"src/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.cpp",
"src/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.cpp",
"src/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.cpp",
+ "src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ScaleKernel.cpp",
"src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.cpp",
"src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.cpp",
"src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.cpp",
"src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloatKernel.cpp",
- "src/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.cpp",
"src/core/CL/kernels/CLGEMMLowpReductionKernel.cpp",
"src/core/CL/kernels/CLGEMMMatrixAccumulateBiasesKernel.cpp",
"src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.cpp",
/*
- * Copyright (c) 2016-2019 ARM Limited.
+ * Copyright (c) 2016-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
#include "arm_compute/core/CL/kernels/CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpOffsetContributionOutputStageKernel.h"
+#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ScaleKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloatKernel.h"
-#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpReductionKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixAccumulateBiasesKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
--- /dev/null
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_CLGEMMLOWPQUANTIZEDOWNINT32SCALEKERNEL_H
+#define ARM_COMPUTE_CLGEMMLOWPQUANTIZEDOWNINT32SCALEKERNEL_H
+
+#include "arm_compute/core/CL/ICLKernel.h"
+
+namespace arm_compute
+{
+class ICLTensor;
+
+/** OpenCL kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8/QASYMM8_SIGNED
+ *
+ * This kernel takes a final int32 accumulator value (the output of @ref CLGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8/QASYMM8_SIGNED value.
+ * The following computations will be performed by the kernel:
+ *
+ * -# Add offset terms to final result
+ * -# Multiply each entry of result by result_mult_int
+ * -# Add bias to final result if bias tensor is not a nullptr
+ * -# Shift the int32 accumulator by result_shift
+ * -# Clamp the value between the specified min and max bounds
+ * -# Clamp the resulting int32 values:
+ * -# -to the [0..255] range and cast to QASYMM8.
+ * -# -to the [-128..127] range and cast to QASYMM8/SIGNED.
+ *
+ */
+class CLGEMMLowpQuantizeDownInt32ScaleKernel : public ICLKernel
+{
+public:
+ /** Constructor */
+ CLGEMMLowpQuantizeDownInt32ScaleKernel();
+ /** Prevent instances of this class from being copied (As this class contains pointers)*/
+ CLGEMMLowpQuantizeDownInt32ScaleKernel(const CLGEMMLowpQuantizeDownInt32ScaleKernel &) = delete;
+ /** Prevent instances of this class from being copied (As this class contains pointers)*/
+ CLGEMMLowpQuantizeDownInt32ScaleKernel &operator=(const CLGEMMLowpQuantizeDownInt32ScaleKernel &) = delete;
+ /** Allow instances of this class to be moved */
+ CLGEMMLowpQuantizeDownInt32ScaleKernel(CLGEMMLowpQuantizeDownInt32ScaleKernel &&) = default;
+ /** Allow instances of this class to be moved */
+ CLGEMMLowpQuantizeDownInt32ScaleKernel &operator=(CLGEMMLowpQuantizeDownInt32ScaleKernel &&) = default;
+ /** Initialise the kernel's input and output.
+ *
+ * @param[in] input Input tensor. Data type supported: S32
+ * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the biases addition is not required.
+ * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
+ * @param[out] output Output tensor. Data type supported: Data type supported: QASYMM8/QASYMM8_SIGNED
+ * @param[in] output_stage Output stage info. Used to pass the quantized output data type
+ */
+ void configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, const GEMMLowpOutputStageInfo *output_stage);
+ /** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpQuantizeDownInt32ScaleKernel
+ *
+ * @param[in] input Input tensor. Data type supported: S32
+ * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the biases addition is not required.
+ * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
+ * @param[in] output Output tensor. Data type supported: Data type supported: QASYMM8/QASYMM8_SIGNED
+ * @param[in] output_stage Output stage info. Used to pass the quantized output data type
+ *
+ * @return a status
+ */
+ static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage);
+
+ // Inherited methods overridden:
+ void run(const Window &window, cl::CommandQueue &queue) override;
+
+private:
+ const ICLTensor *_input;
+ const ICLTensor *_bias;
+ ICLTensor *_output;
+ const GEMMLowpOutputStageInfo *_output_stage;
+};
+} // namespace arm_compute
+
+#endif /* ARM_COMPUTE_CLGEMMLOWPQUANTIZEDOWNINT32SCALEKERNEL_H */
\ No newline at end of file
+++ /dev/null
-/*
- * Copyright (c) 2017-2019 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#ifndef ARM_COMPUTE_CLGEMMLOWPQUANTIZEDOWNINT32TOUINT8SCALEKERNEL_H
-#define ARM_COMPUTE_CLGEMMLOWPQUANTIZEDOWNINT32TOUINT8SCALEKERNEL_H
-
-#include "arm_compute/core/CL/ICLKernel.h"
-
-namespace arm_compute
-{
-class ICLTensor;
-
-/** OpenCL kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8
- *
- * This kernel takes a final int32 accumulator value (the output of @ref CLGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QASYMM8 value.
- * The following computations will be performed by the kernel:
- *
- * -# Add offset terms to final result
- * -# Multiply each entry of result by result_mult_int
- * -# Add bias to final result if bias tensor is not a nullptr
- * -# Shift the int32 accumulator by result_shift
- * -# Clamp the value between the specified min and max bounds
- * -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
- *
- */
-class CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel : public ICLKernel
-{
-public:
- /** Constructor */
- CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel();
- /** Prevent instances of this class from being copied (As this class contains pointers)*/
- CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel(const CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel &) = delete;
- /** Prevent instances of this class from being copied (As this class contains pointers)*/
- CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel &operator=(const CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel &) = delete;
- /** Allow instances of this class to be moved */
- CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel(CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel &&) = default;
- /** Allow instances of this class to be moved */
- CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel &operator=(CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel &&) = default;
- /** Initialise the kernel's input and output.
- *
- * @param[in] input Input tensor. Data type supported: S32
- * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the biases addition is not required.
- * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
- * @param[out] output Output tensor. Data type supported: Data type supported: QASYMM8
- * @param[in] result_offset Offset to be added to each element of the input matrix
- * @param[in] result_mult_int Value to be multiplied to each element of the input matrix when once the result_offset has been add
- * @param[in] result_shift Number of bits to shift right the result before converting back to QASYMM8
- * @param[in] min (Optional) Min value used to saturate down the output result before converting back to QASYMM8
- * @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
- * Along with @p min, this value can be used to implement "rectified linear unit" activation functions
- */
- void configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, int result_offset, int result_mult_int, int result_shift, int min = 0, int max = 0);
- /** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel
- *
- * @param[in] input Input tensor. Data type supported: S32
- * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the biases addition is not required.
- * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
- * @param[in] output Output tensor. Data type supported: Data type supported: QASYMM8
- * @param[in] min (Optional) Min value used to saturate down the output result before converting back to QASYMM8
- * @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
- * Along with @p min, this value can be used to implement "rectified linear unit" activation functions
- *
- * @return a status
- */
- static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min = 0, int max = 0);
-
- // Inherited methods overridden:
- void run(const Window &window, cl::CommandQueue &queue) override;
-
-private:
- const ICLTensor *_input;
- const ICLTensor *_bias;
- ICLTensor *_output;
-};
-} // namespace arm_compute
-
-#endif /* ARM_COMPUTE_CLGEMMLOWPQUANTIZEDOWNINT32TOUINT8SCALEKERNEL_H */
\ No newline at end of file
*
* This function calls the following OpenCL kernels:
*
- * -# @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel
+ * -# @ref CLGEMMLowpQuantizeDownInt32ScaleKernel
*
* @note The function accepts also 2 optional input arguments (min and max) which can be used to implement "rectified linear unit" activation functions
* after the result is shifted right by result_shift
* @param[in] max (Optional) Max value used to saturate up the output result before converting back to QASYMM8,
* Along with @p min, this value can be used to implement "rectified linear unit" activation functions. Defaults to the maximum possible 32-bit signed integer.
