"src/bootstrapper.h",
"src/builtins.cc",
"src/builtins.h",
- "src/bytecodes-irregexp.h",
"src/cancelable-task.cc",
"src/cancelable-task.h",
"src/cached-powers.cc",
"src/ic/stub-cache.h",
"src/interface-descriptors.cc",
"src/interface-descriptors.h",
- "src/interpreter-irregexp.cc",
- "src/interpreter-irregexp.h",
"src/interpreter/bytecodes.cc",
"src/interpreter/bytecodes.h",
"src/interpreter/interpreter.cc",
"src/isolate.h",
"src/json-parser.h",
"src/json-stringifier.h",
- "src/jsregexp-inl.h",
- "src/jsregexp.cc",
- "src/jsregexp.h",
"src/layout-descriptor-inl.h",
"src/layout-descriptor.cc",
"src/layout-descriptor.h",
"src/property.cc",
"src/property.h",
"src/prototype.h",
- "src/regexp-macro-assembler-irregexp-inl.h",
- "src/regexp-macro-assembler-irregexp.cc",
- "src/regexp-macro-assembler-irregexp.h",
- "src/regexp-macro-assembler-tracer.cc",
- "src/regexp-macro-assembler-tracer.h",
- "src/regexp-macro-assembler.cc",
- "src/regexp-macro-assembler.h",
- "src/regexp-stack.cc",
- "src/regexp-stack.h",
"src/rewriter.cc",
"src/rewriter.h",
+ "src/regexp/bytecodes-irregexp.h",
+ "src/regexp/interpreter-irregexp.cc",
+ "src/regexp/interpreter-irregexp.h",
+ "src/regexp/jsregexp-inl.h",
+ "src/regexp/jsregexp.cc",
+ "src/regexp/jsregexp.h",
+ "src/regexp/regexp-macro-assembler-irregexp-inl.h",
+ "src/regexp/regexp-macro-assembler-irregexp.cc",
+ "src/regexp/regexp-macro-assembler-irregexp.h",
+ "src/regexp/regexp-macro-assembler-tracer.cc",
+ "src/regexp/regexp-macro-assembler-tracer.h",
+ "src/regexp/regexp-macro-assembler.cc",
+ "src/regexp/regexp-macro-assembler.h",
+ "src/regexp/regexp-stack.cc",
+ "src/regexp/regexp-stack.h",
"src/runtime-profiler.cc",
"src/runtime-profiler.h",
"src/runtime/runtime-array.cc",
"src/ia32/lithium-ia32.h",
"src/ia32/macro-assembler-ia32.cc",
"src/ia32/macro-assembler-ia32.h",
- "src/ia32/regexp-macro-assembler-ia32.cc",
- "src/ia32/regexp-macro-assembler-ia32.h",
"src/compiler/ia32/code-generator-ia32.cc",
"src/compiler/ia32/instruction-codes-ia32.h",
"src/compiler/ia32/instruction-selector-ia32.cc",
"src/ic/ia32/ic-ia32.cc",
"src/ic/ia32/ic-compiler-ia32.cc",
"src/ic/ia32/stub-cache-ia32.cc",
+ "src/regexp/ia32/regexp-macro-assembler-ia32.cc",
+ "src/regexp/ia32/regexp-macro-assembler-ia32.h",
]
} else if (v8_target_arch == "x64") {
sources += [
"src/x64/lithium-x64.h",
"src/x64/macro-assembler-x64.cc",
"src/x64/macro-assembler-x64.h",
- "src/x64/regexp-macro-assembler-x64.cc",
- "src/x64/regexp-macro-assembler-x64.h",
"src/compiler/x64/code-generator-x64.cc",
"src/compiler/x64/instruction-codes-x64.h",
"src/compiler/x64/instruction-selector-x64.cc",
"src/ic/x64/ic-x64.cc",
"src/ic/x64/ic-compiler-x64.cc",
"src/ic/x64/stub-cache-x64.cc",
+ "src/regexp/x64/regexp-macro-assembler-x64.cc",
+ "src/regexp/x64/regexp-macro-assembler-x64.h",
]
} else if (v8_target_arch == "arm") {
sources += [
"src/arm/lithium-gap-resolver-arm.h",
"src/arm/macro-assembler-arm.cc",
"src/arm/macro-assembler-arm.h",
- "src/arm/regexp-macro-assembler-arm.cc",
- "src/arm/regexp-macro-assembler-arm.h",
"src/arm/simulator-arm.cc",
"src/arm/simulator-arm.h",
"src/compiler/arm/code-generator-arm.cc",
"src/ic/arm/ic-arm.cc",
"src/ic/arm/ic-compiler-arm.cc",
"src/ic/arm/stub-cache-arm.cc",
+ "src/regexp/arm/regexp-macro-assembler-arm.cc",
+ "src/regexp/arm/regexp-macro-assembler-arm.h",
]
} else if (v8_target_arch == "arm64") {
sources += [
"src/arm64/macro-assembler-arm64.cc",
"src/arm64/macro-assembler-arm64.h",
"src/arm64/macro-assembler-arm64-inl.h",
- "src/arm64/regexp-macro-assembler-arm64.cc",
- "src/arm64/regexp-macro-assembler-arm64.h",
"src/arm64/simulator-arm64.cc",
"src/arm64/simulator-arm64.h",
"src/arm64/utils-arm64.cc",
"src/ic/arm64/ic-arm64.cc",
"src/ic/arm64/ic-compiler-arm64.cc",
"src/ic/arm64/stub-cache-arm64.cc",
+ "src/regexp/arm64/regexp-macro-assembler-arm64.cc",
+ "src/regexp/arm64/regexp-macro-assembler-arm64.h",
]
} else if (v8_target_arch == "mipsel") {
sources += [
"src/mips/lithium-mips.h",
"src/mips/macro-assembler-mips.cc",
"src/mips/macro-assembler-mips.h",
- "src/mips/regexp-macro-assembler-mips.cc",
- "src/mips/regexp-macro-assembler-mips.h",
"src/mips/simulator-mips.cc",
"src/mips/simulator-mips.h",
"src/compiler/mips/code-generator-mips.cc",
"src/ic/mips/ic-mips.cc",
"src/ic/mips/ic-compiler-mips.cc",
"src/ic/mips/stub-cache-mips.cc",
+ "src/regexp/mips/regexp-macro-assembler-mips.cc",
+ "src/regexp/mips/regexp-macro-assembler-mips.h",
]
} else if (v8_target_arch == "mips64el") {
sources += [
"src/mips64/lithium-mips64.h",
"src/mips64/macro-assembler-mips64.cc",
"src/mips64/macro-assembler-mips64.h",
- "src/mips64/regexp-macro-assembler-mips64.cc",
- "src/mips64/regexp-macro-assembler-mips64.h",
"src/mips64/simulator-mips64.cc",
"src/mips64/simulator-mips64.h",
"src/debug/mips64/debug-mips64.cc",
"src/ic/mips64/ic-mips64.cc",
"src/ic/mips64/ic-compiler-mips64.cc",
"src/ic/mips64/stub-cache-mips64.cc",
+ "src/regexp/mips64/regexp-macro-assembler-mips64.cc",
+ "src/regexp/mips64/regexp-macro-assembler-mips64.h",
]
}
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#if V8_TARGET_ARCH_ARM
-
-#include "src/code-stubs.h"
-#include "src/cpu-profiler.h"
-#include "src/log.h"
-#include "src/macro-assembler.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/unicode.h"
-
-#include "src/arm/regexp-macro-assembler-arm.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-/*
- * This assembler uses the following register assignment convention
- * - r4 : Temporarily stores the index of capture start after a matching pass
- * for a global regexp.
- * - r5 : Pointer to current code object (Code*) including heap object tag.
- * - r6 : Current position in input, as negative offset from end of string.
- * Please notice that this is the byte offset, not the character offset!
- * - r7 : Currently loaded character. Must be loaded using
- * LoadCurrentCharacter before using any of the dispatch methods.
- * - r8 : Points to tip of backtrack stack
- * - r9 : Unused, might be used by C code and expected unchanged.
- * - r10 : End of input (points to byte after last character in input).
- * - r11 : Frame pointer. Used to access arguments, local variables and
- * RegExp registers.
- * - r12 : IP register, used by assembler. Very volatile.
- * - r13/sp : Points to tip of C stack.
- *
- * The remaining registers are free for computations.
- * Each call to a public method should retain this convention.
- *
- * The stack will have the following structure:
- * - fp[56] Isolate* isolate (address of the current isolate)
- * - fp[52] direct_call (if 1, direct call from JavaScript code,
- * if 0, call through the runtime system).
- * - fp[48] stack_area_base (high end of the memory area to use as
- * backtracking stack).
- * - fp[44] capture array size (may fit multiple sets of matches)
- * - fp[40] int* capture_array (int[num_saved_registers_], for output).
- * - fp[36] secondary link/return address used by native call.
- * --- sp when called ---
- * - fp[32] return address (lr).
- * - fp[28] old frame pointer (r11).
- * - fp[0..24] backup of registers r4..r10.
- * --- frame pointer ----
- * - fp[-4] end of input (address of end of string).
- * - fp[-8] start of input (address of first character in string).
- * - fp[-12] start index (character index of start).
- * - fp[-16] void* input_string (location of a handle containing the string).
- * - fp[-20] success counter (only for global regexps to count matches).
- * - fp[-24] Offset of location before start of input (effectively character
- * position -1). Used to initialize capture registers to a
- * non-position.
- * - fp[-28] At start (if 1, we are starting at the start of the
- * string, otherwise 0)
- * - fp[-32] register 0 (Only positions must be stored in the first
- * - register 1 num_saved_registers_ registers)
- * - ...
- * - register num_registers-1
- * --- sp ---
- *
- * The first num_saved_registers_ registers are initialized to point to
- * "character -1" in the string (i.e., char_size() bytes before the first
- * character of the string). The remaining registers start out as garbage.
- *
- * The data up to the return address must be placed there by the calling
- * code and the remaining arguments are passed in registers, e.g. by calling the
- * code entry as cast to a function with the signature:
- * int (*match)(String* input_string,
- * int start_index,
- * Address start,
- * Address end,
- * Address secondary_return_address, // Only used by native call.
- * int* capture_output_array,
- * byte* stack_area_base,
- * bool direct_call = false)
- * The call is performed by NativeRegExpMacroAssembler::Execute()
- * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
- * in arm/simulator-arm.h.
- * When calling as a non-direct call (i.e., from C++ code), the return address
- * area is overwritten with the LR register by the RegExp code. When doing a
- * direct call from generated code, the return address is placed there by
- * the calling code, as in a normal exit frame.
- */
-
-#define __ ACCESS_MASM(masm_)
-
-RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone,
- Mode mode,
- int registers_to_save)
- : NativeRegExpMacroAssembler(isolate, zone),
- masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
- mode_(mode),
- num_registers_(registers_to_save),
- num_saved_registers_(registers_to_save),
- entry_label_(),
- start_label_(),
- success_label_(),
- backtrack_label_(),
- exit_label_() {
- DCHECK_EQ(0, registers_to_save % 2);
- __ jmp(&entry_label_); // We'll write the entry code later.
- __ bind(&start_label_); // And then continue from here.
-}
-
-
-RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() {
- delete masm_;
- // Unuse labels in case we throw away the assembler without calling GetCode.
- entry_label_.Unuse();
- start_label_.Unuse();
- success_label_.Unuse();
- backtrack_label_.Unuse();
- exit_label_.Unuse();
- check_preempt_label_.Unuse();
- stack_overflow_label_.Unuse();
-}
-
-
-int RegExpMacroAssemblerARM::stack_limit_slack() {
- return RegExpStack::kStackLimitSlack;
-}
-
-
-void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) {
- if (by != 0) {
- __ add(current_input_offset(),
- current_input_offset(), Operand(by * char_size()));
- }
-}
-
-
-void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) {
- DCHECK(reg >= 0);
- DCHECK(reg < num_registers_);
- if (by != 0) {
- __ ldr(r0, register_location(reg));
- __ add(r0, r0, Operand(by));
- __ str(r0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerARM::Backtrack() {
- CheckPreemption();
- // Pop Code* offset from backtrack stack, add Code* and jump to location.
- Pop(r0);
- __ add(pc, r0, Operand(code_pointer()));
-}
-
-
-void RegExpMacroAssemblerARM::Bind(Label* label) {
- __ bind(label);
-}
-
-
-void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
- __ cmp(current_character(), Operand(c));
- BranchOrBacktrack(eq, on_equal);
-}
-
-
-void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
- __ cmp(current_character(), Operand(limit));
- BranchOrBacktrack(gt, on_greater);
-}
-
-
-void RegExpMacroAssemblerARM::CheckAtStart(Label* on_at_start) {
- Label not_at_start;
- // Did we start the match at the start of the string at all?
