyZNxxx13lPTAykW1MgotALZ37fY8nll557rXO+lrARSJfd5ERFRUBYV3PB7H66+/jnvvvReS\nJOGoo47C5MmTS31sZWGkbzSAXM3mmaPNvQm9qf1ztO31OvwVYyBaTy71YRIR0R6koGbzG2+8EeFw\nGBdeeCHOP/98NDc344Ybbij1sZWFmmAVhACi1uIkH3zaiBfe3gJkNJvruje869s2AQCUmhb2eRMR\nUVEVVHk3Nzfjrrvucn4/5ZRTMHv27JIdVDmpCKpAVIJm6ACAB55fCwA4cLLrukcS6EqGcdt7D+Oc\nyf+GQ8cchNZ4KwBApHzs8yYioqIqeHrUWCw9g1g0GkUi0f0a18NFZVAFhAxN1z2Pp9y/S8DqjlXY\nEdmFBz5+GADQEm8DAIhkiH3eRERUVAVV3hdccAHOOOMMHH744QCAdevW4aqrrirpgZWLiqAPEBI0\n4Q3vpK65fhMQGQndaoe3prLyJiKioioovM877zxMnToV69atgyRJuPHGG/HYY4+V+tjKgll5S9AN\n74xqKS0d3lLGgDUhhFN5QzYY3kREVFQFhTcA7LXXXthrr72c31evXl2SAyo3duWti+6azYUnoBN6\n0pk+VZJ1DlgjIqKi6vOi3HtKNVkZVCGEbC5U4pIy3GEunAFtABDX4+mnFH2POVdERDQw+hzekiQV\n8zjKVkVQBSBBhze8tYzKO2GkB/DFtHR4S7LOAWtERFRU3Tabn3TSSTlDWgiBtra2kh1UOamw+ryF\n8PZdp3QNAdd2yTzhzT5vIiIqtm7D+4knnhio4yhbiixDEjIMpKC5J2KR3TOsGXkrb7DPm4iIiqzb\n8J4wYcJAHUdZkyUJAgZSWrqpXJJdt4pJQMod3qmoazsDBpjeRERUPH3u8y5EfX09Tj31VDz++ONZ\nzy1fvhznnXceLrjgAjzwwAOlPIx+kyADEEhprn5v1R3eAkmRDu+2RIfn9ULSQEREVCwlC+9oNIpb\nb70VU6ZMyfn8nDlzcP/99+PJJ5/EO++8g88++6xUh9JviiRDSAaSrvD2VN4QSBnp9c2d8DbM0ysk\n721mRERE/VGy8Pb7/Zg7dy7q6uqynmtoaEBNTQ322msvyLKMk046CStWrCjVofSbLCkABOJJVwgr\n3klaUsIV3vF28wctCAAQYOVNRETFU7LwVlUVwWAw53NNTU0YPXq08/vo0aPR1NSUc9tyoMgyJFmg\nI5JuGpdUb+Wtwd1sboV3yhwf+2w3AAAgAElEQVSPzsqbiIiKqeAZ1gbbqFEVUFWlqPusra0uaDtV\nMU+TUFzXOlblLTQVkj/puQu8PWk1m1vhDVkv+L2GouH82QYKz2H/8RwWB89j/w3EORyU8K6rq0Nz\nc7Pz++7du3M2r7u1tUW7fb63amur0dTUVdC2spABCdi2M31vu2SHt+5zqvB9qvZGQ3gHuhJh87lU\nABIAQ9IKfq+hpjfnkXLjOew/nsPi4Hnsv2Kfw3wXAiUdbZ7PxIkTEQ6HsW3bNmiahqVLl2Lq1KmD\ncSgFUWTzNHVE0/3akDXz/m3NvP6pwlhMm+AdnCecZnP2eRMRUfGUrPJeu3Ytfve732H79u1QVRWL\nFy/GjBkzMHHiRJx22mm4+eabce211wIAzjzzTOy3336lOpR+UxUF0IHOqGvaU1UDdBWQzHu4fQhA\nldOn0y/7ENet5nb2eRMRURGVLLwPP/zwbpcNPe644zBv3rxSvX1RqbIV3rH0oDQoGoSuOn3fighA\nkdN98j7Fh6iumE0bDG8iIiqiQWk2H2pUK5S7oq7R5opZeUtOePuhSunwViU1fZ+3zGZzIiIqHoZ3\nAXyKGcrhuN3nLZzK2x6spghvs7kqqxCaFeYyK28iIioehncB/NatYl0xK7xlA5IkzD5v2A/5PM3m\nqqxA6NbvisaVxYiIqGgY3gXwWfeX68KqoJ3bxNzh7Tebyi2qpMIwrN9lnUuTEBFR0TC8C1Dh91k/\nmRHszGvuCm9J+Jy+cQBmFW5V3pJVeXdGk7j/2dXY1hgekOMmIqLhieFdAL/PCm/JmkdNsSpwwzXj\nm65mNJur6cpcMdf0/ufyrVi1sRn3Pbt6AI6aiIiGK4Z3ARTJOk2SgCSlK293szkMNavZ3A53STYr\nb3s98GSKA9iIiKjvGN4FUOxbwCSByqAPvoDVg+2qvCXd22yuuprNoegw2OlNRERFMmQWJhlMslV5\nS5JAZciHsGrAACB0BYmNR0EZ2QRZqvbcKqZIKgAZQpedypuIiKgYWHkXIN1sbuDEr4yHL2D1fRsq\njLbxSG35CoRhB7b9GsXZxu7zdkjSwBw4ERENSwzvAshWEP/7qZNx5tcmweczk9i5jxuArouMZnPV\n2UbKvM+bVTgREfUDw7sAduU9fmwIkiRB8dmVtyu8hchoNndV3jL7vImIqHgY3gWQrSVBDWGGtqxa\no8Vdo811XXjmNreb0IWuAIoGwzDSO2SzORER9QPDuwB2Fa1b4S1Z93m7m80NQzgD2wCkg1xXIUlA\nyuDiJEREVBwcbV4AO5S/6NyGz9o3A0rKfMJwVd6GAclVUctOs7n537iWXguceuetj3dgQm0lDti7\nZrAPhYioLDC8C2D3eS/e+joAQLZWGfMMWDPSk7CYr/Fuc+fqe3AELhqQ4x1OYgkNjy7cAAD4yy9m\nDPLREBGVBzabF0B29WUDgJCyJ2nRDYHHXql3frfDW1LNKj2hJyBghntnJIkHnlsDg6POe6TpRs8b\nERHtYRjeBVAk72kSMMy7vQxvn/fGhnbXa8zntN2T0tsgXZl/UN+Enc2REh0xERENZwzvAmSGNwAr\nuNN93PGk7unztkebG51jobWMN3+Gd05znfeP9YhniIgoG8O7ALKsZD+oe4cLRGIpz+8KXK+xKnQD\n3hHnDO+esWeBiCgbw7sAco7KWxgZ/eAwB1c5r5HdK45Z94lL3srbYHj3iOdoePvX+t247I6l2N0a\nHexDIRpSGN4FyN9s7hV2Vd+K69TaQS/YbN5rDO/h7c8vfQLdEFi2eudgHwrRkMLwLkDmaHMATjXt\n5g7j5vZk+glhbtssbYLkT1cYKY6k7hFH5A9v/PMS9Q3DuwC5Ku9RVaFuX7P4vW3pX6yg362uQ/Co\nt5yHUymGd08Y3kRE2RjeBcjV5z1+VBWqQj4AQCjQw1w3OZrYAVbehWCzORFRNoZ3AZQczeaqrDrL\nfFZX+Lp9vcjRxA4AyZSe83FKY3jvGbhWD1HvMLwLIOf4ZnEv/1kdyg7vQyeNxrUXHoWvHTouu/KW\nNQACb3e8jHe2vwcAWPDOFsxd8ElRj3s4YHYTEWVjeBcgksq+jcW9/Gd1hT/r+ZHVfhy272jzOeE9\nzZI/DskfxxfJT/HEp88CAJ5ftgUr1u0q8pEPnLWbW7BibfGPn5U3EVE2hncBJo3YBwDw5VGTncfM\nZnPz5xGV6fAWmlmFj6kYCQCQ5exmcykQg+RPrzJmrxMOwGmKz2f+ss34+LPmPnyK0rrrHx9j7kvF\nbznggDUiomwM7wJU+6vwwIw7cOa+pzqPqa5Z1/yq7Axei6+ZisTGo3DUhP0BABUBNavZXArEIAVi\nzu+NkXQYdxdWndEkXnznc9z7zOr+faAS6unio7fKObxffGeLs+IZEdFAYnj3guIKbFVWPfNu71NX\nBQCoCYzAdbPOwKTx1QCAiqAv655wSUlB8qfD+4GP/+KsEa7p3YR3JJn3uXKR1Io7gr6cm83nL9uC\ntz7eMdiHMaSV8bUZUVljePeCu59blVQ4y2ZIwMGTRgEAamtCzs8AUBlSs/q8IQlP5d2aaIW692YA\ngN7N7WPhaCrvc+Wi2CPoyzm8iYgGC8O7F7Iqbye7JZxxwpfwzan74rJvHOp5TWXQlzUPOmTDCe+v\n7zPd3F9tAyBrWZV3Uk9i4ZZX0Z7oQGe0/CvvRLHD23U6/ufvH6KxPZZ/40HCC4y+4y1iRH3D8O4F\n9/3e7j5vSQJURcbZ0/ZH7UjvzGuVOZrNIRmQ/HEoIoBzDzwLB4a+AknVIPnj0DIq73/Uv4CXtryC\nFzctQke4/MM7WeRZ49x93vUN7Zj32sai7r8YONlO37HZnKhvGN69oHbT551PZUjN7vOWDEi+JFQj\nCAAwdOt5SUBzVXHtiQ6s2LnS+b0jo897xY6VWLBpUS8/RWkVu/IWGVVtOS7mknnBRURUagzvXvBU\n3pKCQtK7MuiDENnN5lBSkI0AAEDT0o+7+7zvWzU3/RJJdgashQLm/h7f8DQWbX0dulE+M7UVu887\nM6zLsYk6VeRBekREPWF490L2aHMzSLrrtzNvFcucpCUBSQIk3QzvlDUOTZIM6Fafd2ckieZYi/Oa\nqBZzKu+qjBndolr59AMnSthsnuv3cqAxvPuNfd9EvcPw7gXPaHO5h8VILLIsZd/n7TMnaJE0c3IX\n3S5WJQOaYQbBtX98C7rQceDIAwAAsVQMHZEEAMCvKp77qbuS4d5/mCJyH0vxR5tn/l4e4a27Dox9\n3n0nCup8IqJMDO9eUFyBrcqq606xHsoG4X1e8pshbM/GJgzreUkgkdTxxqrt0GWzyq5UK+BX/Ihq\nMcQTZjDqhkBcT8/QFklF+vyZisHdtF30Pu/MyrtMwlvT0sfR3b35ROXglZUNWL+1bbAPg4qI4d0L\n7nW9PQPWemzyywhvnxnMwqq8Dd16Xjbw7Fub8bfFn0JSzI5wvxxEhRpCTIs5FZ4hBLqS6cAO55h7\nfSC5w9tdeacMDXd/+Ces2LEy18sKkt1s3uddFZW72uaANSpniZSOp17biN8/uWqwD4WKiOHdC1kD\n1iw9ZXfdqFDOx42kWXk74S0Z2N5kNoFLqtkRHrDCO6rFnYFRhiEQTrnDe5Arb1d4ufu8t3Y24LP2\nLXh8w9N933eZjjZ3BzYHrFE5K5fWKiouhncvSK5RNYprkpae3Pz94zC+60QkPj3G83gqYTbD233e\nkiTgXApY06X65QBCaghxLY6UZm5oCOFpKh/sZnMtT+WtGVquzXsl84unXAasuQepsc+7H6w/Z+bY\nBiLqHsO7j3yyAvf0qN0J+lVMCnwZRkcthKv/OxaVYRgCuqvytkmqGXw+KYAKXxACAklh9pUbRmaz\n+WBX3q4+by0d3rmWUu2tzLDOvO97sLgvWDjavP/K5aJsOOK5HZ4Y3n2UOT1qTxTFOtVGeluR8iMS\nT0HX0n3e6RdYlbcUQIVaYT1vPmYIIJxKjzAPJ7NDMvMfbCKl4911u5zqvZjczebJZPrnLtcxLnrv\niz7tO/N7Rx/gLyJNN7BkZQOice+88u7AZp93/7Fpt3TKpauJiovh3UfmwiSmQu5R9dnh7VqkROgq\nWjsTcPLUGm0OpPu8VRFASA1ab2pW45l93pnN5l/s7sIPf7cUb3603XnsuTc346EFn2D+si0FfT63\ndVta8doH2/I+7xlt7ro4CLtuYVv4Xu/fF8jRbD7AX0TPv7UZT762EX9fUu953N1Uzmbz/mN4l065\ntFZRcTG8+6jQ+7xtimIlvHuFMV3BLY+uRDhid3obTsVsh7cCPypUc8CbZFXjhiE8TdI7Irs8s6wt\nX7sLAPDU6585jzU0dgEANu3o7NVxA8Cd8z7C35fU521+y9fn7b7/3JD7tiJa1gxrA/w9tHFbBwCg\ntTPheZwD1orD/nOyabd0mN3DE8O7j1RZ6dWiCnblLQz7vxKc028FuiS5m83NKlsRfgTUgPVYesBa\nXDPv8z669itoT3Rgbct656V2FSP7EqhvMwPcp5qj4/vTbJ6vOvKMNk+6wtvVIiAUb/gV/J5Z93kP\nbFC2dZnHPbI64Hnc22wuEI2nsO7z1gE9tuGEAVM6bNUYnhjefaRIhU2PalNVO6itjQ1X5S7Sk7TY\n7CpbNgLpJnopfatYzArv0yedAgB4a9sK57VOv/A+a3DvqofwcdNa+K33T/ajSszXt5tvkhZ35d3X\n8M5s8hvoUcntYfO4R1T4PY+nXIP0NM3AnfM+xp1PfYT6hvYBPb6hzv6nM9AXZW5CCCz9cBt2tQ7u\nfAmlwlaN4Ynh3UeqrOLkoycAAA760qgCtvc2m8vCHd7Wn8E1YE3yJyAMCbLwwWc10UtyepKWmBaD\nLBQ89sIuHDhyf2xo24hdkd3m7uzAC5lBMn/Ty/D5zPdI9WPu8XwDX9yjzd39v+5BdYbct+VMM9/S\nEAKabmTNvFYq9mfOfD8tY5KWLTvN7oimMlxvvJw5zeaD2POweWcnHnulHr+a++7gHUQJsfIenhje\nfeSTFXzntC/jjh9NwWH7ju5xe6fytprNZeSqvN3hHYNIhqDrrv512Wo2N4CYFofQfdi8vRMnjDfv\nH/+0bZP5vN1vnjJHqTdGmyGpZgWZ7EezuZ5jGlAhhGeeb/e0oRHXKHhD6Wt4Zw9Yu/z3b2DO3z7o\n0/56w90FkDkoTcszYI0LbPRNb6vD9zc04sEX1xWlqozEzC6q4VqgsvIenhjefaTKKmRJwtiRuWdP\ny9o+Y7S5e7S63Q9uN5srqg7Jn4RIhKDpBnyKtYqY5K6844BuTtEaUioBAM+/vRHN7bF0FaOkB4nF\nVXOFMvfgqriW7hMvRGbl3RZvx/ee+ylWtb0PqGY4u0MtYbgCW+1bs3n2gDXzd7vSLaXWrvT88cmM\nFgv3eXT/LGekdyyhIZbo/2Q1A03TDWzd1TVg79fb6vCP89fivU92Y3cBTd2vf7itV5/FMATunPeR\n526NoYyV9/DE8O4j91SphVCt0eb2JC2q5FrW0x6wZjWLT5xo7lskQkhpRlazOWCGt6GZj8swt4+m\n4nhx+efpK20lHRqblXcANenp835iwzO4d9VD+KhpbUGfQc+oPjd1fI6ElsCyliUIHvkG4Is74W0I\nA5qhQYHVV9zHyjuzz3sgFwGx108Huq+8NU/l7Q3vK+5+C1fc/VaJjrB0HlrwCW55dOWA9eH3tTp0\n5k/Io7E9hsdfqcctj+afXz+ztaSxPYZ1W1rx10Wf9umYyg2ze3gqaXjffvvtuOCCC3DhhRdi9erV\nnudmzJiBiy66CLNnz8bs2bOxe/fuUh5K0Vz+le/hrP1metb2LoRdeUtWda1KKn71PWu61IxmcyVo\n9puKRAU03Ug3m9vN6rIBXegwUnZ4p5/fvKPTudIWcgp1FWMBAElEoY773FMl2iPUN1rN7T3pbrIH\nSTGgjGx0giypm8EXRJV1Avp2q1jSSHpaEIq95Gh3uqLp982cRU3zDFhzDTTsY7N5S6wVN7xzOza0\nbuzbDors/Q2NAFBQZVsMfa0OMy8oMxXy/0vmn2y4dX2w8h6eShbe//rXv7B161bMmzcPt912G267\n7basbebOnYvHHnsMjz32GMaNG1eqQymqI2sPxxn7fb3Xr3Oaza3wliDjgL1roMiS0w/ujDb3m1+Y\nduWdsjPErrytMBO6VZFb64VLio4dzRGzipEMQNYxOjAKFx30LfP5jACt9JnN7YVOr6plfAnYI95t\nysgmZxR2QrdmiDMqrffuW+W9UnseoWNegz20qbezRdW3fYZH1j2BVB/mWe+KuirvjLECqTxzm/e1\ngnz1izfRlmjH3DWPFbS9EAJPLKnHui2lvT2tKuTreaMi6Gu+9HSPfUE5LHX765DHPu/hqWThvWLF\nCpx66qkAgAMOOAAdHR0Ih8M9vGr4UuzR5s7tZVbftyJD2KPN7T5t1aq8k0GkdAML3ramFrUGrNnL\nhcIKbwjF83wkrjkBH1KDOGj0gZ7nbVU+c0BbOJk7vNvi7Xh03ZOQrIuJzCrHvtf8lJFnw4hXQK5u\ncyrUlNXfrYgghC47y6D2VhhmOMk1zX16/b2rHsL7uz/CxwV2Dbh1uirvzJDwDNJzN6FrfWz+tVpy\nNFHYRcb2pghe/WAb7pz3UZ/erzvukfWZF2yl4q4OOyNJrN3ckndbz/H11I3ShzJ6uGXdnlh5G0Lg\nd3//EP9c8flgH0rJ9G6asF5obm7GYYcd5vw+evRoNDU1oaqqynnspptuwvbt23HMMcfg2muvzeov\ndBs1qgKq2rum6p7U1lYXdX/dGdlsNT/azeaKitraavhUGYmUt887FJKBlFlZ+/wqWtpTwCjXJC5W\neAvdrIpGjrA+hxXOmiGchU1GVY/AXnXWrWzW/u3PXREIAl1AzIjmPBfLPnkbK3evQuAIGfH3T0f1\niJBnu+QXZrhVh6ogkgHIwSg0w0BtbTVi7eaAMkX2QST9gJrM+R7vbVuFUcEafHns/p7Ho/EUKoLp\nqk8Zux1GR61nm978/Xyh3v+9U64vPUOSPK/3B9LHJrv6XYMVfmc7dytBT+8dCJj/FDVDK+g4O+Lp\nC7Fi/3/c1pluUQm5Pk8pqT7FeZ9fPLQEja1R3Hftydhv75qsbSOx9EVVVXXQeV2u44y7rrnyfY6a\n1phnm5he+N9tKGgKpy+cC/k8w+Ezh6NJfNrQjk8b2nHJN78y4O8/IP9mSv4Olsz7ZK+88kpMmzYN\nNTU1uOKKK7B48WLMmjUr7+vb2orb91ZbW42mpoEbTdvVZX1BWAEqdKCpqQuyLOWYpMX6YhYyOrvi\nUCUFCddrneZva8BaW6s5ktsO/65Iup9Y0hR0tVnPWzO0NTZ2QpIkdMbMintXuAlf7GyCX/Z5+vI7\nwzFnv1IwjJaWCJpC5nsmkjpefOdTqOOARFQ4rQApI4mmpi7s6jAHOukpCdD8kIKRrPNtCAN3vvMQ\nAOCBGXc4j2/Y2oY7nlyF807e32yokAClphkpyfBML9ubv19LR5dn+22NYUgSMKG2yrPdZ9s7cO/T\nH+Pq849EY0u6RSIWT3le3+EKuIireb2tPepsF0+mq+jujvWtxmVY9Nkbzu/23ydTMqXj3U9247iD\n69DWnv73UKz/j1es24VdLVEctl/61sfWtuiA/DuJu85vo9XPvnFLC6p82Y2Dja576Ztawmiq9uf9\n99zSkm7ty/c5OjLOZVNzz68ZSlpb0/8f9/R5Bvp7sVQiroWEBvrzFPsc5rsQKFmzeV1dHZqb002d\njY2NqK1NV05nn302xowZA1VVMX36dNTX1+fazbDh3ELk6vMGkNHnbQ1YU+1FjmVougG/Yo3Ylg0E\nfIrTbG73ecPwNpvHk5qzTYUagk/2eZ5/7q3NeGfNTqfPOqEncd1bv8b1Cx/CZ9s7nGN2z58uBSOe\npuKuWNJpAZAMn3MsQtagG4bTbA5dgdB8kBQdCc3bdJ7Qc98+ttIaLLVw5RanA1JSNchVfR/5HE15\nJ0/59V/+hRsf/lfWds8s/QyRuIZnlm5yms1HVPg8zea6YeCL3el/nO4+b/e98O6R/d01Xc5bu8Dz\ne0TLfaG6YPnneHThBjz56saSNO3OXfAJFiz/HM0d6XM1UPO25+qXzddk7668e1qOtZAxEpnvM9xW\n4ervx+mIJPHBp03FOZgBMtz+hrmULLynTp2KxYsXAwDWrVuHuro6p8m8q6sLl156KZJJ88t85cqV\nOPDAA0t1KGUhff+vNe847D5vKV1NWuEtK1Z1bshIaQYCavo+74BPTt8CZjWb6xrM6t0K51hCd6rz\nkBqCIiuQhAzJev6fK7bi4X+uzxpwFg5twd3/SPehulcFU0Y1oiWRHhxlGMK5QJCFz6m8JUWDpgkk\nrNHmwlAgUubFR1vcezUaTaXf372wiv1FLqvmY0I3L07kEd5+UPMiQcsK5lw6k7mvhA1hYHc0/cVk\nT6aj6Qa6oklUhXwI+BVPiK1YuxtrXQPFtDyD19yz2el5phAzRPbjLbHcg9B2tZih/vmu0t7j3tKR\n/ruUMrzdrXG5Lm7yjST3hHcPo80LGayV+d7D7YvffQ76MjPh//z9Qzzw/JohNfVvrgmlhpuShfdX\nv/pVHHbYYbjwwgsxZ84c3HTTTXjuueewZMkSVFdXY/r06c5tZKNHj+62yXw4kK0Ba3a/tV15T6yt\nAmA1nctWVW6FNwwFKV0gqKbv8w74FSek7cldNN2AJBSn2Tye0JyAt5cTlaB41wuHQEJPoNJeKxyA\n0FTPVbq78lZrt+PvDQ8imdJR39BuTlpih7er8oaiIaUbSOr2iHgZ0Mzwrm/x3pIW1dKh61772/4y\ntS8OjC6zGVcOeQc8aprAw2sfw8+W3YRIKuoJccMQePHtLc5kOJ3J3IG3cMur+M27v3fudbfvCtB0\nga5oCtUVPvhUb3hv3tHh2UfKM2DNtba5PUJd0pHQcg9Ei2vZrQ/5Rv/b/w/phijpl1OLq0uglMud\nunMkZ3jnCdGwK7x7Or5CgjgrvHvY519eXo///r/lPe63XLg/X19Gntu3Cw6lqX/zXSwPJyXt877u\nuus8vx988MHOzxdffDEuvvjiUr59WXEqbzugrdHml5xxMPbfewdeiSsw7AFp9n+FDE0zYOj23Oe6\n2Wwup8MdsKoj4Qp1pG/NspcTlYXqHW2uaBAQ2K9mknO/t4hXpudgR+4Q+cvL6/Gv9Y046/9NgqRo\nELoC3YCn8tZ1A0nDWr5UV2AkzGOYt+kZHD/hSAStVdJirvDuSHRiZMAcnGR/v8jWoDsRr4DQFUhB\n7/GkdANrms1j//mymwEAPzjsIhwz7ij8a/1uzH97C0LHCEABOhPp4HdXa+/sMCfvWLV7DY6qPdwJ\n70RKRziWwoSxlYgndU94B/2utdxlAy0j/gUlPgJSMIIW3Q/AHHyXTBmAZCB45FuYv6kT3z3sW1nn\nM7P1AzAHreVi37FgGKLHirM/8lXeiZSOrmgSY2sKm1WwJ+4gyZWx+YI3Ek+fn54uYgoZaZ35Pj0F\n/turd1rbGVDk8p/nyhPehkAP89rkNZRaJIbSsfZV+f+fN0yMqQlaP3mbzasr/Pi3KftClc1wkkc2\nIpwKQ7Kq8ZRuIJGy/keUzD5vJ9ytyjulGea93q5wloLm1fLY0Bjzd6E4zeZAetWyoBLElV/5sfmg\nrHtmrAqnIhgd9C668q/1Zn/0xoYOc1CcrkI3BISRWXlbzea6DL3xSxBJM7Cjrv5cd3gv3rrUqdad\nudntixFdhYhXWp/JfZtQdoDtipjHZ37BC2cZ1Q5X5e2e6tReS317s9msbs+E12atJmZW3rInxGLW\nQLTbLjsBoTFtSFR/Dv8Bq+GbsAmrxItOU3hS0yH545D8CWzsyD0NbVw3gzKoBHDKPicCQM570qOp\nmPP31Q0BrciVhbs5tdm1drm7JeGOJ1bh539a4Zl5rj/0HirCfBcoUdd0sz1V3oWFd+ZtgIV98Wd2\nKQgh8PFnzWU3Ha773PYn1IbSLWdsNqeiGVUdwG2XneBUywq8k18okgJJ1RD48ofYEdllzaomIaUZ\nSKYEhCFDkg34fa6QFq5lPo2McA5EASFhTMhscpZyVN4AsGZjJ3738GdQjRAgG051J4RAOBVBlTWR\nS6akpluVt2p++en2RDEaNF044W1oMiBk6O3mYEU7oAHvILKPm9bipS3mGIms6V11FUas0hz17k+/\nRtMMyJL3f2FP8Lmmh+1IdDrv51621J4AJ2m9zl533V6UpLrSD58qw3AtwBK3ngv61Zwz7dmfMakZ\nkHxmOLfEWz2f3WZX3idNnIqJVXtnfwaYs9XNee9ObAq+CkBYK6sV98vJHUSeytsVjvZ88u5m6/5w\nh0GuUMn3GfU83RQ5t+1L5a27jyv//jOPb/naXbj3mdX466INPb7nQHJ/hP5c8w2lanYoXWj0FcN7\nAO01phIHpk6D3joOU+r+n+e5zBHGftkHVTFHmyeSulllywZURXaazYWr2VwYCiRfylkARA5GIeuh\n9LzoIqMyt5qk7XlzzIsD3ak8E3oSmqGhUq1AcrN5n6Q9hzoAJDTdDEddhaYJT5/3X15ej664GZS6\nZq+mZr7WDnXAW3kDwEeNa8xNnT5vb+UNAFIo3XSe0DSnYjyq1jzGlGEHp56ezAaAgMD7uz92nks/\nYU9ba430z2hTHFFhhjeQDji7sgr6FShq9rdh0khCNwxsbwxD8iec998VzZ4C2J7oJqQGnb9VKiPk\nP2hcjY5kJ8LyLsjVbVafd3Er77hrBTXPimnWZ3avsFasL3F3tZ85h735Prk/o2dq2j40my98dytW\nb2rJu02+VfIyZVbe9iDGTdtLv2hOb3gGBvbjNoVi/z9XSkPpQqOvGN4D7IpZU3H1cT/AtMO+1O12\nqqzCp5qVdyJlhndNtYq6kaH0wDO72Vw3zIFhAEJfXQqoCUj+BJRUFYQQ+OPzaxCNCUiygNPsbM8X\n7p5iVU734dn93RVqJTsCVIYAACAASURBVPTmCdA7R8OADsBuEk5Bks3Qjic1T5/3Z9s6sGqTGVS6\nZlXyVmVu94UDQDSjv7cl3obGaHO6/9OpvBWIlNns7p5mNZyMQkDgyNrD8c39Z5rnwqpaw7GU83q9\nrQ5CAG82LEdjW8QTRPY99kKyBt9l3F49wmo2B9Jf1vGEBglAwK84I+LdknoKTy/dhKde/wzwpZug\nd4R3ZW1rV95BNQjVuqVPM7zhvXLXh87PytjtVp934V9OWzq+wJ/XPo5wMpJ3tHE8zxzg9mduaDSv\n8tQJG/HytpcKfu/u9NRsnm+kuztce2w2z9hvNK7h6Tc24Z6nP05v002fd+b+3ecvc8rcZmtA11in\ni6w86D20cBS8nyE09Vyxu5XKEcN7gPl9Cg6eNKrb2eQAwCer8Cmy1WyuQ5FVCDkJQ04BkvWl4fR5\n604VDgDKSPP+eilZiVhCw/ufNmXdCy75zdCwQ1FYfeZ25b0zYgbNCL81QYDzeiu8EXFeH4lrnsob\nSFfYuqZ4Xp9wVd6fN5mVynXH/Bhn7GtOpdueaE9/Qcqu+9l17/EDQJc1rWuVr8IJPrvyjsRS6dHq\nsSroLXthV2wXfvXss3jh7S3pE23tLwnzizfzy7raVXl/vH0zVu/YjFhSRzCgQJYkyEqu8E5imTWo\nya68ge7DO6QE0pV3RrN5S7wN1b4qyEKFXNmRNWBtV2Q33tuZf33zf9TPx6rG1bjx5b/i9sdzbxfP\n009rn4+GRnNMgG/CJqxu/xDhWApPLKnvVxO6O0dyZUrmMqw276IwvWs2D8ey++u7azbPvIBwH1Pm\nc01Wd8OoEYFuj2mgGT3cklfwfoZQNbsn9HkP2Axr1DuqYt5fHEtqSGoGAlAQTnXhXflvgGwu4iKE\nq9lcl5wFFeRqs0lQSoUQtkfmWkHv+9IGpD4/DFLAXrnMHDls6GZzvH070spdq8ztIxMAtDmVM2Qd\nMFTEpU4oMEeoR42Uq/K2mrqtCwwtZVW2OZrN12zdBXUsMMJf5dzSFtPi6S8J2T52NT0JnSss7TnZ\nK32V8Cne4AvHNE+fubbjAKhjd0Ie0YpVG9OTB9n3w8eMMO54/37ElNEA9nKe19ROrK94BsrY/fBk\nwyLz/RJnOyPOJVflbUSrIFeEkdCTqAgoiCU0p88bAHZEssM77qq884V3OBnBmNAoSMlKdIR2Q0fK\nEzi3vncnAKAmMAL71UxCwJ7Uxz4uawBdomIbNm34ctYxAN5mczc7HKMJLf33ADD3pbVYs6kNmiHw\nvZkH5XxtT/L1ecuSBEOIvCuCefq8ezlgzT1ffa73BrxVW+b+3bPmuS/0hBDOQL5yC7nM0eZ9NZQC\nkc3mNGh8soqAT0VXxPyySfc3Cydw7C/7ZMqAcC2bKVeYVZIwZIStLys7PNW6bZBrmiFb4W3Ezfu8\nDatvWlENGMLA6uZPEMIIvPCKNWGIYc+/bo149pnNqCJe4am81boGyKN2Oc3Qeko2mxFzhLd7xLs7\nvJ2Kxj2TnD0Lnavytu9Dr/RVOLPI2f3F4VjK2b/QVAgtPdGNh7WNhhS2djag0f+x5+k2YxeSUgT+\n/dMLm8STOkKBdDcBACTWHwe9dbzzGYP281blXaFU5q68dbvPO2Teiw/vrWIpQ0Ncj6PaV4VqqRaS\nBBiBzpxNyvd/NBd3rLwPQgi8/uE2ayY2gdZ4m3ksqubchZApka/Z3AooTRee127aaf5/YfSjedId\nJO4+b7v1J6nluaDoplk7U+aXeFeOkfLdNptrmeGt53zOfftavhYDIQSefXOTZxbDgeAZbd6Ppu+B\nWqSmGPaE+7wZ3mXi9Emn4OBRBzr3OvtkFUG/4vzDE3L6S8eerGREyAy8aELzNM/KlWZ4G7qcbtbU\nXaOiJQEpEDOraWsCFfteclk2oBk6UkYKWjQEZ35Su9ncqnxl64vciFeiPZxIr3AGwDfhMwgrZFMp\nCaOqA1AlMzyT1rSpumFO8iKEOUNb0BXedsUl5HSfd2azPwBENKvyViucCxk7+CKxFKCmK3e4lk1N\nnwcjPSFOPkp2c3IslUDQnx5dDwBC8zvvsaO1AxV2ePviEJoPtYFx6Eh2eia+AbwD1pZ+YIb79tb0\ngCd7lrsqfyWqYN72JwKdeQcP7Yo2YmP7Jjz+Sj2WvN+AjmSXZzIcuTJ7MFVcS2Bly/KsVeeAdEBp\nugHZdZ99NGVdlAT7vmSonmcglWKHd54Q9FbehQ9YE0KgM9q7ZvPsyts1sM89IY/r4iffRcfnu7rw\nzxVbcftj+bs4SsGd17kGBvbEPb/AUFGs1oZyxvAuE//fAWfgJ0dfZt0iBqiy2WxuS0npL2A7qGsq\nrfCOa5B82TN1CUN2+vjcfeKSrEMKRK0mc8nZFgBk1XACUNcl1768fd72hCkiXoH2cDIdrjCb0u3K\nW+gKVEXGiKDZPG/fLhWOpszPofmh6cKpvONaHAnNACCQ8rUDwgxGu9nefTucHUqVvgrzVjtIzoC4\ncCzlDG4TKX+Oyl3Af9BKz2fPJQVr/vdPj4HeYYYnanYh4LcvqlyD6qxz8MTrG8zKXElBCkZhRKsw\n2mfeKpdZfcdc4b16o1khN7anJ5SxZ56r9lVBMsygFJLebRW0rvlT5+ftHebAwUlV5gBJKZQ9Teyz\nG1/EB13L4Nvn06zn7PBKaYZ5+6HFvmjpzz3NIk+zuT1oMpmnP7uvfd66Yc6alykz4LuvvHM3m7tb\nLqJGFz5sXJ31Pok8XROl1t8Ba3Z4r9ncUvKpeYuluwuw7vx10QZnEp5yx/AuM4p137JPVhH0eatl\nN2HIGGmFdyyhQW8dl7Uvs/K2vmxEOoilQBSSqkEkXTNluSpbu8/VHinuft4OTykQMydesSZnCfpV\nnDzCmkFMNiAk3ZqaVIJPlVFTYb5XJGmGVWs4BikQgxGvQDJleJrNkykdck0z9EA7KhP7mHO4Z1T+\nABC1Ku8qfyUkSYJPVhFJxLHgnS1WeNvN5n4AMoQhpcPfl4AywgxLvWW8s09ZT48U3m+vaucWPpEM\nQsTMufn9B6xG20irerIH1bmqe8jmjGxyVbvZzN01GmN85t9nc8fnnr+RHd6bGiLOHPbuPm+7X7/K\nX+lZtz39hZT9ZRxOpPvZd0fN/v0vjzBnN5QrO7NGnO+KmhPb5Ap2O7xSuuFtclfSa8c/99YmvPbB\ntqzX9iTfaPN05e0Nu2ff3ISXln+OsNTsdH/0ps9b13NX3lpGuOVbqx0AYnmazd2tBLvHvYSH1z6O\n19au97z2b1/8H/wHZy+GUyhDCM/FQ8Gv62cVav89GhrD+M2j72PTjg7c98xqRON9v3ArplxjI/py\nwZJM6Xjzox34y8vre964DDC8y4w9baoqKZ7KO4sho6bKbPKOJjSkPj8MX459A0YsPamK0CWn8naW\nEQUgWc3u9qxn9v4As9nZvlXJXXlnjVZXXCPMAVQEVewd2MfaRoMOzemHVhUZFX4zFCNWsOzobIYk\nCYh4BZKajpCSEd6VZr9gZXQ/81hzNJt3psyFEsYEzYrYp/iwszWM55dtMf/B+lyVN2BeaNjH75rn\nXa4I43jpAnNbpB8/cOJIp5lbaH7rIsDU5WswH5fTg+Ls1gF17834rKUBcrV5cWCER2Kczzw3G9q8\nM63t6mqF0GX88dkNCPnM/bv7vO1b9qp9Va7WAyNdfarZYbR5d5vzc7u1GEyNOhpGIgg51JX1ZaZI\n9oWZAXWfDVDqvjB/l1zN5prhad2RrM8djafw0vKt+PuSeuyM7Ma8T5/POV97Lkae+7ztqYTXbmnF\nR5+lBxf+c8VWvLBuGT6vfhnq3uY8+T32eXtmFzN6rLx1XXQ72txTeWu5K2+7p+mJ1z51LpQMYaAj\n1QZlRO5FZwpx3zOr8V93vdVta4emG57lMM337t993plTwP7+yVX46LNmvPnR9l7vq9iefXMTfnTn\nm9jZ4p06ubtBh24bt7Wjrcv8/zVfyLd0xEs6HXFfMbzLjF15GxCe8E6PJbcYCmoqrfCOpwChoEau\n9TRf64bkDFjzfPFat4l5mrqtn9uqV6fvv3Y1J2eFp6x7Xl8RUOFTFXMOckWH4QlvCRX/P3vfGW9H\nVa/9TN/19H5OzknvIR0SEjpEulIFiShYLyI2BEQR9PpD5aJX5d5XQbHAtYAIypULWABpIXRIg5De\nc0pO3XXKej+sMmv2npOQkJAE5vlAOHvKXrNm9jzr356/wfTMWax0xyDt5EUKSdiOhxjTYM+5eRSY\nJjgdgxEYq+w2H3D7YGkmKkxqERuqESB33eR9z/k51OD4GZztI2F5FehIjxDu/mRMxylzRvgxascA\nsf34rgGLndIG8VhnODZGNZaFPvlpkZvgZSphKnG0pVqwrm+DiGl7xENPoQskT5vT8LwDuXXqoBTz\nlhdQPO6rsAXKmMqRmBc/EwCwTYqZ9xeY7CuJg2QroJhF9GT7AxKnQo42MQijeQN0Rt5xU4fteMg5\nebylPwa10idSYXnnfCL58Su348mtS/D0tucwHAghIg8j2DDD30f+/Cf3Bd3PWgO18DU2Fsfx8Pra\nnmFL1uRzOR4JlXYtzXrfXZ33cAlroXFuhYhEtqCG/b4RAReWkRvHlOJbv34Bn//RUwGyGS488Xah\nlogfcC/Du9Uudnd4aMlGAMCK9cFFUVAlL/yaO3uz+O7/vIyb734RQDjJ9/Tn8dWfPov/vPe1sm0H\nGxF5H2Lgcp8e8QJu85OSl+CyKR8RWeeEqEjFDWiqItxXhq4G4rfE8RPWvLxvkYsabznWy+uwY9vx\n5zUPBT4D4Mufqi4AAqjB2vKERevS4eo0EU3xyds0NCTMIHl35ujLl1reXiDmXXRcEVsnpCRhTvXd\nxUNuH+pitejpz+P7v30Zjh20qDXTptYwczcTT2rqwv51drbD3dXC+qYbgOohldBx2xePRW1lDBk7\nA0MxAaIGLG9DYeSt+AI1gfkC/GQ3x4DjemhPt8EhDr551xMAgK5cD4jiwcumEDM1DGR4jbwjXLfC\n8jZTUtzft7x5XH989RjUaC1iO8cga4X6qwfXw8vSmv2/L1+BL972NJ5bSePv/YX+wHGinaylwXE9\nPLVlCfr1jZClCbjl3ZcpAIoL64h/iYXGa10rUIqubA8Gi0P4zSNv4KofP4Wt3ZlhNbdLX7YD2SJW\n71oLrWETVOba91gI47W1PfjRH1/Dd38d7o4W51IdvLTzFQxk/UUst4qD3+1hlf009DYa/y+zvAsS\nebthbnP/M0X1hFUnt9flHqF9xe6M561d9HmRPQHDLYzeLrRS5aJDEKW6GYFF2zBW86ad9J70MC3/\nsORH3tt+1cbesm0HGxF5H2KQyduSyLs53YA5jTNgKiwm66mIWzoqkqZI7DE0FfUVPkm7riLI29ky\nDsUNkwFIwiEy2Uj//0bvWwDoAsHfTv/fHLNMxHJlyzwRM6DrKrW8VQdEcaEpPB6uIcXc5isHX8fD\n6/+B3iJzKRcSKNgutnXmoCoqNnX3omh7Qq5UfAdhMWtOiEYBLhxk+k1c87MleHNzHwaGXMhtTxW9\n6LvMAboA4W5zVodOHJal7hIYGvMU6P6POGNnYaksN0Amb7Yw8VAU4QNSQt6KXqTKdVDgekR0U4Pq\nghCC7Sx5jeTSKBRdZLJ+jTx/6QvL20j6fd+lmDe3vFNGCiopDy2IVquOKch7xY4NAIA7HlwJQgj6\nCiWlSxqXf6WWt0tCrErNRUXSxMBQEUosCzVGX3KqomJd/4aApekRD//x4m345Yrf4cnXaDLQ+m0D\nw8a8S8l73dYB/PjV22GOXClkfVHiiXpdcq/L4C9xo/0N3Lf+TxhM+fFM/rIujXFvJstgtKwXf3O8\n2rUcAwU/L6DUba5YGcSP/Jv/5ap/H4ekKgO5MmRf8HZ6cpcuSDj25DbfuGMA/3X/soDrfTjyPpRy\nuEuH+HZi3p0lLU7DKjhMQyv77FBBRN6HGHi3MZd4Abd5OkGJQybvmKkFpBh1XUVrbYX4m3gaeofY\nKp9ocDtHiAYn/Bz+viGPQpjbHIA1eSn9n5KYNz1GBzQXRHVE85WYqSNp+eP86/q/+brmtonnV+7E\nt3/zIlxbw2CBveTYGF23xDvAPuelal2d0o+LaDSBTKUdxVy1ECBcriInn58vWlzPg6XSfXVDJu8M\nYiodu6gVB+ApLC9AsUXSXqAcDzSWbjHCdlxPiKcomgvXI9gyRInMy6XYi1AR96efuXeHbE7eKSGB\nC9XzrT5meadNSu6EoKScboiGDYgKkqXPhpyYtq2/F45EzqpnsnI6D6ahwnY9IfIiQzc8NFbHA+1n\nTxt5MmY3TAfgl8ABtAFNxsliTd86keCn6wrk05JhyAYA1m4rr4tWNV8NcHcQOvkshGEnt4ltnHxl\nK01uHSvvs7p3LX6+7C68YD8ItXon9Kb1cFwPHgsDFG0XetPGkkF6tIwS/n0EEBDuKRsv8fZIzm8n\nbC1n4e+N5X3lfzyOl1d34bkV5Tr85eMoP9ef1/zfbtX+9hV7Gnep5e0GLO/wY3mf8mSMl5mW73co\nl5lF5H2IgVvepJS848wFzcmbqIgZQfI2NEVYhAAATxUPKIXix39RalmHrDBD3OoyFATd5lTpTYei\nuVAU1gwFQNzUUBEP9oC2XZ6lreI1Fssjju5b1oxcbVt+80iWM3P9J9W0fz2uCkUliM/5BxQzD6J4\nAVc37bxGaDy9pDOb6xKYjFw1g373uv4NsD0HMS3BxufPnY0C8k4BLmxhvYfNkaHQc7oegcoFDVUX\nRdtFX44nDkpa2GyBMsAWXZt6ekA8BU7RD4koiivkTLmLO2kkqTEqhwYA5NwMVI/OPfdCFIlv+e0c\npLHCZHYU8svno4KwzHvdEfK8A5LL18vTcyUTCpK8xpuPQU+IOZRlcLn17xFPJPFpqor/emCZf97d\nSHgOZotlOR+q7ore67sDf4nzygoS8/MBuFXtegSKlYU17Um83hOMsfMXf3+BHpdVemGNewVG+5so\n2g4efHo9rvrxU1i5cRfUip7AsUrA8vYTqoazvPNOAf/+3K349crf7/aa9qTbrVZ24U3mPQPefsxb\nnvdk3F+YD7eYKP246Nr4+6YncNeqe3Y7vr2F63n42h1LcO9j4W11AZQ6YgJW9HCaCNt76LuxtoL+\n/sLc6283Uc0jBKs29r6jxi97i4i8DzHwhDW3JObNLW9D5a5XD5apo7bSJ0VdV8vIuxQyAQXIhoQ8\nCnsgd/m7EjFK3rL1yWO0MVNDMhaU7LSJLb6DJxEpngHD8jCiIeWXAknhQSK3PWX/5vNAR2MaJ8xs\nDYxXYdnqPMnMMjV/PjSnrDOb43rCbc47hf34lTsAUPUzOugY7E1UCtT2CljeQ12w3mBN4FwyTGbN\nP7NsOx54YpMYe9HxROa9fJ9UaIDioj9TxKadg+jNDQKOibVbB0RCG1RPlCxx8t64Nc+6z0neBcVD\nkRRgEDZ+fq3En1SejY5CEqZdA5PF8hXNgc403Tlx0fmk280YEd4WbnnHtLjwLshKev1539LnBNfd\nnwsmj9VtwD82/QuATzAXnzyOnstxxaLW3jyOnch5W+QtkvGYkp6iEtF5T7a89Za1UONZPLL1kcDx\nolQupMd63inikefpPX3hra1Q48GMZyhyzFsi72Es78c2P4nOXDde3PkqVvS8OSxp7l6m1IM14SX8\nz9q7sXGAVkS83WzzjTv9+/R2Er5K8wGyUmfEMG/NviKTc9DVl8fGnYPIOTlsGiwvS1R3Y3kPN/4u\nFs/mW12XAEYe8SMfwWObnsTTr2/H7//xVuixpXjxjU6ahf9WePjmQCAi70MMgZh3wG1OicVQfOvN\nKnWba6qwfADfsm6o9gl+WPIOURIjw7jNOUbUVfqHqwomtlcFysc42cRMXciJcnDxEz6GuKVjYmsD\nHGLjcxeNRnUFHWdBTiJ2Zbc3V3BTkU4YaKyOB65HJOUxy7syYYpriM96TKjQnbuQkoHjEphsMdLX\n9Dh6cr2iZGt2zZHivM6OUXD7a2ATGy/upPrvXBa11G0OACZbbK3fPuhnzGsOirYrVMrkudVVHVA9\nPL9qJ2761QtQDBq394h0P1TXLxdi5L1lexH5okv34d4JVmGQGeT3UQFxNbjwJ7UvT4nZKRiIW5oY\nLzQbpk7H1S/FefkCSTdcn7wNej5L8cm74PrWZU/Od3trjLxL1dOMjlV4YM1DcDwXhAAT26tw1GRa\nG19winCJC7evDs72MaKigTeMCUPfUAGPv7JVkJDcjc4cuRJqRXfA8pZDQNLFis5hgYQzBqphH1zA\naH3t0gLDldzmEnlb4eQtJ/r9v9fuxLLulaH7DVceV3RtaHV+WODxzc8AKPdqEELws9d/jf9dG1yo\n9PTnWRc8EiDm4cgvb7t4+LmNWL2ZlmxmbT+GvCvfF3rMvoCX5xUdF//96p34/gs/KRM7KvXWBGr3\nh1ns8NACfw4c1xNVDH9a81f86onnsKnTv++7s8K3sERBfr/fDUTkfYhBVcOzzbmVoTGZUUV1ETM0\n1ErkPba1UsiE0pPQ40c2paXPJHeYbJmXan5Lx7O9yzaPb6kVC4yBrI3KlIXjjmgX23lTkpipiZcc\nh6uxlxnLJm+pTeDoFkqSd6+6V4xHdpvLMWthgbsa0gkDDdWJwPWUlsNVJM3A9ei1NN5cnaIuccfz\nhCeBqDbuXf0AvcaqMWhPjQheuEv3W9e3EaYSA8nR+f33y+eXzRG3vAH4Cxtmeedt+sKvTib8/TUD\niurhjU19gOJC0VwQx4TrefA8iJg4J29uUaowaRmT7DYXjVmkBZur0wx5Bp4QZ+cNxC1dkLeiOeLe\n9hcly7tAnzdV84TbnBOXqcZD3ea9WXo8IUy6Vy+KEkYK/9nryXK3ugKTkXPe4wsxQ1wDNCcQ81ZT\nvbjnzT8LBb8f3PMq7n70TSxdxWK3hpSAVbMT1sQXBQm6HvGrGmRIuQWDdjl5F11byMNyD4ilxv3K\nDtUT3gWZvLmGQSl6MoMwSAIN8ToAwxPgcKpyj21+MqDBz/NKZPL9xV9XYe2urVjWvRKPbHxMfH7/\nk2tx9zPPIT7zceitawLqdjIxquke4bnY3p3BH59Yi+/9lraslWV4d2a7Qse4L8ixDP9C0cP6Aerp\nKG3y44sJ2VjbtwHLi0/AGE1DII7r4anXt+FP/1obOIaHRGQJYPkdEZu6BErCf/YzuxGl6WFW/HCS\nvgcCEXkfYjihbSEA4JSO42GZ5daAcFUzy7u1jr4oJnVUY1RzhbAeAQh3LHe5A74rm26XasI7R8Dp\nbIPT2eZvl9zQJJeCN1SJRNHvuGVqJs4/kVoZU0ZS17HIqAZQLPjkHbf0gIAMjAIjW7pPU20Ccxpn\nYFrdJKzr34AhbTs7h3TxcsyaK615GtIJk1qBsopcSUb9rPH1qEun/HMxxboYUzVzXSL01wFfxtXQ\nDJhG8GfCSSTjZGEp/uKptT6FUpiaLITj66sXbQ95FhNorvGTDGO6IVnOvshMNu/QlzBbwMiWNyGA\n6rG+6l65d0K27ImniVp2wE+kKuboPbKYWA50h1U7EAzZQ1DsONA5GvYW1pVMc0SiD0+aMxCDxa5X\nJm/umvcGqJiOVrsNg3JrTql0atsQJVtVVYVlXfAYKTAvCl3EObAMSU9/1HI8ufVZPLLhn3A9V5RM\n9bA2nUqImI3sNlfCyrcUV7yMB/dgeXMPSEz1PUCK6olqD368O1gFNZ4RLm0ZWTuHQk7DB0efAcDv\nA5ArOPjt31eL/Rw3PKntjV1BFy8PXcge7KGcjd89/1TZsX99diNyBiVEo3VtoFc5J38lNgRr0guw\nJtM6/lK1uqyUUf+/ax8WvyEZL+54Bc9L/elLUXSL5fr/kuXN8asVv8OPX75dhMe4Vfzwhn/ihy//\nP2zxVkKv2waoDhzPw6/+7w08tGRjwAshpH+55e2RMg+kKpP3btrfdrPnbLgGPwcCEXkfYphcOwE/\nOf67mNVwBCyj/PYYnGBUDzFTQ1XKwq1XHI0vf5hm+fK4LQBBvgH3ouwelC1vosHeMBVeVs5WD24v\nrJyPKUnfhWxqBj588nh89zPzMGMctRZiElnlmfEbs6jbvLBsIYobJ4rtinR+njRycvvx9OsUjyXE\nlMfdrSnPCsubeNTytgzNT3aDH1fk1xC3NMwd7y88eDcxUzOggCa1aFKHXMI8Dbyvugw5NGCqscC2\ns0afiqq+2eLvQHvOgHyqi6JXBCEKWup8z0jcNH0vCCccx0Qmb9MsbE+lMe+Cr3QH1wAhCLjNdU3y\nTngl91+aJy7/6hQMxE0NMS3OzmvT5iu6DZe4UPKViO+a5hOo6kiWN53LJ1/y+8bLMW+e8ObsGAli\nGzDa30Rfwbcqq6sly3Dlb2BNfRquPgRNVaEqCoqk3PImqitCSfLcPrrxMVz1xNegN9FSL9cjwoPh\nZYOLq0DCWgi5Q/WEBSqTN/GYfKtr+6ED9jwljARkHf3BnA3Xc7FhYBNMLyUWMLe8eBs2D/ou7oJt\nU8liR0c2xyxCRn6PLN0kyc8SbM9tx5cfvwlPrH8hMNwEy81wulqhQRM6/4E4t+KhR6WJX2rp619a\n5PXYdBHVP1TwNQXYgpiXBZaSmWx5bx7ahqU7yrPOf7Xy9/jNyj+Iv4u2G9B8v/Wl/8Y1T92EXfle\n/HrFH7Az0yme9VIZ1NV9a6HX00UQJ+A1fesD+6iJwYDbnH+XJ2nYc0+G63riPnLIev6lynUyIvKO\nAADQVPYjUspdedzyVlRPuNJrKmJCwjBgeTOrNpDMEaKqxlGZNANxW0teCDA0VfrkbmoGFEVBY7Xv\n9pXJm7+EYqbGXKBKILNazlavTtPjWpK+znhpkhx3hauJId8t7lLL2zTUACnpsWLgHKauBRc2jNhM\nzYSmqXC8oOXNyVtX9fLYqpQ3YKlWYNOpI09ERW6cv13zr5d7PbTa7XijawOKjg14KtobZcvbpN4F\nkDLL2/OISNrjpMFnvQAAIABJREFULwlFt0EcAx4jb3gaFIVlC3P3eWkSIRfaAc1GB2huQNzS/fun\nOYiZmp87UIhTS5yoILaBIjJSzLsI4mpYsqwbdz9MXZM524/r8nixl6mE09kORSEYcCh5X/Ghqaiu\nCU6vmhhCwaRuV8NQy8ibXoODdFJ+PoOWqNEuNVlhiwsu7AJQFz63vF3J8k5qKcQd2kRGUT3YbJ4H\n7SHEtBgaN58HZ/toAIBDbL8Gmn1Hykj4vyvFQ6Ho4q3e9cg5eaSdVnj9dWIMXUO+KtiWHuZKdw0M\nZei4RJMdRhp6y1rE5vwdD+/6LYrI4c8rngxc85Cdpde1fip01RALKNntrbe+BcegnhAufyyseOn3\ns9T5E17dvAFf+q9nxCLHigWJqbQ3Oq9l93rpb3ht34bAdtlb4HgObNfG13/+HP7th/8Sn29l5ZM3\nPPtdvLDzZfxr6xLkmOVdCHNJMw8cH2NNrDqwWUkMBkrF1vZuxuceuwbLu94Qn8ltb6EHr4mrJAI0\ncY4QgnvefACvdvnhCdvx0McSE4frQX8gEJH3IYzm2gROmNWKL15whPgskE0eAqOEcDVVCcgbkuEs\nbwC1lbEAoafiQWICgNYaP0lNjudyWJLb3M821/06TEk0hYu4AEBVih4XsFRLM+Cl97OaYGVWsuWt\ny+QddJsbuio0vGWYqgFNU6h2t7SY4Mk3pmqUkbec9CeTsxibNN+xEMtbjWXxt/7f04Q1TxPudtNQ\nYeq+Z0V0RXNMZPIOtSCY5e1fqA04BmzH893mAGJxlLnNP3bqBEHufFvOy9JnytMRs3RhvampPjqn\njLy9giU8EKQYR8YblFzGRX9O2Hf15XwrLONkaEzZMcR+3EqLWRo8zd83zix/T6X3z9BUOGD3UnwH\n/d5kXAqTlHTVcwerpG1sIWeb8DIVYpz8he95HqAX4RXi+FjHlTAddqzqsg531PJOm0nYDoSHpugV\nxQKAex8qrKT4XXHPx7Iu6vKOF5vhDVXD3joGAPDcm742+NZeupghjo6BQWZpMsubX6Wa3hUoAyxk\ng7+/jJ1hc6RAgyFCF778bT/05vVAMQEvkxZiQaVqfRxLNvtlc+NHVOH8U/zcDzW1C/IP8ub/eQld\ng9TFbO8YgYQex/qSJjy25xPj7ct+gy8/eQN2ubQpztbuTKjVammmkKQNI0au9Oc4dCxyxjtA3d6y\nbsCDq/8BAPjjW38Wn/FjHdcLvEMAQElI5J230Vvow5Nbl+Dny+4Sn+8azIuZiCzvCACoxfzRRRNw\nxBh/tT4hdQTcwSoU3pwdekwpucdMLaiQJJM3CZKZkDdlkBOpONpqq6T9yxcSlaZvRfKXWMyULT//\n/LpE3tzy1lTNJ9mSxUVx3RHwWMIUb0nKY96moQlXOOCX9nDi0jU1IBwiX4OuKtjUOYTfPbpOfM7L\no/RQ8vYXKLy0SoYWIG95MVOSw6C6UIkuLNiKhCnlNDjCCiCOQd3mhJM3LwVzoai0tj5XcFDgbnMA\nlim7zTUoACxDCyTNAUCB5JDQaC5CwtIRN+j86rU70KmsgWKypKd8TMwDKcThEgdEp5nJil70xXDY\ngi3LuscRQtDv7PLbz7Lvz7t0e6ezCTuTVNr0kxMvw1ktF9Ahs/71pqHCUYKVA2JRKB5PAhhFjEx3\n4OjmuXRqpC588iKosHIezGKNyDsAaLKiYhQB2/QXSACgUMvbIx6G7AzSZgq27Sc2Op4jkTf9jsp4\nWlLCo9v6cixbv0jnmeTpwAekBc6OPhZGcA08vIS6yGWyo99B5X7zrx1L50hx8M+XttA+5ZkiuocG\nxBzpii5i5tzw1iq7oShAYeN4EMeEogDZYkHEkkvj/tttP8FLU5WA0Iw1+XmYE18AJ/A1W/rx6rrt\nbJ4NjKrsQHd+FwaKfqWCHMte2fMmrftnv+MbfrEUP/uLb81yFN2i0DRwPSJCFv7AWNWJ68sJK0RF\n7oVF9JqsbMBtvnEbnfNdhV6YE16A3voWc6F71I3O3iFpvQLENpnbnC0M8g5eWeu3C/WIhy2dQ3h+\nVac/3ihhLcJwiGtxFFfNg9dfH7q9lLwtUyuxvOWENXr7501uxPc/O5+2/pMs7/GtJf5MMMuCn1sr\nt7wbEv5Cg1tIPGv5e5+Zh7PmjQ0dK7e8AYiM5dIMYJJP4SOTzg1+oWR5u92tZePxX8R+9q0MQzWk\nemH/+3gs2ND0snri0fX+NRoh5C3PtxJI6C8JA6gudMUQZXQVSRNtKRqX16q6AuSbZZa3r89OAuSe\nLTjCbQ4Ahkl8kvc0aBpLAJOS5gACm+TAeSNmakjr/uIrhz5R1uQWLDEPXoH1ZlcGac9yzRPhEL5Y\n4q1fu3O7YKMgLF5ueXsKJYo3B/3yqE1bbdz10Dq2ncdXM7Br3gKgCNLjC4BYjL2U9SIUBUjoSVw0\n4TwoTgyKbqOphu4vXP/FGEBUmAodP7f+O6uepIsgT4Preb4YDot5d2W74REP9fE62K4nFp02sSWl\nO2Z5mwkpt4Fu4yEEl1Vf8DnK2QUUbRe/fGgVVm1hjXpcXWyX8wb4dRLHFGI7ikoT2VZv7sMdf10B\nWymI+VWhS25ztsBgdegkmxZz2DkwhKLtQW9eC60mqKrW7/o1y6qqBKRhAdAOaZK1nnPZ78s10Jyg\nZX49OT80kA35/cmu+tfWlau6FdyicJtD8VhIyQfPc+GLqEwxA89mioKuCkVzgqV10m9Qq+wRTXgc\nhzDLm97Hj7Z/Bl6mIuClsl0Pv3/CL9+7c/n/4DtLbsMDT/niMZHlHWFYqHu4Y2aJNWwZWlD3N1Aq\nRh/kptoE6qvi0FQ1QO6TO2rF/08fU4svXzjdj8ejNL5OURvzCZ94Kl08MJd5Q3UCR030CVa4iAGk\nErIrmrfwLL/YMXV+TJx386pImNA1Bc7WsdQqIeUxfuIRVFoVpaeDqRmi5EgJqXU3VCMgvfjZD07B\n5R+YIf7Ww8hb2t+TpEcntNUFd9RtqIqOuGR5z2+eCxAFesNmP6Pe1ZHJ2zR2yaw6a+ozfptXx0Au\nHyTvbGIjI2h6nzVNoeTLXtqJlEvdpooHz6afxS0dST2Jwlv0+lzFFpa3V4gL0RauVpbxBkUSk8hl\nYN+/dscu/Owvy/HEm5ScSYaFW3jZGrdwTN+789yrg4J8XOY2R7IXUF2MVuaCFBOB73hsgJYUcosx\nriawoycLt6hDt1xRiREgb0BkxOftIjziIR9jFmM+IfIKAFoOt2pjL/64lNbzt6aaqQyqwlu32uVu\n81hSkD/XyOdVBbativtJPy/gsZe34ull27F5Fy2Rq02m/aQ/j7vNFYgcCFsqeWT3dzBrY8122mKX\ne0Dyeep2J4SAe43VWAbEU0AKcXGN37l7KdZvH4AxgvUzcHTkXliEpNMIBzZ4GZ+mKgErmkP+zdhM\nuY84hig5zEreroxdImID3+1N57A8abDgFkTCGkqSyVJGUhCrIyzvrK+q6OqA7gT7juvhSWe268F1\nCfNuqMgXJE8Zu8ai7QbG8GrXcmjpXvEbEfu8S4jI+z2GcLe5VPIVEvMOWJYSudek/Bfr/KlNmDra\nJ3MAAUEYDpnc4WkBlzk9p2+5VyV88RiZ8MQChBGVSGarS6IuLnkDPA26ptDEKkUBoIAUEtAhuarZ\nS8ojBIs6TkBV/wwa72OQyZk37pARqJsHVZKrkhYBCb085i27zT2pfj5VojKnKABcFQ3VCUwbXYu5\nExtQHauC5VZBiQ8FMuppqZhfh6omhkQmLHENDOVtFGzfbd6XXI7p09l99VToqsK6zrH5GPMMVNZb\nmj8TBduFoijwhmhoxEYOipmHQhTAlmLezPLut/tgxIPkzc/Vn83h+VWd+PsKSt6lljePLTpMMCb/\n+kLs7CmIuHavthHfff5HUHU6B5br51qIlynJQzFzIt5tKQlk8g6Ia8BVCjBYtUYpefNcjbybD1iD\nzrYxrByPC9FQ8n19K81gbk01U8ubu80JJe+EpQuXdtKK+d4PI0jeXPdAdPDzCsiKen3672lzx4rf\nnS2XWqksROKYoGI7qng+sgUnQJwAkMl6ICBwPMePeceyIIUEAFXyDri49wnfclR0ByAqFM8MzLWm\nKqHlcmD3UYkPQq3sogtqT4NC6Dhkb1fGLre8lVjWJz+jnFjzbkGUivE5cnc14gOpy2CqlvjMcT04\nnoO8mxeqisTVoaiOmGN6fSXfwd3ujkcXAJoNuAZts+zySgJ/n7LjpTkChkmqO0CIyPsww5566IZa\n3oGYd3mdNycbz/MCCWvyQqBUfrB0eygUglhJrbpsrVt6+PG8QQh/iR49tQkfP20irr5oBkzNpCtu\nNv50wixrSiCTN38RVqUs6KqO6sKkQHtUUzVEOdCYmjZ888jrMK5q9LDXaGhqoJZ9XHMdPnDkCNx0\n2Vz/slUFhVVzoearsKDZF27hgh4yKhMJ6JqKL104HfOnUq+CiQR9YRh+0h0tFSOB8h7enAWOgf6h\nYHY9APSxzm10kaMGLG8A0OtYwhT7bOG0ZurZYQRAyTEPnSQAKNA1BQumNWFEFQ3Z7Mr3wUqweHKJ\n5a0YBVimImWrJ6Brip/YptlQFF+qlQghGVVoxW8Z2ibmwHN8qV23zw8ZKUZRWN4WErSch32HbrJY\nrsVkMJnHIGXRf9/Y0oVfPkL7NDudbSDFOAtNcPJmI0pQi7Ml2URj3sxtTsnbRdzSka70UBmjrV1L\nyZ+7r4u8RxD7DRb1XRhwugHFhcZEgyqsBGrScRAiuc0VOW4vJe0x0ti4Y1C4r0lJ7kHRsyl560W6\nwGChB+Fh01ykkiE04AYXWSqzvHUvjuKGSbC3jaLbmSWqN9MFDsnR3vSKS8chk3e2pH4bAPSGLYjN\noNnmhuWTYFKpggIFBafot2FlY/EKcShOnC7CJLc5j6kHLG/NoUTMUGrdK6oHKJS4HZewcj0ahvIX\nOPQ7MnlbkLfT3QJnRzubA7o9bmmR5R1heBT3QN56iaVoGcGENeLJ2xXpv1wmskSqkyGsLWCY5Q0A\nY6voD5vYFsa0BF3VMtEamoFvf+JI3HrF0SXnpeTI5V1jpoZjp7eIuHiVVcmuRRMNW2QYEnlfcfZ0\nfP7caRjTSo/RNZW9YPh1aSJO1VSTQGOqBhWmbJkH57M0/p00E/jwiePQ3ugfo6kKvMFaJDedgOqY\n/7nc7IGjpabc2rcU+oJVOem4GnIFF7miCy3mZ1VziyWQxyBZ+l051vCFuc0NPRgWEYlVnobPnD0F\nNRUxen+IBuJqKHg5KLotXsS6ruITZ0zGNefT+9WT3wU9zsnbEucCAK1yF5qmv+W77l0dLbVJsVDQ\n67Yj1rLJF3MJkZYFAM9gCnBF+twkYjq83iZUDbIKDL0o9NKTajWyeceP+zJLTjGZNeZpuOXf5iPN\nyHv11h68vtFPsgJo8ppX4vZWrBwsNYZ7/rYJBP4C1CU0YU2zCsg4Q+iobGGeJhWEKFA1Rt6eDVM1\nYLOsZrHAqejBC7gPWsNmaJXsGow4aiuo0EvOLhey4fFuIkkFr9vZi9gUKpzCFy5y3NzziEgMEwtX\nISTjoChJ2Y6qYhnlJeENVSXoLw4grqThdnb4izUtaBUX3jgyMA5ZMjUjZYIHcmMAQPEEeRc3TMIM\n71xYmomiWxAxb1GD7eooFF0YqinKHh2X+Cp2IrFRh6J5yBSkeWTkrQ42wB1gZWWqC9vxqKdDs0Fc\ng3lwuOVNv38wa4v5cLvaUB1jybvsGY9behTzjjA89mR5lwovWKaGie30ITthVmvoS5KngHgEQQlR\nibiUEPIu7fTEccX0T6Bi2wkgmUqcefTIYcdqqDra6lOoqYiVfS6j1Hr33dYkKNTBj5dUz2pSScwc\n71tqhqYG6n0BX7iBZ30nDD9cUGZ5l2Sex8JKxbgbnhDELR1nzO/AvMmNWDituWxfSyuPmXPyVrhl\nzd2sRRfElPpCM3KXQx2Vdf6LWGQrexp0VaVubzlhx2KuVtfXntfZfSaOgSFniMqzshc5d5vH9TgS\nehy7cr2iJI+/zD+4YIw4f6eyRri947qJz35oqug0BwBoXYmCW4ACJZDMJ5frOBq1evM5Rt5snKpD\nCXj2tCTMup3wCnGkvUYqYcleuq/iL4DqUPJm46urjPueE83P6OcvfM8jovWqxvu6aw5yWQVLWJtM\ngy1aHTh0MZ2gNdod6XamSgfAU6FoLJud2DA1U2RNBxfQ/iKNz21N2gI8Ddtz23HHsrsgMvqlccLT\nxMKoM+tnO8ulcIBP3rwlqli4Sm5z3oa3Wm3CN46/KuCh4ffC1bLwiIdxDS04YVYrxrXUse22P5eA\nOG57Fx1vgLyZZXzVjE/jqhmfDswBvRd8gRLDUMaFpZk0YU3EvNn8cfJWTJFQ5rgeduWpp8kX86H/\nDhX8MSi6DS+TRmbVLH8Bwo7f5qyHogDeUGXAbS5yC3K2mA/iGJg7voWek2kimHpkeUfYDfbU67fU\nhZyMGWitT+G2Lx6DxaeMLy9XAkRrPyrmIFnGEonK33v6yJNRH68NxH5lWJqJq886ATd8bI7I+JXB\nm6+UeglKt/NyH8sILjgqmeWt6DbSyZBac0XOXA9+h6YpActbBpf7TOp+LH5PlndY9yQeo+eqcecd\nNwafPnsKmmuTqDQqA/uGldvFWekWfzEeN82vr1WkF7/O483SgqxdnVZ2PuL6lrdcIy7I3/W158e3\nV2H+lEY0pqtEaRBPaNOlhUtNrBo9+V7U1zOyZy/CU+YEdeCJ4oB4KmaOa0RTTQLfuuyowPa8W4Cl\nmaiuKF8EAUBRoyV7OUbeosENK9dzk53wFAfurkbs7M0hm7eF29RGHlrtdroAkcSBYixPQdHcMnf0\n8nW70DfAXMUa70jmBBZIwuOkuFTVLk5Jo6OizV9oen5M2iU2DCk8M5yXAQDqE3WoqYgJ1/1rXcuR\nJf2wJlBJUd/y1oU7l3sv7O0j4Q0wi5aR8zPbn4dLiBAb4QtX/syYY19FhtDx1+ktSFspGLoKj7e5\nZZamrdHjm5J1+OiiCWirpgaBYmVhjnsZWsUudk56n555lWaqb+rpFdfG3ea5IR1JI/heUHQbnsEs\nZ9tAf6YIS7NQCIl5wzGQLzq+qJLqoug6uH/NX+k1MhU7fo0i1q7QOm6xuJcaBdmOh60OFW5xu1tD\nLe+hrB2o8EjH6Hvig8eOwHc/PQ+WoUUx7wjDY97kJswaX4+vLZ4Vup1nVNdZ9Zg2uhZnL6Qu7GSM\nJWaFkTezvUvbBcqiJvKmM0Yvwk3zrw0mp5WgtjKGUc3h5M7JebiYOd8u9MdLkt7SJn0BKbqDdLyc\nvGXLu1RIxtBUv+SoBJwYZMtbLyFXTmAfnXQhxlaNwsiKkqYlAM6Y34HT5rXjU2dNLtv2hWlXBWr0\nwzL2E5rk1lc0jGzyCb+m+xhfI54n+kj3tEFvxw+O/ffgCT1VinlL99RgbnfPz3jXVBWfOmsK6lL+\nvXOKLAFLWrjUxqphezZ67R7qvuS92y3//GkjhYq0CsXTce6xNI9A04KLy135PliaiY+dOhFnzO8o\nmwvCwgCdPVRHnN8jTmI7MszqtC1s685Qy1tWA+WhBdvCSbOobn/CYG1Nx7wu+otzwn9pdZcIJ2ga\nK8nTnMACSSgPcnI26QJjRLoVlsmS+jwNHmhfe9uz0dMnJToNoxxYvXURLM2kSoeyVCk2+vMhW95C\n598RcyD2Y8f/c9OT6NPXQIlTD0ap5a1oHvQxNJuee5Fk8halWCo9vi5OibE6Sc9jtKyHVs3ugfQc\ncm8N11bo7suhM0sJ/Sf3vFn221fTPSC1G0CKFrxsBdZvH0BPn4OcUxAiLVzbgdgx5G0XGgwxxgIZ\nQme2G9PrpooWvdzyzhTZ74Qt1OIaj/v7mgeO6yGDXpCiBZJL0wx1fs/ZImkoZ0uuewOVTGggFgcq\nUxZMQ0XRdvdoYO0vhJs+EQ5ZWKaGK88tt644UkYS35p/HSrMVHhMOqS1J3/Zlbb+k6340pZ77wS+\n5R1O/pogb/riLiXvuJThHeY214gpvqd0gUHJV8XE+Cx0NFQFtnELf3duc+5Wntc8B/Oa54SOP27p\nuOD4saHbUrFYwPIPu0dJPQk4/vbqtH+9llcJe/0UWJOfB1GZFSBZhZahIaZbSOoJP8bo6dBUBTFL\ng9vTgqJuw+zw5SHh6mVd32TLyCkyYpeItyZO44V9hX5U6JXg7RsURUFh9UxY41+B7dlIWAZqrKQI\njWglnouck0M6UYdpo2sxbXQtHlqyEYWVR6FuyhoMEhazJ4Bjq+hoTQjPByfvXqaRbqoxbO/JImbq\nouc44MtbLpzSjounUNnadExanNWzpL1Aq1z6Ha45CKj1rCpAmmON11mzeD57oSeNhL/wJCo8uEhY\nOlzVLbG2gwsYTt5xRp7phBH4neaJn+XtDXBi8suYeLlVIJ9B+v+COgjVGoKXjwsPguyB4z9z/rsy\nNBW9/QRWo+/9Kap0DPUsVl2TKM/VCHw/I/8iyeP1tT348f8+g9gR6+EO1ACuIQiZQ6vugqIAxS3j\nAU9HvujCLChQzaLoC6ym+kEIdWsXii7i4HF5FzZT4RvoKxeEGsxnAZjQ0rS6okKvQhcQ0DywHQ8O\n8ZUCs3lb/K54eCJrboNVxWrfPRWVcbqIzjssVBUbgDbiDeSKp5XNzYFAZHm/B1EXrxk2mexblx9V\n9hmnZbIbgi61yt8JRFx+mFOqSnncXkZCcmvL7U55rJlnm4dZtfzlf3TNSTh7zKmh35PYjdv8ncLU\ntYALN8z7kNb9a7JUU7jhAZoMN29C0NqX3eomW4BUxZi1ThSAKNBUBcmYgfqqONydI6ES2UrSAhYz\nAD+jHxAvYpng5Xr+ilgSs8bXi0XloglzUUmakXcLyDm5gJiPripCHpQjVhL394aqMdM8xf/A1QEo\naK5Jipp8txict7pUBTp7cxjMFuF2t+KktuMB+PKWDekKUXWRNMt/G7LkbYJtH4qvg9FOFzky2QkJ\nYJ6Mp9iIaVbwuXV05L0cYpVDVMSmpLJDBifvGHvuUnED8o8jD2r1FlbPFORbEaf7ajXbpQ575RoO\nAPWsKUYRhCWr3fjxuThnQfnikqvrmYYq7jl3mxdUujyrZ5Z3Q0U5eZeqNxJPRc7JY9naHiEA43bS\nZ3XZup7gHHDPgOwV83QoCi+1I1CT/SC5FFRCyZ9b3takpbAVapWv3iDVkrt8AcF6rTdSQZZRFvOI\nSZZ10XHhoCg8BnLuBPds8GeBjRhxg3fQo+SdSa6F0bwBm3qD7UoPFCLyfp9hREMKN867BjcvuEF8\nxt08Lvt3XP+5uOGoqwPH7U/y5pa1S8KTO9QSy7s05t2UpOpN9bHaQO05fzlzyzuMGPnLP6xjG/+e\nZIjlffHJ4zB+RFVACW5fQL9fETHN/kJ5b2ceFgAASw+St6oquPC4oDu+QrIkeQ9s/pKloQefMK5f\nPBvzpjQibUrk7Oplcyxn3E8f2YxPnDEJx83wBXZ4xj9A5+vKc6dhFksMvPCEsRjZQL8/5+QDSXma\npsLZOg7FdVP9awxJ2otp/vg4cTbX+Za36ypI6v51N1VVwiME67cPQFVUnNi+AIBfTiff0zE1I/zs\neAauugbQOefQG1g3L4mYDFWjiyJmeXuqLeLoHPa2MSDwUGxaRj/gmvNmubdJMQsgRKEd5cDIW/N/\nG0VlqGwMHfXU82GOXAU11ReYJ/n7AKDIiJfY1LXb0ZTG+NagZgPgaxYQ4ru9eYJWERkYqiEWdfXp\n8pBYaSIeHAMFL49ETIfCeoDzkM+ytUHyVpmSn+w14Za8Yuap7oHmwstUwjI1arm7vuVcTG1mx0jN\nhQIxawIt3Y8RqTbUWLWB8Sqai6ydp78VtmjpzxQDx1tSCaCzg4Z3+D1/bPNTeHzz037mPQn3KO5v\nROT9PkRDog6VVvnKmbvGLSWFpmRDYFtIXtY+QxXkHX5SlcfaWcy71FoZXdmBzx7xcXxp9hXB47ik\nNCPv0pp3gFs1VIq0FMJtHmJ5nzJnBK67ZFawZn4foCgKrr5oBmbWURWz0sQdAEiYMVHrbGkmkjFd\nkLKmBUkLAJKmFONn19DMFjgcfOlVmbLw6bOmoDImddjytLJEx3qplOeoiW1YMK1ZzB2AwPOTCLsG\naQ5ly5vfS/klHUbeimv6nhNO3jVJcbzreUhLY2itoZ6ATN5BIqajwkoHqiHkMVZYaehvLkL+9YXi\nM/k+xIzdh5scj8BQLKiJQSjxAXhKOXl7fY1I6Wm4Zl/g+NLKCQFXF2JKybgRVC5TWaxXImdu9QF+\nXH+4RLiiTscwsq4ON1xKQz1hiZIJk96zwWxRsjqZ2xw5VJgp8ZzIz5x8DYCfsEk8DXllANvct0SN\nNo9Db9hRrtYG0JJD/qyLOTviaRH+IPkkYqaGfNHBUM6fI0/3NQ9Kx2N0rGJzRFATr0KMe5mE5e0K\nsR5O/rmCFPPWHDom1QOxTdibJtFxSc/tfW89KMJYils+twcCEXm/j/GlC6ejrT6JY46gJQ+cvGWC\nGsvqoxtq4uUn2EfwOHRYpjbgW+Ya++2kQmq5p9VNLluAcLe5RuiPKszyPml2G7568UyMaPDJ6+On\nTUR7QwpjWqk1EbS8939ayOSRNbjsiPNxycTzsajjxLLtluRaNzUqQiMatygKNFULvDiC5E3nroy8\nSxwnSSNoeZeiPu6Tt0zEHBVSA5rQBUiAvP2xcs+HHDoI08h3XCI8LPwl3taQFDK6iZiBasn676j3\n3fiJmA5VUZHQ/WssXfAYugqST6Hw5mwU101FXaU/3ngIecvEWSi6mKgfDUVzoTdtgIci4iELkLRR\nCaIEO7uVhif880slmpoaIG9P9ZOkOJRA1QDvXS/FsaUua45OiW/e+A7RwS6szDNlMNlbqVaeyt8S\n2MghLXljShd79BqY5rzJa8jpta8k//TVANl5t3aXS6USxwCIhoZqdi8kmeOWDno9Zx45HjGTajP0\nZf2ySRKKQnq/AAAbb0lEQVQbCJxfHo+i29CbN7BrTIjx8Xtijl6OdblV9CBXFzkAckKbodN7Egif\nlNxzy6I/suaaYEXJgUJE3u9jTBtdi29/4ihhhXLXuKym9qULp+Nri2dhTMv+eyC55T0cefPt6YSO\nb19+JCrfpqv6iDHUHdZWzVyKIdZFzNQxqaM68PI5dnoLbrr8SBh6iOUdco79AV3VcXTLkaFjNAzV\n713NSJeTN19Y8aoCUzUQtyTVOmF5S33R6ZkCf6UMyfIOJW/frZowysm7UnqRlxJj6THyNXLrkkus\nAggo1vE6esfxfCEPRkS1FTGcMa8DC6Y14XPnTEW15Sccjm32a/m5cE9ausbSaxC1+P31cLvbxLMD\nhJO3vMAp2C7aY+MB0HI7opAyyxsAKqQmL9yKa2sIL1NEqbWmlv825PvUW/Sbhvglf/52N6RxkRyO\naU+34YNjTgsQZMqS480avEwaWsUuaPVbQBQvcDwAjKroQEqpFp2+xjbV4rR57SK0YW8eL/bV0n1C\nOnU48FBGQzUTKUr6IaW8QRu3jKqvQ8LSkc07yG0ZAQyy6xS96/05mDLC9x7yTPWkkfS9H9K+y7LP\n0jE4BkawBQ4kt7mha9QL4egY1ZzGly+cXrbodPUcTM1EOvHOQmtvFxF5RxDglrfspo5bOsa1VQ13\nyD5B3UPMW1jm8IZ/2YXg46dNxFXnHYGFU6hs4R7lW4eBoRnCZbuv53gnMHVNvMy5vCTPOOfZ2jUx\npg6lKIhJ8WruNi9VsCq1vNvSkmBMyAtVJtQwy1te1ISRe3wYy1tkrEtWolySyMvRbMcT18jjoYqi\nIBEz8IkzJqO5NonqmL+gbK3zn9EjxtJrr5LIPVGywCgNxUwf689XmEuYuJqwVfNFF0nTAnE1EVMP\nI++URN7cyjv32NE4//gxZfsSV99ziZFENos6ThL/z/UQZOudZCqRe/HkQGy/QiJfRVGwqOMEJGzf\nQ5OWyRsKiutoAqLesLnseAC4es7nME+7UCwARjdX4YLjx4pyPrenFflXj5PGT3uNDwfujeGWt73N\nn6ch0Bh52kxhVEsFXI+gp9dD88CxwXOwRe8lp4zHF844DpW5CQAANUkt85SRRJznHYQtJFzd98rx\nksGqbrg1a2jioWvgklMmYOro2jLvQ09uV6gH5kAhIu8IAsfPpAlJs8aHtxvdXxhTORJAmHVIMb1u\nCh1P24K9Om/M1DFjXB3SZhKWZgaSrvYWPEZ6INzme4IpWd5claqmgvc7py8MTmxFtwhLiqNazHug\nqzqumvFptPfRspVSWhhd6ddUf2NxeQWCjHgIecsItbyHiXnLXp20Qq1dXv8L+Ja37bpoSNDnkBBg\nzsRgDgYAVPMFDILiOVzJri3V4o+x1PKWyPu4GS1oqfWvIWUl8K3510IfkhY4ro6PnEItyUVzR9De\n6LYpuqrFJaW9tnrqrm9IBpvoANSDcvq8Dnz9yC/jxBHHBM4vo3YoqONAXE2QCQBMrh+Lr5TkfJSF\nPzxdlNQBCP09aNLzLSc+AsBXPngs4GqC+NIhxxMoYlw8h+Wy0yYKWWRSjAnLXHZpA0DlllNwztgz\n/HOxPIiKBPME9jYF8hIA6k2Z2O7f95baCmiuf2/5d+SLDlRFRYfH+ruzkreUZHmHClY5BkYIqWMF\nbj99RovJbfQjVy+rfvHnItwDc6AQ1XlHEDh9XgcWTmt+227qfcWF4z+ICdVjMatxeuj2SbXj8b2F\n3wyWK+0FNFXDNXM+H3AN7y0Sehx9hf6DYnkbuubXm7JabRHzZqRTKxGX/DIxpSz6CTVjYbkZAD1l\n7D0i5WeOj24O96x8ceZnsHFwS5m7tBRhZYmyNR6WkAYA7eZErCg8g+aUb/0J8nY8zG2cgXV9GxDL\njMTZx00qO77GCo77psvmYiBbFHM1qmoEsCV8DHweZ42vx8dOnRgcu6WjLl6LOSNH47lupn3u6Zg/\npQknzaZCL6+s7mJSpdQzInsqvrZ4Nrr6cuhVN4nvT5oWvvrJo0TYoCXVhIUtR+GxzU/R87s6IHHC\nCGUatrxYg/icf9APSohGVYKJi6RE2lh87vj3Jox8PdZ61elpQoKFX266bC5Wb+7D5JE1UFdUwovv\nYseXPwfHTm/GP5dyOWBK3o01CXz90jlYuWEX/vPe10DsGHXtl1xDtVGHk9tnYkzlKNz94t+xsZMu\ndqaMqsH0TbUY0ZjCX5esByGK8C6kzBTGj/AXXifPbsPmt6rQyYVYuDgMlzw2LZCiJRZZKTOJmDK8\n5U1cHUdPbcIf/klbpBbfnIPYnL/BNQbE9pgxvOt/uGf9QCCyvCMIKIpywIkboC7Go5pn79aqTUuZ\nrfuCpmQjUua+kT9A3c5pI1VWc/5uwNJV1roRqGSJYaUxb9EUAcGyt9KSLz6DpIS9Dc3AhOqxGF9V\n7sLlGFc9Bie3Hzfsdo6w8IdcBx6WkAYAU5Nz8NkjPo6zR/v19kdNpkQ+sb0auqrjkknn47w5c0Q+\nggzZbQ4A7Y1pTB3lx65HVUqysiXPkio66ZW7qrkVP76+zf/Q1f0sZQCmqQUy5mXhoLilo70xHcgb\nOG56G1rqgs9jXPYGuDpOnOV/XzpBVdZ4YlmYlRhIOvR8adLW+iTOOYY1B5LqpsPCHzWDM+H2NqCt\nOE/McXtjGiczmVut6Lv+wyz3uso4KhL02r2S52DyyBpceMJYv1lKyTV091PCHVXZjqnG8aLne1NN\nAl+4YDqV2iWqyI8wVB2WZiIVN/CJMybhyxdOR3tjGpMa/C6AHz91Mlrrk2KR1TdUCCRHUstbCx0P\nAMAxkIobuP6js3Hy7DYACohtwVN5A52g5X3JxPOFpxAID58cKESWd4QIIfjY5ItQcIvvaAGxr9B1\nFW5nG2yjgCvPOx8AUJP21a+AYDKWXH5klpK3SJ0t/56rZn66/MO9wHnjzsIDax7CxJpxZdsaE37o\nZTjytkwd0+qCNevnHDMacyc2BKoBhgOPaZdm1nPwpD7e31lGW30SmzuHUFc1/MtWvi7iagGXv6Vr\nAZd02Eu7OdmI5mQjtmd2oqmy3LshW84nzhyB8SP8fToa0wAUmEocBZIVVutpR7ULyeOEEYcChS7M\nJCI6YWYrTpzVhhNnt+Hz/1WEmuqDSozQZ/mCo+bi0aWNWPyhCaFzoBerwIVd08N4ssZVjcZLna/5\n1QESqtIWyFZekkUt81HNVP50guT+lhdn3PuSZImH3kAN1FgWtudn4C+QmvzMbZyJf215BgBNPj12\nuh8uaapJYHl3HGqKJr8ljSRivN+BY+L85o/h3rcegJryLWuAVtmMba3EkZMace+W5diapS4U4hgB\nsaKjW47ElNqJeK2b9q1/N2PeEXlHiBACUzOHVak70DCYhKuzdRzqE9R6a29M4ZxjRokOaTweXB+v\nDVjbZoj4DDCsmN07wokjjgnGbSXIRCFaNZYgbKyqqgTaq+4Opmbg5gXfGHZxAAC5l06iL9sPBD//\n6AcmoK0hxayr0rHTfyulxjtfuXB2YB/TUAPkHQ/pLqcoCq6Z83m81rUC0+unlm3XVA03zbsWf1n3\nMOY1B88/aSQlNiPXgEJsA5QEJRdNU8X9VhUVcT2GrJMrkTv1O7DpJIbCiqNRlQ4nlTEtlbjinOHl\nluOZDgwZW2FU9pZpP3AsnnQBptVNxuyQMFgypkvtR6llfvyMFpxz7KhABYvrlmfX88WS21/ni+WE\nYGTFCDQmGtCSKs+h+dAxo5B5eRJeGKKqZykjAVPKjxhd3Q4vlxbkXZr1P7atEvW91YK8DcUs03pI\nmynoqg7HcyLLO0KE9zOSMQOXfmBCwPpUFAVnLRgl/q6NV+PauVehxqoWtdMAy1QPwbvUKyGARR0n\n4G8bH0d7upwggXIvwb6gcpjOdhy3f+kUhDlPYqaO044qb4RSio9Nvggv7HwFExpaA5/HTC0QTx7u\npW1qJuY2zRz2/PWJWnxy6uKyz6tSFlrrkujcUgN97Aa/R3XJjeTiIh111Th/8Ww8+vwmHD2Fkpii\nKHBcD4CCUU27n6fhoCkGiqtnY+KY6mFzH3Z3jRPaq1D7Vgp96BYKZJapBcIbANA7SGPSFSG9Cnij\nkXFVo8u2AfQ6bzjqK6GeBUPXcMmcU/DCE4/T79aswH6WqQXaKB83pTyMJHdPTJrhXRJrrCp05roD\nuQ8HGhF5R4hwCIJn/u8OYaSol3Tt8t9T7z57nz36VBzVNCvUnQr4mfEHEqX913eHay6eiQeeWheY\n+yObZuHIpvIOfg3VCZw4bQyeHqB61/EDYHGdd/wY/PTPWRQ3TII3SC3x0kXYpJrxWLVrNU4ffRLG\n1ldibFu4FT1hxL6Ve/L5U/YxPUpTVZw//Rj8YvkGuF10XsMWmJUpujiZPKqmbBscE1+c/CWMqKsu\n38awu/CWoer4ztHXI+fky/bTVQWktxVesg+jnWNw6YfKEyPlBWKlVU7eAK3+6Mx1v6sJaxF5R4jw\nHkLpy4n/fRAMbyiKMixxA8O7+A8WJnZU42sds/e8I8MHpx8JrO2GSzyMZuWP+xMzxtZhbGsVVm30\nPQSliYeXT/kICm4xkMAYhpHDtOfdEy47bRLufvRNXHRSeV7D28XMhmn45lFfxdeefx1AeF+Bs44e\nicqkhWOOaA58fvnpk/Dy6i6MaWh6R9LE1bEqhFG/rqtQMrUoLF+A6qnhYYFKSU2wKhHufeClm2Hh\nkwOFiLwjRHg/4GCw9x5Qmhl/uCFhxHHxxPMO6Hc01iSwamOv+LvU8k4YiVBteY5vXDoHb27uxbi2\nfVNIbKlL4tpLyj0Pe4vGZD14NnxYuMTQNZEhLmPhEc1YWELo+xO6poqSjPgwuvNT6yahVZuADVuK\n+MAJ4eWtnLwjt3mECBH2Cj/43AK4XnnSz26SzQ869kfM+72OxupgedecCeHW4XAY3VKB0S37ZnUf\nKBxKizZFAbhBP5znPWkkcN2xl9Me4lY4ZY6pot6RltSBW2iUIiLvCBHeA6geJpt4yqgavPRmF2aN\nrwvdfjBxqLnND0U0VvtW9e1XH79XMfxDFeYwCmXvJj555iS8sbGPlX3tObSkKsqwxA0A46vH4gfH\n/ntkeUeIEGH/4NjpLRjVVPG26qbfbZjvASI60JgyqhqTOqpx9NSm9wRxA76lezBx9NRmHD2VWsn7\nK6fz3SRuICLvCBHe01AVBR1N+67xfiDwqbMmY/32gVDVtAhBGLqGr148fKnZ4YTT53Xg2eXbUfUu\nqDjuDfzQ0qEYXBoeB3Qpd/PNN+PDH/4wLrroIrz++uuBbc8++yzOP/98fPjDH8Z///d/H8hhRIgQ\n4RDC/ClN+MjJ4/e8Y4T3FM4/fgx+eOXCQBOZQwEXn0wz6WVltsMBB8zyfv7557Fx40bcc889WLt2\nLa6//nrcc889Yvt3vvMd3HnnnWhsbMTixYvxgQ98AGPHjj1Qw4kQIUKECBHKILvQDyccsCXQkiVL\ncPLJJwMAxowZg/7+fgwNDQEANm/ejMrKSjQ3N0NVVRx33HFYsmTJgRpKhAgRIkSI8J7CAbO8u7u7\nMWWK322lpqYGXV1dSKVS6OrqQk1NTWDb5s2bd3u+6uoE9P0cI6uvP7RigYcronl854jm8J0jmsP9\ng2ge3znejTl81xLWSjV59xa9vdn9NBKK+vo0uroG9+s534+I5vGdI5rDd45oDvcPonl859jfczjc\nQuCAuc0bGhrQ3d0t/u7s7ER9fX3otp07d6KhYe/EByJEiBAhQoT3Kw4YeS9YsACPPvooAGDFihVo\naGhAKkVrTdva2jA0NIQtW7bAcRw8/vjjWLBgwYEaSoQIESJEiPCewgFzm8+aNQtTpkzBRRddBEVR\ncOONN+L+++9HOp3GKaecgptuuglf+cpXAACnn346Ro0atYczRogQIUKECBEAQCHvNBj9LmF/x2Gi\n2M7+QTSP7xzRHL5zRHO4fxDN4zvHYR/zjhAhQoQIESIcGETkHSFChAgRIhxmiMg7QoQIESJEOMwQ\nkXeECBEiRIhwmCEi7wgRIkSIEOEww2GTbR4hQoQIESJEoIgs7wgRIkSIEOEwQ0TeESJEiBAhwmGG\niLwjRIgQIUKEwwwReUeIECFChAiHGSLyjhAhQoQIEQ4zROQdIUKECBEiHGY4YF3FDmXcfPPNeO21\n16AoCq6//nocccQRB3tIhzRWr16NK664Ah//+MexePFibN++Hddccw1c10V9fT3+4z/+A6Zp4sEH\nH8RvfvMbqKqKCy+8EBdccMHBHvohg1tuuQUvvfQSHMfBZz7zGUybNi2aw71ALpfDddddh56eHhQK\nBVxxxRWYOHFiNIf7iHw+jzPPPBNXXHEF5s+fH83jXmDp0qX4whe+gHHjxgEAxo8fj09+8pPv/hyS\n9xmWLl1KPv3pTxNCCFmzZg258MILD/KIDm1kMhmyePFi8o1vfIPcfffdhBBCrrvuOvJ///d/hBBC\nfvCDH5Df/va3JJPJkEWLFpGBgQGSy+XIGWecQXp7ew/m0A8ZLFmyhHzyk58khBCya9cuctxxx0Vz\nuJd46KGHyB133EEIIWTLli1k0aJF0Ry+A/zwhz8k5557LvnTn/4UzeNe4rnnniOf//znA58djDl8\n37nNlyxZgpNPPhkAMGbMGPT392NoaOggj+rQhWma+PnPf46Ghgbx2dKlS3HSSScBAE444QQsWbIE\nr732GqZNm4Z0Oo1YLIZZs2bh5ZdfPljDPqQwd+5c/PjHPwYAVFRUIJfLRXO4lzj99NPxqU99CgCw\nfft2NDY2RnO4j1i7di3WrFmD448/HkD0e94fOBhz+L4j7+7ublRXV4u/a2pq0NXVdRBHdGhD13XE\nYrHAZ7lcDqZpAgBqa2vR1dWF7u5u1NTUiH2iefWhaRoSiQQA4L777sOxxx4bzeE+4qKLLsLVV1+N\n66+/PprDfcT3v/99XHfddeLvaB73HmvWrMFnP/tZXHzxxXjmmWcOyhy+L2PeMkikDvuOMNz8RfNa\njn/84x+477778Mtf/hKLFi0Sn0dz+Pbxhz/8AatWrcJXv/rVwPxEc/j28Oc//xkzZszAiBEjQrdH\n87hnjBw5EldeeSVOO+00bN68GZdeeilc1xXb3605fN+Rd0NDA7q7u8XfnZ2dqK+vP4gjOvyQSCSQ\nz+cRi8Wwc+dONDQ0hM7rjBkzDuIoDy089dRT+NnPfoZf/OIXSKfT0RzuJZYvX47a2lo0Nzdj0qRJ\ncF0XyWQymsO9xBNPPIHNmzfjiSeewI4dO2CaZvQs7iUaGxtx+umnAwDa29tRV1eHZcuWvetz+L5z\nmy9YsACPPvooAGDFihVoaGhAKpU6yKM6vHD00UeLOfzb3/6GY445BtOnT8eyZcswMDCATCaDl19+\nGXPmzDnIIz00MDg4iFtuuQW33347qqqqAERzuLd48cUX8ctf/hIADX1ls9loDvcBP/rRj/CnP/0J\n9957Ly644AJcccUV0TzuJR588EHceeedAICuri709PTg3HPPfdfn8H3ZVezWW2/Fiy++CEVRcOON\nN2LixIkHe0iHLJYvX47vf//72Lp1K3RdR2NjI2699VZcd911KBQKaGlpwXe/+10YhoFHHnkEd955\nJxRFweLFi3H22Wcf7OEfErjnnntw2223YdSoUeKz733ve/jGN74RzeHbRD6fx9e//nVs374d+Xwe\nV155JaZOnYprr702msN9xG233YbW1lYsXLgwmse9wNDQEK6++moMDAzAtm1ceeWVmDRp0rs+h+9L\n8o4QIUKECBEOZ7zv3OYRIkSIECHC4Y6IvCNEiBAhQoTDDBF5R4gQIUKECIcZIvKOECFChAgRDjNE\n5B0hQoQIESIcZnjfibREiHC44ZZbbsGyZctQKBSwcuVKzJw5EwBw3nnn4UMf+tDbOscdd9yB8ePH\nCz3rMHz0ox/Fr3/9a2iatj+GHcDOnTuxbt06zJ8/f7+fO0KE9yOiUrEIEQ4TbNmyBR/5yEfw5JNP\nHuyh7DUefPBBrF27Fl/60pcO9lAiRHhPILK8I0Q4jHHbbbdhy5Yt2LZtG6699lrk83nceuutME0T\n+XweN954I6ZMmYLrrrsOs2fPxvz58/Fv//ZvWLhwIV5//XVkMhncfvvtaGxsxIQJE7BixQr89Kc/\nRV9fH3bs2IGNGzfiqKOOwg033IBCoYBrr70WW7duRVNTEzRNw4IFCwI9ijOZDL7yla9gYGAAjuPg\nhBNOwJlnnokf/ehHIISgqqoKl1xyCb797W9j48aNyGQyOPPMM3H55Zfj/vvvx9///ncoioKdO3di\n9OjRuPnmm2EYxkGc4QgRDk1EMe8IEQ5zbNmyBXfddRemTp2Kvr4+3HTTTbjrrrtw6aWX4vbbby/b\nf+3atTj33HPx29/+FpMmTcLDDz9cts/KlSvxk5/8BPfddx/uv/9+9Pf348EHH4TjOPjjH/+Ib37z\nm3jmmWfKjnv22WfhOA5+97vf4Q9/+AMSiQRaW1txzjnn4Oyzz8Zll12Gu+66Cw0NDbj77rvxxz/+\nEQ899BDeeOMNAMCyZctw66234r777sO2bdsOSy9DhAjvBiLLO0KEwxzTp0+HoigAgLq6Otxyyy0o\nFAoYHBxEZWVl2f7V1dUYN24cAKClpQV9fX1l+8yePRuapkHTNFRXV6O/vx+rVq3CkUceCQCor6/H\n7Nmzy46bNWsWfvKTn+ALX/gCjjvuOFxwwQVQ1aCNsHTpUuzYsQMvvPACAKBYLGLTpk3ieN4+debM\nmVi7dq3okxwhQgQfEXlHiHCYQ3YrX3PNNfjWt76F+fPn4/HHHxfNPGSUJqSFpb2E7eN5XoCIS0kZ\noL2M//KXv+CVV17BP//5T5x33nl44IEHAvuYponPfe5zOPXUUwOf33///fA8b7fjihAhAkXkNo8Q\n4T2E7u5ujBs3Dq7r4pFHHkGxWNxv5x49ejReeeUVAEBPTw9eeun/t3eHOAoDYRTHHyGYJlwAMAjg\nAFROSC0STCWCIJCYBhwOwxEqegIkuqLBbRN0LQaBxkBZsdkaDJutmeb/05PJ517eZCbz9bYmSRLF\ncazhcKggCOQ4jm63m2q1mh6Ph6SfVv97VJ/nuXa7XdH+z+ez7ve7Xq+X0jTVYDAobX6gSmjeQIUs\nFgvNZjO1Wi3N53MFQaAoikrZezqdKo5j+b6vTqcj13XfGnq329V6vVYYhqrX6zLGqN1uy3VdrVYr\nNRoNLZdLZVkm3/f1fD7leV7xVWq/39dms9HlclGv15MxppTZgarhqRiAj1yvV6VpqvF4rDzPNZlM\ntN1ui3fn/3U4HHQ6nbTf70vZD6gymjeAjzSbTR2Px+J/4tFoVFpwA/gbmjcAAJbhwhoAAJYhvAEA\nsAzhDQCAZQhvAAAsQ3gDAGAZwhsAAMt8AxJ5C+54P8QOAAAAAElFTkSuQmCC\n",
+            "text/plain": [
+              "<matplotlib.figure.Figure at 0x7f72fab5e290>"
+            ]
+          },
+          "metadata": {
+            "tags": []