*/
+ ARM_COMPUTE_DEPRECATED_REL(20.05)
void configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, int result_offset, int result_mult_int, int result_shift, int min = std::numeric_limits<int32_t>::lowest(),
int max = std::numeric_limits<int32_t>::max());
/** Static function to check if given info will lead to a valid configuration of @ref CLGEMMLowpQuantizeDownInt32ToUint8Scale
*
* @return a status
*/
+ ARM_COMPUTE_DEPRECATED_REL(20.05)
static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min = std::numeric_limits<int32_t>::lowest(), int max = std::numeric_limits<int32_t>::max());
};
*
* This function calls the following CL kernels:
*
+ * -# @ref CLGEMMLowpQuantizeDownInt32ScaleKernel
* -# @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel
* -# @ref CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel
*/
- New OpenCL kernels / functions
- @ref CLGEMMLowpOffsetContributionKernel / @ref CLGEMMLowpMatrixAReductionKernel / @ref CLGEMMLowpMatrixBReductionKernel / @ref CLGEMMLowpMatrixMultiplyCore
- @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel / @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint
- - @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel / @ref CLGEMMLowpQuantizeDownInt32ToUint8Scale
- New graph nodes for NEON and OpenCL
- graph::BranchLayer
#endif // defined(K_OFFSET)
#if defined(RESULT_OFFSET) && defined(RESULT_MULT_INT) && defined(RESULT_SHIFT)
-/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8
+/** This OpenCL kernel is used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8/QASYMM8_SIGNED
*
- * This kernel takes a final int32 accumulator value and processes it to obtain the final QASYMM8 value.
+ * This kernel takes a final int32 accumulator value and processes it to obtain the final QASYMM8/QASYMM8_SIGNED value.
* The following computations will be performed by the kernel:
*
* -# Add offset terms to final result
* -# Add bias to final result (if -DADD_BIAS is passed at compile time)
* -# Shift the int32 accumulator by result_shift
* -# Clamp the value between the specified min and max bounds (if -DMIN_BOUND and/or -DMAX_BOUND are passed at compile time)
- * -# Clamp the resulting int32 values to the [0..255] range and cast to QASYMM8.
+ * -# Clamp the resulting int32 values:
+ * -# - to the [0..255] range and cast to QASYMM8.
+ * -# - to the [-128..127] range and cast to QASYMM8_SIGNED.
*
* @attention The offset, scalar scale factor and number of bits to shift right of output tensor must be passed at compile time using -DRESULT_OFFSET, -RESULT_MULT_INT and -DRESULT_SHIFT
*
* @note In case the addition of int32 biases is required, -DADD_BIAS should be passed at compile time
+ * @note The output datatype should be passed at compile time using -DOUTPUT_DATA_TYPE
* @note In case the clamping of the result is required, the min and max bounds can be passed at compile time using -DMIN_BOUND and -DMAX_BOUND.
* These values can be used to implement "rectified linear unit" activation functions
*
* @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
- * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8
+ * @param[out] dst_ptr Pointer to the destination tensor Supported data type: QASYMM8/QASYMM8_SIGNED
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
input_values >>= RESULT_SHIFT;
#endif // RESULT_SHIFT < 0
- uchar4 res = convert_uchar4_sat(input_values);
+ VEC_DATA_TYPE(OUTPUT_DATA_TYPE, 4)
+ res = CONVERT_SAT(input_values, VEC_DATA_TYPE(OUTPUT_DATA_TYPE, 4));
#if defined(MIN_BOUND)
- res = max(res, (uchar4)MIN_BOUND);
+ res = max(res, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, 4))MIN_BOUND);
#endif // defined(MIN_BOUND)
#if defined(MAX_BOUND)
- res = min(res, (uchar4)MAX_BOUND);
+ res = min(res, (VEC_DATA_TYPE(OUTPUT_DATA_TYPE, 4))MAX_BOUND);
#endif // defined(MAX_BOUND)
// Store the result
--- /dev/null
+/*
+ * Copyright (c) 2020 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ScaleKernel.h"
+
+#include "arm_compute/core/AccessWindowStatic.h"
+#include "arm_compute/core/CL/CLHelpers.h"
+#include "arm_compute/core/CL/ICLTensor.h"
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "support/StringSupport.h"
+
+namespace arm_compute
+{
+namespace
+{
+Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON((output_stage->output_data_type != DataType::QASYMM8) && (output_stage->output_data_type != DataType::QASYMM8_SIGNED));
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
+ || output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
+
+ // Check biases if exist
+ if(bias != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
+ ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
+ }
+