- __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
- __ cmp(r0, Operand::Zero());
- BranchOrBacktrack(ne, ¬_at_start);
-
- // If we did, are we still at the start of the input?
- __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
- __ add(r0, end_of_input_address(), Operand(current_input_offset()));
- __ cmp(r0, r1);
- BranchOrBacktrack(eq, on_at_start);
- __ bind(¬_at_start);
-}
-
-
-void RegExpMacroAssemblerARM::CheckNotAtStart(Label* on_not_at_start) {
- // Did we start the match at the start of the string at all?
- __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
- __ cmp(r0, Operand::Zero());
- BranchOrBacktrack(ne, on_not_at_start);
- // If we did, are we still at the start of the input?
- __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
- __ add(r0, end_of_input_address(), Operand(current_input_offset()));
- __ cmp(r0, r1);
- BranchOrBacktrack(ne, on_not_at_start);
-}
-
-
-void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
- __ cmp(current_character(), Operand(limit));
- BranchOrBacktrack(lt, on_less);
-}
-
-
-void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
- __ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
- __ cmp(current_input_offset(), r0);
- __ add(backtrack_stackpointer(),
- backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq);
- BranchOrBacktrack(eq, on_equal);
-}
-
-
-void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- __ ldr(r0, register_location(start_reg)); // Index of start of capture
- __ ldr(r1, register_location(start_reg + 1)); // Index of end of capture
- __ sub(r1, r1, r0, SetCC); // Length of capture.
-
- // If length is zero, either the capture is empty or it is not participating.
- // In either case succeed immediately.
- __ b(eq, &fallthrough);
-
- // Check that there are enough characters left in the input.
- __ cmn(r1, Operand(current_input_offset()));
- BranchOrBacktrack(gt, on_no_match);
-
- if (mode_ == LATIN1) {
- Label success;
- Label fail;
- Label loop_check;
-
- // r0 - offset of start of capture
- // r1 - length of capture
- __ add(r0, r0, Operand(end_of_input_address()));
- __ add(r2, end_of_input_address(), Operand(current_input_offset()));
- __ add(r1, r0, Operand(r1));
-
- // r0 - Address of start of capture.
- // r1 - Address of end of capture
- // r2 - Address of current input position.
-
- Label loop;
- __ bind(&loop);
- __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
- __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
- __ cmp(r4, r3);
- __ b(eq, &loop_check);
-
- // Mismatch, try case-insensitive match (converting letters to lower-case).
- __ orr(r3, r3, Operand(0x20)); // Convert capture character to lower-case.
- __ orr(r4, r4, Operand(0x20)); // Also convert input character.
- __ cmp(r4, r3);
- __ b(ne, &fail);
- __ sub(r3, r3, Operand('a'));
- __ cmp(r3, Operand('z' - 'a')); // Is r3 a lowercase letter?
- __ b(ls, &loop_check); // In range 'a'-'z'.
- // Latin-1: Check for values in range [224,254] but not 247.
- __ sub(r3, r3, Operand(224 - 'a'));
- __ cmp(r3, Operand(254 - 224));
- __ b(hi, &fail); // Weren't Latin-1 letters.
- __ cmp(r3, Operand(247 - 224)); // Check for 247.
- __ b(eq, &fail);
-
- __ bind(&loop_check);
- __ cmp(r0, r1);
- __ b(lt, &loop);
- __ jmp(&success);
-
- __ bind(&fail);
- BranchOrBacktrack(al, on_no_match);
-
- __ bind(&success);
- // Compute new value of character position after the matched part.
- __ sub(current_input_offset(), r2, end_of_input_address());
- } else {
- DCHECK(mode_ == UC16);
- int argument_count = 4;
- __ PrepareCallCFunction(argument_count, r2);
-
- // r0 - offset of start of capture
- // r1 - length of capture
-
- // Put arguments into arguments registers.
- // Parameters are
- // r0: Address byte_offset1 - Address captured substring's start.
- // r1: Address byte_offset2 - Address of current character position.
- // r2: size_t byte_length - length of capture in bytes(!)
- // r3: Isolate* isolate
-
- // Address of start of capture.
- __ add(r0, r0, Operand(end_of_input_address()));
- // Length of capture.
- __ mov(r2, Operand(r1));
- // Save length in callee-save register for use on return.
- __ mov(r4, Operand(r1));
- // Address of current input position.
- __ add(r1, current_input_offset(), Operand(end_of_input_address()));
- // Isolate.
- __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
-
- {
- AllowExternalCallThatCantCauseGC scope(masm_);
- ExternalReference function =
- ExternalReference::re_case_insensitive_compare_uc16(isolate());
- __ CallCFunction(function, argument_count);
- }
-
- // Check if function returned non-zero for success or zero for failure.
- __ cmp(r0, Operand::Zero());
- BranchOrBacktrack(eq, on_no_match);
- // On success, increment position by length of capture.
- __ add(current_input_offset(), current_input_offset(), Operand(r4));
- }
-
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerARM::CheckNotBackReference(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- Label success;
-
- // Find length of back-referenced capture.
- __ ldr(r0, register_location(start_reg));
- __ ldr(r1, register_location(start_reg + 1));
- __ sub(r1, r1, r0, SetCC); // Length to check.
- // Succeed on empty capture (including no capture).
- __ b(eq, &fallthrough);
-
- // Check that there are enough characters left in the input.
- __ cmn(r1, Operand(current_input_offset()));
- BranchOrBacktrack(gt, on_no_match);
-
- // Compute pointers to match string and capture string
- __ add(r0, r0, Operand(end_of_input_address()));
- __ add(r2, end_of_input_address(), Operand(current_input_offset()));
- __ add(r1, r1, Operand(r0));
-
- Label loop;
- __ bind(&loop);
- if (mode_ == LATIN1) {
- __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
- __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
- } else {
- DCHECK(mode_ == UC16);
- __ ldrh(r3, MemOperand(r0, char_size(), PostIndex));
- __ ldrh(r4, MemOperand(r2, char_size(), PostIndex));
- }
- __ cmp(r3, r4);
- BranchOrBacktrack(ne, on_no_match);
- __ cmp(r0, r1);
- __ b(lt, &loop);
-
- // Move current character position to position after match.
- __ sub(current_input_offset(), r2, end_of_input_address());
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c,
- Label* on_not_equal) {
- __ cmp(current_character(), Operand(c));
- BranchOrBacktrack(ne, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal) {
- if (c == 0) {
- __ tst(current_character(), Operand(mask));
- } else {
- __ and_(r0, current_character(), Operand(mask));
- __ cmp(r0, Operand(c));
- }
- BranchOrBacktrack(eq, on_equal);
-}
-
-
-void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_not_equal) {
- if (c == 0) {
- __ tst(current_character(), Operand(mask));
- } else {
- __ and_(r0, current_character(), Operand(mask));
- __ cmp(r0, Operand(c));
- }
- BranchOrBacktrack(ne, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- DCHECK(minus < String::kMaxUtf16CodeUnit);
- __ sub(r0, current_character(), Operand(minus));
- __ and_(r0, r0, Operand(mask));
- __ cmp(r0, Operand(c));
- BranchOrBacktrack(ne, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerARM::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- __ sub(r0, current_character(), Operand(from));
- __ cmp(r0, Operand(to - from));
- BranchOrBacktrack(ls, on_in_range); // Unsigned lower-or-same condition.
-}
-
-
-void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- __ sub(r0, current_character(), Operand(from));
- __ cmp(r0, Operand(to - from));
- BranchOrBacktrack(hi, on_not_in_range); // Unsigned higher condition.
-}
-
-
-void RegExpMacroAssemblerARM::CheckBitInTable(
- Handle<ByteArray> table,
- Label* on_bit_set) {
- __ mov(r0, Operand(table));
- if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
- __ and_(r1, current_character(), Operand(kTableSize - 1));
- __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
- } else {
- __ add(r1,
- current_character(),
- Operand(ByteArray::kHeaderSize - kHeapObjectTag));
- }
- __ ldrb(r0, MemOperand(r0, r1));
- __ cmp(r0, Operand::Zero());
- BranchOrBacktrack(ne, on_bit_set);
-}
-
-
-bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- // Range checks (c in min..max) are generally implemented by an unsigned
- // (c - min) <= (max - min) check
- switch (type) {
- case 's':
- // Match space-characters
- if (mode_ == LATIN1) {
- // One byte space characters are '\t'..'\r', ' ' and \u00a0.
- Label success;
- __ cmp(current_character(), Operand(' '));
- __ b(eq, &success);
- // Check range 0x09..0x0d
- __ sub(r0, current_character(), Operand('\t'));
- __ cmp(r0, Operand('\r' - '\t'));
- __ b(ls, &success);
- // \u00a0 (NBSP).
- __ cmp(r0, Operand(0x00a0 - '\t'));
- BranchOrBacktrack(ne, on_no_match);
- __ bind(&success);
- return true;
- }
- return false;
- case 'S':
- // The emitted code for generic character classes is good enough.
- return false;
- case 'd':
- // Match ASCII digits ('0'..'9')
- __ sub(r0, current_character(), Operand('0'));
- __ cmp(r0, Operand('9' - '0'));
- BranchOrBacktrack(hi, on_no_match);
- return true;
- case 'D':
- // Match non ASCII-digits
- __ sub(r0, current_character(), Operand('0'));
- __ cmp(r0, Operand('9' - '0'));
- BranchOrBacktrack(ls, on_no_match);
- return true;
- case '.': {
- // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- __ eor(r0, current_character(), Operand(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ sub(r0, r0, Operand(0x0b));
- __ cmp(r0, Operand(0x0c - 0x0b));
- BranchOrBacktrack(ls, on_no_match);
- if (mode_ == UC16) {
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ sub(r0, r0, Operand(0x2028 - 0x0b));
- __ cmp(r0, Operand(1));
- BranchOrBacktrack(ls, on_no_match);
- }
- return true;
- }
- case 'n': {
- // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- __ eor(r0, current_character(), Operand(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ sub(r0, r0, Operand(0x0b));
- __ cmp(r0, Operand(0x0c - 0x0b));
- if (mode_ == LATIN1) {
- BranchOrBacktrack(hi, on_no_match);
- } else {
- Label done;
- __ b(ls, &done);
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ sub(r0, r0, Operand(0x2028 - 0x0b));
- __ cmp(r0, Operand(1));
- BranchOrBacktrack(hi, on_no_match);
- __ bind(&done);
- }
- return true;
- }
- case 'w': {
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmp(current_character(), Operand('z'));
- BranchOrBacktrack(hi, on_no_match);
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ mov(r0, Operand(map));
- __ ldrb(r0, MemOperand(r0, current_character()));
- __ cmp(r0, Operand::Zero());
- BranchOrBacktrack(eq, on_no_match);
- return true;
- }
- case 'W': {
- Label done;
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmp(current_character(), Operand('z'));
- __ b(hi, &done);
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ mov(r0, Operand(map));
- __ ldrb(r0, MemOperand(r0, current_character()));
- __ cmp(r0, Operand::Zero());
- BranchOrBacktrack(ne, on_no_match);
- if (mode_ != LATIN1) {
- __ bind(&done);
- }
- return true;
- }
- case '*':
- // Match any character.
- return true;
- // No custom implementation (yet): s(UC16), S(UC16).
- default:
- return false;
- }
-}
-
-
-void RegExpMacroAssemblerARM::Fail() {
- __ mov(r0, Operand(FAILURE));
- __ jmp(&exit_label_);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
- Label return_r0;
- // Finalize code - write the entry point code now we know how many
- // registers we need.
-
- // Entry code:
- __ bind(&entry_label_);
-
- // Tell the system that we have a stack frame. Because the type is MANUAL, no
- // is generated.
- FrameScope scope(masm_, StackFrame::MANUAL);
-
- // Actually emit code to start a new stack frame.
- // Push arguments
- // Save callee-save registers.
- // Start new stack frame.
- // Store link register in existing stack-cell.
- // Order here should correspond to order of offset constants in header file.
- RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() |
- r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit();
- RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit();
- __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit());
- // Set frame pointer in space for it if this is not a direct call
- // from generated code.
- __ add(frame_pointer(), sp, Operand(4 * kPointerSize));
- __ mov(r0, Operand::Zero());
- __ push(r0); // Make room for success counter and initialize it to 0.
- __ push(r0); // Make room for "position - 1" constant (value is irrelevant).
- // Check if we have space on the stack for registers.