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAFnCAYAAACPasF4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXe8XVWZ///e5dTba3pCQiAJCSWE\nIJGmoSSgjsg4gmCb4Tf+dCwURUdEQXGs41gYFQvDiIyIiKIIJIAgEBJCgJBKertpt59z76m7fv9Y\nu55zboiQBCL783rllXt2WXvttfden6et55Fs27aJECFChAgRIhw1kF/vDkSIECFChAgR/jZE5B0h\nQoQIESIcZYjIO0KECBEiRDjKEJF3hAgRIkSIcJQhIu8IESJEiBDhKENE3hEiRIgQIcJRhoi8I7yp\nMW3aND796U9Xbf/iF7/ItGnTQsfdcMMNoWOWL1/OBz/4QQB2797NCSec4O3btWsXH/vYx1iwYAEL\nFizgkksu4bHHHgPgpptuYuHChSxcuJCZM2fy9re/3fudy+VC19A0jfvvv/9vvq/Vq1dz1VVXHdSx\nDzzwAF/72tde9bVcvNbz3wi46667+P73v/96dyNChFeE+np3IEKE1xsbN24kl8tRX18PCBJas2ZN\n1XErVqxg/fr1IZIeCZ/97Gd597vfzW233QbAqlWr+PCHP8zDDz/MV77yFe+4+fPn8+1vf5vTTjut\nZjvr16/n/vvv55JLLvmb7umkk07i9ttvP6hjly5dyvnnn/+qr+XitZ7/RsAHPvCB17sLESIcFCLN\nO8KbHm95y1t49NFHvd9LlizhxBNPrDruuuuu4+tf//pBtblp0yZOPvlk7/fJJ5/M4sWLGT169EH3\nq6+vj09+8pO89NJLXHHFFYCwAPz0pz9lwYIFmKbJypUrufTSS1m4cCEXX3wxS5cuBYRV4IILLgDg\n1ltv5atf/Sqf+MQnOO+883jve99LT0+Pd53ly5czffr0qmu98MIL/OM//iMXXHAB73vf++jq6gKg\nu7ubD3/4w1x88cWcf/75fO9736vZ18p7ueqqq1i4cCHz58/njjvu8PatXbuWSy+9lAULFvCBD3zA\nu85I26dNm8b+/fu9893fy5cv5/LLL+fqq6/mM5/5DAD33nsvF110ERdeeCFXXnkle/bsAcC2bb7x\njW8wf/58FixYwC9+8QtvrL74xS8CsH///pD15MknnwTAMAy++MUvsmDBAi644AI++clPVllMIkQ4\n3IjIO8KbHhdddBF//vOfvd8PPvggCxcurHmcbdssWrToFds855xz+PSnP82dd97J1q1bARg1ahSS\nJB10v9rb27nuuus45ZRT+PWvf+1tt22bxYsXoygKX/7yl7nqqqtYtGgRH/3oR7nppptqtrVo0SJu\nuOEGHnvsMdra2rjvvvsA2Lp1Kx0dHYwbNy50rVwux8c//nGuu+46Hn30UT70oQ9x9dVXA/C///u/\nzJ07l4ceeogHHniArq4uLMuq2VcXP/nJTxg/fjyLFi3il7/8Jd/97nfZt28fIISiq6++msWLF3P+\n+edzyy23HHD7gbB+/Xouv/xyvvvd79Lf389Xv/pV7rjjDh555BEmTpzIj3/8YwD+9Kc/sXr1ahYv\nXsx9993HXXfdxerVq0Ntff7zn2f69OksXryYn/3sZ3zuc59jcHCQJUuWsHv3bhYtWsQjjzzC1KlT\nWbly5Sv2LUKEQ4mIvCO86XH66aezefNm+vv7KRaLrFy5knnz5tU89oYbbuA///M/KZfLB2zzO9/5\nDldeeSUPPPAA73znO5k/fz533333Ienv2972Nu/v+++/n4suugiAOXPmeNppJU477TTGjRuHJEnM\nmDHDI85ly5bVvNcXXniBUaNGceaZZwLwzne+k127drF3717a2tpYsmQJzz//PPF4nP/6r/+is7Pz\ngH2+8cYb+dKXvgTAhAkT6OjoYPfu3Wzfvp3BwUHOPfdcQJitb7311hG3vxKSyaR3P21tbbzwwgue\nteO0007zxuepp55iwYIFxGIx6uvreeihh0LWlkKhwPLly/nIRz4CwKRJk5gzZw5PPvkkra2tbN26\nlUcffZRiscg111zD2Wef/Yp9ixDhUCLyeUd400NRFC688EIefvhhWltbOeuss1DV2p/GzJkzmTt3\nLnfccQezZ88esc1EIsFVV13FVVddxdDQEIsWLeLrX/8648ePf80TfXNzs/f3Aw88wJ133kk+n8ey\nLEYqVdDQ0OD9rSgKpmkC8Mwzz3gEFcTQ0BBdXV0hC0Q8HmdgYICPfOQjWJbFV77yFXp6erjyyiv5\n1Kc+dcA+r1mzxtO2ZVmmt7cXy7IYHBwM9U1VVVRVHXH7K6Gpqcn72zRNfvjDH/L4449jmib5fJ7J\nkycDMDg4SGNjo3dsOp0OtTM8PIxt21x++eXetkKhwBlnnMFJJ53EjTfeyK9+9Ss+//nPM3/+fG66\n6aZQexEiHG5E5B0hAnDxxRfzve99j5aWlpo+2yCuvfZaLr30UsaPH19z/8DAAC+//LKntTY2NvK+\n972Pp59+mk2bNh0yLa27u5sbb7yRe++9lxkzZrBjxw4WLFhw0OcbhsGaNWtqCiGdnZ1MmTKF3//+\n9zXP/ehHP8pHP/pRtm/fzr/+678yZ86cA17r+uuv58Mf/jDvf//7kSTJG4OWlhYymQyWZSHLMrqu\n093dPeL28ePHI8uyJ3xks9kRr/nQQw/x+OOPc9ddd9Ha2spvf/tbHnjgAe+6g4OD3rF9fX0kk0nv\nd1tbG4qicN9991FXV1fVtrs6IJPJcMMNN3D77bdz7bXXHnAMIkQ4lIjM5hEiALNnz6anp4fNmzdz\n+umnH/DYzs5OrrzyyhHNuKVSiU9/+tM8/fTT3radO3eyatWqEaPKR4KqquRyuZoa9cDAAOl0milT\npmAYBvfccw8A+Xz+oNpevXo106ZNIx6PV13r5JNPpre3l1WrVgHQ1dXF9ddfj23bfPnLX+aZZ54B\nYOLEibS3tyNJ0gH72t/fz6xZs5AkiT/84Q8Ui0UKhQLHHHMMo0eP5pFHHgHgd7/7HV/+8pdH3A7Q\n0dHBhg0bALjvvvuQ5drTWH9/P+PGjaO1tZXBwUEefvhhb2zmz5/Pgw8+iKZpFAoFrrjiCjZt2hQa\n93PPPZff/OY3ABSLRb7whS+wb98+7rvvPn70ox8BwgoyZcqUgxrvCBEOJSLyjhABkCSJCy64gLe+\n9a0jkkEQ//Iv/4Ku6zX3jR07lp/85CdeVPiFF17Itddeyxe+8IVQBPrBYM6cOfT09HD22Wd72qaL\n6dOnc84557BgwQIuu+wy5s+fzymnnOKtPX8lLF26NOTvDl4rFovxwx/+kFtuuYWLLrqIT3ziEyxc\nuBBJkrj88sv53ve+50W4z549m3nz5h2wr1dffTWf+MQneNe73kWhUOCyyy7jS1/6El1dXfzgBz/g\ntttu48ILL+TPf/4zN998M5Ik1dwOwvJx88038+53v5tUKuUt8avEO9/5TjKZDBdccAGf+cxnuOaa\na9i/fz/f/OY3ufjiiznrrLO48MILec973sN73/teTj311ND5N998MytWrGDhwoW85z3vYcKECYwZ\nM4bzzjuPdevWceGFF3LRRRexZcsW/vmf//mgxjxChEMFKarnHSFChAgRIhxdiDTvCBEiRIgQ4ShD\nRN4RIkSIECHCUYaIvCNEiBAhQoSjDBF5R4gQIUKECEcZIvKOECFChAgRjjIcNUlaenuHD2l7LS1p\nBgcLh7TNNyOicXztiMbwtSMaw0ODaBxfOw71GHZ0NNTc/qbVvFVVeb278HeBaBxfO6IxfO2IxvDQ\nIBrH144jNYZvWvKOECFChAgRjlZE5B0hQoQIESIcZYjIO0KECBEiRDjKEJF3hAgRIkSIcJQhIu8I\nESJEiBDhKENE3hEiRIgQIcJRhoi8I0SIECFChKMMEXlHiBAhQoQIRxkOK3lv2rSJ888/n7vuuqtq\n39KlS3nve9/LZZddxo9+9KPD2Y0IESJEiBDh7wqHjbwLhQK33HIL8+bNq7n/a1/7Grfeeit33303\nzzzzDFu2bDlcXYkQIUKECBH+rnDYyDsej/Pzn/+czs7Oqn1dXV00NTUxZswYZFnm3HPPZdmyZYer\nKxEivGmhGxZL1+6jWDZe76542NuXZ822/te7G0cNXtjYy879wyxduw/Lsl/v7rxq9GWKrN8x8Hp3\nA4D9AwVWbekDoKyZPPdyN7Y98tjmSzovbOw54DFHGoetMImqqqhq7eZ7e3tpbW31fre2ttLV1XXA\n9lpa0oc8Z+xICd8j/G2IxvG143CN4d2PbOTXizdw3twc11x+6mG5xt+Kf/nm4wDc/+13oSiHTn/4\ne3wP9/Tm+NEf1ni/48k4F8075rBe83CNo/vcf3XzQpobEoflGn9rX+79+jv4+d0vsmzNPmRV4aK3\nTq55/I9/8SzPv9zNdVecytvnTHjF9o/Eu3jUVBU71JVuOjoaDnmlsjcjonF87TicY7hhu9BwN+wY\neMM9p737syTjh2YK+nt9D7dWaKobt/dz2tS2w3a9IzGOXXsz6K3pw3qNg0V3zzArN/YAsGnnAKcd\n117zuA3Oc3hh/X5mTWw+YJuHegzfUFXFOjs76evr8353d3fXNK9HiBDhtcE180lIr3NPqqEZ1uvd\nhTc8SroZ+m2aR/+YvZFcOJZtY5jiG1EPYAVqrheWgsHh8hHp18HgdSHv8ePHk8vl2L17N4Zh8MQT\nT3DmmWe+Hl2JEOHvGq6LTnrjcTdGRN6viHIFeRtHsc/bRb6kv95d8GBaticQqcrIH0mLY+bP5N44\n5H3YzOZr167lW9/6Fnv27EFVVRYvXsz8+fMZP348F1xwATfffDOf+cxnALj44ouZPLm2ryFChAiv\nHW9E8tYj8n5FaHp4jEzz6CfvQun11byDQWeWZeP+UuSRddn6VAyAzAE072x5iKZE4yHp48HgsJH3\nrFmz+NWvfjXi/rlz53LPPfccrstHiPCGwf6BAo3pOOmk+Nx6MkXSCdWbEGqhe6BAQzpGOukf0z1Y\noLk+QSJWHbiZzZUxLZvWxmRou+Wazd+A7H0kzOYDQyUUWaKp/rUHSFm2TVd3jgmj6pEliZ7BAk11\nCRLx8PMoayZ9QyXGtde9pusVSjq7e3OhbYPDJbJ5jaa6uLetN1MkGVdoSMcrm6BYNtiyJ8u49rqq\ndwOEANWXLTKmrbqvA0Ml4jGF/mzJu+dK2LZNV0+Ose11ntnZtm329OUZ116H5IxTXeBdz5cM9vbl\n6WxJeedYts2W3VniMZljRjfSkynSmI6FYiJ2dQ8zpq2OmFqbZGudUwslzbdmmJZV9bdl2WzenSGV\nUEknVOJxxfuOhgo6fZkidakYqYR/naV7V/B/G+7lIye8n4s7zjng9Q8VjpqAtQgRjkaUNZMbfvYs\njXVxvv+pswD499uWIQG3//v8mufohsXNd6xg9nHtfPQfZgLQny1x48+X8455k7jk7ClV51z7388A\n8D8VbbpKhvw6cLdpmWzL7mBq85SawsOR0Lw/++OlQPW4vBosfm4X9z6xlcvPO45Tj2vn33/6LBOm\nZ7A7N3LdnH+jOdEEwDf/70V2dg/z7Y/No7059aqvd/MdK+jLlkLbNuzKcO2tS0L3c8Mf7sYup/nF\nxy6vauOexzezZNdKmuoVvnvlZVX7n1i5h3v+spmvXHU64zvqve2mZXljB3DlBcdz3pzxVeev2TbA\n9+9dxZknjuaqd5wAwOMv7uH/Ht3E+88/jtOmdfLvP32W9iZfcFi5uZdfLd7I208dxwcvnAbAqi19\n3HqfiKq//v2z+c7dK5k+sZnPXSFWSGzcNci3fr2SudM7+fgls6r6kc2V+ffbljF1XBM3fHBOjdH0\nEdT8g0vvXFJ/YVMvP7l/rbddSuZomLUSuXkaVqaTz922jHHtddzy/73FO+avu5cAsKJ7JRefeGTI\nO0qPGiHCYYRmiAlhKK8BYDj+tQMZP4tlg7Juhvxre/pymJb9N/vcfBPhkWfvezf/ie+v/CkrulfW\n3K8bZs3tbyT8cevDfGHJLWimxsrNIsh21ZY+9vYXIFair/FZ+kuDdA3v8c7Z2S0ijQcOMrhJt2qb\nkSuJuxZ2De0hPmkDieNfrLm/qzdH4riXKI15ofY1MkVsoKsnrOFXmrbXjrAuf9veLADPrNnvbXtx\nUy8AK17uYSivIaWHyE+7H7mpx2lLRG4/8aI/Zv2Be3VzAGzYlfHb3LsRKV5gxYaemv3oHiwCsGVP\ntuZ+0zIxLfG+BX3uZoC8NSe+oC9bDJ0rN/Wjy3kxxoo4d09fPnRM2RDPOqkcuSVwEXlHiHAYURlf\ndDDapghSssnGtzGsiUm1NyMmt6DPc1XvWnoLB0524pL366F5P71HJF7al+/2tlkBf+PR4PN+ZOcT\nDGnD9BbD45zJlVEa/WVcRaOaaJUDBEC52DW8m2v+egNL9jxb+wDJIjZlNXJzd2iz+1yf6FpywPZ7\nC/6qHsuuHm83IK43EyasSvIeyVRdy6Li3rdhWpiWTWzsVtHGpA0j9jN4vf4KoaW/OMCSwu+Jz3hu\nxPMrz6nEf734E7723HeBcLR7Tisi1WWIH/8Cw8ZwVV8AJFXz/pbragsHZVMck1CqXReHCxF5R4hw\nGFG5tEc/iKU+Zd1Ead9LpvU5/mfdrwF/cnU1hf35Hn625k7+47n/8jQGoCoDl6d315hkNw5sYU3f\n+oO+l1eLxri/TjVI2G/0pWLuhAygW+EI6d5MESnuE0ZBD5MfgHIQEtOjO/8KwIPbH625X2ndj9q+\nl8TxYeuFu7xpW3YnALZR7QEtaQZFxSfvWn0cibzzAQKT6rIMpNbXJH+5xj2qTuCXYdqifcVpq0Yf\na12vp6Ivq3qFCVtOjEzQwf6XtDD5dg3vYcfQLnoKfWim7l9L0fn+y98mOfNZlOZetiUfreoLgBQr\nB/7WqIWyeeSj0CPyjvC64I2UZvBwwqwgU10/OPKWG4RWtze3D/AnJ3epUG9RTMq6pYcmm0rh4EBW\n8x++9DNuW/2/r9ifkfBiz2q+8dz3KRrVpBCc6IPEFyTv16p5W7bFrSt/7hFg9X4bpW0vcsv+mvtf\nCbuGdnt/l4zw5NybKSLFAuRtVCeRMi2bIW2Y32/+MzktX7U/eI2JDeOq+g4gN4nnbNvhB1jWTWzb\nJlN2TMuKUUWufZkScr2vKeZr9NGNZu/LhImx4JiWpbosyZnL2Bd/gd3De6vOryWfuEuuTMuirJtI\nqmjLNqsDNF3BsxAwZe9zTNKphAgEfMkhb9saWRjakFvtPefKe1m+z3cZ5PScZzavJGJNyZLT86G+\nACEhDTV8zu83/5lfrL0LzXnHa1lgDhci8n6TwPUvWrZdMYGaNY97pW2vBat61/LJJz7PtuyOmvst\n2+Kl3rUU9dIBr23VEAAOVV9/uf433LT0m6/6fLcfQfI2TCtEriMJMJpmIsUFIbYmW4Cg2VycP1jy\n/YHByaaSED2zeeC3bdvkdJ9MKv3ouiGIwbKtmtqWi9vX3sXu3F5W9673zgHxXILm/JAGG+hfppzh\nzvX30F3oxbQsBofL2LZd9QxFX6rHqrfYz4bBzdy/9aGq4yzbxjBMYsesIzaxtrm2ss18SQ+ZTHcN\n++RdOSn3ZkpIcX/cCjUEGNO0+c7z/81fup7imb3Lvevphskftz7MZ578Mn0lIaTJkh+xXiwb7O4f\nRG7sQ2l0yLscDnzTdJMhLYdhi/5KEhR1v49lzWT7/iGkhE/Y+RoCxLDdR+yYtfQMD4W254o6iZlL\nSc70a04MlAZDxzyzdzm7zZeRm3tInb6IPbl92LbtRZAXk7tZMfCMr3lXQB2zleuXfImCXgwJoK5F\nJp2IYds2e/Ou8CXh2pJ0w2JgqESuqDNYyrIz/gyJ414C/JgDwzK4e+PveaFntX9fWt5/xnJ1v7Kl\noWqzeby25m1ZNn/peoqVgfaPJHlH0eZvAnQPFvjCT5/l4jMm8fLOQbbvG+J//n0+Dy7bwX1PbuPm\nf57LxFEN/PWlPdy5aCPXv382MyYJ0vjNXzbzyIouvvWxeXS8hsjZIO7fIibbv3Y9w5SmY6r2L937\nHHdv/D2N+jF0r5zOj649J7QsA2BTV4Zv/t+LfPySWcydLrLzPfp8F3c/tpkbPjgHPdVNS6KZ0XWv\nLnPfc/tFAJBhGajy3/aZvLxzkO/cvZIPLZzGceP9VIr5khEycRumTUyt1iZKuomUEGSwfVeZNW39\nXhCNaxbvCfgyQ5p3gBwf2LaY4eQQ0IYkSZR1k49/90nOOGEU557lB9Zc96On+MAFM5h/6niG8hrX\n3LqEc04eiz3xRV7u38R/nHUjsQOMgaZb/P//+SRnnTiGf3nHDD73k6VkpN0kRCBxyKToE7PFnwZv\nB6A50cSG5Z1s2JUhEVcoayafuewUZk5u5cWe1WzdrPDw091V0dvd+XDw0n/d8xLb9g3xb+85ke/+\n5iWuuGgikmKCbGFaJorsE+SqLX384Herue59JzNrShvb9w1xyy+fB+CbH5tHZ3OKVV27vON/8dBq\nxqnT/WsnXkJp9f3QtUzSmfKgR3j3P72de34Dn79iNt/69UpSpz8ROvalbfvZ2TlMc32cz922DOnY\n5SSm+wKQVKHxLVu3n98/v5LkTH9btpynLp6mpBlc/+Ol5EsGiVk+mQxr1Zp3X/ol1NR+8oqBbvhR\n0kPlAnJdmNAHy2F/76833AdAfLLQqH+y5EFSPafQ0SKeUXncc7yUAzlZ+x5iEzZj2LBpcAu5cnXf\nDNPi9kWrKDrmckm2QBZC4pduX06PE6TWcEwXeJ+5ze0PvsykUQ3stzZXxRIM6znyJdFfqYZQ8Z3f\nPUeb7FtB5MZ+5PQw2BJIdugeilr1+bWEuMOFSPN+E2CjE7X50LM72b5PfJCWbXPfk9sAPzr0waXC\nf7Z07T7v3EdWiIIxm7p8Te+1wtXmRlp77EbuZhFmuv6hamn2ryvFMfc+4ZeSve+vIjBm+cbd/PdL\nv+CW5f/5mvsa1BoPFktWi34/tGxnyOddKOkhzbsye5aLkmYguf492eLhZ3d6y1hcTb7HMZvHlXhI\nU3DJ0bAMFu34CwPNKwDxvIediPdn13fTlfMjfVEML3p2l6O1PLVqN893v0TeKJAp1Q7ScbEvI/Yv\nWbMPy7YZGCqHTI1lI0jezrNP+pO1bulelHDZuc+la/ezYWAzt6+9i8cHBUm8vCus+e2vIO91OwYp\nlk1+/dgG1NHbWbRGmFslSZivg1i0XBDzn5buAMS6eq/d/gLL973Attxmb5tml0NLBOzOTeJ/UwgE\ntczmPaVe729TEtaRxc+NUIBJ0dm0O0NXTw7dsFCawgFykmqA5L87f1ixKqQVA2RLeedehCY7arRN\nLOW/vzm9uo+u8UFp2093xo84HypWa+lBzTtoNZJi4t4yWYOd3TnvGVYimbb454unM2/mKN4+2yfI\nn6/9FXvG/L7KvVHWTZZt3hHaJsU0hgs6PYNFL9+BlvYtJA2NYoy27xtClqvzIeS0PANDzvtYg7yF\nZu5bshLTxfcjmXHn+v67nCtWZ4orRWbzCIcSlZGiUrzAQCHrmbfcCdUNsKn000LtwJRXCzenkSzV\nfv08U63j56t15ZST8CS47MM1t9nqa5N+g6biVxOIogdyJQfHslAyQj5vbQTyHtZySJK7QNsMCS8e\neRd8Yqg1BtlymKzcyF8Xe3P+RCkpJprmulWcyzb4wlqmXE3ewTEKEpebgSpE3gEBSDMsUDXkQKT2\nYDHnBWC5SMQVT4iT04JUKpPT7A1EsQ+X/D70JlcTm7iR4lh/nfJAKSx8uglz+lIr+dnqX4aEqoHC\nEHe+fA92zH+PJMW3mtiYge2Oz7aW5q0NBI4TRDE40lI/xaA3U/RiG1yhIISA1hcb5QsBVkEEBA47\nhNubKSI39DM0cTGmFCDvcjUhm5Lfn64B35ozXK6+n6DmXWt5m6aJ96w0AnnbisbZJ43lX981k7NO\nGlO1X2kJC2NlKUd8imOSdueCWJk9TuKaGcc0ITf1hPz6l54nhILebBHd9L8LN2ZgWM95Yyyp1fcg\nqToZR8gNCktSsQXbkpDrhjyXVqYQHs/GeEOkeUc4tIhVJNxPnvIUNy3/ukfq7oTvEnStmsG1siu9\nWnjBOCO8fqZDDF6QTsW1C3qRVervUNp3UyxXTxSGUjs46GAR/AC1V6F5uzm7K8k7XzIOSvMeChCv\npBj0Z/0J1jQtbNv2JlLN1MgXq33Kg+UwWelGONZhMKhNK4bXF89H3uATT7YGebtL2AAKZoA43Ykx\noKGEzeYWyROXED/Gj3LPFKsrMCVisqfpuYFKlQUt9hd88t7W7U/87uQaxEDRHw/TMulveB65foBy\n0xZW9a1DM/yJfqhUYwJWDIYdTasQ8C3bloRqJ8g774zhPV+bQS2gPTvrg0dapy8pOn2ZkhfbYBuB\n4C6XuFS/j5Ll77cKIrmKaxbvzRRDhKZaooJXvkLz3jS4FSvhH7c34z/zXMDEbmbbkGyZTDDOooal\nwRVkhgvV38yY5Hh0S/e+p2DSFu/8eFhrjU3Y4AluFB33k6qxs1tsax6TJTFNuLdkW4yHkhTj25sp\nUTQDz0lLOPeV9yPTlWrNWVI133IQ0MylvTPBjCHFyyROehqAgYL/DZzVeiGtyRaKRumIBeNG5P1m\nQ0CajKsVmrdyZDXvkczmXiCRM2lVLrfaNbybItmQ9haEJudqbg9ix9CuUDRxELkAMb0as7k7gcdU\nudpsHiDQkTSUIT3Qf8UMBVaZlk1eL2AENJ+hgJbktl+pLZtWOFguUwoICLJBWQ8njwlOpBkt7PuE\nsHBQNH1hyU0sEgzyqQxYq4zyHa6hESZiCrudSHsMYbKsDCQKmnF39PmWCKxqrTWoea8f2EivuoHE\nCc+BLO47GImdr0HekmJ4VoVcYLy1DXNRiFN0iNHVzmPHrmJDYZV/vqPlDeVqvE+2BIpBT7ZAr5sg\nJBCZHdNF/Elw3EzE3+ZQC9aQKBE6rPmad5D8k5YgviB59xT6+MHKn3r3D9CdC0SmOwKKOdSKtuUU\nVCsVGsOagVmOcDGU10LzjLZsY2voAAAgAElEQVRtFi0J0Qc3ULJWamC5gryDEfbGUKM3Bjv2i/dR\nSfnHj5VEPIIuFVBkib5MMWzCdsZzqJwj4zyDWj5vggKSs9/oHYdeSHrjLzlj1p0V42V0T6TdmEZK\nTWLaZkjjP5yIyPvvEAOlQTQzaEoNkETg5Yx55C32u2ZzzSpXSemHMsmHa3IdSZu3bLe/Yn/l8ifX\nZOx+XJU+tqLtE9NI0dI/X/Mrfvly7dz6w4Go3FdjNvfIW5FCVox8yXCehY0yagd7ctVLbwAKhk/e\nUkVErGnZVcQ8FCC/2uQttO6gmX446ANWzCrNO6g51zKbBzX3vOFf39e8S9imgm0qlMxqn3cQtZaa\nxWOyPz6KDtgVS+L00Du6dzAgyFnV01qwv7XKoxYD1oOc5vfX1WpRDE+wcTXvuvxUrFwrshX3rDWu\nEKS2+W4J28bT8mwIERtA0m5Ckm36snl6B4uOUO2/N0nTIe9gwJfzHWtbT8Z2hJu8JvrQmy2FiClh\nC7N60KKU06sF3IGCP0Yll7wHRoMZQzHTDGnDXpayWm4C1zIwVNA9rdUcGIXZN576mMidviWzXRxb\n49sXAl8wsMA/xsoJ8pcSBU/zjiXEOOp7jmVS8ngAslqWtqYkvZli2IK2XUT2DRQDgmhgjLRts5x7\nEGOcSqj+flMV30dIKLTodSL0bSNGb6ZIWhWBevkaY3M4EEWbH4XY1T3ML/68nk9eeiKdLeGi9nm9\nwJeWfoPx9WP5wunX8H+PbOIvL/oaZnACiFVq3g5Db2m+l889bdO89VLv2B/9YS3nzxnPFRccf1B9\nfOCZ7by8c5Dr3z/b+1DveXwz2ZxGLqWBAiDxg3tXsdkpSPCpfzyJyWMasQhr3pWlI7tdf6/zcXUP\nFkKBa3nTn4SeXtPFI8v3ceOHTvMi1otGkUw5S4MzET350h4ef3EPLQ0Jpk9soXNyteb98PKdrHi5\nhxs/dNorWiFcYUOpMJs//uJu9vUXkFI54pM2cHfXBo4ZfQ0dHdNC5xfMvC9WKz7hqopMMbGXb6y4\nN3R8vkLzfu7lbh7ZvAncVNWySV+2xH/+5iVQyySmr6Bo+WSlxk1PAHIzuAXJ+4k1W2nMdHHh3An8\n/qmtDA6VGTfL13SDxPenZ3aI8+MlbC2JpOrsGxxC003iMSUsSOL4CZ3+j++oZ3dvDqV1L08Ul1G2\nXQ1JRBkPFzRu+eXzDAyVuPyiseLWJBnLtugeGgScSHTJH3NbjyPFNJ7esI1ZiX5mTWmrGVQUFCCW\nb9hLYgZItoK2+VSSJz8VIkPN0kgACScVpmzF0S2DsqlVuUJsSwJLDWt5FRpfPpNAaRVBcXv6ZEa1\npukPHJM0WxlmK/Gpqyi91Iytpfz2jJj4B+zoHeCWX66gN1MiMcrC/WpiOLWoy4M8u24/v35sM23j\nstDqdlJEUvfkMlzzvb/S2ZRkz2CWeDNgim9GNtPY2GTKQ7SlWnjmZT8S37+voNbqru0W53em2wG4\nc/09nNwxq3a8i2yKNtzgMMdaUVpzJraewDZU1NE76Fk3FmjwrmFmOmlKNEFJBLt2NI9l3fYBVm7d\nBzEorT4Lu1SHjEJ/UVhrmuvj5J0xHNf/DrYMlGHKWi/4rqkuTlmvuIf++fR0OMl0VIP+vAZpMUZ9\nmRId44UrIK8XSODniT9ciDTvoxD//fs17O7Nc/+S7VX7smUhDe52tJYgcYP/UUE1eXuk5Ex++/rD\n2vdjL4i2Hti6iJuWfjNkuq3EH57ezoZdmdBktvi5Lp5d3+1V7zEsg1Vb+ymUDTI5jXXbhfZkOaTq\nkXeFGd9dJuVOYNv2DbFuh29CzZm+VnnnY2vZ11/w2ga8NchlS5DDLxdtpKsnx+qt/fz2iS0hs7mr\nzdz7xFZ27B9mYFhM/I/tepIvLf1GTbO6YYj+xlQ51Hd3PIPEuLXGWveiJTRZ24gJE51kkUooJOMK\nQx3LveMkXZBVIUBGmmFy2x/XMRQ0dct+pLrascf3IzqIxy3vOXmacUwTpk5bwlSKvLBR+JT/vHQn\nz6zd7yWPUWWVklXh/5QNpJiOrSWxTRXd0ti0W5hcS3p4vNpTbRhogM2oVnE/8amrKdhhbV+KldnX\nX2D7viGyeY2N+4VmO8FJbtJfEM9/zrQOkulAycfhZmxLwlIK/OB3Ivgp6Au1ikIjdCO1g+M1Sj8Z\nu5wS5tsa5OvmsVY1oRWu69/gCUFuxrPyunnYhhr2V1eQt2vilhQD07LpaEqScuSQs8fOo8mY6B3b\n0C76Kak6tiWDrXiad1e+i+37hsgVdU8rbUk0M8Y6EXO4ha58F89u3k6uqLN70DeB1xtCECrbBbbu\nzrJsXbfXx6ljBOm675rrLtm63/fne/0P3CMO8br7zh53BhMbxmNjM1QerhKgZEMoIak5j3uBeZKq\nYVsSdrEejDj67uORZBu5LksqoVK2xHc0a2In582ayrFNk9kwuJlp08XzH8yL91wkh5EYk5jAgN6L\nlMgzujXtPceGRJpPvWc2tiV5yk1bU9IXnB3yTlvtTFBO8PqWLfrfaaGkM7vzJE5sn0FnXTtHAhF5\nH4UYcgJC6pPVfiP7gCUvCJnN3UxIru9VqTRlSbVNzot2Pk5faaAqorkWatbudYSDsiHuo9NZu+ul\nAK2INh9Z8xb34i6BclG2AxOxc7/BW3Ozk2mmVm1Wl02yAZPycCk8ybhc/IctDzJQGqyZdcowLZAN\nCsmuqr7Hj3+exPTnvd+1AuLKtiBDu5T2+pSIKSiyhGwEAn1KQrovB8hINyykZA65MbBGOKC9h9Jo\n6qItJRYgb9MCbKRYmeZEI7aeQIqXqtJn7sntJ6HEmdQwAc0uhd6Vjsni2tZwC5gKyCb5ongPKrN8\n1cXS4n1QjFCZSxcJSbwbUkwjmw8kRTHFxDyrbTqqpNDPDuIxiX+7ZBbHT/K1HqtUJywA8ZJnBXH9\ntbGhiRyfOA2A/ny1sCNZCiCBWaE5O/uTagJFlogPC3J9dt/zvrAqmyT0Nuxio/C31iB/M9sqtErX\nv+1sb29OolllpjQdw+XT30NCrqO8+RQAzjhFVC5D1T2N2y6lMTPtKI0DyM3i25Ad8rzm1I+RUJKY\nvULI2Ws6Firn2zH6RzPJnOe0GXgXnb5ceubxpBMqaOJdcZMDlZx3Ttt6EqUX345VrAuR97hRTh4B\nh/iS8RjHNYtqeHkjXxWVPaV9lD+8DQNCaFUMMGOeddF2+iCpGsm44rXxrxefQjKhcsGkc0UDDb1M\n7KzHkp3+OO/8xLiwcClt+xjVmvb6m5QTzD6uQ5i9nW1j2tJV1gNVkZkxfpTTB92L1bDNGLppM731\nOD520j8TV0Yu9XsoEZH3UQg3pWFDuka6wVcIsAp+YO5yD9eXqCgyECAb+cDZygyrOjBDMzVRLEEO\ntx3KmuWQd8kh77FO3WOXICqXihkBn7duGV6gkrf8JlS9yaZsB5f4iD4G/es9gexfwSUvUqJA6rRH\nWbTjL962XLmCvKtyh9fI8mZaxI9byZ66p9haeDm0T2nuC/2u5VPXKGDbYDlZtSTFEOStSEiaX3fZ\ndLRGzfKfeX+5j8TMZUiq4S83CvrNAwFKdllMikrM94drugmqjiTbNMQbsEsppHiJTD6Q7U6y6Cn2\nMrZuNC1JQSZBa4LWuB3bkjB6JmBbigjGGhSknXeimG1TYczwOYK8Ee9lMmVWvXMtsrOkKFYmGxDS\nipYg77H1Yzix/QSM2BAtHWUkSfKIxb1HW0tCrOwJGG4msobisXTUif5nQwF8jvbs+DhtUw2Rr/ve\nJeQE8ZiCVaynM93OjuwuQd6ShSTbWIZ/vhCgrND5Vq4Fu9jgkYvSIN7rlqYYNjZJ1dHsFckjLtcq\nIyl6IChNwth/DBAonOFcI6UmUWQJa0jYyPP0e+MNYPaOp0FtAFsKPUM1bnrnx2Iylkve5QyWbVGS\nRTu2HgdkQdJObAKAGjP8sUMQn/usl+xZ7uVkd3FSu59tJnHcS6RmPYuk6khmjNaGROBaQEwnHlMo\nODEPKUX0rTMlNN5sOYuqytiyLtwWtqC5MbFjkWwFdew28vWbkRQD25KIqWIcG2PNSIkCclOvqG8e\n8Hm7z8H1a8tNfdhjnRUThloVVHskEJH3UYxaUeFBM26tJQth8hbHFsoOwcmSZ+6CEaIxAyjVIJ4l\ne5fzu81/Iu6UKHQTHlQm+we8oLr6VIzm+rgXqeznwq4OWOst9PmEqRiA7ZVelOoyJE56GjsogDj3\nIAX81K7mDWHylOurE9G4ZnMXlZp0Lf+pYfpJNoaMAye3qWV216WiiLB2J+eA5m1LgQxteYe8bf8e\n9pZ3ICkmetfxGN2TgLDmHXz+linGRFZNz/pSMjSSJz0FQL1aj1VOIUli+ZUXSZ7MY9kWY+pGe+lb\ng9HphprHLtWBkRBaqwQ9Q4Jsi6azpGr/MSQK47wJXU6UeEL/XxLTnwtZB1plx7edyntCK0DRsa40\nJxqZ2ijiMFIteeceAuRddDRvyRcw3ICidCzFqAZB3iUr8Jwd8rZ0550xYk6kcfC9EwlyknGFsm7S\nnmwjbxTIlYre+YYhuwMi/ne/rQpSsDVBCLGJGyFWoqlRXNclJUWWQBcEVrByoh+q7hEj+OlTvWVy\nAdO+KsvYWgoZGSvmm91BmHx1A5JyGjk9jNK2l8TMZ5AdQSKlJokpMmbJ1byz/HHrwxjNwuftWg2E\ni8dGaXfW5scCPnkH7rNetm8Fd738W4KYN2Yu7516iX8/ySFQdFRJCEiiLdcXrpGIyRSMIkkl4WXO\na3LqqWfKQyKHhaO5e5kiTJVYYTSSbLFOe1ospzNVYoo4/8KxFyFJoI7ewdi2tDf/ueMcU2XqnMC7\n2Litfl/N2EEVHDrUiMj7KEN/IUPylCeQW/bXXCccJCOj1gtVg7xdYrVtO+QTr6V5u/5qqC7WAHjL\nJJTGAZANr22fvG1PA3LN5om4Qkdziv6hEoZp+ZHyjoYeLIPZEyBeSRZtuZp3/NhVyE7mLjcgxtMw\nAm0EyTtoqQhOhi4KevgeNcMK+fprJWUIErxsB9s8sLAFIg7AUHJYpTS25ZyrGCTiCrIsYztadHnT\nqZ42plt+H12t08o3CpO1c76LEHk7yT0kxcS0bAzTIqsNeoFCti152rmUKLK/wmffnGyixZkw3XSu\nSBaWpHt+WDdCtzebc8bL0byNGLph0eFoS7HxIpuZXJ8N9bfDnoptg9wUWAoGDNvid0uiBVsT10qk\nxHlFowSWjLZtltBuXXOrI2C4qTjr4knGNAvhQx29E6VjlzceAGXNyXtQSiPJlne+uz+pCGIp6xYt\nSeH3HigP+uTtnO8SnEsGleZYs38Mck6YY+Vkgfp6cZ6vecvYegJsWJ9ZizJqJ5IEiuW7GWwthW0H\nnoOsE1fiKLLiLAGVSMuNSIkCx09o8oPLzBjDeY3ZTWcgqQbxY1cj1w1jJ7NOH5IidqMk+rJjaCeP\n7XrSfxCGK4CIMY5PWRsao+A35Uac10JKTXJK58zQNkm2ScpJLzmPa2lQO/YwNGoJBb1ISvXT5SbV\nBEklSaacJaZIQrM2VRJxcb5hWpT2jQ9dwzZjnvvw2JaJIj4hVqalIeG9h+51Fdm3HoTa0OO159rD\njIi8jzI8vnOZSBRw3Es10xAGyeBHf1hbtT84eWu2+LusmTy8fKfIchUMOlGq28+X/PaD5kkXwQpS\nUsqv4OOlHJRsQbrgVeJJxAR52zbc9sd1dGcdE6ZD8oWSwc/+tI7t+4ZYvlVIvHaAmAbcDGSBicI1\nobkfYFk3uOuRDdz57OPszPjpX3/1WKAkZg0