[IE TESTS] Remove normilizer tests (#2098)
authorIrina Efode <irina.efode@intel.com>
Wed, 9 Sep 2020 10:21:55 +0000 (13:21 +0300)
committerGitHub <noreply@github.com>
Wed, 9 Sep 2020 10:21:55 +0000 (13:21 +0300)
inference-engine/tests_deprecated/unit/CMakeLists.txt
inference-engine/tests_deprecated/unit/engines/mkldnn/normalizer/supported_fusions_test.cpp [deleted file]

index 0c7a6c3..c99007e 100644 (file)
@@ -59,7 +59,6 @@ if (ENABLE_MKL_DNN)
     file(GLOB
             MKLDNN_TESTS
             engines/mkldnn/*.cpp
-            engines/mkldnn/normalizer/*.cpp
             engines/mkldnn/graph/layers/extensions/*.cpp
             engines/mkldnn/graph/layers/internal/*.cpp
             engines/mkldnn/graph/structure/*.cpp
diff --git a/inference-engine/tests_deprecated/unit/engines/mkldnn/normalizer/supported_fusions_test.cpp b/inference-engine/tests_deprecated/unit/engines/mkldnn/normalizer/supported_fusions_test.cpp
deleted file mode 100644 (file)
index a0936c5..0000000
+++ /dev/null
@@ -1,420 +0,0 @@
-// Copyright (C) 2018-2020 Intel Corporation
-// SPDX-License-Identifier: Apache-2.0
-//
-
-#include <gtest/gtest.h>
-
-#include <mkldnn_plugin.h>
-#include <ie_blob.h>
-#include <ie_precision.hpp>
-#include <ie_core.hpp>
-
-#include "tests_common.hpp"
-#include "common_test_utils/xml_net_builder/xml_net_builder.hpp"
-#include "common_test_utils/common_layers_params.hpp"
-#include "common_test_utils/data_utils.hpp"
-#include "common_test_utils/common_utils.hpp"
-
-struct conv_eltwise_params {
-    std::vector<size_t> in1;
-    std::vector<size_t> in2;
-
-    CommonTestUtils::conv_common_params conv;
-    CommonTestUtils::eltwise_common_params eltwise;
-};
-
-struct in_conv_in_conv_eltwise_params {
-    std::vector<size_t> in1;
-    std::vector<size_t> in2;
-
-    CommonTestUtils::conv_common_params conv1;
-    CommonTestUtils::conv_common_params conv2;
-    CommonTestUtils::eltwise_common_params eltwise;
-};
-
-struct conv_conv_eltwise_conv_pooling_params {
-    std::vector<size_t> in1;
-    std::vector<size_t> in2;
-
-    CommonTestUtils::conv_common_params conv1;
-    CommonTestUtils::conv_common_params conv2;
-    CommonTestUtils::conv_common_params conv3;
-    CommonTestUtils::eltwise_common_params eltwise;
-    CommonTestUtils::pool_common_params pool;
-};
-
-class ConvSum: public TestsCommon, public ::testing::WithParamInterface<conv_eltwise_params> {
-    std::string getModel(conv_eltwise_params p) {
-        std::string precision = "FP32";
-        std::vector<size_t> convOutShape(p.in1.size());
-        getConvOutShape(p.in1, p.conv, convOutShape);
-
-        std::vector<float> min_stat(p.in1[1]);
-        std::vector<float> max_stat(p.in1[1]);
-        CommonTestUtils::fill_data_sine(min_stat.data(), p.in1[1], -1, 1, 1);
-        CommonTestUtils::fill_data_sine(max_stat.data(), p.in1[1], 1, 1, -1);
-        std::vector<float> conv_min_stat(convOutShape[1]);
-        std::vector<float> conv_max_stat(convOutShape[1]);
-        CommonTestUtils::fill_data_sine(conv_min_stat.data(), convOutShape[1], -1, 1, 1);
-        CommonTestUtils::fill_data_sine(conv_max_stat.data(), convOutShape[1], 1, 1, -1);
-
-        std::map<std::string, std::string> elt_params = {
-                {"operation", "sum"}
-        };
-        std::vector<std::pair<std::string, std::string>> edges = { {"0,0", "2,2"}, {"2,3", "3,4"}, {"1,1", "3,5"} };
-
-        return CommonTestUtils::DefaultNetBuilder::buildNetworkWithOneInput(
-                "Fusion_conv_sum", p.in1, precision)
-                .addInputLayer(precision, convOutShape)