- Label stack_limit_hit;
- Label stack_ok;
-
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ mov(r0, Operand(stack_limit));
- __ ldr(r0, MemOperand(r0));
- __ sub(r0, sp, r0, SetCC);
- // Handle it if the stack pointer is already below the stack limit.
- __ b(ls, &stack_limit_hit);
- // Check if there is room for the variable number of registers above
- // the stack limit.
- __ cmp(r0, Operand(num_registers_ * kPointerSize));
- __ b(hs, &stack_ok);
- // Exit with OutOfMemory exception. There is not enough space on the stack
- // for our working registers.
- __ mov(r0, Operand(EXCEPTION));
- __ jmp(&return_r0);
-
- __ bind(&stack_limit_hit);
- CallCheckStackGuardState(r0);
- __ cmp(r0, Operand::Zero());
- // If returned value is non-zero, we exit with the returned value as result.
- __ b(ne, &return_r0);
-
- __ bind(&stack_ok);
-
- // Allocate space on stack for registers.
- __ sub(sp, sp, Operand(num_registers_ * kPointerSize));
- // Load string end.
- __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- // Load input start.
- __ ldr(r0, MemOperand(frame_pointer(), kInputStart));
- // Find negative length (offset of start relative to end).
- __ sub(current_input_offset(), r0, end_of_input_address());
- // Set r0 to address of char before start of the input string
- // (effectively string position -1).
- __ ldr(r1, MemOperand(frame_pointer(), kStartIndex));
- __ sub(r0, current_input_offset(), Operand(char_size()));
- __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0));
- // Store this value in a local variable, for use when clearing
- // position registers.
- __ str(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
-
- // Initialize code pointer register
- __ mov(code_pointer(), Operand(masm_->CodeObject()));
-
- Label load_char_start_regexp, start_regexp;
- // Load newline if index is at start, previous character otherwise.
- __ cmp(r1, Operand::Zero());
- __ b(ne, &load_char_start_regexp);
- __ mov(current_character(), Operand('\n'), LeaveCC, eq);
- __ jmp(&start_regexp);
-
- // Global regexp restarts matching here.
- __ bind(&load_char_start_regexp);
- // Load previous char as initial value of current character register.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&start_regexp);
-
- // Initialize on-stack registers.
- if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
- // Fill saved registers with initial value = start offset - 1
- if (num_saved_registers_ > 8) {
- // Address of register 0.
- __ add(r1, frame_pointer(), Operand(kRegisterZero));
- __ mov(r2, Operand(num_saved_registers_));
- Label init_loop;
- __ bind(&init_loop);
- __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex));
- __ sub(r2, r2, Operand(1), SetCC);
- __ b(ne, &init_loop);
- } else {
- for (int i = 0; i < num_saved_registers_; i++) {
- __ str(r0, register_location(i));
- }
- }
- }
-
- // Initialize backtrack stack pointer.
- __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
-
- __ jmp(&start_label_);
-
- // Exit code:
- if (success_label_.is_linked()) {
- // Save captures when successful.
- __ bind(&success_label_);
- if (num_saved_registers_ > 0) {
- // copy captures to output
- __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
- __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput));
- __ ldr(r2, MemOperand(frame_pointer(), kStartIndex));
- __ sub(r1, end_of_input_address(), r1);
- // r1 is length of input in bytes.
- if (mode_ == UC16) {
- __ mov(r1, Operand(r1, LSR, 1));
- }
- // r1 is length of input in characters.
- __ add(r1, r1, Operand(r2));
- // r1 is length of string in characters.
-
- DCHECK_EQ(0, num_saved_registers_ % 2);
- // Always an even number of capture registers. This allows us to
- // unroll the loop once to add an operation between a load of a register
- // and the following use of that register.
- for (int i = 0; i < num_saved_registers_; i += 2) {
- __ ldr(r2, register_location(i));
- __ ldr(r3, register_location(i + 1));
- if (i == 0 && global_with_zero_length_check()) {
- // Keep capture start in r4 for the zero-length check later.
- __ mov(r4, r2);
- }
- if (mode_ == UC16) {
- __ add(r2, r1, Operand(r2, ASR, 1));
- __ add(r3, r1, Operand(r3, ASR, 1));
- } else {
- __ add(r2, r1, Operand(r2));
- __ add(r3, r1, Operand(r3));
- }
- __ str(r2, MemOperand(r0, kPointerSize, PostIndex));
- __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
- }
- }
-
- if (global()) {
- // Restart matching if the regular expression is flagged as global.
- __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
- __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput));
- // Increment success counter.
- __ add(r0, r0, Operand(1));
- __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- // Capture results have been stored, so the number of remaining global
- // output registers is reduced by the number of stored captures.
- __ sub(r1, r1, Operand(num_saved_registers_));
- // Check whether we have enough room for another set of capture results.
- __ cmp(r1, Operand(num_saved_registers_));
- __ b(lt, &return_r0);
-
- __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
- // Advance the location for output.
- __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize));
- __ str(r2, MemOperand(frame_pointer(), kRegisterOutput));
-
- // Prepare r0 to initialize registers with its value in the next run.
- __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
-
- if (global_with_zero_length_check()) {
- // Special case for zero-length matches.
- // r4: capture start index
- __ cmp(current_input_offset(), r4);
- // Not a zero-length match, restart.
- __ b(ne, &load_char_start_regexp);
- // Offset from the end is zero if we already reached the end.
- __ cmp(current_input_offset(), Operand::Zero());
- __ b(eq, &exit_label_);
- // Advance current position after a zero-length match.
- __ add(current_input_offset(),
- current_input_offset(),
- Operand((mode_ == UC16) ? 2 : 1));
- }
-
- __ b(&load_char_start_regexp);
- } else {
- __ mov(r0, Operand(SUCCESS));
- }
- }
-
- // Exit and return r0
- __ bind(&exit_label_);
- if (global()) {
- __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- }
-
- __ bind(&return_r0);
- // Skip sp past regexp registers and local variables..
- __ mov(sp, frame_pointer());
- // Restore registers r4..r11 and return (restoring lr to pc).
- __ ldm(ia_w, sp, registers_to_retain | pc.bit());
-
- // Backtrack code (branch target for conditional backtracks).
- if (backtrack_label_.is_linked()) {
- __ bind(&backtrack_label_);
- Backtrack();
- }
-
- Label exit_with_exception;
-
- // Preempt-code
- if (check_preempt_label_.is_linked()) {
- SafeCallTarget(&check_preempt_label_);
-
- CallCheckStackGuardState(r0);
- __ cmp(r0, Operand::Zero());
- // If returning non-zero, we should end execution with the given
- // result as return value.
- __ b(ne, &return_r0);
-
- // String might have moved: Reload end of string from frame.
- __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- SafeReturn();
- }
-
- // Backtrack stack overflow code.
- if (stack_overflow_label_.is_linked()) {
- SafeCallTarget(&stack_overflow_label_);
- // Reached if the backtrack-stack limit has been hit.
- Label grow_failed;
-
- // Call GrowStack(backtrack_stackpointer(), &stack_base)
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments, r0);
- __ mov(r0, backtrack_stackpointer());
- __ add(r1, frame_pointer(), Operand(kStackHighEnd));
- __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
- ExternalReference grow_stack =
- ExternalReference::re_grow_stack(isolate());
- __ CallCFunction(grow_stack, num_arguments);
- // If return NULL, we have failed to grow the stack, and
- // must exit with a stack-overflow exception.
- __ cmp(r0, Operand::Zero());
- __ b(eq, &exit_with_exception);
- // Otherwise use return value as new stack pointer.
- __ mov(backtrack_stackpointer(), r0);
- // Restore saved registers and continue.
- SafeReturn();
- }
-
- if (exit_with_exception.is_linked()) {
- // If any of the code above needed to exit with an exception.
- __ bind(&exit_with_exception);
- // Exit with Result EXCEPTION(-1) to signal thrown exception.
- __ mov(r0, Operand(EXCEPTION));
- __ jmp(&return_r0);
- }
-
- CodeDesc code_desc;
- masm_->GetCode(&code_desc);
- Handle<Code> code = isolate()->factory()->NewCode(
- code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
- PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
- return Handle<HeapObject>::cast(code);
-}
-
-
-void RegExpMacroAssemblerARM::GoTo(Label* to) {
- BranchOrBacktrack(al, to);
-}
-
-
-void RegExpMacroAssemblerARM::IfRegisterGE(int reg,
- int comparand,
- Label* if_ge) {
- __ ldr(r0, register_location(reg));
- __ cmp(r0, Operand(comparand));
- BranchOrBacktrack(ge, if_ge);
-}
-
-
-void RegExpMacroAssemblerARM::IfRegisterLT(int reg,
- int comparand,
- Label* if_lt) {
- __ ldr(r0, register_location(reg));
- __ cmp(r0, Operand(comparand));
- BranchOrBacktrack(lt, if_lt);
-}
-
-
-void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg,
- Label* if_eq) {
- __ ldr(r0, register_location(reg));
- __ cmp(r0, Operand(current_input_offset()));
- BranchOrBacktrack(eq, if_eq);
-}
-
-
-RegExpMacroAssembler::IrregexpImplementation
- RegExpMacroAssemblerARM::Implementation() {
- return kARMImplementation;
-}
-
-
-void RegExpMacroAssemblerARM::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
- DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
- if (check_bounds) {
- CheckPosition(cp_offset + characters - 1, on_end_of_input);
- }
- LoadCurrentCharacterUnchecked(cp_offset, characters);
-}
-
-
-void RegExpMacroAssemblerARM::PopCurrentPosition() {
- Pop(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerARM::PopRegister(int register_index) {
- Pop(r0);
- __ str(r0, register_location(register_index));
-}
-
-
-void RegExpMacroAssemblerARM::PushBacktrack(Label* label) {
- __ mov_label_offset(r0, label);
- Push(r0);
- CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerARM::PushCurrentPosition() {
- Push(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerARM::PushRegister(int register_index,
- StackCheckFlag check_stack_limit) {
- __ ldr(r0, register_location(register_index));
- Push(r0);
- if (check_stack_limit) CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) {
- __ ldr(current_input_offset(), register_location(reg));
-}
-
-
-void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) {
- __ ldr(backtrack_stackpointer(), register_location(reg));
- __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd));
- __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0));
-}
-
-
-void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) {
- Label after_position;
- __ cmp(current_input_offset(), Operand(-by * char_size()));
- __ b(ge, &after_position);
- __ mov(current_input_offset(), Operand(-by * char_size()));
- // On RegExp code entry (where this operation is used), the character before
- // the current position is expected to be already loaded.
- // We have advanced the position, so it's safe to read backwards.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&after_position);
-}
-
-
-void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) {
- DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
- __ mov(r0, Operand(to));
- __ str(r0, register_location(register_index));
-}
-
-
-bool RegExpMacroAssemblerARM::Succeed() {
- __ jmp(&success_label_);
- return global();
-}
-
-
-void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- if (cp_offset == 0) {
- __ str(current_input_offset(), register_location(reg));
- } else {
- __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
- __ str(r0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
- for (int reg = reg_from; reg <= reg_to; reg++) {
- __ str(r0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) {
- __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd));
- __ sub(r0, backtrack_stackpointer(), r1);
- __ str(r0, register_location(reg));
-}
-
-
-// Private methods:
-
-void RegExpMacroAssemblerARM::CallCheckStackGuardState(Register scratch) {
- __ PrepareCallCFunction(3, scratch);
-
- // RegExp code frame pointer.
- __ mov(r2, frame_pointer());
- // Code* of self.
- __ mov(r1, Operand(masm_->CodeObject()));
-
- // We need to make room for the return address on the stack.
- int stack_alignment = base::OS::ActivationFrameAlignment();
- DCHECK(IsAligned(stack_alignment, kPointerSize));
- __ sub(sp, sp, Operand(stack_alignment));
-
- // r0 will point to the return address, placed by DirectCEntry.
- __ mov(r0, sp);
-
- ExternalReference stack_guard_check =
- ExternalReference::re_check_stack_guard_state(isolate());
- __ mov(ip, Operand(stack_guard_check));
- DirectCEntryStub stub(isolate());
- stub.GenerateCall(masm_, ip);
-
- // Drop the return address from the stack.
- __ add(sp, sp, Operand(stack_alignment));
-
- DCHECK(stack_alignment != 0);
- __ ldr(sp, MemOperand(sp, 0));
-
- __ mov(code_pointer(), Operand(masm_->CodeObject()));
-}
-
-
-// Helper function for reading a value out of a stack frame.