ff7DYA8AdD7/MMxt2+PsDWt7zG3q4/+ltXoY1gBUv\nB7JG1bBkDBULWJbN/zz0Mt/9zUrW7u0CyRZBOs49SorQvFVZwpZ1UnIdVqbTm1SCfmQ3iMc2Yz75\nB4Uwl0D2noDpaeZim6abFAMa6JT6qb5Glyiw28ls5b5DxbzM48sdM6yreTt+U9fE6fZxy0AXS9fu\n8zVcI0ZXT47lS2JYxXqkej/gUJIgZTfz2TmfADOOlWsRVhGnbbmhnyFpPzNaj6cp0YBWEtey4jl+\nt/lPDJYzKHoDZt94QAqR992PbWbzfiG8NSTqGN/a4l03Ptl5FxzXgusxsYvChy4lnVgKR4BKqkkS\nMZmybnoWiKyWDWhsYdLxfMoBUhjVmgYkFIe8pXiJtMNHSVX0W5Yc06/zPONOXeykEqg1YMvCwuCQ\ntyXrYc0dyA6oSDGd3WN+i5zyg62GCjpnj52HbVbTQVJJEFcV8jlQibNreE9ovyuY6Hum+hslv5JY\ncL16LeKb0Xo8lxx7MZIk0ZRoqNqfjqX9zHqm6iXsKSf3M1jOkI6F6y00JxrZm9/PQMOLYi4zVS+W\n4p7Ht1AeaGFy9p3e8dZwi5dpsi6pYhtxJFVHVWTf8uhp3lLoHqxcE+WNp4KexDBtNnVl+PkD6w95\nIaeREJH3UQYvwtGSR9C8fXJdvbWvan9wOYcZINpHV3RhmFY4KrZm1R0/GKyW5h3URCXVr9Lk19AN\nrNX1yFtm1mThk3txU6+fwcohnadW7eXZ9d3c8svneXHnDsDRLBHLSTzLgeFrIp3pDq8PAC9s7OXJ\nrmdZXlgUShm5bmcgM1egb66/2fXLu9jTm+dXj/vJN4JLjH58/1r+9MyOUCYwSxJ/nzdnfDga10Hf\ncJ6+TJElq/exbscgK7YJ4cQq1vtai2z4ZnPZICY596m7+Zb9PnqWF1MNkH+15l3YO9Zr31svr1ue\nyVnfNY2J6SkhzXt3r/PsHRLq2qvRtdsJ7nK1UvcenWdh9ApNRx23lb+8sMeL5G9K1lPWTdZvz2L2\nj64al3pzFJObJqEbFtZwC5IEckoIdW5ynrdPOFvcS05MY7uNjSLeApDxScMn7yKPPt/FcKmIbcP0\n8e00pfzJ2DYVLjhtgvfeubGK9YrQqpV0nqb6uDdeKVVohZpmehaIgVLGF5Zcn7kTeCincsSOXYXa\nIVZttNbVMXl0g9NH8b6NHS15edBd8vVQIfx1NjaGfttaCjlRIjZlFSYaKZf8HfK2HdO7jS0sHDbU\nxVNccf5xjG2vJ2ZWL29SZMVZlSJR6vOjqMubT0HvOs57zu3pZibEnWWkqk5RFXPP5I4OLxVqXQ3N\n+x+mLOSCSW8T/ayxfGx0U6OnOYPvv3aRVivJ2zGdpzYiyRa2odJQkRBmzqQp3t9mpsPLQJlMqCTk\nJHJcFwKPa4Gq4bcHMHomYGU7aUzHMEyLp1ftZdm6/fRnj0x+84i8jzJ4ZGHEvIQQQYQCoCo0ye99\n8kzGjvJfZMM2mDymkUmjGiiUDQzDqliPWi0cZEv+MqNaPu9g6khJMTzy9uoDy7XIW+GMmaOZM80h\nXOe6biajYPUeOT0szLmOyTc4oU0d3eH9PaqCvLsHi6GsX36DZu2/HXPgLv1lnt+/MnxOILCndi7j\ngHnc6d+0Cc186rJpVUdqZjkkhA3oTgnIYr0n8UuqCNBRFAkUHQXXzxj0AYoJzrUE2IbqTToN9YHP\nXNHF0idLEe3bEpYsyLikGb7mbsQo66YnxMjJgle8xBUWTC0WIka3L+75AP/90X9gUuMElPpBhu0e\n9sbEWH78nbO5/v2zAbDyTVXjIluOS8AwPdLxVg441291TNXZrF1V79pSfWuEbz1wBQwDhRjzZo5B\nkiTU3aeKZUKKiT12LRPGiOuVyqKm9LX/cBYA8+c1M3/2uEAwWIJETMEGGmMueQ/6AW+u5u1o7kpr\nN2rbPuQ6IYTc8E9v83IPWI5PefrxKe+7cjVvL6eMHo7GnzVugvf3tz8+jwmdghzV9n0YUtkjb1fz\ndp+Vi3Qsxa1Xn8Ox45qIqTIzx4r2bEOl05jBW8ecDvhLSs0+EX9QrzZgDY5G6fdzPnz742+lNS2+\nydiY7QzYuzm+ZSpffN+5/MvFM4BqzbshVs/ExrAZ28qFBZJxLS2hnPZSxZyUrqHNB2FrqVBFwpnH\ntPD2U8czPjlZXG+oDdW5P1mSOG5MBzYW31/zQz/4L0DeDTFfwDH7x5KMKzTVJzBMS9R4l6Ct6dBU\nX3wlROR9lMElC3dyrUTIh1rxosdUORSJbdg6MVUmnVTRdKeggHJgzXsoQN7lGpp3KFtWgLx9zdvv\nk0fejmTtfaTudR3ydgPzpGQOuW4IK9vmE1egv2ogAdKYOmfpiUMm/dlSyKzuJVEIEHZQcLED2ZTu\nWH936B6DwVmVZnWlfTdKu798zG1TUYTJOwjbktCscMrUYVMEuNmlOo+0pFiZZFxBloVA4+ZxxlKw\nLRkppnnpJstWwIXg3INhB56pE8ErGEEiIdWhSeKZarqFZrmFMWLifdATyCjIyYDP2yFRvaSCGcM2\nFc9c6xKrazaPqTJtyRaQID9KVGhS+o9lcvNEjxRcK0pojB0TsW5YHmkpDYNI8aInILgTaX8mXPEL\nwFQC5K255F1EqsuKwCzbJ8J0cRJG9zEAPLN/GT3SJm98VUVmVLodWZJZ2buGPnmrFxOQiiW9dzet\nOMVB9Kz/jjvjbzlL+jwyQBBZc6LJS0lslcWzzpQy3mqKSh+xvP2tnNJxovd7Zsdx3t8xVWFWy6zQ\n8UmPvMU4G/smc0LsLG99eqXw3ZRwnoNkc4w1jytnvFcc5xatGWrj7JaFvHvM+wHoqCCphrgjPIze\nSVxOcOnUd4b2B8n7golv4wunX0MlyhtOp7R2nve7M91BIjYyTbkCigvTDs95drE+RN5u8NtFoy6l\n+OLbwYyhBoJZ61RxDz3FXuRkwUmyI85RFZn6eB0fPuFyJmbeAbZMQzqGqsjohk1vtkRrQ7KqENTh\nQkTebzDolsEL3atGXPJVMv3JtbbPO1A4voJ8Y6rirSEGQLZEBKVTYSlb0MKm3Rqad1+gwENNzTto\nNlcM8k4ke9Eh76CJ17CdJTfOB5WIK0h1Wc8n7loO3OVZSpvwVZt943yTslJtogY/o5N7P2U9LJgk\nqHP6GPQHB9ZDl/2JqXISDd5DZWrP+JS1xKesCbTpkLcsoVNhTrNUdFsLZR3TLFdzjnvFFKR4mURM\n8QOeLH+JkK3HQfXJW7c1Z3mM4pnNTcIJQkLEJTWiSQWQRIpUL3LdUB3BSyItNSKlh4jPWYSUzHkC\nUbkozKlWoQEplUNp24OccM+Pe/fdFHdIIZHHzHQwpnwasiT7BXMMv7b4jBZhnVBNJ5LesDxBQB29\nk+QpTwrLhy15/s7eTMl7Z+aOOhWAMaXT/HE2Y9iGitLc65fRDFilEjEFK+dr/xa+5qwqMnElzsJj\nzmNYy/F88REUZy11OuYHU6WoR5UUitKQJxDalkIqoYAR9zK9uVAlX5sDMHSFhBJnsJxlq5NCdErT\nJIKQyg28a8qF3u+JjX5lrrgqc+boed56cPDJ0hUQsFSmpWbzDqeNyY1+8hcARXIEViksCfnr6yVa\n9anETfE8O5rDxOmSN8C5o89hQsPY0H41UBP+H45d6AsLQVgqdqGJy6dcwTWzP8bcUbOrqskFMXfU\n7NDv9x1/ifftg1jn71aQA0g6wlZSjXvvnRog2/p4WJMXFj4xfm5g2+mjT0XVxfuSTsaIKRKGKQJn\nK8fkcCIi7zcYFu94nP9Z93/cv/Xhmvu9IDFbqql5B3OaV5KvLNuUrTC5xlWZdDIG2BhNO/xoVaiK\nNpcb+1jc/cfqvgQQIrMKn7c6ertXHxfAQiz18j5OtRSuUSyHydsNGDKHW3yTskNoqiJj4pN3a7KV\nhJIIpYN1NSZzqIVOyzFhBwQc19xp5ZrQd87wtlea+4Jthgs01Fiap7h542VPsDGHm/nQ8R/ANhVM\nWw/lHNesssiFbckhzTsekz1BwF0/DIARR1I16p01/yaaFyTkBqwFyRtVJyb5ZFkvi0lIbhhk7eAa\nj7xtM0beqaLVoDoR5bKN2tnlkVCx4JiF841IEsSPXYM6QQRTeZYRSQpN0ma2jQ4nKU88oFG17lnI\nl97yWT4y/QOUN84hVRJJRXTDCsUyiPHQUOwEsiRjWlaoZOqxzZP477d/i3GcGDonKIyBsxzPQTyu\nYA2OQt80h45Um3+Q5QsYFx9zPh+Y8T5/V66JZEz1a0obNu2pdqz4MI0Nzn2ZKumEeBZuJjcXHzxB\ntOUSgmHatCRb6C8OsGlwK82JJi8ILvhadaTamdQwgYXHnIcs++MXU2WSCVUkxnFwaufJ4hoBzTKm\nysyfcDafnfMJPjDjn0J9mtYqgs7M3rApOzPsv++9mZIXhNpWURmsMemblMc3d3IgjFQO2MVJ7TM4\nrmUKkiQRj/vvu7Z9JlY5yWzlHXz5LZ9leutxofPG1o/m+jmf8n7bxbqQ5u0+r2CKYzVQddHVvF2Y\nw63e30GN2nUDphNqiPzbm4+MyRwi8j6ieOz5Lrp6wqkphwoaDyz1g5y2O8kLdgyJZSuPrOjinsc3\ne8uhvCQNstCUlq3bz12PbOS3T2xhqKCFfd4V5Js3CuGkIgHNW27qJT55HWpnIA96KEDGJhYo4wjV\nAWuWbYfK5EmKEYo2V8eJ7E5mthUz60ySkuV9nHvl1aH2RE1rvw61p7kYcZ/YHD92XVL1lr5JG9/G\njq4yacXPmAR45KdvO9ExHVdq3k7U9daTwIxTeukcZDPBkBZ+ZkENasPgZm596o/c+9ctxBM1stsF\nNG+3kIax5zjmjj0RLAXN0vnLCr82s47uCCaSuE9bglhZWCVc4UMPrO/V40iK5UUoIxu+VcJdR+ya\n6yUTSbZIyP6k26AKv3HsmHX8pe8BhmNOX4yY9+wanWPASTiiashWjGLJoqUhUdNnbet+bEWQvO1S\n2iPvYKnaJI2MruskEVOxsh1YTlSxHtC8XcjJAoolnv/9T2/HtGxithCwOlLtSJJUpa25goxVrMPM\ntnGccoa3TxwrYWY7mBYkA0vxtFZJkpg35jRa4+K9NbonElMV7zovbupF1uqRFJN0Y9k737VqeX57\nQNtyMjNahb/YNWnbNqT0jnwAACAASURBVExrOZaSWaZgFJnaPLlm8Q5FVvjc3E/xrikLKrZLwrxs\nJLC1BAoqJ7YLAVRRwiQPMLlpkhfU6eLE9hOIbTsXfdf00PZgVbvebJGCM1e11CdCxzUHyLsj3Uot\n/MeZX+Rrb72h5r4g4oHnlwz8bfZOoLzqbYxPTmZUXW0BIRiBbpdTNc3mSlCgCZJ3haBuF/0I+CDJ\nu0pJXSoW2t4RkfffH/b05vj1Y5u56X+eC23/5cMb+MNT2/ijk6fc9dmokkJfpshv/rKZxc+JZTa6\nqfumV4e871y0kcdf3MOi5bt4fkNPyOddGdzh1om2yk6QkWx6Pu9ahelD/uBE0VtD7aLSbL5++wAl\no+RPtorOcN5J0lLWQRITsbb5VH8Nsmx6H+cwvdiWRGnVOZhZ5+OXA+StaiKBhy37EbxOn+rTMXRL\nx9bjFLJJfvC71aTUdCi5hr+EJ4ahy1X36Js7nWIMRh2y1iisCZIFWMSnP4fS0uMtWQHYYDzDw8/u\n8pa+ubBtKeTzdjNC2UYMWZbEGnDZ4PHnffK2EMk3Jo6qByTQ48LnHTCbG5r/2bpaaSJtihSwiu6T\ntvMcOjqcNe+uoBPQLprjzc44OlYBxe+jm9K0PuaTr6Tqjt88TqFk0NaYrE3eAW3ZM5sjfPluLedY\nYFJWHRLz/LPOulndsJDNMEkAyGaSkmbw4DIh7F7UcQVXTv8nprUI7TFoKhX37rgjSmm0jXOZnvTN\n6u77Z9swJu2n6cSWQxM7wPunXIm2YwZm/1hiqkzKuc79T29n5y4np3Z6nTjdUkgnVc49ZayXZAXC\na59PmSpMvP9w5jGcMdrv07njzwx0vur2PbQ42cckSfJIpLT2TK4c93FPuw1mF4yrI5ugAS47ay7Y\nMmec4I/DhXP9wLjeTNEjrvGdgqynTxTvUFOAvNuStcm7OdHkrYmvhfEd4t0MCl+1zOYH8oMDTJFP\nQ983GZBFeteKtoKat+dWIOxDNzPtmAP+OAQ17wWnC5fD204ZGyJvNxvckUBUVewIoViuvfZv/4CY\nLF3Tn0veiqzSE8gnPVzQ6Q/UL0a2KGtmyHReLBuUpaDmHSbkYUeDtMtpSJRANompCnXJcO7lifHj\n2aVtCpO/G6S07xhGG7Pon/DnqoC1fFlDUkyxbjemISkG/UMlLMumZJSRZJvpbZP5+GfO56tPbKef\nHpAt74PSEZnF7HLaXx8qW77ZPKb564fLKSRkSAhLREdTim5LCwWaqXZSRKzLplgj6yWmUCmXbVER\nyCHsKWMbSU2qZ1sOT7CoS6pCY0oBqoYkWSL5DAifbkX0uhtjEJfjDL94BvETlgc0b9kb/1s+IqKX\nZTuGpYhc4u4MLSkGthHnuHHNfPby2Vz/2FKkZE5MHE77Wjkwm7sJJGI6LQ0xioqF5Wb0slQScoJU\nyuCmj8zllj8+AAjTopsfqjXRChUp6t1o9JyjeadUn4ileAlUDb2QwrJt0kmVn3ziHfz48TgbSi+i\nNGRoUBspBsgqpHlrqZqatxfxK0tIkh+kqBsWsRqEI5kJT7iYPKaBK+efSl+fbyFprwim0ndNI3Hc\nS+h7BbknAqbYoJY3OqTNSSGTKMC4pk7MHuGLjqkyHQHTsV1hGscU39aHFkyjdetuFu0Sgkaw1vak\n0Q386NpzhGUFeNv4M2lPtYX93QcoV/Ctj83zAh49Td2Ih4g0SE6V91OJd501hVMmt4a01ffNn8q7\nz5rMt3+9kr39ec+d0tqQ4NZrziYVF8cGY0Nqrek+GHz5I3PRdCtErkGzubftAH5wgOPUuazrEgpR\nkLxdn/dImncwT4W2KRA3QVggPPeUsZw+YxTppMpTq/wA1WT8yFFqpHkfIVg1UpUCVaYxw3KLhMih\nYhCFkkFf0c/JLSt+SktX8ivr1oE1b6fghuf/U0zH5+1XParPT+WczvnO/mCqVD/pQn3MCc6p8Hkv\nyQo/va0lhd9WFVWSBoZLXtnIpkQ9qiLTXu8kvohp3sdZtovexGa7NZklV/O2QdWwveAmmTq5Ednx\ng7c3J0WQn+l/1JYernYkMi4JE2nZ4V3h47dJxhUM1zfsCACphIrlraUuh0zwthFnsiYKIXjJLZzx\nPnPs6SiWWKftEroiS2TKQ0hIjKpvce6gVhIVE0yVeFymPhUThUEUC1s2sJVgoJjTDyeoTZcLtLW4\n5nKfHBpiDWS1Idqakshp8fyntvqaVGstDckQZnt3kp7deiqzW+eIcUgNI8m2l9WsLqkSjym0SZPR\nd8yEgQl8aMpVBNXFUGCSLdf0eYeIXJFFwiBElbRa0buSmfDM+lPGNFV9R5WBQ9bgaN7ffg22YyUI\nam5BIvdWKQT6EkRdYAKPq3LIxxn0N4MTsJZUkSSJ9nTAOmGE1x2nEiqyJCFJEv90/Lt5+4Szqu53\nJKiKHCLaWvcUJKr4K5C3JElV7cnOto7mJLphsddZMphOxqhLxjyiDa7jrmXyPxioilxlNamteR+Y\nvINCyiuZzYPHnth+AnVqmium/2NVm3WBQlCSJHn9DL67ifiRo9SIvI8QauUZr7Xd07wlhd6MT475\nUrXm7aIuJV4iTTdDRSrCmrfN5sw28Zdjcg6bzZ3lN6UpXuIKKWg293Ihq6QSKkk1GdK8dctgW2GD\nc7AFZswj/L5Myat85Urnk5pEQJJclyURU9AtQ0RKuyZ3JxmDu9YbVRdm4YD/s0FpEfV3FZ2OppQg\n74DmrZXcQLhAZivHZFly5CK1bT9Kx26x3MPSPHJXFYlEXMEoOwJATAv5usHGGhjDhORkp9604Res\nUBNiQgsUtFBkiaw2RH28zsvFbLqme1dIkiyRWMJUfFOuQ85lCuiKIF+9GCAMxyeXNftobnL8pwGz\nbGO8kbxeYG+xy8vHPGOUr9U1JeqIyeIeZdstpOFkbnPMo+lEgg/NfC9WOemZ122nIlk66QpbNnax\nAXXvKbSkwlHESSXBuPix6LunoioyTfV+JLoLNaAdKrLkFXoQmncN8jYSnvm2crKH2r7HukCyjrBZ\n1m+/MR7O8hXsl/gd9h8Hr2NraYrPBXzRAZ93Q9zXhG0zTN6viFfBg0HNVKkIbHu1cO91pxO3U1dJ\nskqck9pnVvnjXytqEXWlUHWg/alEtQl+pIC1hng93z7nZs4c+5aqNmu9ZxAm/1cSKg4lIvI+QhiB\nu6vglsNUZYW+rK9590gb+O2m+/0DA8TqlgYtaWaIUIOat9zcy7J9ItLbKjnLpGJlYorsmM2dNddy\niua0Y/JSqoO9MEVO6sZ4AwOlQTQnA1le9zOvGb0TsE0VJSau35sp8v/Yu/P4qMqzf/yfs81MJpls\nkAAJ+yabICgo4i5Qt69WWxUXcKlaRVu1daFUpbUPuFT9Wbva1trqQ12hllddeLpp1YLWlcUVtAjI\nkkD2zHaW3x9nmXMmM5mQZCYZ5vP+h8xkZnLmJMx1rvu+7uuOWevL7eA9uXqMeVyl+/CrDx7Gqzv+\nbZ6npJ7Y/knrzKBmNUZxFy/ZhVRCoB0DyvxQDc0zbG533rKDrjkkbZ6rcLsrWJTvRWNwM3a173Iy\nd0kU4VckaBFX8PZUrsdR3xSBz96yUo45vxO/5IMkCOb6Z8mcKxdFc7cjuwMUAGiqfYFiPq+4OLGk\nx+nnbL3fiNaGmGiNnESCieYeVrOaFr0egZB1fK7gXR4wA+nKj58xHx8NYGBxYs4x4JfNoXMAJdoQ\nCLGg01TEzmz9PslsEqO5A5V5UWF/gNt75IiC0GGeWBAEnFJ9DtQvx6KqPODMwbqzMzkp8/YOm4uY\nV3YhYlumIbLpaMS3j4PSNNK5uEgOIgBQXtJx7tGdOaWbUxUEAQtGXYzohzM7HFcyRRZR2mFnP8HZ\nIcuI+Z2LG89FQYoe+r3NfUHiHjbvjeAdjWnmErqkQCUIAr459RKcMvLkbv+MVFLOb2e4oHFfdLmH\nsv0phs2TL9DSCaYY4QAS9RoAg/dByT1s/t6n9dANsxfuftd2llu/bEJMtTJcw0BdY9jJAPeXJ/aA\n1ttLrAIq8zXNDy8De/WtqI/sT/xQV/C1h5dlQYbeWG0uMSpuhqJ4h819QgClwSLo4SDEUKPzGu7M\ne2d9G0q1oYjpcTyx/jWs/2C3s7etumeY9fqJIri6pjBiVqFdsbWOcnRlrbmOdsBufNGyHau2/MU8\nUCt428PmghL3NOZwF0KVyFaLVCWC0lJ7eU7iP09Ts13oZm1VKCUqsdvaBGCH+SErVdShrug980nW\n/2NZMiuW7QsdqWq7N/OW4tjXHIEMa3jWmuMHzEzTzLytD3YljrgRQVxXUe4aQraXfCnDzKYgpSF7\nIwvZmUqwq5TbjVZExCYYutnD2mn5GPfDiPuwH19ik/oP8xQ0JqqI7S077SmX2JbEOmDAXPs/sMgM\n3pE2H9o3HO08xh42d9bhC4lhUfu47OBk/32bc9YdPwztAJuuGtcdJCVR8BSs+WQRgwODoe0fAqO9\nFOquMdBVn7MbXjDFvvbuzMo5Blfm7Q48/qQ51YmV46C3mFXlyRciboospXyvV0y5GPH35gGaL2Xm\nndziMxv8nmJAd/DufnAZ6JqKSHXBlC2ZsuxMz3FPz9gXAuky784Up/g7AwBZTrwWg/dByJ15P7Rq\nA155dyfuXvmOp9HK8sfeRn2zOTcc0+PY1xxFZWkAJQEFQsRd9GP9J7IztiIFUtUObCsyd/s5acDp\nAOBtB2oF4UvGLwIMEXpbGUR/GIZoNfiQzbaZPsmHoF+GVl8LQdQhVe72PB+agoaWKN57y/xD/vN7\nr+PXaz7Axm3m4+zgamgydMEMmvubo4gLVvC2Mm9REJ0Mz3OeUvTrdg9ZuzPvErnEeZ8lQSvwuTJv\nLe7q2Caaeyy7s57wl0M9VePun2suvZGgt1ZgQukkSKFGSFWJZXSxz6bCMIC4nZl7Mm+/uYey9f7E\nYDPaNHsLy0TWO7bYWspTuQcQVZSUJC5A7A+BgUHz8a/sfx5hcb815SGgusIOgmaTFA0xRIw2xHeM\nxfTBiTXqdvAGzPXtRpv5evaccNAvozpoBqq2Fsks7LOCS0u7+Tu3i3wG+BJroO3gbVfXjq01f85h\nYwc6owLuoFhZGoAAYGhVx9854B16lCUhkXlrZuadnDFqmp5YrpNuODPpQzlV4RLQ8QPXPUfaWYGX\nnbFVliay/AGl5haVMsy/02CK4J343XXN6CHm//3Dxg3M8MhERul+T6LYu5k3kH4IORvsn+WTRQyz\nKtyryjpvhuK+6PLMSSuJkbVU3+/KcSSTPXPeuQverDbPESczKWmAPPQTfLjTu7ymTdgLsbzOmeON\najFEYqq5jlY30KaJEACE6meiWbaWFllV1MGA7GzacP74ryKyx9zooXaIjMtPnAXdMPBKXQPW7/3M\nyXy11lKIZXUIi/sQ9I81s1PV3NtWFAV8e958/PKjTzF1qoh3/55ocFLiC6IZifWPdr/o3U1WW0+7\nGMfOOiUVMVWHjihEeCtSJ9YOxsdNiZaR5vPNDz17pACAOd/tt+daXQ1GrOB95IwifN76mfVzXWug\nnUYuGgTr/BiajOKAbA25CmZBmL9jsxnJNSw4o2w2Pmr+wNmJKbLhWHO/agDtLQJQYgV915y3JEWc\nJVRicTNaVfPnuzPvb596PJa/vBX75E8hKDFUlgWxwzpGe8574UmH4uebXI1rrO5XQwYU47yTxiIU\n9OGdLwdgXcM/UOoL4ZRDvo5h1SFcEDYb5OwT/us89fCRI3HWCWbryTsunYn9zebWh9VNZlCwh8JP\nnjEUf39nBzTdQHFAdoYd506agj98bG7KcsnJhyEkDMCU0WbWfszUIRhUUYTRNWaf7GWXzkSFK6hV\nlRfh9kuPwODK1FXInjlvSUQsrsEwDKfaPDljVDU9MSef5kP1vmuPxusbduGZl825fk+Rmiu4JQc0\nd5CXU2Tw9187B63huJN1L7t0JprazIs+ewcrO4ja2Zq7u9hti7xVzJnMnjIYA8sCGF2ToiNZkvsW\nH43G1ljSnHfXC9Y6M6DU3BfdMHIbvAM+GcsunYnykB+KJODLfe2oTXMRaHNfdCkpRlnSFay53X/t\nHLz18V488Tdzu9p0GXqqi4NcYPDOEbswTSzdB6m0Ac2tewAkrh63la6Fuyg3psUQi5vLqEQB2Cuo\nKJaLIDQMhVi1y1xcJOowAAQUGYJsZn2TB0zA3z7ZZ3bv8oedtZhavVWQ5jOvnu250jZhPwRBgCDH\nYaiJhgMTBtdC/FhE3JpntTPvimAJmvfHzbXWmuQUpe1vbzH/muxqcSdwxs0GNIpVze5aQlJRFAK8\nsdvJrGPbJiIweb35GnIMorVlpN6ayFxDivke3t3/Nt7d/7Z5pyvzdobQ5Rj8483vG9EihII+TB0z\nEOs273aCfak+BOMGV2P9f8zzJEuCk50FjUrobaUQi5s9xwgATc0wg7ccd4oI/ZIPoiA4PbvF4ia0\nqOZzy1xz3n6fhOpQGfaFzfqD8jLRXLalJ4bNq0PeavD4DrOJSHFAdrLYE8dNw4mY5nmcX5FQWQpU\nxkc79w0vH4RqK3sqtiqFAWDW4MPx7KsfQ9s/BJNHVngyQ3e2NW5AotBt+qihngsxURBwyPBEtfWI\nwR23dxw5OH3w6ThsbjhD58mZt98nQdONRJerNMOZpUGf50PeHdB8nmHljnP0smQeQ6oP9oqQ31lf\nDQChoA+hoLeRjP1+3BcCK+bcDkkUUaIcWMFa8rntTFmJH2VJ8/2pmrR0hyyJqAz5sa85mnYIOVvc\nf0/2KE9n5DRLwVIWrKW4QAPM3/PIFH/Hydw1BRw2Pwg5w+ZWT+WInmKHKxd7yZdfkcwPJ1GDIvoQ\njWuQkpYYybIASUlsU1jXGIERC6BdS6x7tVtzhvzmB669WUMM7TAMwwrePkSsHbxkUUaFvxx14X0Q\ny/dCHmAPi7u2WlQVZ/mUvduYMyft7GGsojUchVhsZuYhV+FOyrWg9rB7WzmiH1vLk5QoxFAj9EgR\nEHd1B/OluPp27fhlX0BIFXsgKHFIrYOh7jSDn7OUyPp9+EQ/Lp9yEcT95m5DdsEaYFZdq9aOSoYu\neLL7BmsBgFi6z5mXtzd+QDwAI+aHEGzGjlZzyL0maSlSib1LkRxDaYld7Z0YNncXOk0UToTeYI6q\ndDXzce+6lG7tbUD2I/blKECXMLC8KG27R3exXbHcvXW86aQqWItZ65cVyRu8Az4JqmZkHDYHktY4\np8mQUs2P2wVv7u1dD4Q9kuD+PZX5Qx365OdCb2XeQOJiLpeZd3d4Mu8U1eBdybzNx2U+X+6Lg1R/\nS9nC4J0jTsGatYGCs/uTLWlLQ7tHud9ndmkSJA2KYG4Dam9q4ARvSXSGtQNyAPWNYQhqAO1qO1Td\nvD+shiEKIoKKGbTsIdKI0WbuYiQYgKZ4CuiqigagOdYC//h3nPvawq41yZriFGm1WNXmRofMW0Wj\n8hnE4hZUxMd4AkiqYOLeYcoZQg81QJDjHdbRFrn28lWsYUnPPLp1DGKRtca8bZIzn+tklFa2LMIq\nHrP+I8qS4BS6tEfi0PbVmIFb9cFd6mq0l0JvLYNUXg+p2mxp65f8zsWa3h6C6I9g475NKJKLMCxU\n63kPIcVV+e/XneO2P2R8kmvNtpgYdTiQzOeiCeeiSC7C5AET0j4mZm0vW1bs82Qi7vXSgiDg4gnn\n4uyxp3d7HW86SoqlYnbzEZ8ieoJOQJGg6ZmHzYH0WZV7Pa6U4jF2Zt3Y0vlFdjr2h36uM9RUpG4U\nZ6VjX8wV+/v+fXXGezHoyox9nS8VS9aF2J2x8U22MHhnQTiqoqXduyuY0yXMyvTiRlJ3LtVbgOEE\nb8Xa9UtUAV1GLK5Bttbl2vPjih28NRkCBNQ1heEXzMBoN2Zpj4dRJAcgSaK5VCfuh2EIaFWb8ceP\nVgEAtP2DPB9WA4OuTRosEVenOMOqKPcrIiL2Bh3OnLcVOBUVMdnMumvh3bIwOXifNOxYs2DKZjVZ\nEcvMPa6T23C650EXTVqAG2dcA3XXqMTx6e75bxHlYiLrtT+c7WAfMMzXtocYJUl0/qO3RVRA9SH+\n3ymIb0/sya3IImCIiG01h6ztna38kh/2SgB7HXZYi2B8+egOGzKU+q3aASXmbCBiaHLK5TElUuLi\npegAMp+ja2bivuN+2GlbSltxkeL5MEquDp9dMxNzhx/f5Z/dZUnLxlQtfebt90nQNHPY3C4sTCdd\n5uS+v7Pg3dDazeCdIvPuK+5h855edOVL5q2kec+pMu/OCtbc2/Wm09MLou5i8M6C6x96Ddc/9Jrn\nPrt6Fk7w9gZ3Q9CgR4LmGlZRcTbZ8CsSSopkCJKOPfti5iYMgt061GroIgnOhhRtERXhqIZia3/h\npqg51xpWwwhamar5QWj2zd7eth0fNXyKQfIIaPW1GDwgEVA9OyxZhg8yX3dAqd8pShs62Oc0QnEy\nb6dtpwpVtIbsFe/8kXsI8VuHXdlh/99xQ8xWlfb/PfcmAYD3P+DQkhqMLR8FGCnmvGF1RLOqdodV\nlzgZROyzqYhvH4ehhrk8ys4AZVFwisbs4VmtvhbaPnP4fNSQUqdHtxEtcvrFA4Bf9jkdLY32xEhA\nqsy3LJAI3s7fhC55AtL/G30Kjhx8OAJS9pbq2PPcQyqDnkrsQTnaaMHdrEiWBOiG4azEUBTJO2yu\nmHPebRHVHJXqJCBJXVjDW2o1jXFn92NqzIu5IQO6N8ztVyQU+eU++2B3S3Vx0l2DrL+T0mJfhkf2\nrXS/d/v3ka63eTK7F7zYyd9YV9eJ97b+ffmUp+xCG8MwnA+WRPA2/9XQMXhDC0DdNQbV46LYGfkC\nsLbLnDV5IF54C04wcipXreCtSCIgxWFEfE5L1XJ/KRoANESbMArmnLddLFUe8mPP/nZz/tgXRZEc\nwHdnX463yxow3bUcZXz5mMTxqTK+MuJknHTUZLz7aT3iqo6nt5hrzysrJWyPxc1kU1NwzNQhEMsF\n/CeyCZKswfBFYBhCh0zbfXt8xRgIgoAbzp0Gnyxi9/52zJo4CDe/9ifnfert3jluWRKwaOL52NL4\neYcLjbISH5paDRiGGfyrS8px+lEjURr0YfaUwSgOKLj27EPx8z9thLprDIQae7g8kXnbRU32nuTj\nhpbhzGNGYV9TBDPGV+FnqzbA3GFcgN40EKK1I5tn2Nx1wTFj0FQkq7CaqMiDvsCGfebPOe+YyZ6i\no1NGmu1qX3rjC+e+AaW9u2/wLRdMx0dfNGDK6AGIxTV8/YQxB1Qo1VPupZR2sLH/litCfs8oix3I\nW9oT+5ink/yhe+uF0xGNe7OpMTVluPTUCc4GGwBw8hFD4fdJmDHeu/NWV10wd5wzrN/XejN4H35I\nFRbOH4+jJg/utdfMhuRs+vuLDkdTa+Iz1/130dn5GTE4hEtPnYBDhqcfteqrCzQG7yxStcSmCppm\nz3mbHxya4A3eEPREYxIkdtzy+yRnq0l7DbOdeTt7RUsCdCEOQwtiZ521UUdxJT4PA/sjDeZuZLrq\nZN5V5QEzeFsXEjXFQ1CsFOG4ad4sa3jpUAwOVmN3+15EP5yFY4+ag1DQh+Om1WD9B4lK7WDQgICw\ntbm9gLOPHY09cRn/ec8cNheUKBD3IVDi/aAt9lQrm+996hgzCE8YYfX/1v3QxXarUKxjRe+RVYfj\nyCGHdzj35SV+8z+rIQCCgepQGfyKhLlHJPp6H35IFYJ+Ge1R1cmU7Yst93CsnXkfOnoAJo9MVH+7\nq5zj28cDhoihlRVQRNmpcTDCJdAjRThhzHTPHL1znEWJC5KdrealwNETRnV4HODNEFJ1EOuJytIA\njp4yBIBZiX3aUSMyPKN3uTNve5jX3rSnqjzgyYrt77dFVFRXdF44l5xVpbsYOW5ajee2KAgd7jsQ\n44ZmnqLIld4M3pIo4sQZQzM/sI8lz0PbIympZJpKyPR30JWitmzo+zGdg5j7Cl/Tra+tYXNnj2Xz\nljlfavfztpc7WTtuOXt0W8