-                .convolutionLayer(precision, {{p.in1}, {convOutShape}}, p.conv)
-                .addLayer("Eltwise", precision, &elt_params, {{convOutShape, convOutShape}, {convOutShape}}, 0, 0, "data", "")
-                .finish(&edges);
-    }
-
-protected:
-    virtual void TearDown() {
-    }
-
-    virtual void SetUp() {
-        try {
-            TestsCommon::SetUp();
-            conv_eltwise_params p = ::testing::WithParamInterface<conv_eltwise_params>::GetParam();
-            std::string model = getModel(p);
-            printf("model:\n%s", model.c_str());
-
-            InferenceEngine::Core ie;
-            auto network = ie.ReadNetwork(model, getConvWeightsBlob(p.in1, p.conv));
-            std::shared_ptr<MKLDNNPlugin::Engine> score_engine(new MKLDNNPlugin::Engine());
-            InferenceEngine::ExecutableNetwork exeNetwork1;
-            ASSERT_NO_THROW(exeNetwork1 = score_engine->LoadNetwork(network, {}));
-
-            auto conv = CommonTestUtils::getLayerByName(network, "Convolution2");
-            auto eltwise = CommonTestUtils::getLayerByName(network, "Eltwise3");
-
-            ASSERT_EQ(conv->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-        } catch (const InferenceEngine::details::InferenceEngineException &e) {
-            FAIL() << e.what();
-        }
-    }
-};
-
-class ConvSumReLU: public TestsCommon, public ::testing::WithParamInterface<conv_eltwise_params> {
-    std::string getModel(conv_eltwise_params p) {
-        std::string precision = "FP32";
-        std::vector<size_t> convOutShape(p.in1.size());
-        getConvOutShape(p.in1, p.conv, convOutShape);
-
-        std::vector<float> min_stat(p.in1[1]);
-        std::vector<float> max_stat(p.in1[1]);
-        CommonTestUtils::fill_data_sine(min_stat.data(), p.in1[1], -1, 1, 1);
-        CommonTestUtils::fill_data_sine(max_stat.data(), p.in1[1], 1, 1, -1);
-        std::vector<float> conv_min_stat(convOutShape[1]);
-        std::vector<float> conv_max_stat(convOutShape[1]);
-        CommonTestUtils::fill_data_sine(conv_min_stat.data(), convOutShape[1], -1, 1, 1);
-        CommonTestUtils::fill_data_sine(conv_max_stat.data(), convOutShape[1], 1, 1, -1);
-
-        std::map<std::string, std::string> elt_params = {
-                {"operation", "sum"}
-        };
-        std::map<std::string, std::string> relu_params = {};
-        std::vector<std::pair<std::string, std::string>> edges = { {"0,0", "2,2"}, {"2,3", "3,4"}, {"1,1", "3,5"}, {"3,6", "4,7"} };
-        return CommonTestUtils::DefaultNetBuilder::buildNetworkWithOneInput(
-                "Fusion_conv_sum", p.in1, precision)
-                .addInputLayer(precision, convOutShape)
-                .convolutionLayer(precision, {{p.in1}, {convOutShape}}, p.conv)
-                .addLayer("Eltwise", precision, &elt_params, {{convOutShape, convOutShape}, {convOutShape}}, 0, 0, "data", "")
-                .addLayer("ReLU", precision, &relu_params, {{convOutShape, convOutShape}, {convOutShape}}, 0, 0, "data", "")
-                .finish(&edges);
-    }
-
-protected:
-    virtual void TearDown() {
-    }
-
-    virtual void SetUp() {
-        try {
-            TestsCommon::SetUp();
-            conv_eltwise_params p = ::testing::WithParamInterface<conv_eltwise_params>::GetParam();
-            std::string model = getModel(p);
-            printf("model:\n%s", model.c_str());
-
-            Core ie;
-            auto network = ie.ReadNetwork(model, getConvWeightsBlob(p.in1, p.conv));
-
-            std::shared_ptr<MKLDNNPlugin::Engine> score_engine(new MKLDNNPlugin::Engine());