-template <typename T>
-static T& frame_entry(Address re_frame, int frame_offset) {
- return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
-}
-
-
-template <typename T>
-static T* frame_entry_address(Address re_frame, int frame_offset) {
- return reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame) {
- return NativeRegExpMacroAssembler::CheckStackGuardState(
- frame_entry<Isolate*>(re_frame, kIsolate),
- frame_entry<int>(re_frame, kStartIndex),
- frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
- frame_entry_address<String*>(re_frame, kInputString),
- frame_entry_address<const byte*>(re_frame, kInputStart),
- frame_entry_address<const byte*>(re_frame, kInputEnd));
-}
-
-
-MemOperand RegExpMacroAssemblerARM::register_location(int register_index) {
- DCHECK(register_index < (1<<30));
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- return MemOperand(frame_pointer(),
- kRegisterZero - register_index * kPointerSize);
-}
-
-
-void RegExpMacroAssemblerARM::CheckPosition(int cp_offset,
- Label* on_outside_input) {
- __ cmp(current_input_offset(), Operand(-cp_offset * char_size()));
- BranchOrBacktrack(ge, on_outside_input);
-}
-
-
-void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition,
- Label* to) {
- if (condition == al) { // Unconditional.
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ jmp(to);
- return;
- }
- if (to == NULL) {
- __ b(condition, &backtrack_label_);
- return;
- }
- __ b(condition, to);
-}
-
-
-void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) {
- __ bl(to, cond);
-}
-
-
-void RegExpMacroAssemblerARM::SafeReturn() {
- __ pop(lr);
- __ add(pc, lr, Operand(masm_->CodeObject()));
-}
-
-
-void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) {
- __ bind(name);
- __ sub(lr, lr, Operand(masm_->CodeObject()));
- __ push(lr);
-}
-
-
-void RegExpMacroAssemblerARM::Push(Register source) {
- DCHECK(!source.is(backtrack_stackpointer()));
- __ str(source,
- MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex));
-}
-
-
-void RegExpMacroAssemblerARM::Pop(Register target) {
- DCHECK(!target.is(backtrack_stackpointer()));
- __ ldr(target,
- MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex));
-}
-
-
-void RegExpMacroAssemblerARM::CheckPreemption() {
- // Check for preemption.
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ mov(r0, Operand(stack_limit));
- __ ldr(r0, MemOperand(r0));
- __ cmp(sp, r0);
- SafeCall(&check_preempt_label_, ls);
-}
-
-
-void RegExpMacroAssemblerARM::CheckStackLimit() {
- ExternalReference stack_limit =
- ExternalReference::address_of_regexp_stack_limit(isolate());
- __ mov(r0, Operand(stack_limit));
- __ ldr(r0, MemOperand(r0));
- __ cmp(backtrack_stackpointer(), Operand(r0));
- SafeCall(&stack_overflow_label_, ls);
-}
-
-
-bool RegExpMacroAssemblerARM::CanReadUnaligned() {
- return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
-}
-
-
-void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset,
- int characters) {
- Register offset = current_input_offset();
- if (cp_offset != 0) {
- // r4 is not being used to store the capture start index at this point.
- __ add(r4, current_input_offset(), Operand(cp_offset * char_size()));
- offset = r4;
- }
- // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
- // and the operating system running on the target allow it.
- // If unaligned load/stores are not supported then this function must only
- // be used to load a single character at a time.
- if (!CanReadUnaligned()) {
- DCHECK(characters == 1);
- }
-
- if (mode_ == LATIN1) {
- if (characters == 4) {
- __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
- } else if (characters == 2) {
- __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
- } else {
- DCHECK(characters == 1);
- __ ldrb(current_character(), MemOperand(end_of_input_address(), offset));
- }
- } else {
- DCHECK(mode_ == UC16);
- if (characters == 2) {
- __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
- } else {
- DCHECK(characters == 1);
- __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
- }
- }
-}
-
-
-#undef __
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
-
-#endif // V8_TARGET_ARCH_ARM
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
-#define V8_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
-
-#include "src/arm/assembler-arm.h"
-#include "src/macro-assembler.h"
-
-namespace v8 {
-namespace internal {
-
-
-#ifndef V8_INTERPRETED_REGEXP
-class RegExpMacroAssemblerARM: public NativeRegExpMacroAssembler {
- public:
- RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone, Mode mode,
- int registers_to_save);
- virtual ~RegExpMacroAssemblerARM();
- virtual int stack_limit_slack();
- virtual void AdvanceCurrentPosition(int by);
- virtual void AdvanceRegister(int reg, int by);
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(unsigned c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- // A "greedy loop" is a loop that is both greedy and with a simple
- // body. It has a particularly simple implementation.
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
-
- // Checks whether the given offset from the current position is before
- // the end of the string.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input);
- virtual bool CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
- virtual bool CanReadUnaligned();
-
- // Called from RegExp if the stack-guard is triggered.
- // If the code object is relocated, the return address is fixed before
- // returning.
- static int CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame);
-
- private:
- // Offsets from frame_pointer() of function parameters and stored registers.
- static const int kFramePointer = 0;
-
- // Above the frame pointer - Stored registers and stack passed parameters.
- // Register 4..11.
- static const int kStoredRegisters = kFramePointer;
- // Return address (stored from link register, read into pc on return).
- static const int kReturnAddress = kStoredRegisters + 8 * kPointerSize;
- static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
- // Stack parameters placed by caller.
- static const int kRegisterOutput = kSecondaryReturnAddress + kPointerSize;
- static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
- static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
- static const int kDirectCall = kStackHighEnd + kPointerSize;
- static const int kIsolate = kDirectCall + kPointerSize;
-
- // Below the frame pointer.
- // Register parameters stored by setup code.
- static const int kInputEnd = kFramePointer - kPointerSize;
- static const int kInputStart = kInputEnd - kPointerSize;
- static const int kStartIndex = kInputStart - kPointerSize;
- static const int kInputString = kStartIndex - kPointerSize;
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kSuccessfulCaptures = kInputString - kPointerSize;
- static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
- // First register address. Following registers are below it on the stack.
- static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
-
- // Initial size of code buffer.
- static const size_t kRegExpCodeSize = 1024;
-
- static const int kBacktrackConstantPoolSize = 4;
-
- // Load a number of characters at the given offset from the
- // current position, into the current-character register.
- void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
-
- // Check whether preemption has been requested.
- void CheckPreemption();
-
- // Check whether we are exceeding the stack limit on the backtrack stack.
- void CheckStackLimit();
-
-
- // Generate a call to CheckStackGuardState.
- void CallCheckStackGuardState(Register scratch);
-
- // The ebp-relative location of a regexp register.
- MemOperand register_location(int register_index);
-
- // Register holding the current input position as negative offset from
- // the end of the string.
- inline Register current_input_offset() { return r6; }
-
- // The register containing the current character after LoadCurrentCharacter.
- inline Register current_character() { return r7; }
-
- // Register holding address of the end of the input string.
- inline Register end_of_input_address() { return r10; }
-
- // Register holding the frame address. Local variables, parameters and
- // regexp registers are addressed relative to this.
- inline Register frame_pointer() { return fp; }
-
- // The register containing the backtrack stack top. Provides a meaningful
- // name to the register.
- inline Register backtrack_stackpointer() { return r8; }
-
- // Register holding pointer to the current code object.
- inline Register code_pointer() { return r5; }
-
- // Byte size of chars in the string to match (decided by the Mode argument)
- inline int char_size() { return static_cast<int>(mode_); }
-
- // Equivalent to a conditional branch to the label, unless the label
- // is NULL, in which case it is a conditional Backtrack.
- void BranchOrBacktrack(Condition condition, Label* to);
-
- // Call and return internally in the generated code in a way that
- // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
- inline void SafeCall(Label* to, Condition cond = al);
- inline void SafeReturn();
- inline void SafeCallTarget(Label* name);
-
- // Pushes the value of a register on the backtrack stack. Decrements the
- // stack pointer by a word size and stores the register's value there.
- inline void Push(Register source);
-
- // Pops a value from the backtrack stack. Reads the word at the stack pointer
- // and increments it by a word size.
- inline void Pop(Register target);
-
- Isolate* isolate() const { return masm_->isolate(); }
-
- MacroAssembler* masm_;
-
- // Which mode to generate code for (Latin1 or UC16).
- Mode mode_;
-
- // One greater than maximal register index actually used.
- int num_registers_;
-
- // Number of registers to output at the end (the saved registers
- // are always 0..num_saved_registers_-1)
- int num_saved_registers_;
-
- // Labels used internally.
- Label entry_label_;
- Label start_label_;
- Label success_label_;
- Label backtrack_label_;
- Label exit_label_;
- Label check_preempt_label_;
- Label stack_overflow_label_;
-};
-
-#endif // V8_INTERPRETED_REGEXP
-
-
-}} // namespace v8::internal
-
-#endif // V8_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
+++ /dev/null
-// Copyright 2013 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#if V8_TARGET_ARCH_ARM64
-
-#include "src/code-stubs.h"
-#include "src/cpu-profiler.h"
-#include "src/log.h"
-#include "src/macro-assembler.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/unicode.h"
-
-#include "src/arm64/regexp-macro-assembler-arm64.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-/*
- * This assembler uses the following register assignment convention:
- * - w19 : Used to temporarely store a value before a call to C code.
- * See CheckNotBackReferenceIgnoreCase.
- * - x20 : Pointer to the current code object (Code*),
- * it includes the heap object tag.
- * - w21 : Current position in input, as negative offset from
- * the end of the string. Please notice that this is
- * the byte offset, not the character offset!
- * - w22 : Currently loaded character. Must be loaded using
- * LoadCurrentCharacter before using any of the dispatch methods.
- * - x23 : Points to tip of backtrack stack.
- * - w24 : Position of the first character minus one: non_position_value.
- * Used to initialize capture registers.
- * - x25 : Address at the end of the input string: input_end.
- * Points to byte after last character in input.
- * - x26 : Address at the start of the input string: input_start.
- * - w27 : Where to start in the input string.
- * - x28 : Output array pointer.
- * - x29/fp : Frame pointer. Used to access arguments, local variables and
- * RegExp registers.
- * - x16/x17 : IP registers, used by assembler. Very volatile.
- * - csp : Points to tip of C stack.
- *
- * - x0-x7 : Used as a cache to store 32 bit capture registers. These
- * registers need to be retained every time a call to C code
- * is done.
- *
- * The remaining registers are free for computations.
- * Each call to a public method should retain this convention.
- *
- * The stack will have the following structure:
- *
- * Location Name Description
- * (as referred to in
- * the code)
- *
- * - fp[104] isolate Address of the current isolate.
- * - fp[96] return_address Secondary link/return address
- * used by an exit frame if this is a
- * native call.
- * ^^^ csp when called ^^^
- * - fp[88] lr Return from the RegExp code.
- * - fp[80] r29 Old frame pointer (CalleeSaved).
- * - fp[0..72] r19-r28 Backup of CalleeSaved registers.
- * - fp[-8] direct_call 1 => Direct call from JavaScript code.
- * 0 => Call through the runtime system.
- * - fp[-16] stack_base High end of the memory area to use as
- * the backtracking stack.
- * - fp[-24] output_size Output may fit multiple sets of matches.
- * - fp[-32] input Handle containing the input string.
- * - fp[-40] success_counter
- * ^^^^^^^^^^^^^ From here and downwards we store 32 bit values ^^^^^^^^^^^^^
- * - fp[-44] register N Capture registers initialized with
- * - fp[-48] register N + 1 non_position_value.
- * ... The first kNumCachedRegisters (N) registers
- * ... are cached in x0 to x7.
- * ... Only positions must be stored in the first
- * - ... num_saved_registers_ registers.
- * - ...
- * - register N + num_registers - 1
- * ^^^^^^^^^ csp ^^^^^^^^^
- *
- * The first num_saved_registers_ registers are initialized to point to
- * "character -1" in the string (i.e., char_size() bytes before the first
- * character of the string). The remaining registers start out as garbage.
- *
- * The data up to the return address must be placed there by the calling
- * code and the remaining arguments are passed in registers, e.g. by calling the
- * code entry as cast to a function with the signature:
- * int (*match)(String* input,
- * int start_offset,
- * Address input_start,
- * Address input_end,
- * int* output,
- * int output_size,
- * Address stack_base,
- * bool direct_call = false,
- * Address secondary_return_address, // Only used by native call.
- * Isolate* isolate)
- * The call is performed by NativeRegExpMacroAssembler::Execute()
- * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
- * in arm64/simulator-arm64.h.
- * When calling as a non-direct call (i.e., from C++ code), the return address
- * area is overwritten with the LR register by the RegExp code. When doing a
- * direct call from generated code, the return address is placed there by
- * the calling code, as in a normal exit frame.