+ if(output->total_size() != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() != output_stage->output_data_type, "Mismatching output data type");
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
+ }
+
+ return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output, DataType output_data_type)
+{
+ // Output auto inizialitation if not yet initialized
+ auto_init_if_empty(*output, input->clone()->set_data_type(output_data_type));
+
+ constexpr unsigned int num_elems_processed_per_iteration = 4;
+
+ // Configure kernel window
+ Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
+
+ AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
+
+ bool window_changed = update_window_and_padding(win,
+ input_access);
+
+ AccessWindowHorizontal output_result_access(output, 0, num_elems_processed_per_iteration);
+ window_changed = window_changed || update_window_and_padding(win, output_result_access);
+ output_result_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
+
+ if(bias != nullptr)
+ {
+ AccessWindowStatic bias_access(bias, 0, 0, ceil_to_multiple(bias->dimension(0), num_elems_processed_per_iteration), bias->tensor_shape()[1]);
+ window_changed = window_changed || update_window_and_padding(win, bias_access);
+ }
+
+ Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+ return std::make_pair(err, win);
+}
+} //namespace
+
+CLGEMMLowpQuantizeDownInt32ScaleKernel::CLGEMMLowpQuantizeDownInt32ScaleKernel()
+ : _input(nullptr), _bias(nullptr), _output(nullptr), _output_stage(nullptr)
+{
+}
+Status CLGEMMLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, output_stage));
+
+ return Status{};
+}
+
+void CLGEMMLowpQuantizeDownInt32ScaleKernel::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, const GEMMLowpOutputStageInfo *output_stage)
+{
+ // Perform validate step
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
+ (bias != nullptr) ? bias->info() : nullptr,
+ output->info(),
+ output_stage));
+
+ _input = input;
+ _bias = bias;
+ _output = output;
+ _output_stage = output_stage;
+
+ // Set the arguments to pass at compile time
+ auto min = output_stage->gemmlowp_min_bound;
+ auto max = output_stage->gemmlowp_max_bound;
+ CLBuildOptions build_opts;
+ build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage->gemmlowp_offset));
+ build_opts.add_option("-DRESULT_MULT_INT=" + support::cpp11::to_string(output_stage->gemmlowp_multiplier));
+ build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage->gemmlowp_shift));
+ build_opts.add_option_if((min > std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))) && (min != max),
+ "-DMIN_BOUND=" + support::cpp11::to_string(min));
+ build_opts.add_option_if((max < std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))) && (min != max),
+ "-DMAX_BOUND=" + support::cpp11::to_string(max));
+ build_opts.add_option("-DOUTPUT_DATA_TYPE=" + get_cl_type_from_data_type(output->info()->data_type()));
+ build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
+
+ // Create kernel
+ _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("gemmlowp_output_stage_quantize_down", build_opts.options()));
+
+ // Configure kernel window
+ auto win_config = validate_and_configure_window(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info(), output_stage->output_data_type);
+ ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+ ICLKernel::configure_internal(win_config.second);
+}
+
+void CLGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window, cl::CommandQueue &queue)
+{
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
+
+ Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
+ Window slice = collapsed.first_slice_window_3D();
+
+ unsigned int idx1 = num_arguments_per_3D_tensor();
+ if(_bias != nullptr)
+ {
+ Window biases_slice(slice);
+ biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1));
+ biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
+ add_1D_tensor_argument(idx1, _bias, biases_slice);
+ }
+
+ do
+ {
+ unsigned int idx = 0;
+ add_3D_tensor_argument(idx, _input, slice);
+ add_3D_tensor_argument(idx1, _output, slice);
+ enqueue(queue, *this, slice, lws_hint());
+ }
+ while(collapsed.slide_window_slice_3D(slice));
+}
+}
\ No newline at end of file
+++ /dev/null
-/*
- * Copyright (c) 2017-2020 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.h"
-
-#include "arm_compute/core/AccessWindowStatic.h"
-#include "arm_compute/core/CL/ICLTensor.h"
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/Types.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/Window.h"
-#include "support/StringSupport.h"
-
-using namespace arm_compute;
-
-namespace arm_compute
-{
-namespace
-{
-Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