-            InferenceEngine::ExecutableNetwork exeNetwork1;
-            ASSERT_NO_THROW(exeNetwork1 = score_engine->LoadNetwork(network, { }));
-
-            auto conv = CommonTestUtils::getLayerByName(network, "Convolution2");
-            auto eltwise = CommonTestUtils::getLayerByName(network, "Eltwise3");
-            auto relu4 = CommonTestUtils::getLayerByName(network, "ReLU4");
-
-            ASSERT_EQ(conv->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(relu4->precision, InferenceEngine::Precision::I8);
-        } catch (const InferenceEngine::details::InferenceEngineException &e) {
-            FAIL() << e.what();
-        }
-    }
-};
-
-class ConvConvSum: public TestsCommon, public ::testing::WithParamInterface<conv_eltwise_params> {
-    std::string getModel(conv_eltwise_params p) {
-        std::string precision = "FP32";
-        std::vector<size_t> convOutShape(p.in1.size());
-        getConvOutShape(p.in1, p.conv, convOutShape);
-
-        std::vector<float> min_stat(p.in1[1]);
-        std::vector<float> max_stat(p.in1[1]);
-        CommonTestUtils::fill_data_sine(min_stat.data(), p.in1[1], -1, 1, 1);
-        CommonTestUtils::fill_data_sine(max_stat.data(), p.in1[1], 1, 1, -1);
-        std::vector<float> conv_min_stat(convOutShape[1]);
-        std::vector<float> conv_max_stat(convOutShape[1]);
-        CommonTestUtils::fill_data_sine(conv_min_stat.data(), convOutShape[1], -1, 1, 1);
-        CommonTestUtils::fill_data_sine(conv_max_stat.data(), convOutShape[1], 1, 1, -1);
-
-        std::map<std::string, std::string> elt_params = {
-                {"operation", "sum"}
-        };
-        std::vector<std::pair<std::string, std::string>> edges = { {"0,0", "2,2"}, {"2,3", "4,6"}, {"1,1", "3,4"}, {"3,5", "4,7"} };
-        return CommonTestUtils::DefaultNetBuilder::buildNetworkWithOneInput(
-                "Fusion_conv_sum", p.in1, precision)
-                .addInputLayer(precision, p.in1)
-                .convolutionLayer(precision, {{p.in1}, {convOutShape}}, p.conv)
-                .convolutionLayer(precision, {{p.in1}, {convOutShape}}, p.conv)
-                .addLayer("Eltwise", precision, &elt_params, {{convOutShape, convOutShape}, {convOutShape}}, 0, 0, "data", "")
-                .finish(&edges);
-    }
-
-protected:
-    virtual void TearDown() {
-    }
-
-    virtual void SetUp() {
-        try {
-            TestsCommon::SetUp();
-            conv_eltwise_params p = ::testing::WithParamInterface<conv_eltwise_params>::GetParam();
-            std::string model = getModel(p);
-            printf("model:\n%s", model.c_str());
-
-            Core ie;
-            auto network = ie.ReadNetwork(model, getConvWeightsBlob(p.in1, p.conv));
-
-            std::shared_ptr<MKLDNNPlugin::Engine> score_engine(new MKLDNNPlugin::Engine());
-            InferenceEngine::ExecutableNetwork exeNetwork1;
-            ASSERT_NO_THROW(exeNetwork1 = score_engine->LoadNetwork(network, { }));
-
-            auto conv2 = CommonTestUtils::getLayerByName(network, "Convolution2");
-            auto conv3 = CommonTestUtils::getLayerByName(network, "Convolution3");
-            auto eltwise = CommonTestUtils::getLayerByName(network, "Eltwise3");
-
-            ASSERT_EQ(conv2->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv2->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv3->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv3->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-        } catch (const InferenceEngine::details::InferenceEngineException &e) {