- */
-
-#define __ ACCESS_MASM(masm_)
-
-RegExpMacroAssemblerARM64::RegExpMacroAssemblerARM64(Isolate* isolate,
- Zone* zone, Mode mode,
- int registers_to_save)
- : NativeRegExpMacroAssembler(isolate, zone),
- masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
- mode_(mode),
- num_registers_(registers_to_save),
- num_saved_registers_(registers_to_save),
- entry_label_(),
- start_label_(),
- success_label_(),
- backtrack_label_(),
- exit_label_() {
- __ SetStackPointer(csp);
- DCHECK_EQ(0, registers_to_save % 2);
- // We can cache at most 16 W registers in x0-x7.
- STATIC_ASSERT(kNumCachedRegisters <= 16);
- STATIC_ASSERT((kNumCachedRegisters % 2) == 0);
- __ B(&entry_label_); // We'll write the entry code later.
- __ Bind(&start_label_); // And then continue from here.
-}
-
-
-RegExpMacroAssemblerARM64::~RegExpMacroAssemblerARM64() {
- delete masm_;
- // Unuse labels in case we throw away the assembler without calling GetCode.
- entry_label_.Unuse();
- start_label_.Unuse();
- success_label_.Unuse();
- backtrack_label_.Unuse();
- exit_label_.Unuse();
- check_preempt_label_.Unuse();
- stack_overflow_label_.Unuse();
-}
-
-int RegExpMacroAssemblerARM64::stack_limit_slack() {
- return RegExpStack::kStackLimitSlack;
-}
-
-
-void RegExpMacroAssemblerARM64::AdvanceCurrentPosition(int by) {
- if (by != 0) {
- __ Add(current_input_offset(),
- current_input_offset(), by * char_size());
- }
-}
-
-
-void RegExpMacroAssemblerARM64::AdvanceRegister(int reg, int by) {
- DCHECK((reg >= 0) && (reg < num_registers_));
- if (by != 0) {
- Register to_advance;
- RegisterState register_state = GetRegisterState(reg);
- switch (register_state) {
- case STACKED:
- __ Ldr(w10, register_location(reg));
- __ Add(w10, w10, by);
- __ Str(w10, register_location(reg));
- break;
- case CACHED_LSW:
- to_advance = GetCachedRegister(reg);
- __ Add(to_advance, to_advance, by);
- break;
- case CACHED_MSW:
- to_advance = GetCachedRegister(reg);
- __ Add(to_advance, to_advance,
- static_cast<int64_t>(by) << kWRegSizeInBits);
- break;
- default:
- UNREACHABLE();
- break;
- }
- }
-}
-
-
-void RegExpMacroAssemblerARM64::Backtrack() {
- CheckPreemption();
- Pop(w10);
- __ Add(x10, code_pointer(), Operand(w10, UXTW));
- __ Br(x10);
-}
-
-
-void RegExpMacroAssemblerARM64::Bind(Label* label) {
- __ Bind(label);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckCharacter(uint32_t c, Label* on_equal) {
- CompareAndBranchOrBacktrack(current_character(), c, eq, on_equal);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckCharacterGT(uc16 limit,
- Label* on_greater) {
- CompareAndBranchOrBacktrack(current_character(), limit, hi, on_greater);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckAtStart(Label* on_at_start) {
- Label not_at_start;
- // Did we start the match at the start of the input string?
- CompareAndBranchOrBacktrack(start_offset(), 0, ne, ¬_at_start);
- // If we did, are we still at the start of the input string?
- __ Add(x10, input_end(), Operand(current_input_offset(), SXTW));
- __ Cmp(x10, input_start());
- BranchOrBacktrack(eq, on_at_start);
- __ Bind(¬_at_start);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckNotAtStart(Label* on_not_at_start) {
- // Did we start the match at the start of the input string?
- CompareAndBranchOrBacktrack(start_offset(), 0, ne, on_not_at_start);
- // If we did, are we still at the start of the input string?
- __ Add(x10, input_end(), Operand(current_input_offset(), SXTW));
- __ Cmp(x10, input_start());
- BranchOrBacktrack(ne, on_not_at_start);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckCharacterLT(uc16 limit, Label* on_less) {
- CompareAndBranchOrBacktrack(current_character(), limit, lo, on_less);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckCharacters(Vector<const uc16> str,
- int cp_offset,
- Label* on_failure,
- bool check_end_of_string) {
- // This method is only ever called from the cctests.
-
- if (check_end_of_string) {
- // Is last character of required match inside string.
- CheckPosition(cp_offset + str.length() - 1, on_failure);
- }
-
- Register characters_address = x11;
-
- __ Add(characters_address,
- input_end(),
- Operand(current_input_offset(), SXTW));
- if (cp_offset != 0) {
- __ Add(characters_address, characters_address, cp_offset * char_size());
- }
-
- for (int i = 0; i < str.length(); i++) {
- if (mode_ == LATIN1) {
- __ Ldrb(w10, MemOperand(characters_address, 1, PostIndex));
- DCHECK(str[i] <= String::kMaxOneByteCharCode);
- } else {
- __ Ldrh(w10, MemOperand(characters_address, 2, PostIndex));
- }
- CompareAndBranchOrBacktrack(w10, str[i], ne, on_failure);
- }
-}
-
-
-void RegExpMacroAssemblerARM64::CheckGreedyLoop(Label* on_equal) {
- __ Ldr(w10, MemOperand(backtrack_stackpointer()));
- __ Cmp(current_input_offset(), w10);
- __ Cset(x11, eq);
- __ Add(backtrack_stackpointer(),
- backtrack_stackpointer(), Operand(x11, LSL, kWRegSizeLog2));
- BranchOrBacktrack(eq, on_equal);
-}
-
-void RegExpMacroAssemblerARM64::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
-
- Register capture_start_offset = w10;
- // Save the capture length in a callee-saved register so it will
- // be preserved if we call a C helper.
- Register capture_length = w19;
- DCHECK(kCalleeSaved.IncludesAliasOf(capture_length));
-
- // Find length of back-referenced capture.
- DCHECK((start_reg % 2) == 0);
- if (start_reg < kNumCachedRegisters) {
- __ Mov(capture_start_offset.X(), GetCachedRegister(start_reg));
- __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits);
- } else {
- __ Ldp(w11, capture_start_offset, capture_location(start_reg, x10));
- }
- __ Sub(capture_length, w11, capture_start_offset); // Length to check.
- // Succeed on empty capture (including no capture).
- __ Cbz(capture_length, &fallthrough);
-
- // Check that there are enough characters left in the input.
- __ Cmn(capture_length, current_input_offset());
- BranchOrBacktrack(gt, on_no_match);
-
- if (mode_ == LATIN1) {
- Label success;
- Label fail;
- Label loop_check;
-
- Register capture_start_address = x12;
- Register capture_end_addresss = x13;
- Register current_position_address = x14;
-
- __ Add(capture_start_address,
- input_end(),
- Operand(capture_start_offset, SXTW));
- __ Add(capture_end_addresss,
- capture_start_address,
- Operand(capture_length, SXTW));
- __ Add(current_position_address,
- input_end(),
- Operand(current_input_offset(), SXTW));
-
- Label loop;
- __ Bind(&loop);
- __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex));
- __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex));
- __ Cmp(w10, w11);
- __ B(eq, &loop_check);
-
- // Mismatch, try case-insensitive match (converting letters to lower-case).
- __ Orr(w10, w10, 0x20); // Convert capture character to lower-case.
- __ Orr(w11, w11, 0x20); // Also convert input character.
- __ Cmp(w11, w10);
- __ B(ne, &fail);
- __ Sub(w10, w10, 'a');
- __ Cmp(w10, 'z' - 'a'); // Is w10 a lowercase letter?
- __ B(ls, &loop_check); // In range 'a'-'z'.
- // Latin-1: Check for values in range [224,254] but not 247.
- __ Sub(w10, w10, 224 - 'a');
- __ Cmp(w10, 254 - 224);
- __ Ccmp(w10, 247 - 224, ZFlag, ls); // Check for 247.
- __ B(eq, &fail); // Weren't Latin-1 letters.
-
- __ Bind(&loop_check);
- __ Cmp(capture_start_address, capture_end_addresss);
- __ B(lt, &loop);
- __ B(&success);
-
- __ Bind(&fail);
- BranchOrBacktrack(al, on_no_match);
-
- __ Bind(&success);
- // Compute new value of character position after the matched part.
- __ Sub(current_input_offset().X(), current_position_address, input_end());
- if (masm_->emit_debug_code()) {
- __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW));
- __ Ccmp(current_input_offset(), 0, NoFlag, eq);
- // The current input offset should be <= 0, and fit in a W register.
- __ Check(le, kOffsetOutOfRange);
- }
- } else {
- DCHECK(mode_ == UC16);
- int argument_count = 4;
-
- // The cached registers need to be retained.
- CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7);
- DCHECK((cached_registers.Count() * 2) == kNumCachedRegisters);
- __ PushCPURegList(cached_registers);
-
- // Put arguments into arguments registers.
- // Parameters are
- // x0: Address byte_offset1 - Address captured substring's start.
- // x1: Address byte_offset2 - Address of current character position.
- // w2: size_t byte_length - length of capture in bytes(!)
- // x3: Isolate* isolate
-
- // Address of start of capture.
- __ Add(x0, input_end(), Operand(capture_start_offset, SXTW));
- // Length of capture.
- __ Mov(w2, capture_length);
- // Address of current input position.
- __ Add(x1, input_end(), Operand(current_input_offset(), SXTW));
- // Isolate.
- __ Mov(x3, ExternalReference::isolate_address(isolate()));
-
- {
- AllowExternalCallThatCantCauseGC scope(masm_);
- ExternalReference function =
- ExternalReference::re_case_insensitive_compare_uc16(isolate());
- __ CallCFunction(function, argument_count);
- }
-
- // Check if function returned non-zero for success or zero for failure.
- // x0 is one of the registers used as a cache so it must be tested before
- // the cache is restored.
- __ Cmp(x0, 0);
- __ PopCPURegList(cached_registers);
- BranchOrBacktrack(eq, on_no_match);
-
- // On success, increment position by length of capture.
- __ Add(current_input_offset(), current_input_offset(), capture_length);
- }
-
- __ Bind(&fallthrough);
-}
-
-void RegExpMacroAssemblerARM64::CheckNotBackReference(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
-
- Register capture_start_address = x12;
- Register capture_end_address = x13;
- Register current_position_address = x14;
- Register capture_length = w15;
-
- // Find length of back-referenced capture.
- DCHECK((start_reg % 2) == 0);
- if (start_reg < kNumCachedRegisters) {
- __ Mov(x10, GetCachedRegister(start_reg));
- __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits);
- } else {
- __ Ldp(w11, w10, capture_location(start_reg, x10));
- }
- __ Sub(capture_length, w11, w10); // Length to check.
- // Succeed on empty capture (including no capture).
- __ Cbz(capture_length, &fallthrough);
-
- // Check that there are enough characters left in the input.
- __ Cmn(capture_length, current_input_offset());
- BranchOrBacktrack(gt, on_no_match);
-
- // Compute pointers to match string and capture string
- __ Add(capture_start_address, input_end(), Operand(w10, SXTW));
- __ Add(capture_end_address,
- capture_start_address,
- Operand(capture_length, SXTW));
- __ Add(current_position_address,
- input_end(),
- Operand(current_input_offset(), SXTW));
-
- Label loop;
- __ Bind(&loop);
- if (mode_ == LATIN1) {
- __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex));
- __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex));
- } else {
- DCHECK(mode_ == UC16);
- __ Ldrh(w10, MemOperand(capture_start_address, 2, PostIndex));
- __ Ldrh(w11, MemOperand(current_position_address, 2, PostIndex));
- }
- __ Cmp(w10, w11);
- BranchOrBacktrack(ne, on_no_match);
- __ Cmp(capture_start_address, capture_end_address);
- __ B(lt, &loop);
-
- // Move current character position to position after match.
- __ Sub(current_input_offset().X(), current_position_address, input_end());
- if (masm_->emit_debug_code()) {
- __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW));
- __ Ccmp(current_input_offset(), 0, NoFlag, eq);
- // The current input offset should be <= 0, and fit in a W register.
- __ Check(le, kOffsetOutOfRange);
- }
- __ Bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckNotCharacter(unsigned c,
- Label* on_not_equal) {
- CompareAndBranchOrBacktrack(current_character(), c, ne, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal) {
- __ And(w10, current_character(), mask);
- CompareAndBranchOrBacktrack(w10, c, eq, on_equal);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckNotCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_not_equal) {
- __ And(w10, current_character(), mask);
- CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- DCHECK(minus < String::kMaxUtf16CodeUnit);
- __ Sub(w10, current_character(), minus);
- __ And(w10, w10, mask);
- CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- __ Sub(w10, current_character(), from);
- // Unsigned lower-or-same condition.