HSZ+/HbDdOkTSn4GxHnVn1XVtqZtANkUa0W/PRRdY+t1X2jkuy+bo1\nJemvom8+4jpEP5wJI1zq3bQ+oCSGyJUwRH8EmpUZK7LobK0nyCoEXxRGzO/Zlxfo2s5DJa3mHLPe\n2DED6uxDKRS06wLMoFDiSz386QzJG4bntuyZ844797l55v00H+LbJmGYPsN6Qet+Q0R0w3E4b/xZ\nKX9+kc/nFA8CZuFdukpud/FVLqtac8Gdedvnede+xI5x7mFz9+890/RBbwaufCX1g6H7XMvlUHa6\nTaeyrfB+qzlkL7sCEsPmguBu2WmxN9+wMm87wxZE1QreiblQAAiIAc9rGFYWb2gydlrBe0SlOV+8\nP9Jo7kcNIGgFVLvNYeyzQzEiNAynjpyb9j0E5IDTKtL9HyIYkJ3g/Z+ItZtYuGPwhq/dXI8eD3To\nhdyV4F0ePgSRjXMQ+++UDt/r7EMped/idEt07Kvu5P9/dntUIJF5JweCVEU79lW49+VStwwFzGVP\n0Q+OcgJ4mb/jDlm2rhTP5Bv7nRquM2af50TmXeQ59+7fe6bCqT76XO1XCvECJpdD2U5ilmMcNu9F\numF45lI8mbfmLVhzb7cJwargtoKz0SHztrqLWXPefsneDMMM3ppgXQioMnZY2/UNG1AJn6hgQ/1m\nJxjYa4ZDRebws948ELfMPK/L7y8580bS7kh24xdFFlFkWM1gfFZns5i/Q1WwLMo4YegcDAqmn1eU\nZbFDoZqts0KT5Cvv9MHb/Dd52FwUEsHbnitLfs1Uy4DsD8p0u8h1PE4RRqzIXG5WuRdiJzsu2Mv4\netJoo78RBAGGYSRl3lbw3tcOvyIhFFSSNjFxZ96dz3l39fdwMGPwzi7nsz3HDp5PgT62e387rrjn\nn/j7267+1/HEsqrkgjVB6ph5G9awuW7vNuWLwO9zZ97mtZZTdWy9hu7KvJvaYigt9iHgk+GTzCD9\nft0mAMCospEA9OeBHQAAIABJREFUgPJQ9ypFk5tcOHtuW/RwCLIkmPv/Wpm37rOat8T9Kfv+njv+\nLBw39Oi0P7OzZRzJnbHcyoq9c8IBOXWBlz13XGQdWyITTPS/brcadSRn+ikzbyl1Jp+JfcEW19MX\nOdmvOXxQ560h84m9JMtd4S675rQHlgc6jES4f++ZMu+DbXqhOwrxHOTygqWvLqaZefeStz7aCwBY\n+ddPnPvcm444QyuiO/M2AAiJPautYFgSrwX8m6AM+wQ++WRnztvOvINyEIh3zLxrKspR7h/gVMi2\nurbpBIDRZWYR0qSRlTh99ghMH9e1Stprzz4UX9a3ej4EKkJ+nHroNLypbcWYkrF4+8P9MNpKofgT\nFfHmkjd7NzJft1oHdjZ3lep7t1wwHe9vrcfXjh8DUQT+ZT9WTP2zrz17Cl5Y/wVOn20VaLlesqqi\nCKOGhPD5LnP0IPkDIdV8qzNsbkVaWRJxwdxxad8DAFx51hSsa9iBrZFdnuHjZGcdMwqqpuOsY1IX\ntOWj75w/Df/3n+04+fBEEdSx02rQ0h6Hbhg4ekqiHuPCueMQ8MnY+mWip26m4D24MohTjhyOKaMq\nO33cwcyvSDhzzshO29MebIr8svmeh6R/zxfPH9/lTUk6M2N8FU6cXotjpw3p8WsdCAbvA7S18b+o\nC9fjqCHezQXswCYEWiGW1UPbMwLRlJm3GagF0XA2FnGG0q3g7YsOQoV/KBqKdwBSvMOcd5EcgBAX\nnNakLaq5DehXpo/F7JpEj+sLJ3wNL3z+NzRGm5znAeaQ8NeOTywDy+TwQ6pw+CEdA/3Xjp6Mq6uO\nwsdb67B+rbkft/sqNCgH0BSzh/SVbgZvMem22XMaSD1sPmFEhVOpfv5J4/Avc5dMKGLq4dXqiiAu\nPTWx/lpAYthbFARcd85UfPfnr6c8lmCKLlPJAf74aTU4cXpth8e5nXncGEzYfiZ+uWEfFhxydtrH\nBQMyFn7lkLTfz0dDBhTjklO869/H1pbh21/vuKzOXimwbXeLc1+mYXNBEHDeiWN74Ujz21ePHZ35\nQQeZTO/5pF6qmpclsU/+XzJ4H6AH3vkFAGDW4Bmebln2XHdgqtmcJdJa4Q3emrdgDYCZfetyIhu3\nhs1jcQ2KHgREQBOirszbqjZXJBTFi9BqBe9P2z+CKIiYPND7ITin5kjMqTkSb+95DwNTNFzpLe4P\nUPeSnqASRFMssZtXd7bLSw6YPlmCqplDy501TrAdWzsbr+5ch9HWlEEmiepz89+yksQUQ3Kmn7pg\nzTts3tWGVhWBciyddWPXHlzg3Bdt7o0/iAoJ//K7SdVVZ04ZAJKnWARRSxo2TypYgznsbcQDEKwm\nJPYcciSmQdB9ZvAWI4iq1lIxe523LCIoF6FNaoXgb8OeyJeYWDnes4mF2+GDDuvRe83Ep4hmP2rd\n8GTe7mpyo7uZd9J8kt8nOXPQXWn1eN74s/DVMachIHdvXbS3mYP3WFIOm9tz3vbwd+FNN2ad5ClY\n40cYFSYWrHWTmlRY1CGQGELSsLm9zjuRedubeiSGzc3gFo1rEKyGJHEjirC1TttemuWTRQSVIkCO\nQRpgNvaYOWh6z99UNwmC4HyIuueQPOuVXZttHIjkbPdAd0USBfGAAnfyum+3mKp5bqfaijIx523/\nfEbv3uYtWOvfG2QQZQuDdzfFda3zBwg6/vi3T7Hps30AXJm36FoTaFecJw2bb9vdgi92mvPcUSOM\ntri53tVu0qLIEkqUIATRgFS1A7IgY2rV5J6/qR6wP0QVxTtsbjNUxbOTU1clD5tne79cZ847xfda\n2uOe26kL1rpXbU5dx8ybiMG725Izb7ufucMKyA88/T6AdMPmKgZVFGFghbWHtWvplb0dZtQIO3tx\n25m3IotOYBT9EQwtHppoitJHjpo0CANKAzh8fLVzX1BJtAOVoXSrjaA7eI8cHMKF88b37EAzSZEo\nf+/iGZgwvByzJ3v34lZkEbMmVnsKopKHzZl4976JIyowqDKISSMrUFHau21iifIFL1u7SdW9WVgs\nufuVNY9tf3inK1i7Y9FMPP3uK3izHYAuosgvIRzVnK0129VE8LaboiiyiGI90XQk5Ov7db9nHjMK\nZyYtYXIPm/vl7q0td+/zfPslR2R9swdnnbfr1zRuaDluuXBGx8cKAq4+y+z89vQ/twBwVZsbicdQ\n7xo3tBx3XXVUXx8GUZ9i5t1NquEdNjdbV7rms63MuzJkZsTJvc0Bs1GLTxFRVGT9GgzRqdy2s+zW\nWBva4+3wiT5nWN0niyj3JdYvhtIUqvU1d8FadyrNgUTBmiSaLUaz3Xwh0XGte+Pe9pJBnfVqRJRF\nWc28V6xYgffffx+CIGDp0qWYOjWxdnPlypVYs2YNRFHElClT8P3vfz+bh9LrkofN46ruZNsAnK8H\nWMN6qea8BVmFJIoIBqzgrZutIOubIs6weVu8De1qGAEpALs1hSKLKJMSwbs0zaYbfc09593duWq7\nOMkO2tnecEBI7pd6gOSkJi3MvIkoG7KWeb/55pvYtm0bnnrqKSxfvhzLly93vtfa2opHHnkEK1eu\nxBNPPIGtW7fivffey9ahZEVyG8u4qnn7lVvBu9Rqv6m72qMaqnnNJPniePHzv6MdjQDMOe9ia39i\nSfdBgIDWeBva42FnO0/ALFgr8yeCd1mgf3ZOch9z8qYkXWVn3nZGm+3t9xLD5t2M3slLBhm7iSgL\nsvZJuG7dOsyda+5WNWbMGDQ1NaG11exzrSgKFEVBe3s7VFVFOBxGWVn6/Vb7Ql1jGI+t/djZDjJZ\nqszbvVOY0/LUCgLujUnsrFoYsAN/+XwtXtn5uvVY0Wk6IUkiipUgGqNNiGgRTxaryKI3ePeDOe9U\nZDExsNPtzFtK7K8N5K5Pc7eLxa0n9tU2gURUGLI2bF5fX4/JkxPLlyorK1FXV4eSkhL4/X5ce+21\nmDt3Lvx+P04//XSMGtV5v+aKiiBkuXeXCVVVpZ8rXrHyHWzZ3oiyUABXnNVxO8rikOJ5viCJiXXb\ngJN5y4qEqqoQJFkCYEAQAD3uAwLtHY+nrBhl1hy5IokYXl6DD+o+BQBUliSC9eDqEAJFiYA9fNAg\nVA3su3nvdOfRCNYC7wB6OIjSEn+n5zudygpzSkCWRef5AZ+E8cMruvV6mVx46kT86JE3cN68Q7r1\n+iWhAKqqQrj6nKn45aoNOHXO6C69TjbeS6HhOewdPI89l4tzmLNqc/cwZGtrKx5++GG89NJLKCkp\nwSWXXIKPPvoIEyZMSPv8hoaOwa4nqqpCqKtrSfv9fY1h69/2lI/b19CCOiVxf2tbzDNsPn54CB/s\nBMLhOOrqWtAeiSWK1TQZhi4msnPLVacfin+tM3+uKAoY5B+ED2AGb9lINKNoaQ5DiyZ+dVq72Ol7\nyabOzqMAH04oPh8vvl0HjDO6dYzhtqj1WnCe/7MbjoMgICvveVRVMX57y4kQRaFbr9/cHEZdXQtm\njhuIw7v4Opn+FikznsPewfPYc719DtNdCGRt2Ly6uhr19fXO7b1796KqytzcYuvWrRg2bBgqKyvh\n8/lwxBFHYNOmTdk6lG6xLzbSjdJ2GDbX9KRtPs3MW7NeJ2q0QvBHrBcXALXjdZMsys7wuiyJqA3V\nON9zL7tSJNFTCFWi9M9hcwCo8g0GNB/8Svf+1Ox13u4qc9GqPM+W3hqaL8StGIkoN7IWvOfMmYO1\na9cCADZv3ozq6mqUlJhBpra2Flu3bkUkYgazTZs2YeTIkdk6lG4xUqzTdY8edChYi2uA7B42N7Nq\nOxjvqFqDwNRXrRcSYcQ7NpdQRBmqtaRMEgUMK0kEb/dabrt/+IiQuctSd/t254IdfANK9wZ5ZDm3\nc91ERPkga8PmM2bMwOTJk7FgwQIIgoBly5Zh9erVCIVCmDdvHr7xjW9g0aJFkCQJ06dPxxFHHJH5\nRXPIvdRH1VX88aNVmO3aBlQ1OmbeYlFiqMQQzO87Veae1xZgtJVBLDYff+GEr+HThs9RVTQQmlYH\nwCxYqykZjONqZ0MWZcypmYUnsN45JgD47uGLu70eOVfsgjNfN1qjAole6WKWq8x7C+vUiCgXsjrn\nfdNNN3luu+e0FyxYgAULFmTzx/eIu8nGxvoP8cbut/HG7red76tJvc1jqg6xsinxfGgQBQGaYeCL\nvc3eFzdE6K3lQPUOAImtO4FEm1VZFCAKIs7vZH9nScxun+/eYGfe3a02l6zny3mSeff3iykiOjjk\nRzrTBxKZd+pGG8lz3jEtBiHYAr3NrArXoEIUBei6gR/8YZ33yboIvS310rhZE83+2ccfVpPy+/mm\nImQO6Q8o7V7v9UTm3b+D9xGHmPUcIwf3zzX3RHRwYW/zDARBgF/s2Jc7ntzbXG6EIBjQWiogBJuh\nG6qzx7Wn8xoAASLu/8ZXsOaLCMaVj/Z878hJgzC2tgyVKTZc+NkNxyY6teWJMbVluPvq2RhY1r3g\nbQ+79/fg/c2zJuO8ligGlhVlfjARUQ8xeKfhDJsLqbt6JQ+bq4K5lE2PBiHpkpN5R2Kad/03zD2m\ny0sCWDTp/JQ/e0CaQJevexdXl3c/oLl7m/dnkigycBNRznDYPI3EUjEBmqF3+H6HLUFFa9vOmB/Q\nRWiGBkkUsLehvUPmDZ2nvavsXuH9PfMmIsolRpE03FXDWlKWDXirzQ3DgC5Za7jjPhi6BNWIQxIF\nGAY6ZN727mCUmZ1550vBGhFRLjCKpJEp845riYC8e387oJidwIy4HzBEqIaayBalpODP4N1lSp7M\neRMR5RKjSBruOW/N6Dzz/vmfNkFQYgCAUn8I0BKZNwAIHQrWGIi6yqdIkCUBRT6WZxAR2Ri803A3\nadFTDZu75rwjMRWCEoUiKvjhJbNRO6AUcT0OwT67ycPmev9fn91fyJKI755/GM4/aWxfHwoRUb/B\ndCYDM/NOVbCWCOiabkDyx1DmC6G02I/yYDF2RXRIkpW+JxesaflZNd5XDhle0deHQETUrzDzTkN3\nNWlJOeftWuet6ToMKWoOmQPwS+YabdGa6xaS57w1XjMREVH3MXin47RHFVLPebuGzXUhBggGQtbu\nXgEreAv2RiVi0rC51rHpCxERUVcxeKdhrxRLV7AW01QnOzdEs9K8WDG37fRbu3wJaTNvDpsTEVH3\nMXhnIKYpWPt8dyN+9Zy5B7kmmpXmQTt4S1ZmbQftDpk3h82JiKj7GLy7INWcN0QNb31sbt9pWMG7\nWDaDtzNszsybiIiygME7A90wUg6bu7umGZJZvNZh2FxUARgQ/OGkF2XmTURE3cfgnYFupMm8reBt\nGAYMKXnY3NoRTFQhDdoGsbjZ05iFTVqIiKgnGLwzMAwj5Zy3ORRuQDcMCLKdeZu7StnD5pBUSKX7\nAQCXTlqQk+MlIqKDH4N3BuaweYrMGwAkFf/e+SaU2q0AgGDSnLchqBCKWmDEFVQFB+bkeImI6ODH\n4J2BYaRYKmavAZdUPPnpaufu5DlvTYpADIRhREKQRc5zExFR72DwzkDXOxasybDntL33FyctFYvI\n9eY3wqEO+38TERF1F4N3BobRcT9vUU/MaeuRIud+RTSXgNnD5mFxHwBAiIYwpHgQJMOH+M4xEFiv\nRkREPcDgnYFhGNCT5rwF3cysBUmFEU0Eb8GKyvawuV1ULmh++CQfZukLoe4cl/2DJiKigxqDdwYp\nC9bsJiuSCgjmBPjo8Hzn285SMYtgPV4wmHITEVHPMXin8NH+TyH4zMYqqQrWjLgVjK3gbRgCSvUa\n5/uKKENxFagJujeYExER9QSDd5KWWCt++t5v4J/2CgAz8/7vnibPY1S79kxSIQgGYAiQRG9WHfKF\nnK9FnbuIERFR72HwTtIWbwcAp6hM1XTsaWjzPMauX7MzbxgCxKQzGfKVOF+LOnuZExFR72HwThLT\nY57bcVV35rVtumadNsnsXW4Gb++pLHUFbwHmELoB7+sQERF1B4N3koga8dyOxXVAMAvWoh8dgaJw\nLbR6c37bnXlLSeu/Qkpi2Dz5e0RERD3B4J2kPSl4x1XNybz15gEI7T0aajQAABCUqBO8haQzWepP\nBG8hKXgn3yYiIjoQ7NmZJBz3bt8Zs4bNDQMABLRH44Dqg6EqEAJt1lruFAVrimvOW2SwJiKi3sPM\nO0lY6zhsLgg6YJinqj1ilprr4WIIgTAEUYNhCB0CtGepGDNtIiLqRQzeSbyZt4G4pjtD4wAQjpql\n5kakGIJgQPBFAUPskHlLouR8bX+L5WpERNQbGLyTeDJvwUAsrgGCDlmUMLqmFLo5fg4jXJx4nCFA\nTMquJw+YABgCYtsmdPgeERFRTzB4JwnHXcFbVJ05b1EQ4VcS2bQeDSYel2LYPOQrwYTGi6DtGclh\ncyIi6lUM3knCqmvYXNSdanMR3uAN3fV1ig5rAKwit8SwORERUW9g8E4Sdi0VEyTVWectQoLf5w7Y\n7lPXMfMG4AyxC4zeRETUixi8k3gzbw2abkBwhs1dp8u9Q1iKOW8gEbyd2M2KNSIi6gUM3kncTVoE\n0W5ibgZvn2vY3NATpy7VUjEAmDKyEgBw2NiBnvs5BU5ERD3BJi1JYpqrt7lkB28doiBBkdJn3qnm\nvOfOHIZDhldgWHVJh+8RERF1F4N3kqh7Y5KkzFv2BG9vIE+VeYuCgBGDQx3uJyIi6gkGbxfDMBDX\n4s7txLC5DkmQkoK3O1innvMmIiLKBs55u8R11bttp5TIvCVBhCy5h8q9WXiqYfNkrFcjIqLewODt\nYs93S4JZmCaIGiCqEATAJ/o9mbe7YC3dsHk6zNGJiKgnGLxdolbwDohW9zRRg+Azq89LlNABF6wl\nG1xpvu7omrLeOWAiIipInPN2iVvFakVSEG1aCyCp5sYjAEqVEGQxdcGakWadd7KTZtSiOCBj+riB\nGR9LRESUDoO3i5N5C2aGLEgaBMXMvEt9pZCTsm33110ZNpclEXMOHdJ7B0xERAWJw+YuMavS3O8M\nm6vOsHmZrzT9UrE07VGJiIiyIWPw3rp1ay6Oo1+IWcPmPqMIgJV5W8Pm5f4yyHLP5ryJiIh6Q8bg\n/e1vfxsXXHABVq1ahXA4nOnhec0eNldgBm9zztvMvCuKyrwFa8jc25yIiCgbMs55P//88/jkk0/w\n4osvYuHChZg4cSLOPfdcTJ06NRfHl1N2gxZBV2BoIgRJBXwRGLqIkFKMqBRJ/URD5LA5ERHlTJfm\nvMePH4/rr78eS5YswdatW7F48WJcdNFF+O9//5vlw8stO/OGIQG6DLG4GWKgHdq+wVCUpA5rbhw2\nJyKiHMqYee/cuRN/+tOf8Je//AVjx47F1VdfjWOPPRYbN27EzTffjGeeeSYXx5kT9py3oUkwNAmC\nYt6v7hwHRfL2Nvd0WwOYeRMRUc5kDN4LFy7E17/+dfzhD3/AoEGDnPunTp2aceh8xYoVeP/99yEI\nApYuXep5/K5du/Cd73wH8XgckyZNwp133tmDt9E77A5rhi4CmnlqDEOAEQtAlrztURXZvc5b5Jw3\nERHlTMZh8zVr1mDkyJFO4H7iiSfQ1tYGALj99tvTPu/NN9/Etm3b8NRTT2H58uVYvny55/t33303\nLr/8cjz77LOQJAlffvllT95Hr7CXihmqBEO39u6OKwAESJLgqTZP7rbGYXMiIsqVjMH7e9/7Hurr\n653bkUgEt9xyS8YXXrduHebOnQsAGDNmDJqamtDa2goA0HUdb7/9Nk466SQAwLJly1BTU9OtN9Cb\n7DlvXXNl3roMSTSryd0BO3nZGIfNiYgoVzIG78bGRixatMi5fdlll6G5uTnjC9fX16OiosK5XVlZ\nibq6OgDA/v37UVxcjLvuugsXXHAB7r///u4ce6+z57x1VYSzFEyTnEDtnvNOzrwZvImIKFcyznnH\n43Fs3boVY8aMAQBs2rQJ8Xg8w7M6MgzD8/WePXuwaNEi1NbW4qqrrsLLL7+ME044Ie3zKyqCkGXp\ngH9uZ6qqQp7bwqfmMUqiD7D28jZ0CQFFQlVVCEUlifddFFDgXMIYAgYOKO7weoWiUN93b+I57Dme\nw97B89hzuTiHGYP39773PSxevBgtLS3QNA2VlZW49957M75wdXW1Z7h97969qKqqAgBUVFSgpqYG\nw4cPBwDMnj0bn376aafBu6GhPePPPBBVVSHU1bV47mtpN39GuN2A4Lf28tYlSKKAuroWxOJa4sGu\nixEYApoa2+EvwOQ71XmkA8Nz2HM8h72D57HnevscprsQyDhsPm3aNKxduxbPP/881q5dixdffLFL\nmfecOXOwdu1aAMDmzZtRXV2NkpISAIAsyxg2bJizTnzz5s0YNWpUV99L1tjV5mocTuYNXXIqy93z\n3JJnqRg7rBERUe5kzLxbW1vx5z//GQ0NDQDMYfRVq1bhtdde6/R5M2bMwOTJk7FgwQIIgoBly5Zh\n9erVCIVCmDdvHpYuXYolS5bAMAyMHz/eKV7rS1E9BlmUoaqAPedtqDJ8VtB2B2jJ9bVhCDBARESU\nGxmD9w033ICamhq89tpr+MpXvoLXX38dP/jBD7r04jfddJPn9oQJE5yvR4wYgSeeeOLAjjbL4loc\nPlFBXNUhfjEdyvCPEd5+CJSqjgMU7gI1QTAYvImIKGcyDptHo1HceeedqK2txa233orHHnsML774\nYi6OLeeiWgw+yYeYqkNRy1C291hA9UNJUSgnJbdKNRi+iYgoNzIG73g8jvb2dui6joaGBpSXl2P7\n9u25OLaci2kx+CQz81ZkCbpuBmR3NzWbuymLJAuoCAVydpxERFTYMg6bn3XWWXj66adx7rnn4rTT\nTkNlZSVGjBiRi2PLuZgeQ7lYigZVQzCgQNV0AHDmvN3cwfvsY0alDPBERETZkDF42wVngLmka9++\nfZg4cWLWDyzXDMNATIvDJ/kQ13Qosoj2iAogc+bNGW8iIsqljOmiu7vaoEGDMGnSJCeYH0xUXYUB\nwwzeqg6fLELVzcxbSbEVqOgJ3kRERLmTMfOeOHEifvKTn2D69OlQFMW5f/bs2Vk9sFyLWq1RFVGB\nqhlQZBGaZs15KykK1kT3rmIM30RElDsZg/eHH34IAHjrrbec+wRBOOiCt92gRbY28VZkyZnzTpV5\ne4fN9RwcIRERkSlj8H788cdzcRx9zt4ONBG8RSd4y3IiUFeVB1DXGPEOmzPzJiKiHMoYvC+88MKU\nc9wrV67MygH1leTM2yeLUK1hc9k1RL78yqMQi2t4+p9bnftYsEZERLnUpQ5rtng8jvXr1yMYDGb1\noPqCvZe3CHN+293HXHb1MZcl0dkaVI8UQQyEUSQX5fBIiYio0GUM3rNmzfLcnjNnDq688sqsHVBf\nienmsLmExLC5rUM3Nfs5Hx+B4NCdOPb4g2v+n4iI+reMwTu5m9quXbvw+eefZ+2A+krMybzNU+Ju\nzCKLqZbGGTCixZD3TIFPUlJ8n4iIKDsyBu9LLrnE+VoQBJSUlOC6667L6kH1BSd4GzIA3ZN5y510\nTzv4VrwTEVF/lzF4/+Mf/4Cu6xCtoq14PO5Z732wiOnu4B3zbEYipxk2JyIi6gsZo9LatWuxePFi\n5/ZFF12El156KasH1RfsgjUY5ilxr+2WUgybc3UYERH1lYzB+9FHH8WPf/xj5/bvfvc7PProo1k9\nqL4Qt9Z5Q7fmvBV3wVr6wfGDsVUsERH1bxmDt2EYCIVCzu2SkpKDMmBFtCgAQLCCtzvzdq/ztjHx\nJiKivpJxznvKlCm44YYbMGvWLBiGgVdffRVTpkzJxbHllB287cxbUdzrvDnnTURE/UfG4H3bbbdh\nzZo12LBhAwRBwJlnnolTTjklF8eWU1HVCt6anXm7C9YOvpEGIiLKXxmDdzgchqIouP322wEATzzx\nBMLhMIqLi7N+cLlkZ96GZgZt91KxUNDX4fFVZQEAQG3VwXUeiIio/8s4Hnzrrbeivr7euR2JRHDL\nLbdk9aD6gp1566oZvH2yiOVXHolLTjkEIwaHOjz+lCOH44KTx+HKMybl9DiJiIgyBu/GxkYsWrTI\nuX3ZZZehubk5qwfVFyJaBIqoQNPM24osYsiAYhx/WG3KxyuyhHkzh6XMyomIiLIpY/COx+PYujWx\ng9bGjRsRj8ezelB9IaJFEZD8iKvWHt6ddFUjIiLqSxnnvL/3ve9h8eLFaGlpga7rqKiowL333puL\nY8upqBpFQPYjxuBNRET9XMYINW3aNKxduxarVq3CkiVLUF1djWuuuSYXx5ZTyZm3z9UelYiIqD/J\nmHm/9957WL16NV544QXouo4f/ehHmD9/fi6OLWd0Q0dUi8Ev+xHXmHkTEVH/ljZC/eY3v8Fpp52G\nG2+8EZWVlVi1ahWGDx+O008//aDbmMTuax6Q/IjHzYo1Bm8iIuqv0mbeDz74IMaOHYs77rgDRx11\nFICDt4931FrjHZADaGPmTURE/Vza4P3yyy/jT3/6E5YtWwZd13H22WcflFXmABCx1nj7JbNgTRBS\n7yRGRETUH6RNL6uqqnDVVVdh7dq1WLFiBb744gvs3LkTV199NV555ZVcHmPWOZm3VbDmk6WDdpSB\niIjyX5fGhmfOnIm7774br776Kk444QT8/Oc/z/Zx5VRYjQCAWbCm6hwyJyKifu2AolRJSQkWLFiA\np59+OlvH0ye8mbfG4E1ERP0aoxSA9ngYAFAkB9DcHkdx4OCqpiciooMLgzeAdtUM3qLuRzSmoao8\n0MdHRERElB6DN4D2eDsAIBoxT0dVeVFfHg4REVGnGLwBtFmZd6SNwZuIiPo/Bm8kMu+WVvM2gzcR\nEfVnDN5IzHk3NZnd1TjnTURE/RmDN4C2eDsUUUFLmxm8K0L+Pj4iIiKi9Bi8YQ6bFytBRGPmpiQ+\nhduBEhFR/8XgDXPYPCgXIRLX4FNEiGyNSkRE/VjBB2/d0BFWIwgqRYjFNfiZdRMRUT9X8ME7rEZg\nwECxHEQ6NoGoAAAYmElEQVSUwZuIiPIAg7ddad6so6E5Cr+PwZuIiPq3gg/eMc3co3zL9jYYADNv\nIiLq9wo+eMd1M3gbunkqGLyJiKi/Y/DWVfMLBm8iIsoTDN5W5g3dDNo+peBPCRER9XMFH6ni1pw3\nDPNUBFiwRkRE/RyDtzPnbWfeDN5ERNS/MXhzzpuIiPIMg7cz583gTURE+YHBW/MOmzN4ExFRf5fV\n4L1ixQqcf/75WLBgATZs2JDyMffffz8WLlyYzcPolDNsbhWsiSI3JSEiov4ta8H7zTffxLZt2/DU\nU09h+fLlWL58eYfHbNmyBf/5z3+ydQhdkrxUTNP0PjwaIiKizLIWvNetW4e5c+cCAMaMGYOmpia0\ntrZ6HnP33XfjxhtvzNYhdEksqcOapht9eThEREQZZS1419fXo6KiwrldWVmJuro65/bq1asxa9Ys\n1NbWZusQukR1qs3NzLu4SOnDoyEiIspMztUPMoxERtvY2IjVq1fj0UcfxZ49e7r0/IqKIGS5d4vJ\nqqpCkD63bugi5h85Al89aTwkznsfkKqqUF8fQt7jOew5nsPewfPYc7k4h1kL3tXV1aivr3du7927\nF1VVVQCA9evXY//+/bjooosQi8XwxRdfYMWKFVi6dGna12toaO/V46uqCqGurgXN7ebrGrqEuTNq\nsH9fa4Znkpt9Hqn7eA57juewd/A89lxvn8N0FwJZGzafM2cO1q5dCwDYvHkzqqurUVJSAgA45ZRT\n8MILL+Dpp5/Gz372M0yePLnTwJ1NqqvaXBILfuUcERHlgaxl3jNmzMDkyZOxYMECCIKAZcuWYfXq\n1QiFQpg3b162fuwBi7matMgSh8uJiKj/y+qc90033eS5PWHChA6PGTp0KB5//PFsHkannI1JdAmy\nxMybiIj6v4KPVqquWg1aBBaqERFRXij44B3T4xAMs4qdmTcREeWDgo9WcSt4CwJboxIRUX5g8NZU\nCKw0JyKiPFLwESuuxwFDYqU5ERHlDQZvPW4tEyv4U0FERHmioCOWYRiIaXFAl1lpTkREeaOgg7dq\naDBgwGCDFiIiyiMFHbxjWsz8QpcgcdiciIjyREFHLDt4G5rEYXMiIsobhR28rb7mhsaCNSIiyh8F\nHbHszFtn5k1ERHmkwIM3M28iIso/BR2xYnoi82a1ORER5YvCDt4sWCMiojxU4MHb3stb5FIxIiLK\nGwUdsRLrvGXOeRMRUd4o6IjlLBXTRQ6bExFR3ijs4O3qsMaCNSIiyhcM3gCgSdzPm4iI8kZBR6zE\nsLkERSnoU0FERHmkoCOWe9hcYcEaERHliYKOWFFnqZgEHzNvIiLKEwUdseJWhzWDmTcREeWRgo5Y\nMVfmrchS3x4MERFRFxV08I46c94iFLmgTwUREeWRgo5Yqq5CggRAgI/Bm4iI8kRBRyzVUCEKMgAw\n8yYiorxR0BErrschwpzrZvAmIqJ8UdARK66pruDNgjUiIsoPBR28VUOFYJingJk3ERHli4KOWKqu\nQrAybxasERFRvijoiBXXVQgG57yJiCi/FGzEMgzDzLw5bE5ERHmmYCOWqqvmF8y8iYgozxRsxIpr\nVvDW7cyb1eZERJQfCjd423t5W8PmLFgjIqJ8UbARy868DZ1z3kRElF8KNmLFrMwbmghBACRR6NsD\nIiIi6qKCDd6qlXnrugBFFiEIDN5ERJQfCjZ423t5G5oIRSrY00BERHmoYKOWXbCmaQJ8CivNiYgo\nfxRu8LaHzTWBmTcREeWVgo1acd0O3iIUpWBPAxER5aGCjVpxa85bUwXIYsGeBiIiykMFG7Xcw+ay\nzEpzIiLKH4UbvK2CNV0TITHzJiKiPFKwUcvpbW6IkCVm3kRElD8KN3jbvc11ETKrzYmIKI8UbNSy\nm7TAENkalYiI8krBBm9nP29dhMTMm4iI8kjBRq2Ys6uYBJmZNxER5ZGCDd5x97A5C9aIiCiPyNl8\n8RUrVuD999+HIAhYunQppk6d6nxv/fr1eOCBByCKIkaNGoXly5dDzOGSrYgaNb/QJBasERFRXsla\n1HrzzTexbds2PPXUU1i+fDmWL1/u+f4dd9yBhx56CE8++STa2trw6quvZutQUgqrEQCAocssWCMi\norySteC9bt06zJ07FwAwZswYNDU1obW11fn+6tWrMXjwYABAZWUlGhoasnUoKUXiZvCGJjPzJiKi\nvJK1qFVfX4+KigrndmVlJerq6pzbJSUlAIC9e/fi9ddfx/HHH5+tQ0kprEYhQLCqzZl5ExFR/sjq\nnLebYRgd7tu3bx+uvvpqLFu2zBPoU6moCEKWe2/f7XA8Ap/kRzsElJYEUFUV6rXXLjQ8dz3Hc9hz\nPIe9g+ex53JxDrMWvKurq1FfX+/c3rt3L6qqqpzbra2tuPLKK3HDDTfgmGOOyfh6DQ3tvXp8YTUC\nBQoAIBqNo66upVdfv1BUVYV47nqI57DneA57B89jz/X2OUx3IZC1YfM5c+Zg7dq1AIDNmzejurra\nGSoHgLvvvhuXXHIJjjvuuGwdQqci8QgU0QcALFgjIqK8krXMe8aMGZg8eTIWLFgAQRCwbNkyrF69\nGqFQCMcccwyee+45bNu2Dc8++ywA4IwzzsD555+frcPpIKxGUSGXAgAL1oiIKK9kdc77pptu8tye\nMGGC8/WmTZuy+aM7FddVqLoKQTffPoM3EVHfevnlv+OEE07u0mN/8pP7ce65C1BTU5vlo+q/CjJq\nRa0GLbv2xgBw2JyIqC/t2vUl/va3tV1+/PXXf7egAzeQw2rz/iSimcHb0MzqdS4VIyLqOw88cA8+\n/HAzHn30N9B1HV9+uRO7dn2JBx/8Be66607U1e1FOBzG5ZdfhTlzjsV1112F73znFvzzn39HW1sr\nvvhiG3bu3IFvf/u7mD17jvO6qqpi+fIfdHj+J598hPvvvweiKGDKlGm49trrU95n/5zRo8di1aqn\n0NjYiOnTD8eTT/4v2tvbcd11N+Ldd9/Gyy//HbquY/bsObj11u+ipaUFd955G9ra2lBSUoI77vgf\nXH75Rfj9759AMBjEhg3v4cknV2LFih93+5wVZPCOWsEb9rB5DtuyEhH1Z0//Ywv+89HeXn3NmROq\ncd5JY9N+/4ILFmL16qdx2WVX4pFHHoaqxvGLX/wWDQ37MWvWUTj11DOwc+cO3H77EsyZc6znuXv3\n7sF99z2E