-            FAIL() << e.what();
-        }
-    }
-};
-
-class ConvConvSumReLU: public TestsCommon, public ::testing::WithParamInterface<in_conv_in_conv_eltwise_params> {
-    std::string getModel(in_conv_in_conv_eltwise_params p) {
-        std::string precision = "FP32";
-        std::vector<size_t> convOutShape1(p.in1.size());
-        std::vector<size_t> convOutShape2(p.in2.size());
-        getConvOutShape(p.in1, p.conv1, convOutShape1);
-        getConvOutShape(p.in2, p.conv2, convOutShape2);
-
-        std::map<std::string, std::string> elt_params = {
-                {"operation", "sum"}
-        };
-        std::map<std::string, std::string> relu_params = {};
-        std::vector<std::pair<std::string, std::string>> edges = { {"0,0", "2,2"}, {"2,3", "4,6"}, {"1,1", "3,4"}, {"3,5", "4,7"}, {"4,8", "5,9"} };
-        return CommonTestUtils::DefaultNetBuilder::buildNetworkWithOneInput(
-                "Fusion_conv_sum", p.in1, precision)
-                .addInputLayer(precision, p.in2)
-                .convolutionLayer(precision, {{p.in1}, {convOutShape1}}, p.conv1)
-                .convolutionLayer(precision, {{p.in2}, {convOutShape2}}, p.conv2)
-                .addLayer("Eltwise", precision, &elt_params, {{convOutShape1, convOutShape2}, {convOutShape1}}, 0, 0, "data", "")
-                .addLayer("ReLU", precision, &relu_params, {{convOutShape1}, {convOutShape1}}, 0, 0, "data", "")
-                .finish(&edges);
-    }
-
-protected:
-    virtual void TearDown() {
-    }
-
-    virtual void SetUp() {
-        try {
-            TestsCommon::SetUp();
-            in_conv_in_conv_eltwise_params p = ::testing::WithParamInterface<in_conv_in_conv_eltwise_params>::GetParam();
-            std::string model = getModel(p);
-            printf("model:\n%s", model.c_str());
-
-            Core ie;
-            size_t weight_size = getConvWeightsSize(p.in1, p.conv1, "FP32") + getConvBiasesSize(p.conv1, "FP32") +
-                                 getConvWeightsSize(p.in2, p.conv2, "FP32") + getConvBiasesSize(p.conv2, "FP32");
-            auto network = ie.ReadNetwork(model, CommonTestUtils::getWeightsBlob(weight_size));
-
-            std::shared_ptr<MKLDNNPlugin::Engine> score_engine(new MKLDNNPlugin::Engine());
-            InferenceEngine::ExecutableNetwork exeNetwork1;
-            ASSERT_NO_THROW(exeNetwork1 = score_engine->LoadNetwork(network, { }));
-
-            auto conv2 = CommonTestUtils::getLayerByName(network, "Convolution2");
-            auto conv3 = CommonTestUtils::getLayerByName(network, "Convolution3");
-            auto eltwise = CommonTestUtils::getLayerByName(network, "Eltwise3");
-            auto relu5 = CommonTestUtils::getLayerByName(network, "ReLU5");
-
-            ASSERT_EQ(conv2->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv2->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv3->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv3->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(relu5->precision, InferenceEngine::Precision::I8);
-        } catch (const InferenceEngine::details::InferenceEngineException &e) {
-            FAIL() << e.what();
-        }
-    }
-};
-
-class ConvConvSumReLUPoolConv: public TestsCommon, public ::testing::WithParamInterface<conv_conv_eltwise_conv_pooling_params> {
-    std::string getModel(conv_conv_eltwise_conv_pooling_params p) {
-        std::string precision = "FP32";
-        std::vector<size_t> convOutShape1(p.in1.size());
-        std::vector<size_t> convOutShape2(p.in2.size());
-        std::vector<size_t> convOutShape3(p.in1.size());