- CompareAndBranchOrBacktrack(w10, to - from, ls, on_in_range);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- __ Sub(w10, current_character(), from);
- // Unsigned higher condition.
- CompareAndBranchOrBacktrack(w10, to - from, hi, on_not_in_range);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckBitInTable(
- Handle<ByteArray> table,
- Label* on_bit_set) {
- __ Mov(x11, Operand(table));
- if ((mode_ != LATIN1) || (kTableMask != String::kMaxOneByteCharCode)) {
- __ And(w10, current_character(), kTableMask);
- __ Add(w10, w10, ByteArray::kHeaderSize - kHeapObjectTag);
- } else {
- __ Add(w10, current_character(), ByteArray::kHeaderSize - kHeapObjectTag);
- }
- __ Ldrb(w11, MemOperand(x11, w10, UXTW));
- CompareAndBranchOrBacktrack(w11, 0, ne, on_bit_set);
-}
-
-
-bool RegExpMacroAssemblerARM64::CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- // Range checks (c in min..max) are generally implemented by an unsigned
- // (c - min) <= (max - min) check
- switch (type) {
- case 's':
- // Match space-characters
- if (mode_ == LATIN1) {
- // One byte space characters are '\t'..'\r', ' ' and \u00a0.
- Label success;
- // Check for ' ' or 0x00a0.
- __ Cmp(current_character(), ' ');
- __ Ccmp(current_character(), 0x00a0, ZFlag, ne);
- __ B(eq, &success);
- // Check range 0x09..0x0d.
- __ Sub(w10, current_character(), '\t');
- CompareAndBranchOrBacktrack(w10, '\r' - '\t', hi, on_no_match);
- __ Bind(&success);
- return true;
- }
- return false;
- case 'S':
- // The emitted code for generic character classes is good enough.
- return false;
- case 'd':
- // Match ASCII digits ('0'..'9').
- __ Sub(w10, current_character(), '0');
- CompareAndBranchOrBacktrack(w10, '9' - '0', hi, on_no_match);
- return true;
- case 'D':
- // Match ASCII non-digits.
- __ Sub(w10, current_character(), '0');
- CompareAndBranchOrBacktrack(w10, '9' - '0', ls, on_no_match);
- return true;
- case '.': {
- // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- // Here we emit the conditional branch only once at the end to make branch
- // prediction more efficient, even though we could branch out of here
- // as soon as a character matches.
- __ Cmp(current_character(), 0x0a);
- __ Ccmp(current_character(), 0x0d, ZFlag, ne);
- if (mode_ == UC16) {
- __ Sub(w10, current_character(), 0x2028);
- // If the Z flag was set we clear the flags to force a branch.
- __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne);
- // ls -> !((C==1) && (Z==0))
- BranchOrBacktrack(ls, on_no_match);
- } else {
- BranchOrBacktrack(eq, on_no_match);
- }
- return true;
- }
- case 'n': {
- // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- // We have to check all 4 newline characters before emitting
- // the conditional branch.
- __ Cmp(current_character(), 0x0a);
- __ Ccmp(current_character(), 0x0d, ZFlag, ne);
- if (mode_ == UC16) {
- __ Sub(w10, current_character(), 0x2028);
- // If the Z flag was set we clear the flags to force a fall-through.
- __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne);
- // hi -> (C==1) && (Z==0)
- BranchOrBacktrack(hi, on_no_match);
- } else {
- BranchOrBacktrack(ne, on_no_match);
- }
- return true;
- }
- case 'w': {
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- CompareAndBranchOrBacktrack(current_character(), 'z', hi, on_no_match);
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ Mov(x10, map);
- __ Ldrb(w10, MemOperand(x10, current_character(), UXTW));
- CompareAndBranchOrBacktrack(w10, 0, eq, on_no_match);
- return true;
- }
- case 'W': {
- Label done;
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ Cmp(current_character(), 'z');
- __ B(hi, &done);
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ Mov(x10, map);
- __ Ldrb(w10, MemOperand(x10, current_character(), UXTW));
- CompareAndBranchOrBacktrack(w10, 0, ne, on_no_match);
- __ Bind(&done);
- return true;
- }
- case '*':
- // Match any character.
- return true;
- // No custom implementation (yet): s(UC16), S(UC16).
- default:
- return false;
- }
-}
-
-
-void RegExpMacroAssemblerARM64::Fail() {
- __ Mov(w0, FAILURE);
- __ B(&exit_label_);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerARM64::GetCode(Handle<String> source) {
- Label return_w0;
- // Finalize code - write the entry point code now we know how many
- // registers we need.
-
- // Entry code:
- __ Bind(&entry_label_);
-
- // Arguments on entry:
- // x0: String* input
- // x1: int start_offset
- // x2: byte* input_start
- // x3: byte* input_end
- // x4: int* output array
- // x5: int output array size
- // x6: Address stack_base
- // x7: int direct_call
-
- // The stack pointer should be csp on entry.
- // csp[8]: address of the current isolate
- // csp[0]: secondary link/return address used by native call
-
- // Tell the system that we have a stack frame. Because the type is MANUAL, no
- // code is generated.
- FrameScope scope(masm_, StackFrame::MANUAL);
-
- // Push registers on the stack, only push the argument registers that we need.
- CPURegList argument_registers(x0, x5, x6, x7);
-
- CPURegList registers_to_retain = kCalleeSaved;
- DCHECK(kCalleeSaved.Count() == 11);
- registers_to_retain.Combine(lr);
-
- DCHECK(csp.Is(__ StackPointer()));
- __ PushCPURegList(registers_to_retain);
- __ PushCPURegList(argument_registers);
-
- // Set frame pointer in place.
- __ Add(frame_pointer(), csp, argument_registers.Count() * kPointerSize);
-
- // Initialize callee-saved registers.
- __ Mov(start_offset(), w1);
- __ Mov(input_start(), x2);
- __ Mov(input_end(), x3);
- __ Mov(output_array(), x4);
-
- // Set the number of registers we will need to allocate, that is:
- // - success_counter (X register)
- // - (num_registers_ - kNumCachedRegisters) (W registers)
- int num_wreg_to_allocate = num_registers_ - kNumCachedRegisters;
- // Do not allocate registers on the stack if they can all be cached.
- if (num_wreg_to_allocate < 0) { num_wreg_to_allocate = 0; }
- // Make room for the success_counter.
- num_wreg_to_allocate += 2;
-
- // Make sure the stack alignment will be respected.
- int alignment = masm_->ActivationFrameAlignment();
- DCHECK_EQ(alignment % 16, 0);
- int align_mask = (alignment / kWRegSize) - 1;
- num_wreg_to_allocate = (num_wreg_to_allocate + align_mask) & ~align_mask;
-
- // Check if we have space on the stack.
- Label stack_limit_hit;
- Label stack_ok;
-
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ Mov(x10, stack_limit);
- __ Ldr(x10, MemOperand(x10));
- __ Subs(x10, csp, x10);
-
- // Handle it if the stack pointer is already below the stack limit.
- __ B(ls, &stack_limit_hit);
-
- // Check if there is room for the variable number of registers above
- // the stack limit.
- __ Cmp(x10, num_wreg_to_allocate * kWRegSize);
- __ B(hs, &stack_ok);
-
- // Exit with OutOfMemory exception. There is not enough space on the stack
- // for our working registers.
- __ Mov(w0, EXCEPTION);
- __ B(&return_w0);
-
- __ Bind(&stack_limit_hit);
- CallCheckStackGuardState(x10);
- // If returned value is non-zero, we exit with the returned value as result.
- __ Cbnz(w0, &return_w0);
-
- __ Bind(&stack_ok);
-
- // Allocate space on stack.
- __ Claim(num_wreg_to_allocate, kWRegSize);
-
- // Initialize success_counter with 0.
- __ Str(wzr, MemOperand(frame_pointer(), kSuccessCounter));
-
- // Find negative length (offset of start relative to end).
- __ Sub(x10, input_start(), input_end());
- if (masm_->emit_debug_code()) {
- // Check that the input string length is < 2^30.
- __ Neg(x11, x10);
- __ Cmp(x11, (1<<30) - 1);
- __ Check(ls, kInputStringTooLong);
- }
- __ Mov(current_input_offset(), w10);
-
- // The non-position value is used as a clearing value for the
- // capture registers, it corresponds to the position of the first character
- // minus one.
- __ Sub(non_position_value(), current_input_offset(), char_size());
- __ Sub(non_position_value(), non_position_value(),
- Operand(start_offset(), LSL, (mode_ == UC16) ? 1 : 0));
- // We can store this value twice in an X register for initializing
- // on-stack registers later.
- __ Orr(twice_non_position_value(),
- non_position_value().X(),
- Operand(non_position_value().X(), LSL, kWRegSizeInBits));
-
- // Initialize code pointer register.
- __ Mov(code_pointer(), Operand(masm_->CodeObject()));
-
- Label load_char_start_regexp, start_regexp;
- // Load newline if index is at start, previous character otherwise.
- __ Cbnz(start_offset(), &load_char_start_regexp);
- __ Mov(current_character(), '\n');
- __ B(&start_regexp);
-
- // Global regexp restarts matching here.
- __ Bind(&load_char_start_regexp);
- // Load previous char as initial value of current character register.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ Bind(&start_regexp);
- // Initialize on-stack registers.
- if (num_saved_registers_ > 0) {
- ClearRegisters(0, num_saved_registers_ - 1);
- }
-
- // Initialize backtrack stack pointer.
- __ Ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackBase));
-
- // Execute
- __ B(&start_label_);
-
- if (backtrack_label_.is_linked()) {
- __ Bind(&backtrack_label_);
- Backtrack();
- }
-
- if (success_label_.is_linked()) {
- Register first_capture_start = w15;
-
- // Save captures when successful.
- __ Bind(&success_label_);
-
- if (num_saved_registers_ > 0) {
- // V8 expects the output to be an int32_t array.
- Register capture_start = w12;
- Register capture_end = w13;
- Register input_length = w14;
-
- // Copy captures to output.
-
- // Get string length.
- __ Sub(x10, input_end(), input_start());
- if (masm_->emit_debug_code()) {
- // Check that the input string length is < 2^30.
- __ Cmp(x10, (1<<30) - 1);
- __ Check(ls, kInputStringTooLong);
- }
- // input_start has a start_offset offset on entry. We need to include
- // it when computing the length of the whole string.
- if (mode_ == UC16) {
- __ Add(input_length, start_offset(), Operand(w10, LSR, 1));
- } else {
- __ Add(input_length, start_offset(), w10);
- }
-
- // Copy the results to the output array from the cached registers first.
- for (int i = 0;
- (i < num_saved_registers_) && (i < kNumCachedRegisters);
- i += 2) {
- __ Mov(capture_start.X(), GetCachedRegister(i));
- __ Lsr(capture_end.X(), capture_start.X(), kWRegSizeInBits);
- if ((i == 0) && global_with_zero_length_check()) {
- // Keep capture start for the zero-length check later.
- __ Mov(first_capture_start, capture_start);
- }
- // Offsets need to be relative to the start of the string.
- if (mode_ == UC16) {
- __ Add(capture_start, input_length, Operand(capture_start, ASR, 1));
- __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
- } else {
- __ Add(capture_start, input_length, capture_start);
- __ Add(capture_end, input_length, capture_end);
- }
- // The output pointer advances for a possible global match.
- __ Stp(capture_start,
- capture_end,
- MemOperand(output_array(), kPointerSize, PostIndex));
- }
-
- // Only carry on if there are more than kNumCachedRegisters capture
- // registers.
- int num_registers_left_on_stack =
- num_saved_registers_ - kNumCachedRegisters;
- if (num_registers_left_on_stack > 0) {
- Register base = x10;
- // There are always an even number of capture registers. A couple of
- // registers determine one match with two offsets.
- DCHECK_EQ(0, num_registers_left_on_stack % 2);
- __ Add(base, frame_pointer(), kFirstCaptureOnStack);
-
- // We can unroll the loop here, we should not unroll for less than 2
- // registers.
- STATIC_ASSERT(kNumRegistersToUnroll > 2);
- if (num_registers_left_on_stack <= kNumRegistersToUnroll) {
- for (int i = 0; i < num_registers_left_on_stack / 2; i++) {
- __ Ldp(capture_end,
- capture_start,
- MemOperand(base, -kPointerSize, PostIndex));
- if ((i == 0) && global_with_zero_length_check()) {
- // Keep capture start for the zero-length check later.
- __ Mov(first_capture_start, capture_start);
- }
- // Offsets need to be relative to the start of the string.