- ARM_COMPUTE_RETURN_ERROR_ON(min > max);
-
- // Check biases if exist
- if(bias != nullptr)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
- ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
- ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
- }
-
- if(output->total_size() != 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
- }
-
- return Status{};
-}
-
-std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output)
-{
- constexpr unsigned int num_elems_processed_per_iteration = 4;
-
- // Configure kernel window
- Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
-
- AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
-
- bool window_changed = update_window_and_padding(win,
- input_access);
-
- if(output->total_size() != 0)
- {
- AccessWindowHorizontal output_result_access(output, 0, num_elems_processed_per_iteration);
- window_changed = window_changed || update_window_and_padding(win, output_result_access);
-
- output_result_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
- }
-
- if(bias != nullptr)
- {
- AccessWindowStatic bias_access(bias, 0, 0, ceil_to_multiple(bias->dimension(0), num_elems_processed_per_iteration), bias->tensor_shape()[1]);
- window_changed = window_changed || update_window_and_padding(win, bias_access);
- }
-
- Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- return std::make_pair(err, win);
-}
-} // namespace
-
-class Coordinates;
-} // namespace arm_compute
-
-CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel()
- : _input(nullptr), _bias(nullptr), _output(nullptr)
-{
-}
-Status CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, min, max));
- ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(),
- (bias != nullptr) ? bias->clone().get() : nullptr,
- output->clone().get())
- .first);
-
- return Status{};
-}
-
-void CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, int result_offset, int result_mult_int, int result_shift, int min,
- int max)
-{
- // Perform validate step
- ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
-
- // Output auto inizialitation if not yet initialized
- auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(DataType::QASYMM8));
-
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
- (bias != nullptr) ? bias->info() : nullptr,
- output->info(),
- min,
- max));
-
- _input = input;
- _bias = bias;
- _output = output;
-
- // Set the arguments to pass at compile time
- CLBuildOptions build_opts;
- build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(result_offset));
- build_opts.add_option("-DRESULT_MULT_INT=" + support::cpp11::to_string(result_mult_int));
- build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(result_shift));
- build_opts.add_option_if((min > 0), "-DMIN_BOUND=" + support::cpp11::to_string(min));
- build_opts.add_option_if((max < 255), "-DMAX_BOUND=" + support::cpp11::to_string(max));
- build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
-
- // Create kernel
- _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("gemmlowp_output_stage_quantize_down", build_opts.options()));
-
- // Configure kernel window
- auto win_config = validate_and_configure_window(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info());
- ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
- ICLKernel::configure_internal(win_config.second);
-}
-
-void CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run(const Window &window, cl::CommandQueue &queue)
-{
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
-
- Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
- Window slice = collapsed.first_slice_window_3D();
-
- unsigned int idx1 = num_arguments_per_3D_tensor();
- if(_bias != nullptr)
- {
- Window biases_slice(slice);
- biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1));
- biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
- add_1D_tensor_argument(idx1, _bias, biases_slice);
- }
-
- do
- {
- unsigned int idx = 0;
- add_3D_tensor_argument(idx, _input, slice);
- add_3D_tensor_argument(idx1, _output, slice);
- enqueue(queue, *this, slice, lws_hint());
- }
- while(collapsed.slide_window_slice_3D(slice));
-}
#include "arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h"
#include "arm_compute/core/CL/ICLTensor.h"
+#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ScaleKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel.h"
#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloatKernel.h"
-#include "arm_compute/core/CL/kernels/CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.h"
#include "support/MemorySupport.h"
namespace arm_compute
{