-        std::vector<size_t> poolOutShape(p.in2.size());
-        getConvOutShape(p.in1, p.conv1, convOutShape1);
-        getConvOutShape(p.in2, p.conv2, convOutShape2);
-        getConvOutShape(convOutShape1, p.conv3, convOutShape3);
-        getPoolOutShape(convOutShape1, p.pool, poolOutShape);
-
-        std::map<std::string, std::string> elt_params = {
-                {"operation", "sum"}
-        };
-        std::map<std::string, std::string> relu_params = {};
-        std::vector<std::pair<std::string, std::string>> edges = { {"0,0", "2,2"},
-                                                                   {"2,3", "4,6"},
-                                                                   {"1,1", "3,4"},
-                                                                   {"3,5", "4,7"},
-                                                                   {"4,8", "5,9"},
-                                                                   {"5,10", "7,13"},
-                                                                   {"4,8", "6,11"} };
-        return CommonTestUtils::DefaultNetBuilder::buildNetworkWithOneInput(
-                "Fusion_conv_sum", p.in1, precision)
-                .addInputLayer(precision, p.in2)
-                .convolutionLayer(precision, {{p.in1}, {convOutShape1}}, p.conv1)
-                .convolutionLayer(precision, {{p.in2}, {convOutShape2}}, p.conv2)
-                .addLayer("Eltwise", precision, &elt_params, {{convOutShape1, convOutShape2}, {convOutShape1}}, 0, 0, "data", "")
-                .addLayer("ReLU", precision, &relu_params, {{convOutShape1}, {convOutShape1}}, 0, 0, "data", "")
-                .convolutionLayer(precision, {{convOutShape1}, {convOutShape3}}, p.conv3)
-                .addLayer("Pooling", precision, &relu_params, {{convOutShape1}, {poolOutShape}}, 0, 0, "data", "")
-                .finish(&edges);
-    }
-
-protected:
-    virtual void TearDown() {
-    }
-
-    virtual void SetUp() {
-        try {
-            TestsCommon::SetUp();
-            conv_conv_eltwise_conv_pooling_params p =
-                    ::testing::WithParamInterface<conv_conv_eltwise_conv_pooling_params>::GetParam();
-            std::string model = getModel(p);
-            printf("model:\n%s", model.c_str());
-
-            Core ie;
-            std::vector<size_t> convOutShape3(p.in1.size());
-            size_t weight_size = getConvWeightsSize(p.in1, p.conv1, "FP32") + getConvBiasesSize(p.conv1, "FP32") +
-                                 getConvWeightsSize(p.in2, p.conv2, "FP32") + getConvBiasesSize(p.conv2, "FP32") +
-                                 getConvWeightsSize(convOutShape3, p.conv3, "FP32") + getConvBiasesSize(p.conv3, "FP32");
-            auto network = ie.ReadNetwork(model, CommonTestUtils::getWeightsBlob(weight_size));
-
-            std::shared_ptr<MKLDNNPlugin::Engine> score_engine(new MKLDNNPlugin::Engine());
-            InferenceEngine::ExecutableNetwork exeNetwork1;
-            ASSERT_NO_THROW(exeNetwork1 = score_engine->LoadNetwork(network, {}));
-
-            auto conv2 = CommonTestUtils::getLayerByName(network, "Convolution2");
-            auto conv3 = CommonTestUtils::getLayerByName(network, "Convolution3");
-            auto eltwise = CommonTestUtils::getLayerByName(network, "Eltwise3");
-            auto relu5 = CommonTestUtils::getLayerByName(network, "ReLU5");
-
-            ASSERT_EQ(conv2->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv2->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv3->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(conv3->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->precision, InferenceEngine::Precision::I8);