- if (mode_ == UC16) {
- __ Add(capture_start,
- input_length,
- Operand(capture_start, ASR, 1));
- __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
- } else {
- __ Add(capture_start, input_length, capture_start);
- __ Add(capture_end, input_length, capture_end);
- }
- // The output pointer advances for a possible global match.
- __ Stp(capture_start,
- capture_end,
- MemOperand(output_array(), kPointerSize, PostIndex));
- }
- } else {
- Label loop, start;
- __ Mov(x11, num_registers_left_on_stack);
-
- __ Ldp(capture_end,
- capture_start,
- MemOperand(base, -kPointerSize, PostIndex));
- if (global_with_zero_length_check()) {
- __ Mov(first_capture_start, capture_start);
- }
- __ B(&start);
-
- __ Bind(&loop);
- __ Ldp(capture_end,
- capture_start,
- MemOperand(base, -kPointerSize, PostIndex));
- __ Bind(&start);
- if (mode_ == UC16) {
- __ Add(capture_start, input_length, Operand(capture_start, ASR, 1));
- __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
- } else {
- __ Add(capture_start, input_length, capture_start);
- __ Add(capture_end, input_length, capture_end);
- }
- // The output pointer advances for a possible global match.
- __ Stp(capture_start,
- capture_end,
- MemOperand(output_array(), kPointerSize, PostIndex));
- __ Sub(x11, x11, 2);
- __ Cbnz(x11, &loop);
- }
- }
- }
-
- if (global()) {
- Register success_counter = w0;
- Register output_size = x10;
- // Restart matching if the regular expression is flagged as global.
-
- // Increment success counter.
- __ Ldr(success_counter, MemOperand(frame_pointer(), kSuccessCounter));
- __ Add(success_counter, success_counter, 1);
- __ Str(success_counter, MemOperand(frame_pointer(), kSuccessCounter));
-
- // Capture results have been stored, so the number of remaining global
- // output registers is reduced by the number of stored captures.
- __ Ldr(output_size, MemOperand(frame_pointer(), kOutputSize));
- __ Sub(output_size, output_size, num_saved_registers_);
- // Check whether we have enough room for another set of capture results.
- __ Cmp(output_size, num_saved_registers_);
- __ B(lt, &return_w0);
-
- // The output pointer is already set to the next field in the output
- // array.
- // Update output size on the frame before we restart matching.
- __ Str(output_size, MemOperand(frame_pointer(), kOutputSize));
-
- if (global_with_zero_length_check()) {
- // Special case for zero-length matches.
- __ Cmp(current_input_offset(), first_capture_start);
- // Not a zero-length match, restart.
- __ B(ne, &load_char_start_regexp);
- // Offset from the end is zero if we already reached the end.
- __ Cbz(current_input_offset(), &return_w0);
- // Advance current position after a zero-length match.
- __ Add(current_input_offset(),
- current_input_offset(),
- Operand((mode_ == UC16) ? 2 : 1));
- }
-
- __ B(&load_char_start_regexp);
- } else {
- __ Mov(w0, SUCCESS);
- }
- }
-
- if (exit_label_.is_linked()) {
- // Exit and return w0
- __ Bind(&exit_label_);
- if (global()) {
- __ Ldr(w0, MemOperand(frame_pointer(), kSuccessCounter));
- }
- }
-
- __ Bind(&return_w0);
-
- // Set stack pointer back to first register to retain
- DCHECK(csp.Is(__ StackPointer()));
- __ Mov(csp, fp);
- __ AssertStackConsistency();
-
- // Restore registers.
- __ PopCPURegList(registers_to_retain);
-
- __ Ret();
-
- Label exit_with_exception;
- // Registers x0 to x7 are used to store the first captures, they need to be
- // retained over calls to C++ code.
- CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7);
- DCHECK((cached_registers.Count() * 2) == kNumCachedRegisters);
-
- if (check_preempt_label_.is_linked()) {
- __ Bind(&check_preempt_label_);
- SaveLinkRegister();
- // The cached registers need to be retained.
- __ PushCPURegList(cached_registers);
- CallCheckStackGuardState(x10);
- // Returning from the regexp code restores the stack (csp <- fp)
- // so we don't need to drop the link register from it before exiting.
- __ Cbnz(w0, &return_w0);
- // Reset the cached registers.
- __ PopCPURegList(cached_registers);
- RestoreLinkRegister();
- __ Ret();
- }
-
- if (stack_overflow_label_.is_linked()) {
- __ Bind(&stack_overflow_label_);
- SaveLinkRegister();
- // The cached registers need to be retained.
- __ PushCPURegList(cached_registers);
- // Call GrowStack(backtrack_stackpointer(), &stack_base)
- __ Mov(x2, ExternalReference::isolate_address(isolate()));
- __ Add(x1, frame_pointer(), kStackBase);
- __ Mov(x0, backtrack_stackpointer());
- ExternalReference grow_stack =
- ExternalReference::re_grow_stack(isolate());
- __ CallCFunction(grow_stack, 3);
- // If return NULL, we have failed to grow the stack, and
- // must exit with a stack-overflow exception.
- // Returning from the regexp code restores the stack (csp <- fp)
- // so we don't need to drop the link register from it before exiting.
- __ Cbz(w0, &exit_with_exception);
- // Otherwise use return value as new stack pointer.
- __ Mov(backtrack_stackpointer(), x0);
- // Reset the cached registers.
- __ PopCPURegList(cached_registers);
- RestoreLinkRegister();
- __ Ret();
- }
-
- if (exit_with_exception.is_linked()) {
- __ Bind(&exit_with_exception);
- __ Mov(w0, EXCEPTION);
- __ B(&return_w0);
- }
-
- CodeDesc code_desc;
- masm_->GetCode(&code_desc);
- Handle<Code> code = isolate()->factory()->NewCode(
- code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
- PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
- return Handle<HeapObject>::cast(code);
-}
-
-
-void RegExpMacroAssemblerARM64::GoTo(Label* to) {
- BranchOrBacktrack(al, to);
-}
-
-void RegExpMacroAssemblerARM64::IfRegisterGE(int reg, int comparand,
- Label* if_ge) {
- Register to_compare = GetRegister(reg, w10);
- CompareAndBranchOrBacktrack(to_compare, comparand, ge, if_ge);
-}
-
-
-void RegExpMacroAssemblerARM64::IfRegisterLT(int reg, int comparand,
- Label* if_lt) {
- Register to_compare = GetRegister(reg, w10);
- CompareAndBranchOrBacktrack(to_compare, comparand, lt, if_lt);
-}
-
-
-void RegExpMacroAssemblerARM64::IfRegisterEqPos(int reg, Label* if_eq) {
- Register to_compare = GetRegister(reg, w10);
- __ Cmp(to_compare, current_input_offset());
- BranchOrBacktrack(eq, if_eq);
-}
-
-RegExpMacroAssembler::IrregexpImplementation
- RegExpMacroAssemblerARM64::Implementation() {
- return kARM64Implementation;
-}
-
-
-void RegExpMacroAssemblerARM64::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- // TODO(pielan): Make sure long strings are caught before this, and not
- // just asserted in debug mode.
- DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
- // Be sane! (And ensure that an int32_t can be used to index the string)
- DCHECK(cp_offset < (1<<30));
- if (check_bounds) {
- CheckPosition(cp_offset + characters - 1, on_end_of_input);
- }
- LoadCurrentCharacterUnchecked(cp_offset, characters);
-}
-
-
-void RegExpMacroAssemblerARM64::PopCurrentPosition() {
- Pop(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerARM64::PopRegister(int register_index) {
- Pop(w10);
- StoreRegister(register_index, w10);
-}
-
-
-void RegExpMacroAssemblerARM64::PushBacktrack(Label* label) {
- if (label->is_bound()) {
- int target = label->pos();
- __ Mov(w10, target + Code::kHeaderSize - kHeapObjectTag);
- } else {
- __ Adr(x10, label, MacroAssembler::kAdrFar);
- __ Sub(x10, x10, code_pointer());
- if (masm_->emit_debug_code()) {
- __ Cmp(x10, kWRegMask);
- // The code offset has to fit in a W register.
- __ Check(ls, kOffsetOutOfRange);
- }
- }
- Push(w10);
- CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerARM64::PushCurrentPosition() {
- Push(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerARM64::PushRegister(int register_index,
- StackCheckFlag check_stack_limit) {
- Register to_push = GetRegister(register_index, w10);
- Push(to_push);
- if (check_stack_limit) CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerARM64::ReadCurrentPositionFromRegister(int reg) {
- Register cached_register;
- RegisterState register_state = GetRegisterState(reg);
- switch (register_state) {
- case STACKED:
- __ Ldr(current_input_offset(), register_location(reg));
- break;
- case CACHED_LSW:
- cached_register = GetCachedRegister(reg);
- __ Mov(current_input_offset(), cached_register.W());
- break;
- case CACHED_MSW:
- cached_register = GetCachedRegister(reg);
- __ Lsr(current_input_offset().X(), cached_register, kWRegSizeInBits);
- break;
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void RegExpMacroAssemblerARM64::ReadStackPointerFromRegister(int reg) {
- Register read_from = GetRegister(reg, w10);
- __ Ldr(x11, MemOperand(frame_pointer(), kStackBase));
- __ Add(backtrack_stackpointer(), x11, Operand(read_from, SXTW));
-}
-
-
-void RegExpMacroAssemblerARM64::SetCurrentPositionFromEnd(int by) {
- Label after_position;
- __ Cmp(current_input_offset(), -by * char_size());
- __ B(ge, &after_position);
- __ Mov(current_input_offset(), -by * char_size());
- // On RegExp code entry (where this operation is used), the character before
- // the current position is expected to be already loaded.
- // We have advanced the position, so it's safe to read backwards.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ Bind(&after_position);
-}
-
-
-void RegExpMacroAssemblerARM64::SetRegister(int register_index, int to) {
- DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
- Register set_to = wzr;
- if (to != 0) {
- set_to = w10;
- __ Mov(set_to, to);
- }
- StoreRegister(register_index, set_to);
-}
-
-
-bool RegExpMacroAssemblerARM64::Succeed() {
- __ B(&success_label_);
- return global();
-}
-
-
-void RegExpMacroAssemblerARM64::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- Register position = current_input_offset();
- if (cp_offset != 0) {
- position = w10;
- __ Add(position, current_input_offset(), cp_offset * char_size());
- }
- StoreRegister(reg, position);
-}
-
-
-void RegExpMacroAssemblerARM64::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- int num_registers = reg_to - reg_from + 1;
-
- // If the first capture register is cached in a hardware register but not
- // aligned on a 64-bit one, we need to clear the first one specifically.
- if ((reg_from < kNumCachedRegisters) && ((reg_from % 2) != 0)) {
- StoreRegister(reg_from, non_position_value());
- num_registers--;
- reg_from++;
- }
-
- // Clear cached registers in pairs as far as possible.
- while ((num_registers >= 2) && (reg_from < kNumCachedRegisters)) {
- DCHECK(GetRegisterState(reg_from) == CACHED_LSW);
- __ Mov(GetCachedRegister(reg_from), twice_non_position_value());
- reg_from += 2;
- num_registers -= 2;
- }
-
- if ((num_registers % 2) == 1) {
- StoreRegister(reg_from, non_position_value());
- num_registers--;
- reg_from++;
- }
-
- if (num_registers > 0) {
- // If there are some remaining registers, they are stored on the stack.
- DCHECK(reg_from >= kNumCachedRegisters);
-
- // Move down the indexes of the registers on stack to get the correct offset
- // in memory.
- reg_from -= kNumCachedRegisters;
- reg_to -= kNumCachedRegisters;
- // We should not unroll the loop for less than 2 registers.
- STATIC_ASSERT(kNumRegistersToUnroll > 2);
- // We position the base pointer to (reg_from + 1).
- int base_offset = kFirstRegisterOnStack -
- kWRegSize - (kWRegSize * reg_from);
- if (num_registers > kNumRegistersToUnroll) {
- Register base = x10;
- __ Add(base, frame_pointer(), base_offset);
-
- Label loop;
- __ Mov(x11, num_registers);
- __ Bind(&loop);
- __ Str(twice_non_position_value(),
- MemOperand(base, -kPointerSize, PostIndex));
- __ Sub(x11, x11, 2);
- __ Cbnz(x11, &loop);
- } else {
- for (int i = reg_from; i <= reg_to; i += 2) {
- __ Str(twice_non_position_value(),
- MemOperand(frame_pointer(), base_offset));
- base_offset -= kWRegSize * 2;
- }
- }
- }
-}
-
-
-void RegExpMacroAssemblerARM64::WriteStackPointerToRegister(int reg) {
- __ Ldr(x10, MemOperand(frame_pointer(), kStackBase));
- __ Sub(x10, backtrack_stackpointer(), x10);
- if (masm_->emit_debug_code()) {
- __ Cmp(x10, Operand(w10, SXTW));
- // The stack offset needs to fit in a W register.