9ev/jT//eZUneLe0NKd8/oMP3oebb16KsWPH4Uc/ugO7d+9KeV86W7duwRNPrIbP58O7\n776NX/zitxBFEeeddxauvfabeOKJxzFr1myce+4CPPXUSrzzzls47rgT8dpr/8L8+afgtddewbx5\nX+nROS3I4G33NTc08+0z8yYi6j8mTpwMAAiFSvHhh5uxZs1qCIKI5uamDo+dOvUwAObyZHcXz86e\n/8UX2zB27DgAwO2335n2vnTGjh0Hn89crRQIBHDddVdBkiQ0NjaisbERn3zyEa644hoAwPnnXwQA\nqKmpxW9/+0vMn38K3n33bXzjG1cf+IlxKczgrSU2JQFYsEZEZDvvpLGdZsm5oChmD46//vUlNDc3\n4+c//y2am5txxRULOzxWkhLNu5KbgaV7fqpNsFLdJwiJxE5V1Q7Ht3v3Ljz11Er87ncrEQwGsXDh\nedZrSTAM3fNaY8eOw759+/Dhh5sxatQY+P3+zk9CBgUZtSL2piR25s2CNSKiPiOKIjRN63B/Y2Mj\nhgypgSiKeOWVfyAejx/Q66Z7/siRo7B5s7ni6a677sR///t5yvuKi4uxb5/ZbGzjxvdTvn5FRQWC\nwSA+/vgj7N69G/F4HBMnTsLbb/8HAPDcc6vw4ot/AQCcdNI8PPDAPZg375QDeh+pFGTwthlx88qH\nmTcRUd8ZMWIUPv74Izz00P2e+0844ST8+9+v4vrrr0FRURGqq6vx6KO/6fLrpnv+9dffhJ/97P/D\nNdd8A6FQKUaOHJXyvjPPPAf3338vbr75egwcWNXh9ceNG4+ioiCuueZy/P3v/4ezzjoHP/zhD3Hu\nuRdg06YNuO66q/Dvf7+G448/EQBw8snzsHfvXhx++MyenTAAgpGq6Xg/1Jvt5uJaHNf89hnojdWA\nIeKWC6ZjwojOe6tTamyn2HM8hz3Hc9g7eB57rrNz+Pzza7B79y584xvfPKDXS6Ug57wVSYHeMNi5\nzcybiIiy6Z57/gdffrkTd911X6+8XkEG72SsNiciomy69dbbevX1CjLl1HXvTAEL1oiIKJ8UZPCO\nxr1VjRw2JyKifFKQUSvWIXgz8yYiovxRkME7OfOW2B6ViIjySEFGrWjc2/mGmTcRUd96+eW/H/Bz\n3nvvHTQ07M/C0fR/hRm8Y0mZN+e8iYj6zIFuCWp7/vk1BRu8C3KpWMdhc2beRER9xb0l6PnnX4gV\nK36IlpYWaJqGG264GWPHjsP//u/v8cor/4Qoipgz51hMnDgJr776Mj7//DP8z//ci8GDzd4dfbEN\n6OWXX+VsAxqLReD3F2VlG1A3Bm+w2pyIyLZ6y1/w7t6Nvfqa06sPxTljz0j7ffeWoL///W9x5JFH\n4//9v6/i888/w09+ch8efPAXePLJ/8Vzz70ESZLw3HOrMHPmURg7djy+851bnMAN9M02oOeff6Gz\nDejixVfiZz/7VVa2AXVj8AabtBAR9RcbN25AY2MD1q59AQAQjZobSZ1wwsm44YbFmDfvFMyfn35j\nj77YBrS5uTkn24C6FWTwrgz54ZNF6IYBVTMgCgzeREQAcM7YMzrNkrNNUWTceOPNmDJlquf+m276\nHrZt+y/+8Y+/4lvf+iZ+/es/pHz+wbwNqOfYe+2V8sghwyvw1IrT8fBNJ+DXN5/Q14dDRFTQ3FuC\nTpo0Bf/618sAgM8//wxPPvm/aG1txaOP/gYjRozEZZddiVCoDO3tbSm3Ej2YtwH1nLNefbU8Iksi\nBEHgfDcRUR9zbwn69a+fj507t2Px4itwzz3/g8MOm4GSkhI0NjbgyisX4dvfvhqTJ09BaWkZDjts\nBm677VZ89tlW57X6YhvQ+++/x9kGdOHChVnbBtStILcEBbj1XW/heew5nsOe4znsHTyPPZd8Druz\nDWjy66VSkHPeRERE2dbb24C6MXgTERFlQW9vA+rGCV8iIqI8w+BNRESUZxi8iYiI8gyDNxERUZ5h\n8CYiIsozDN5ERER5hsGbiIgozzB4ExER5Zm8aY9KREREJmbeREREeYbBm4iIKM8weBMREeUZBm8i\nIqI8w+BNRESUZxi8iYiI8kxB7ue9YsUKvP/++xAEAUuXLsXUqVP7+pD6tU8++QSLFy/GpZdeiosv\nvhi7du3CLbfcAk3TUFVVhR//+Mfw+XxYs2YN/vCHP0AURZx33nk499xz+/rQ+417770Xb7/9NlRV\nxTe/+U0ceuihPIcHIBwOY8mSJdi3bx+i0SgWL16MCRMm8Bx2UyQSwRlnnIHFixdj9uzZPI8H4I03\n3sD111+PcePGAQDGjx+PK664Ivfn0Cgwb7zxhnHVVVcZhmEYW7ZsMc4777w+PqL+ra2tzbj44ouN\n2267zXj88ccNwzCMJUuWGC+88IJhGIZx//33GytXrjTa2tqM+fPnG83NzUY4HDZOP/10o6GhoS8P\nvd9Yt26dccUVVxiGYRj79+83jj/+eJ7DA/T8888bv/71rw3DMIwdO3YY8+fP5znsgQceeMA455xz\njFWrVvE8HqD169cb3/rWtzz39cU5LLhh83Xr1mHu3LkAgDFjxqCpqQmtra19fFT9l8/nw29+8xtU\nV1c7973xxhs4+eSTAQAnnngi1q1bh/fffx+HHnooQqEQAoEAZsyYgXfeeaevDrtfmTlzJn7yk58A\nAEpLSxEOh3kOD9Bpp52GK6+8EgCwa9cuDBo0iOewm7Zu3YotW7bghBNOAMD/z72hL85hwQXv+vp6\nVFRUOLcrKytRV1fXh0fUv8myjEAg4LkvHA7D5/MBAAYMGIC6ujrU19ejsrLSeQzPa4IkSQgGgwCA\nZ599FscddxzPYTctWLAAN910E5YuXcpz2E333HMPlixZ4tzmeTxwW7ZswdVXX40LLrgAr7/+ep+c\nw4Kc83Yz2B22R9KdP57Xjv72t7/h2Wefxe9+9zvMnz/fuZ/nsOuefPJJfPjhh7j55ps954fnsGue\ne+45HHbYYRg2bFjK7/M8ZjZy5Ehcd911OPXUU7F9+3YsWrQImqY538/VOSy44F1dXY36+nrn9t69\ne1FVVdWHR5R/gsEgIpEIAoEA9uzZg+rq6pTn9bDDDuvDo+xfXn31VfzqV7/Cb3/7W4RCIZ7DA7Rp\n0yYMGDAAQ4YMwcSJE6FpGoqLi3kOD9DLL7+M7du34+WXX8bu3bvh8/n4t3iABg0ahNNOOw0AMHz4\ncAwcOBAbN27M+TksuGHzOXPmYO3atQCAzZs3o7q6GiUlJX18VPnl6KOPds7h//3f/+HYY4/FtGnT\nsHHjRjQ3N6OtrQ3vvPMOjjjiiD4+0v6hpaUF9957Lx5++GGUl5cD4Dk8UG+99RZ+97vfATCnvtrb\n23kOu+HBBx/EqlWr8PTTT+Pcc8/F4sWLeR4P0Jo1a/DII48AAOrq6rBv3z6cc845OT+HBbmr2H33\n3Ye33noLgiBg2bJlmDBhQl8fUr+1adMm3HPPPdi5cydkWcagQYNw3333YcmSJYhGo6ipqcFdd90F\nRVHw0ksv4ZFHHoEgCLj44otx5pln9vXh9wtPPfUUfvrTn2LUqFHOfXfffTduu+02nsMuikQi+P73\nv49du3YhEonguuuuw5QpU3DrrbfyHHbTT3/6U9TW1uKYY47heTwAra2tuOmmm9Dc3Ix4PI7rrrsO\nEydOzPk5LMjgTURElM8KbticiIgo3zF4ExER5RkGbyIiojzD4E1ERJRnGLyJiIjyTME1aSHKN/fe\ney82btyIaDSKDz74ANOnTwcAfO1rX8NXv/rVLr3Gr3/9a4wfP97pZ53KwoUL8fvf/x6SJPXGYXvs\n2bMHn332GWbPnt3rr01UiLhUjChP7NixAxdeeCH+9a9/9fWhHLA1a9Zg69atuPHGG/v6UIgOCsy8\nifLYT3/6U+zYsQNffvklbr31VkQiEdx3333w+XyIRCJYtmwZJk+ejCVLluDwww/H7Nmzcc011+CY\nY47Bhg0b0NbWhocffhiDBg3CIYccgs2bN+OXv/wlGhsbsXv3bmzbtg1HHnkkbr/9dkSjUdx6663Y\nuXMnBg8eDEmSMGfOHM8exW1tbfjud7+L5uZmqKqKE088EWeccQYefPBBGIaB8vJyXHTRRbjzzjux\nbds2tLW14YwzzsDll1+O1atX469//SsEQcCePXswevRorFixAoqi9OEZJuqfOOdNlOd27NiBxx57\nDFOmTEFjYyN+8IMf4LHHHsOiRYvw8MMPd3j81q1bcc4552DlypWYOHEiXnzxxQ6P+eCDD/DQQw/h\n2WefxerVq9HU1IQ1a9ZAVVU888wzuOOOO/D66693eN6///1vqKqKP/7xj3jyyScRDAZRW1uLs88+\nG2eeeSYuu+wyPPbYY6iursbjjz+OZ555Bs8//zw++ugjAMDGjRv///bu2CW1MIzj+NcONQQRQi3W\nYnBsjDoSBFKNOVaEo0M4REO4HGyrKQin5ob+gDBaoiVyECEipakhWkKkQKFoiERPd5DOzYxLlysX\njvw+4+F5X97tx/PyHh7S6TSHh4eUy2VP3jKI/A/qvEU8bmJiAp/PB8DQ0BC7u7u8vb3x8vLC4OBg\nW73f78c0TQACgQBPT09tNZZlYRgGhmHg9/t5fn7m5uaG6elpAIaHh7Esq23d1NQUe3t7bGxsMDc3\nx8rKCj09rT3CxcUFDw8PXF5eAlCr1bi/v3fXf4xPnZyc5O7uzp2TLCK/KbxFPO7ztbJt22xvbzMz\nM8P5+bk7zOOzrw/Svnv28l2N4zgtQfw1lKE5y/j4+JhiscjZ2RnLy8scHR211PT19bG+vs7CwkLL\n90wmg+M4fzyXiDTp2lyki1QqFUzTpNFocHp6Sq1W69jeY2NjFItFAKrVKldXV201uVyObDaLZVnY\ntk1/fz/VahWfz0e9XgeaXf3HVb3jOOzs7Ljd//X1Na+vr7y/v1MoFBgfH+/Y+UW6iTpvkS6SSCSI\nx+MEAgFWV1exbZuDg4OO7L20tEQ2myUWizE6Oko4HG7r0IPBIKlUiv39fQzDIBKJMDIyQjgcJplM\n0tvby9raGre3t8RiMRqNBvPz8+6o1FAoxObmJqVSCdM0iUQiHTm7SLfRr2Ii8iOPj48UCgWi0SiO\n47C4uMjW1pb73/m/ymQy5PN50ul0R/YT6WbqvEXkRwYGBjg5OXHnE8/OznYsuEXk76jzFhER8Rg9\nWBMREfEYhbeIiIjHKLxFREQ8RuEtIiLiMQpvERERj1F4i4iIeMwvRph4T/csGFUAAAAASUVORK5C\nYII=\n",
+            "text/plain": [
+              "<matplotlib.figure.Figure at 0x7f72f867ef90>"
+            ]
+          },
+          "metadata": {
+            "tags": []
+          }
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "HNqUFL4deCsL",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "# 4. Case study: building an RNN\n"
+      ]
+    },
+    {
+      "metadata": {
+        "id": "YkC1k4HEQ7rw",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "In this exercise we build and train a model similar to the RNNColorbot model that was used in the main Eager notebook. The model is adapted for converting and training in graph mode."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "7nkPDl5CTCNb",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "To get started, we load the colorbot dataset. The code is identical to that used in the other exercise and its details are unimportant."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "A0uREmVXCQEw",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def parse(line):\n",
+        "  \"\"\"Parses a line from the colors dataset.\n",
+        "  \n",
+        "  Args:\n",
+        "    line: A comma-separated string containing four items:\n",
+        "        color_name, red, green, and blue, representing the name and\n",
+        "        respectively the RGB value of the color, as an integer\n",
+        "        between 0 and 255.\n",
+        "\n",
+        "  Returns:\n",
+        "    A tuple of three tensors (rgb, chars, length), of shapes: (batch_size, 3),\n",
+        "    (batch_size, max_sequence_length, 256) and respectively (batch_size).\n",
+        "  \"\"\"\n",
+        "  items = tf.string_split([line], \",\").values\n",
+        "  rgb = tf.string_to_number(items[1:], out_type=tf.float32) / 255.0\n",
+        "  color_name = items[0]\n",
+        "  chars = tf.one_hot(tf.decode_raw(color_name, tf.uint8), depth=256)\n",
+        "  length = tf.cast(tf.shape(chars)[0], dtype=tf.int64)\n",
+        "  return rgb, chars, length\n",
+        "\n",
+        "\n",
+        "def maybe_download(filename, work_directory, source_url):\n",
+        "  \"\"\"Downloads the data from source url.\"\"\"\n",
+        "  if not tf.gfile.Exists(work_directory):\n",
+        "    tf.gfile.MakeDirs(work_directory)\n",
+        "  filepath = os.path.join(work_directory, filename)\n",
+        "  if not tf.gfile.Exists(filepath):\n",
+        "    temp_file_name, _ = six.moves.urllib.request.urlretrieve(source_url)\n",
+        "    tf.gfile.Copy(temp_file_name, filepath)\n",
+        "    with tf.gfile.GFile(filepath) as f:\n",
+        "      size = f.size()\n",
+        "    print('Successfully downloaded', filename, size, 'bytes.')\n",
+        "  return filepath\n",
+        "\n",
+        "\n",
+        "def load_dataset(data_dir, url, batch_size, training=True):\n",
+        "  \"\"\"Loads the colors data at path into a tf.PaddedDataset.\"\"\"\n",
+        "  path = maybe_download(os.path.basename(url), data_dir, url)\n",
+        "  dataset = tf.data.TextLineDataset(path)\n",
+        "  dataset = dataset.skip(1)\n",
+        "  dataset = dataset.map(parse)\n",
+        "  dataset = dataset.cache()\n",
+        "  dataset = dataset.repeat()\n",
+        "  if training:\n",
+        "    dataset = dataset.shuffle(buffer_size=3000)\n",
+        "  dataset = dataset.padded_batch(batch_size, padded_shapes=([None], [None, None], []))\n",
+        "  return dataset\n",
+        "\n",
+        "\n",
+        "train_url = \"https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/extras/colorbot/data/train.csv\"\n",
+        "test_url = \"https://raw.githubusercontent.com/random-forests/tensorflow-workshop/master/extras/colorbot/data/test.csv\"\n",
+        "data_dir = \"tmp/rnn/data\""
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "waZ89t3DTUla",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "Next, we set up the RNNColobot model, which is very similar to the one we used in the main exercise.\n",
+        "\n",
+        "Autograph doesn't fully support classes yet (but it will soon!), so we'll write the model using simple functions."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "9v8AJouiC44V",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def model_components():\n",
+        "  lower_cell = tf.contrib.rnn.LSTMBlockCell(256)\n",
+        "  lower_cell.build(tf.TensorShape((None, 256)))\n",
+        "  upper_cell = tf.contrib.rnn.LSTMBlockCell(128)\n",
+        "  upper_cell.build(tf.TensorShape((None, 256)))\n",
+        "  relu_layer = tf.layers.Dense(3, activation=tf.nn.relu)\n",
+        "  relu_layer.build(tf.TensorShape((None, 128)))\n",
+        "  return lower_cell, upper_cell, relu_layer\n",
+        "\n",
+        "\n",
+        "def rnn_layer(chars, cell, batch_size, training):\n",
+        "  \"\"\"A simple RNN layer.\n",
+        "  \n",
+        "  Args:\n",
+        "    chars: A Tensor of shape (max_sequence_length, batch_size, input_size)\n",
+        "    cell: An object of type tf.contrib.rnn.LSTMBlockCell\n",
+        "    batch_size: Int, the batch size to use\n",
+        "    training: Boolean, whether the layer is used for training\n",
+        "\n",
+        "  Returns:\n",
+        "    A Tensor of shape (max_sequence_length, batch_size, output_size).\n",
+        "  \"\"\"\n",
+        "  hidden_outputs = []\n",
+        "  autograph.utils.set_element_type(hidden_outputs, tf.float32)\n",
+        "  state, output = cell.zero_state(batch_size, tf.float32)\n",
+        "  n = tf.shape(chars)[0]\n",
+        "  i = 0\n",
+        "  while i < n:\n",
+        "    ch = chars[i]\n",
+        "    cell_output, (state, output) = cell.call(ch, (state, output))\n",
+        "    hidden_outputs.append(cell_output)\n",
+        "    i += 1\n",
+        "  hidden_outputs = hidden_outputs.stack()\n",
+        "  if training:\n",
+        "    hidden_outputs = tf.nn.dropout(hidden_outputs, 0.5)\n",
+        "  return hidden_outputs\n",
+        "\n",
+        "\n",
+        "def model(inputs, lower_cell, upper_cell, relu_layer, batch_size, training):\n",
+        "  \"\"\"RNNColorbot model.\n",
+        "  \n",
+        "  The model consists of two RNN layers (made by lower_cell and upper_cell),\n",
+        "  followed by a fully connected layer with ReLU activation.\n",
+        "  \n",
+        "  Args:\n",
+        "    inputs: A tuple (chars, length)\n",
+        "    lower_cell: An object of type tf.contrib.rnn.LSTMBlockCell\n",
+        "    upper_cell: An object of type tf.contrib.rnn.LSTMBlockCell\n",
+        "    relu_layer: An object of type tf.layers.Dense\n",
+        "    batch_size: Int, the batch size to use\n",
+        "    training: Boolean, whether the layer is used for training\n",
+        "    \n",
+        "  Returns:\n",
+        "    A Tensor of shape (batch_size, 3) - the model predictions.\n",
+        "  \"\"\"\n",
+        "  (chars, length) = inputs\n",
+        "  chars_time_major = tf.transpose(chars, [1, 0, 2])\n",
+        "  chars_time_major.set_shape((None, batch_size, 256))\n",
+        "\n",
+        "  hidden_outputs = rnn_layer(chars_time_major, lower_cell, batch_size, training)\n",
+        "  final_outputs = rnn_layer(hidden_outputs, upper_cell, batch_size, training)\n",
+        "\n",
+        "  # Grab just the end-of-sequence from each output.\n",
+        "  indices = tf.stack([length - 1, range(batch_size)], axis=1)\n",
+        "  sequence_ends = tf.gather_nd(final_outputs, indices)\n",
+        "  return relu_layer(sequence_ends)\n",
+        "\n",
+        "def loss_fn(labels, predictions):\n",
+        "  return tf.reduce_mean((predictions - labels) ** 2)"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "JjK4gXFvFsf4",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "The train and test functions are also similar to the ones used in the Eager notebook. Since the network requires a fixed batch size, we'll train in a single shot, rather than by epoch."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "ZWQMExk0S6X6",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def train(optimizer, train_data, lower_cell, upper_cell, relu_layer, batch_size, num_steps):\n",
+        "  iterator = train_data.make_one_shot_iterator()\n",
+        "  step = 0\n",
+        "  while step < num_steps:\n",
+        "    labels, chars, sequence_length = iterator.get_next()\n",
+        "    predictions = model((chars, sequence_length), lower_cell, upper_cell, relu_layer, batch_size, training=True)\n",
+        "    loss = loss_fn(labels, predictions)\n",
+        "    optimizer.minimize(loss)\n",
+        "    if step % (num_steps // 10) == 0:\n",
+        "      print('Step', step, 'train loss', loss)\n",
+        "    step += 1\n",
+        "  return step\n",
+        "\n",
+        "\n",
+        "def test(eval_data, lower_cell, upper_cell, relu_layer, batch_size, num_steps):\n",
+        "  total_loss = 0.0\n",
+        "  iterator = eval_data.make_one_shot_iterator()\n",
+        "  step = 0\n",
+        "  while step < num_steps:\n",
+        "    labels, chars, sequence_length = iterator.get_next()\n",
+        "    predictions = model((chars, sequence_length), lower_cell, upper_cell, relu_layer, batch_size, training=False)\n",
+        "    total_loss += loss_fn(labels, predictions)\n",
+        "    step += 1\n",
+        "  print('Test loss', total_loss)\n",
+        "  return total_loss\n",
+        "\n",
+        "\n",
+        "def train_model(train_data, eval_data, batch_size, lower_cell, upper_cell, relu_layer, train_steps):\n",
+        "  optimizer = tf.train.AdamOptimizer(learning_rate=0.01)\n",
+        "\n",
+        "  train(optimizer, train_data, lower_cell, upper_cell, relu_layer, batch_size, num_steps=tf.constant(train_steps))\n",
+        "  test(eval_data, lower_cell, upper_cell, relu_layer, 50, num_steps=tf.constant(2))\n",
+        "\n",
+        "  print('Colorbot is ready to generate colors!\\n\\n')\n",
+        "  \n",
+        "  # In graph mode, every op needs to be a dependent of another op.\n",