-            ASSERT_EQ(eltwise->outData[0]->getPrecision(), InferenceEngine::Precision::I8);
-            ASSERT_EQ(relu5->precision, InferenceEngine::Precision::I8);
-        } catch (const InferenceEngine::details::InferenceEngineException &e) {
-            FAIL() << e.what();
-        }
-    }
-};
-
-
-// there is no o-scale in Input1
-TEST_P(ConvSum, DISABLED_TestsNormalizerSupportedFusions) {}
-INSTANTIATE_TEST_CASE_P(
-        TestsNormalizerSupportedFusions, ConvSum,
-        ::testing::Values(
-                conv_eltwise_params{{1, 16, 4, 4}, {1, 16, 4, 4},
-                                    { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 32, true, "I8" },
-                                    {"sum", {}} }
-        ));
-
-TEST_P(ConvSumReLU, DISABLED_TestsNormalizerSupportedFusions) {}
-INSTANTIATE_TEST_CASE_P(
-        TestsNormalizerSupportedFusions, ConvSumReLU,
-        ::testing::Values(
-                conv_eltwise_params{{1, 16, 4, 4},  {1, 16, 4, 4},
-                                    { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 32, true, "I8" },
-                                    {"sum", {}} }
-        ));
-
-// there is no oi-scale in Convolution3
-TEST_P(ConvConvSum, DISABLED_TestsNormalizerSupportedFusions) {}
-INSTANTIATE_TEST_CASE_P(
-        TestsNormalizerSupportedFusions, ConvConvSum,
-        ::testing::Values(
-                conv_eltwise_params{{1, 16, 4, 4}, {1, 16, 4, 4},
-                                    { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 32, true, "I8" },
-                                    {"sum", {}} }
-        ));
-
-TEST_P(ConvConvSumReLU, DISABLED_TestsNormalizerSupportedFusions) {}
-INSTANTIATE_TEST_CASE_P(
-        TestsNormalizerSupportedFusions, ConvConvSumReLU,
-        ::testing::Values(
-                in_conv_in_conv_eltwise_params{{1, 16, 4, 4}, {1, 16, 4, 4},
-                                               { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 32, true, "I8" },
-                                               { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 32, true, "I8" },
-                                               {"sum", {}} },
-                in_conv_in_conv_eltwise_params{{1, 48, 40, 20}, {1, 32, 40, 20},
-                                               { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 64, true, "I8" },
-                                               { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 64, true, "I8" },
-                                               {"sum", {}} }
-        ));
-
-TEST_P(ConvConvSumReLUPoolConv, DISABLED_TestsNormalizerSupportedFusions) {}
-INSTANTIATE_TEST_CASE_P(
-        TestsNormalizerSupportedFusions, ConvConvSumReLUPoolConv,
-        ::testing::Values(
-                conv_conv_eltwise_conv_pooling_params{{1, 16, 4, 4}, {1, 16, 4, 4},
-                                                      { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 32, true, "I8" },
-                                                      { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 32, true, "I8" },
-                                                      { {1, 1}, {1, 1}, {0, 0}, {0, 0}, {1, 1}, "", 1, 32, true, "I8" },
-                                                      {"sum", {}},
-                                                      { {1, 1}, {1, 1}, {0, 0}, {0, 0} } }
-        ));
-