void CLGEMMLowpQuantizeDownInt32ToUint8Scale::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, int result_offset, int result_mult_int, int result_shift, int min, int max)
{
- auto k = arm_compute::support::cpp14::make_unique<CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel>();
- k->configure(input, bias, output, result_offset, result_mult_int, result_shift, min, max);
+ GEMMLowpOutputStageInfo info = GEMMLowpOutputStageInfo();
+ info.gemmlowp_offset = result_offset;
+ info.gemmlowp_multiplier = result_mult_int;
+ info.gemmlowp_shift = result_shift;
+ info.gemmlowp_min_bound = min;
+ info.gemmlowp_max_bound = max;
+
+ auto k = arm_compute::support::cpp14::make_unique<CLGEMMLowpQuantizeDownInt32ScaleKernel>();
+ k->configure(input, bias, output, &info);
_kernel = std::move(k);
}
Status CLGEMMLowpQuantizeDownInt32ToUint8Scale::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
{
- return CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::validate(input, bias, output, min, max);
+ GEMMLowpOutputStageInfo info = GEMMLowpOutputStageInfo();
+ info.gemmlowp_min_bound = min;
+ info.gemmlowp_max_bound = max;
+
+ return CLGEMMLowpQuantizeDownInt32ScaleKernel::validate(input, bias, output, &info);
}
void CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output,
void CLGEMMLowpOutputStage::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, const GEMMLowpOutputStageInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
- ARM_COMPUTE_ERROR_ON(info.type != GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT);
- switch(info.output_data_type)
+ switch(info.type)
{
- case DataType::QASYMM8:
+ case GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT:
{
- auto k = arm_compute::support::cpp14::make_unique<CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel>();
- k->configure(input, bias, output, info.gemmlowp_multiplier, info.gemmlowp_shift, info.gemmlowp_offset, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
- _kernel = std::move(k);
+ switch(info.output_data_type)
+ {
+ case DataType::QASYMM8:
+ {
+ auto k = arm_compute::support::cpp14::make_unique<CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel>();
+ k->configure(input, bias, output, info.gemmlowp_multiplier, info.gemmlowp_shift, info.gemmlowp_offset, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
+ _kernel = std::move(k);
+ break;
+ }
+ case DataType::QASYMM8_SIGNED:
+ {
+ auto k = arm_compute::support::cpp14::make_unique<CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel>();
+ k->configure(input, bias, output, info.gemmlowp_multiplier, info.gemmlowp_shift, info.gemmlowp_offset, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
+ _kernel = std::move(k);
+ break;
+ }
+ default:
+ ARM_COMPUTE_ERROR("Unsupported output data type.");
+ }
break;
}
- case DataType::QASYMM8_SIGNED:
+ case GEMMLowpOutputStageType::QUANTIZE_DOWN:
{
- auto k = arm_compute::support::cpp14::make_unique<CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel>();
- k->configure(input, bias, output, info.gemmlowp_multiplier, info.gemmlowp_shift, info.gemmlowp_offset, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
- _kernel = std::move(k);
+ switch(info.output_data_type)
+ {
+ case DataType::QASYMM8:
+ case DataType::QASYMM8_SIGNED:
+ {
+ auto k = arm_compute::support::cpp14::make_unique<CLGEMMLowpQuantizeDownInt32ScaleKernel>();
+ k->configure(input, bias, output, &info);
+ _kernel = std::move(k);
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Unsupported output data type.");
+ break;
+ }
+ }
break;
}
default:
- ARM_COMPUTE_ERROR("Unsupported output data type.");
+ ARM_COMPUTE_ERROR("Unsupported GEMMLowpOutputStage type.");
}
-
}
Status CLGEMMLowpOutputStage::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
- ARM_COMPUTE_RETURN_ERROR_ON(info.type != GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT);
- switch(output->data_type())
+ switch(info.type)
{
- case DataType::QASYMM8:
- return CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(input, bias, output, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
- case DataType::QASYMM8_SIGNED:
- return CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::validate(input, bias, output, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
+ case GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT:
+ {
+ switch(output->data_type())
+ {
+ case DataType::QASYMM8:
+ return CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel::validate(input, bias, output, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
+ case DataType::QASYMM8_SIGNED:
+ return CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel::validate(input, bias, output, info.gemmlowp_min_bound, info.gemmlowp_max_bound);
+ default:
+ return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported output data type.");
+ }
+ }
+ case GEMMLowpOutputStageType::QUANTIZE_DOWN:
+ {
+ switch(output->data_type())
+ {
+ case DataType::QASYMM8:
+ case DataType::QASYMM8_SIGNED:
+ {
+ return CLGEMMLowpQuantizeDownInt32ScaleKernel::validate(input, bias, output, &info);
+ }
+ default:
+ return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported output data type.");
+ }
+ }
default:
- return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported output data type.");
+ return ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Unsupported GEMMLowpOutputStage type.");
}
-
}
-} // namespace arm_compute
+} // namespace arm_compute
\ No newline at end of file
TEST_SUITE_END() // MatrixMultiplyCore
TEST_SUITE(OutputStage)
-TEST_SUITE(QuantizeDownInt32ToUint8Scale)
-const auto quantize_down_int32_to_uint8_scale_cases = framework::dataset::make("result_offset", -2, 1) * framework::dataset::make("result_mult_int", 1, 2) * framework::dataset::make("result_shift", 2,
- 3)
- * framework::dataset::make("min", 0) * framework::dataset::make("max", 255) * framework::dataset::make("addBias", { false, true });
-
-const auto quantize_down_int32_to_uint8_scale_relu_cases = framework::dataset::make("result_offset", -2, 1) * framework::dataset::make("result_mult_int", 1,
- 2)
- * framework::dataset::make("result_shift", 2, 3) * framework::dataset::make("min", 0, 2) * framework::dataset::make("max", 171, 173) * framework::dataset::make("addBias", { false, true });
-
-using CLGEMMLowpQuantizeDownInt32ToUint8ScaleFixture = GEMMLowpQuantizeDownInt32ToUint8ScaleValidationFixture<CLTensor, CLAccessor, CLGEMMLowpQuantizeDownInt32ToUint8Scale>;
-
-DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), quantize_down_int32_to_uint8_scale_cases),
- shape, result_offset, result_mult_int, result_shift, min, max, add_bias)
-{
- TensorShape shape_bias(shape[0]);
-
- // Create tensors
- CLTensor in = create_tensor<CLTensor>(shape, DataType::S32);
- CLTensor bias = create_tensor<CLTensor>(shape_bias, DataType::S32);
- CLTensor out = create_tensor<CLTensor>(shape, DataType::QASYMM8);
-
- ARM_COMPUTE_EXPECT(in.info()->is_resizable(), framework::LogLevel::ERRORS);
- ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
- ARM_COMPUTE_EXPECT(out.info()->is_resizable(), framework::LogLevel::ERRORS);
-
- // Create and configure function
- CLGEMMLowpQuantizeDownInt32ToUint8Scale output_stage;
- output_stage.configure(&in, add_bias ? &bias : nullptr, &out, result_offset, result_mult_int, result_shift, min, max);
-
- // Validate valid region input and output
- const ValidRegion valid_region = shape_to_valid_region(shape);
- validate(in.info()->valid_region(), valid_region);
- validate(out.info()->valid_region(), valid_region);
-
- // Validate valid region bias
- if(add_bias)
- {
- const ValidRegion valid_region_bias = shape_to_valid_region(shape_bias);
- validate(bias.info()->valid_region(), valid_region_bias);
- }
-
- // Validate padding
- const PaddingSize padding = PaddingCalculator(shape.x(), 4).required_padding();
- validate(in.info()->padding(), padding);
- validate(out.info()->padding(), padding);
-
- if(add_bias)
- {
- validate(bias.info()->padding(), padding);
- }
-}
-
-FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMLowpQuantizeDownInt32ToUint8ScaleFixture, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), quantize_down_int32_to_uint8_scale_cases))
-{
- // Validate output
- validate(CLAccessor(_target), _reference);
-}
-
-FIXTURE_DATA_TEST_CASE(RunLarge, CLGEMMLowpQuantizeDownInt32ToUint8ScaleFixture, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(), quantize_down_int32_to_uint8_scale_cases))
-{
- // Validate output
- validate(CLAccessor(_target), _reference);
-}
-
-TEST_SUITE(BoundedReLu)
-FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMLowpQuantizeDownInt32ToUint8ScaleFixture, framework::DatasetMode::ALL, combine(datasets::SmallShapes(), quantize_down_int32_to_uint8_scale_relu_cases))
-{
- // Validate output
- validate(CLAccessor(_target), _reference);
-}
-
-FIXTURE_DATA_TEST_CASE(RunLarge, CLGEMMLowpQuantizeDownInt32ToUint8ScaleFixture, framework::DatasetMode::NIGHTLY, combine(datasets::LargeShapes(),
- quantize_down_int32_to_uint8_scale_relu_cases))
-{
- // Validate output
- validate(CLAccessor(_target), _reference);
-}
-TEST_SUITE_END() // BoundedReLu
-TEST_SUITE_END() // QuantizeDownInt32ToUint8Scale
TEST_SUITE(QuantizeDownInt32ToUint8ScaleByFixedPoint)
const auto quantize_down_int32_to_uint8_scale_by_fixedpoint_cases = framework::dataset::make("result_fixedpoint_multiplier", 254601600, 254601602) * framework::dataset::make("result_shift", 1,
2)