+        "  # Here, we create a no_op that will drive the execution of all other code in\n",
+        "  # this function. Autograph will add the necessary control dependencies.\n",
+        "  return tf.no_op()"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "iopcs5hXG2od",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "Finally, we add code to run inference on a single input, which we'll read from the input.\n",
+        "\n",
+        "Note the `do_not_convert` annotation that lets us disable conversion for certain functions and run them as a `py_func` instead, so you can still call them from compiled code."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "DyU0wnnAFEYj",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "@autograph.do_not_convert(run_as=autograph.RunMode.PY_FUNC)\n",
+        "def draw_prediction(color_name, pred):\n",
+        "  pred = pred * 255\n",
+        "  pred = pred.astype(np.uint8)\n",
+        "  plt.axis('off')\n",
+        "  plt.imshow(pred)\n",
+        "  plt.title(color_name)\n",
+        "  plt.show()\n",
+        "\n",
+        "\n",
+        "def inference(color_name, lower_cell, upper_cell, relu_layer):\n",
+        "  _, chars, sequence_length = parse(color_name)\n",
+        "  chars = tf.expand_dims(chars, 0)\n",
+        "  sequence_length = tf.expand_dims(sequence_length, 0)\n",
+        "  pred = model((chars, sequence_length), lower_cell, upper_cell, relu_layer, 1, training=False)\n",
+        "  pred = tf.minimum(pred, 1.0)\n",
+        "  pred = tf.expand_dims(pred, 0)\n",
+        "  draw_prediction(color_name, pred)\n",
+        "  # Create an op that will drive the entire function.\n",
+        "  return tf.no_op()"
+      ],
+      "execution_count": 0,
+      "outputs": []
+    },
+    {
+      "metadata": {
+        "id": "Nt0Kv5OCHip0",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "Finally, we put everything together.\n",
+        "\n",
+        "Note that the entire training and testing code is all compiled into a single op (`tf_train_model`) that you only execute once! We also still use a `sess.run` loop for the inference part, because that requires keyboard input."
+      ]
+    },
+    {
+      "metadata": {
+        "id": "-GmWa0GtYWdh",
+        "colab_type": "code",
+        "colab": {
+          "autoexec": {
+            "startup": false,
+            "wait_interval": 0
+          },
+          "output_extras": [
+            {
+              "item_id": 12
+            },
+            {
+              "item_id": 13
+            },
+            {
+              "item_id": 14
+            },
+            {
+              "item_id": 15
+            },
+            {
+              "item_id": 16
+            },
+            {
+              "item_id": 17
+            },
+            {
+              "item_id": 18
+            },
+            {
+              "item_id": 19
+            },
+            {
+              "item_id": 20
+            },
+            {
+              "item_id": 21
+            },
+            {
+              "item_id": 23
+            },
+            {
+              "item_id": 24
+            },
+            {
+              "item_id": 25
+            },
+            {
+              "item_id": 26
+            },
+            {
+              "item_id": 27
+            },
+            {
+              "item_id": 28
+            },
+            {
+              "item_id": 29
+            },
+            {
+              "item_id": 30
+            },
+            {
+              "item_id": 31
+            },
+            {
+              "item_id": 32
+            },
+            {
+              "item_id": 33
+            },
+            {
+              "item_id": 34
+            },
+            {
+              "item_id": 35
+            }
+          ],
+          "base_uri": "https://localhost:8080/",
+          "height": 668
+        },
+        "outputId": "61f4af1d-c81e-44db-9079-1a7b8ed8ce58",
+        "executionInfo": {
+          "status": "ok",
+          "timestamp": 1522345877153,
+          "user_tz": 240,
+          "elapsed": 75500,
+          "user": {
+            "displayName": "Dan Moldovan",
+            "photoUrl": "//lh5.googleusercontent.com/-Rneh8xjecyk/AAAAAAAAAAI/AAAAAAAACB4/c5vwsJpbktY/s50-c-k-no/photo.jpg",
+            "userId": "112023154726779574577"
+          }
+        }
+      },
+      "cell_type": "code",
+      "source": [
+        "def run_input_loop(sess, inference_ops, color_name_placeholder):\n",
+        "  \"\"\"Helper function that reads from input and calls the inference ops in a loop.\"\"\"\n",
+        "\n",
+        "  tb = widgets.TabBar([\"RNN Colorbot\"])\n",
+        "  while True:\n",
+        "    with tb.output_to(0):\n",
+        "      try:\n",
+        "        color_name = six.moves.input(\"Give me a color name (or press 'enter' to exit): \")\n",
+        "      except (EOFError, KeyboardInterrupt):\n",
+        "        break\n",
+        "    if not color_name:\n",
+        "      break\n",
+        "    with tb.output_to(0):\n",
+        "      tb.clear_tab()\n",
+        "      sess.run(inference_ops, {color_name_placeholder: color_name})\n",
+        "      plt.show()\n",
+        "\n",
+        "with tf.Graph().as_default():\n",
+        "  # Read the data.\n",
+        "  batch_size = 64\n",
+        "  train_data = load_dataset(data_dir, train_url, batch_size)\n",
+        "  eval_data = load_dataset(data_dir, test_url, 50, training=False)\n",
+        "  \n",
+        "  # Create the model components.\n",
+        "  lower_cell, upper_cell, relu_layer = model_components()\n",
+        "  # Create the helper placeholder for inference.\n",
+        "  color_name_placeholder = tf.placeholder(tf.string, shape=())\n",
+        "  \n",
+        "  # Compile the train / test code.\n",
+        "  tf_train_model = autograph.to_graph(train_model)\n",
+        "  train_model_ops = tf_train_model(\n",
+        "      train_data, eval_data, batch_size, lower_cell, upper_cell, relu_layer, train_steps=100)\n",
+        "  \n",
+        "  # Compile the inference code.\n",
+        "  tf_inference = autograph.to_graph(inference)\n",
+        "  inference_ops = tf_inference(color_name_placeholder, lower_cell, upper_cell, relu_layer)\n",
+        "  \n",
+        "  with tf.Session() as sess:\n",
+        "    sess.run(tf.global_variables_initializer())\n",
+        "    \n",
+        "    # Run training and testing.\n",
+        "    sess.run(train_model_ops)\n",
+        "     \n",
+        "    # Run the inference loop.\n",
+        "    run_input_loop(sess, inference_ops, color_name_placeholder)"
+      ],
+      "execution_count": 22,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "text": [
+            "('Successfully downloaded', 'train.csv', 28010L, 'bytes.')\n",
+            "('Successfully downloaded', 'test.csv', 2414L, 'bytes.')\n",
+            "Step 0 train loss 0.37890616\n",
+            "Step 10 train loss 0.18515904\n",
+            "Step 20 train loss 0.0892782\n",
+            "Step 30 train loss 0.07883155\n",
+            "Step 40 train loss 0.08585831\n",
+            "Step 50 train loss 0.09302989\n",
+            "Step 60 train loss 0.089012615\n",
+            "Step 70 train loss 0.07275697\n",
+            "Step 80 train loss 0.06644974\n",
+            "Step 90 train loss 0.0854013\n",
+            "Test loss 0.13216865Colorbot is ready to generate colors!\n",
+            "\n",
+            "\n",
+            "\n"
+          ],
+          "name": "stdout"
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "<link rel=stylesheet type=text/css href='/nbextensions/google.colab/tabbar.css'></link>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "<script src='/nbextensions/google.colab/tabbar_main.min.js'></script>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "<div id=\"id1\"></div>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"b102d936-3379-11e8-ac70-0242ac110002\"] = colab_lib.createTabBar({\"contentBorder\": [\"0px\"], \"borderColor\": [\"#a7a7a7\"], \"tabNames\": [\"RNN Colorbot\"], \"initialSelection\": 0, \"location\": \"top\", \"contentHeight\": [\"initial\"], \"elementId\": \"id1\"});\n",
+              "//# sourceURL=js_e223a56194"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"b103532a-3379-11e8-ac70-0242ac110002\"] = window[\"id1\"].setSelectedTabIndex(0);\n",
+              "//# sourceURL=js_b8c6a821fb"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"b105b28c-3379-11e8-ac70-0242ac110002\"] = google.colab.output.getActiveOutputArea();\n",
+              "//# sourceURL=js_44805e254b"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"b106197a-3379-11e8-ac70-0242ac110002\"] = document.querySelector(\"#id1_content_0\");\n",
+              "//# sourceURL=js_a63d3c6c47"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"b1069f44-3379-11e8-ac70-0242ac110002\"] = google.colab.output.setActiveOutputArea(window[\"b106197a-3379-11e8-ac70-0242ac110002\"]);\n",
+              "//# sourceURL=js_7e203b8bce"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"b1070f38-3379-11e8-ac70-0242ac110002\"] = window[\"id1\"].setSelectedTabIndex(0);\n",
+              "//# sourceURL=js_d53293d4a7"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c6d90d5c-3379-11e8-ac70-0242ac110002\"] = google.colab.output.setActiveOutputArea(window[\"b105b28c-3379-11e8-ac70-0242ac110002\"]);\n",
+              "//# sourceURL=js_3000dc2c05"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c6da872c-3379-11e8-ac70-0242ac110002\"] = google.colab.output.getActiveOutputArea();\n",
+              "//# sourceURL=js_4136f669a3"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c6dac868-3379-11e8-ac70-0242ac110002\"] = document.querySelector(\"#id1_content_0\");\n",
+              "//# sourceURL=js_2f70dd9aee"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c6db07d8-3379-11e8-ac70-0242ac110002\"] = google.colab.output.setActiveOutputArea(window[\"c6dac868-3379-11e8-ac70-0242ac110002\"]);\n",
+              "//# sourceURL=js_7226726048"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c6dcc6fe-3379-11e8-ac70-0242ac110002\"] = window[\"id1\"].setSelectedTabIndex(0);\n",
+              "//# sourceURL=js_72e7709865"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAAFZCAYAAADHDNdrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAB9JJREFUeJzt3E1Lle0ax+HTF4jeEAyMBhE0DawI\nwsCH0AIlaGBWNJBo0CDoA0TQhmDXuKAGDioiCA2KlEAlnl05FD9Co8BeaGCQoBDa2jPZsXt4Bvu/\n0+o4Rmvd1zW4rsmP84bFamo0Go0C4H/WvNYHAPhVCCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKDy\nUxgeHq5Dhw7V4OBgPXz4sHp7e+vWrVt15cqVOnnyZN2/f78ajUbdvn27+vr6qqenp65du1YrKytV\nVfXhw4e6cOFC9fX1VV9fX01PT1dV1dzcXHV3d9eDBw/q+PHj9ccff9TExMRaXpWfWOtaHwD+zuvX\nr+vOnTs1MTFRbW1tdf78+dW16enpGh8fr/b29hobG6upqal6/Phxbdy4sS5evFgjIyM1NDRUly5d\nqv3799fw8HC9efOmTp8+XVNTU1VV9enTp2pubq5nz57V5ORk3bhxo44dO7ZW1+UnZkJl3Zudna2D\nBw9WR0dHbdiwoQYHB1fX9u7dW+3t7VVV9fLlyxocHKytW7dWa2trnTp1qp4/f16Li4s1MzNT586d\nq6qqXbt21YEDB1an1OXl5Tpx4kRVVe3Zs6fevXv3Yy/IL8OEyrr3+fPnamtrW/2+ffv21c//+Xxh\nYaHu3r1bjx49qqqqlZWVam9vr4WFhWo0GnXmzJnVvYuLi9XV1VVVVS0tLbVp06aqqmpubq6vX7/+\nX+/Dr0tQWfe2bNlSi4uLq98/fvz43X0dHR3V29tbQ0ND3zxfXl6ulpaWevLkSW3evPmbtbm5ufyB\n+W155Wfd6+zsrJmZmZqfn68vX77U2NjYd/cdOXKkxsfHa2lpqaqqRkdH6+nTp9Xa2lqHDx+u0dHR\nqqpaWlqqy5cv1/v373/YHfg9CCrrXmdnZw0MDNTAwECdPXu2enp6vrvv6NGj1dPTUwMDA9Xf318v\nXryo7u7uqqq6evVqzc7OVn9/fw0MDNTOnTtrx44dP/Ia/Aaa/B8qP4NGo1FNTU1VVfXq1au6efPm\nX06qsFZMqKx78/Pz1dXVVW/fvq1Go1GTk5O1b9++tT4W/BcTKj+FkZGRunfvXjU1NdXu3bvr+vXr\ntW3btrU+FnxDUAFCvPIDhAgqQMi6+WH/kX8eXesjAPytf/3jz79cM6EChAgqQIigAoQIKkCIoAKE\nCCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQI\nKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgq\nQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpA\niKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCI\noAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIig\nAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAC\nhAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKE\nCCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQI\nKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgq\nQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpA\niKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCI\noAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIig\nAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAC\nhAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKE\nCCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQI\nKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgq\nQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpA\niKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkCIoAKECCpAiKAChAgqQIigAoQIKkBI\nU6PRaKz1IQB+BSZUgBBBBQgRVIAQQQUIEVSAEEEFCBFUgBBBBQgRVIAQQQUIEVSAEEEFCBFUgBBB\nBQgRVIAQQQUIEVSAEEEFCBFUgBBBBQgRVIAQQQUIEVSAkH8D1Aj8lNhhe7QAAAAASUVORK5CYII=\n",
+            "text/plain": [
+              "<matplotlib.figure.Figure at 0x7f72f402e850>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1",
+              "user_output"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c70592aa-3379-11e8-ac70-0242ac110002\"] = google.colab.output.setActiveOutputArea(window[\"c6da872c-3379-11e8-ac70-0242ac110002\"]);\n",
+              "//# sourceURL=js_25c3aaf79a"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c70842c0-3379-11e8-ac70-0242ac110002\"] = google.colab.output.getActiveOutputArea();\n",
+              "//# sourceURL=js_984c56b816"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c708dec4-3379-11e8-ac70-0242ac110002\"] = document.querySelector(\"#id1_content_0\");\n",
+              "//# sourceURL=js_e0451a1217"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c7092726-3379-11e8-ac70-0242ac110002\"] = google.colab.output.setActiveOutputArea(window[\"c708dec4-3379-11e8-ac70-0242ac110002\"]);\n",
+              "//# sourceURL=js_7aa23d7385"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c7099044-3379-11e8-ac70-0242ac110002\"] = window[\"id1\"].setSelectedTabIndex(0);\n",
+              "//# sourceURL=js_5722756ddb"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        },
+        {
+          "output_type": "stream",
+          "text": [
+            "Give me a color name (or press 'enter' to exit): \n"
+          ],
+          "name": "stdout"
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "window[\"c7baac12-3379-11e8-ac70-0242ac110002\"] = google.colab.output.setActiveOutputArea(window[\"c70842c0-3379-11e8-ac70-0242ac110002\"]);\n",
+              "//# sourceURL=js_cdd622e58f"
+            ],
+            "text/plain": [
+              "<IPython.core.display.Javascript object>"
+            ]
+          },
+          "metadata": {
+            "tags": [
+              "id1_content_0",
+              "outputarea_id1"
+            ]
+          }
+        }
+      ]
+    },
+    {
+      "metadata": {
+        "id": "AHJ2c47U-A5W",
+        "colab_type": "text"
+      },
+      "cell_type": "markdown",
+      "source": [
+        "# Where do we go next?\n",
+        "\n",
+        "Autograph is available in tensorflow.contrib, but it's still in its early stages. We're excited about the possibilities it brings — write your machine learning code in the flexible Eager style, but still enjoy all the benefits that come with running in graph mode. A beta version will be available soon -- stay tuned!"
+      ]
+    }
+  ]
+}
\ No newline at end of file