- __ Check(eq, kOffsetOutOfRange);
- }
- StoreRegister(reg, w10);
-}
-
-
-// Helper function for reading a value out of a stack frame.
-template <typename T>
-static T& frame_entry(Address re_frame, int frame_offset) {
- return *reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-template <typename T>
-static T* frame_entry_address(Address re_frame, int frame_offset) {
- return reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-int RegExpMacroAssemblerARM64::CheckStackGuardState(
- Address* return_address, Code* re_code, Address re_frame, int start_index,
- const byte** input_start, const byte** input_end) {
- return NativeRegExpMacroAssembler::CheckStackGuardState(
- frame_entry<Isolate*>(re_frame, kIsolate), start_index,
- frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
- frame_entry_address<String*>(re_frame, kInput), input_start, input_end);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckPosition(int cp_offset,
- Label* on_outside_input) {
- CompareAndBranchOrBacktrack(current_input_offset(),
- -cp_offset * char_size(),
- ge,
- on_outside_input);
-}
-
-
-bool RegExpMacroAssemblerARM64::CanReadUnaligned() {
- // TODO(pielan): See whether or not we should disable unaligned accesses.
- return !slow_safe();
-}
-
-
-// Private methods:
-
-void RegExpMacroAssemblerARM64::CallCheckStackGuardState(Register scratch) {
- // Allocate space on the stack to store the return address. The
- // CheckStackGuardState C++ function will override it if the code
- // moved. Allocate extra space for 2 arguments passed by pointers.
- // AAPCS64 requires the stack to be 16 byte aligned.
- int alignment = masm_->ActivationFrameAlignment();
- DCHECK_EQ(alignment % 16, 0);
- int align_mask = (alignment / kXRegSize) - 1;
- int xreg_to_claim = (3 + align_mask) & ~align_mask;
-
- DCHECK(csp.Is(__ StackPointer()));
- __ Claim(xreg_to_claim);
-
- // CheckStackGuardState needs the end and start addresses of the input string.
- __ Poke(input_end(), 2 * kPointerSize);
- __ Add(x5, csp, 2 * kPointerSize);
- __ Poke(input_start(), kPointerSize);
- __ Add(x4, csp, kPointerSize);
-
- __ Mov(w3, start_offset());
- // RegExp code frame pointer.
- __ Mov(x2, frame_pointer());
- // Code* of self.
- __ Mov(x1, Operand(masm_->CodeObject()));
-
- // We need to pass a pointer to the return address as first argument.
- // The DirectCEntry stub will place the return address on the stack before
- // calling so the stack pointer will point to it.
- __ Mov(x0, csp);
-
- ExternalReference check_stack_guard_state =
- ExternalReference::re_check_stack_guard_state(isolate());
- __ Mov(scratch, check_stack_guard_state);
- DirectCEntryStub stub(isolate());
- stub.GenerateCall(masm_, scratch);
-
- // The input string may have been moved in memory, we need to reload it.
- __ Peek(input_start(), kPointerSize);
- __ Peek(input_end(), 2 * kPointerSize);
-
- DCHECK(csp.Is(__ StackPointer()));
- __ Drop(xreg_to_claim);
-
- // Reload the Code pointer.
- __ Mov(code_pointer(), Operand(masm_->CodeObject()));
-}
-
-void RegExpMacroAssemblerARM64::BranchOrBacktrack(Condition condition,
- Label* to) {
- if (condition == al) { // Unconditional.
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ B(to);
- return;
- }
- if (to == NULL) {
- to = &backtrack_label_;
- }
- __ B(condition, to);
-}
-
-void RegExpMacroAssemblerARM64::CompareAndBranchOrBacktrack(Register reg,
- int immediate,
- Condition condition,
- Label* to) {
- if ((immediate == 0) && ((condition == eq) || (condition == ne))) {
- if (to == NULL) {
- to = &backtrack_label_;
- }
- if (condition == eq) {
- __ Cbz(reg, to);
- } else {
- __ Cbnz(reg, to);
- }
- } else {
- __ Cmp(reg, immediate);
- BranchOrBacktrack(condition, to);
- }
-}
-
-
-void RegExpMacroAssemblerARM64::CheckPreemption() {
- // Check for preemption.
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ Mov(x10, stack_limit);
- __ Ldr(x10, MemOperand(x10));
- DCHECK(csp.Is(__ StackPointer()));
- __ Cmp(csp, x10);
- CallIf(&check_preempt_label_, ls);
-}
-
-
-void RegExpMacroAssemblerARM64::CheckStackLimit() {
- ExternalReference stack_limit =
- ExternalReference::address_of_regexp_stack_limit(isolate());
- __ Mov(x10, stack_limit);
- __ Ldr(x10, MemOperand(x10));
- __ Cmp(backtrack_stackpointer(), x10);
- CallIf(&stack_overflow_label_, ls);
-}
-
-
-void RegExpMacroAssemblerARM64::Push(Register source) {
- DCHECK(source.Is32Bits());
- DCHECK(!source.is(backtrack_stackpointer()));
- __ Str(source,
- MemOperand(backtrack_stackpointer(),
- -static_cast<int>(kWRegSize),
- PreIndex));
-}
-
-
-void RegExpMacroAssemblerARM64::Pop(Register target) {
- DCHECK(target.Is32Bits());
- DCHECK(!target.is(backtrack_stackpointer()));
- __ Ldr(target,
- MemOperand(backtrack_stackpointer(), kWRegSize, PostIndex));
-}
-
-
-Register RegExpMacroAssemblerARM64::GetCachedRegister(int register_index) {
- DCHECK(register_index < kNumCachedRegisters);
- return Register::Create(register_index / 2, kXRegSizeInBits);
-}
-
-
-Register RegExpMacroAssemblerARM64::GetRegister(int register_index,
- Register maybe_result) {
- DCHECK(maybe_result.Is32Bits());
- DCHECK(register_index >= 0);
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- Register result;
- RegisterState register_state = GetRegisterState(register_index);
- switch (register_state) {
- case STACKED:
- __ Ldr(maybe_result, register_location(register_index));
- result = maybe_result;
- break;
- case CACHED_LSW:
- result = GetCachedRegister(register_index).W();
- break;
- case CACHED_MSW:
- __ Lsr(maybe_result.X(), GetCachedRegister(register_index),
- kWRegSizeInBits);
- result = maybe_result;
- break;
- default:
- UNREACHABLE();
- break;
- }
- DCHECK(result.Is32Bits());
- return result;
-}
-
-
-void RegExpMacroAssemblerARM64::StoreRegister(int register_index,
- Register source) {
- DCHECK(source.Is32Bits());
- DCHECK(register_index >= 0);
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
-
- Register cached_register;
- RegisterState register_state = GetRegisterState(register_index);
- switch (register_state) {
- case STACKED:
- __ Str(source, register_location(register_index));
- break;
- case CACHED_LSW:
- cached_register = GetCachedRegister(register_index);
- if (!source.Is(cached_register.W())) {
- __ Bfi(cached_register, source.X(), 0, kWRegSizeInBits);
- }
- break;
- case CACHED_MSW:
- cached_register = GetCachedRegister(register_index);
- __ Bfi(cached_register, source.X(), kWRegSizeInBits, kWRegSizeInBits);
- break;
- default:
- UNREACHABLE();
- break;
- }
-}
-
-
-void RegExpMacroAssemblerARM64::CallIf(Label* to, Condition condition) {
- Label skip_call;
- if (condition != al) __ B(&skip_call, NegateCondition(condition));
- __ Bl(to);
- __ Bind(&skip_call);
-}
-
-
-void RegExpMacroAssemblerARM64::RestoreLinkRegister() {
- DCHECK(csp.Is(__ StackPointer()));
- __ Pop(lr, xzr);
- __ Add(lr, lr, Operand(masm_->CodeObject()));
-}
-
-
-void RegExpMacroAssemblerARM64::SaveLinkRegister() {
- DCHECK(csp.Is(__ StackPointer()));
- __ Sub(lr, lr, Operand(masm_->CodeObject()));
- __ Push(xzr, lr);
-}
-
-
-MemOperand RegExpMacroAssemblerARM64::register_location(int register_index) {
- DCHECK(register_index < (1<<30));
- DCHECK(register_index >= kNumCachedRegisters);
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- register_index -= kNumCachedRegisters;
- int offset = kFirstRegisterOnStack - register_index * kWRegSize;
- return MemOperand(frame_pointer(), offset);
-}
-
-MemOperand RegExpMacroAssemblerARM64::capture_location(int register_index,
- Register scratch) {
- DCHECK(register_index < (1<<30));
- DCHECK(register_index < num_saved_registers_);
- DCHECK(register_index >= kNumCachedRegisters);
- DCHECK_EQ(register_index % 2, 0);
- register_index -= kNumCachedRegisters;
- int offset = kFirstCaptureOnStack - register_index * kWRegSize;
- // capture_location is used with Stp instructions to load/store 2 registers.
- // The immediate field in the encoding is limited to 7 bits (signed).
- if (is_int7(offset)) {
- return MemOperand(frame_pointer(), offset);
- } else {
- __ Add(scratch, frame_pointer(), offset);
- return MemOperand(scratch);
- }
-}
-
-void RegExpMacroAssemblerARM64::LoadCurrentCharacterUnchecked(int cp_offset,
- int characters) {
- Register offset = current_input_offset();
-
- // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
- // and the operating system running on the target allow it.
- // If unaligned load/stores are not supported then this function must only
- // be used to load a single character at a time.
-
- // ARMv8 supports unaligned accesses but V8 or the kernel can decide to
- // disable it.
- // TODO(pielan): See whether or not we should disable unaligned accesses.
- if (!CanReadUnaligned()) {
- DCHECK(characters == 1);
- }
-
- if (cp_offset != 0) {
- if (masm_->emit_debug_code()) {
- __ Mov(x10, cp_offset * char_size());
- __ Add(x10, x10, Operand(current_input_offset(), SXTW));
- __ Cmp(x10, Operand(w10, SXTW));
- // The offset needs to fit in a W register.
- __ Check(eq, kOffsetOutOfRange);
- } else {
- __ Add(w10, current_input_offset(), cp_offset * char_size());
- }
- offset = w10;
- }
-
- if (mode_ == LATIN1) {
- if (characters == 4) {
- __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW));
- } else if (characters == 2) {
- __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW));
- } else {
- DCHECK(characters == 1);
- __ Ldrb(current_character(), MemOperand(input_end(), offset, SXTW));
- }
- } else {
- DCHECK(mode_ == UC16);
- if (characters == 2) {
- __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW));
- } else {
- DCHECK(characters == 1);
- __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW));
- }
- }
-}
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
-
-#endif // V8_TARGET_ARCH_ARM64
+++ /dev/null
-// Copyright 2013 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
-#define V8_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
-
-#include "src/arm64/assembler-arm64.h"
-#include "src/macro-assembler.h"
-
-namespace v8 {
-namespace internal {
-
-
-#ifndef V8_INTERPRETED_REGEXP
-class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler {
- public:
- RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
- int registers_to_save);
- virtual ~RegExpMacroAssemblerARM64();
- virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
- virtual int stack_limit_slack();
- virtual void AdvanceCurrentPosition(int by);
- virtual void AdvanceRegister(int reg, int by);
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(unsigned c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- virtual void CheckCharacters(Vector<const uc16> str,
- int cp_offset,
- Label* on_failure,
- bool check_end_of_string);
- // A "greedy loop" is a loop that is both greedy and with a simple
- // body. It has a particularly simple implementation.
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
-
- // Checks whether the given offset from the current position is before
- // the end of the string.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input);
- virtual bool CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
- virtual bool CanReadUnaligned();
-
- // Called from RegExp if the stack-guard is triggered.
- // If the code object is relocated, the return address is fixed before
- // returning.
- static int CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame,
- int start_offset,
- const byte** input_start,
- const byte** input_end);
-
- private:
- // Above the frame pointer - Stored registers and stack passed parameters.
- // Callee-saved registers x19-x29, where x29 is the old frame pointer.
- static const int kCalleeSavedRegisters = 0;
- // Return address.
- // It is placed above the 11 callee-saved registers.
- static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
- static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
- // Stack parameter placed by caller.
- static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
-
- // Below the frame pointer.
- // Register parameters stored by setup code.
- static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
- static const int kStackBase = kDirectCall - kPointerSize;
- static const int kOutputSize = kStackBase - kPointerSize;
- static const int kInput = kOutputSize - kPointerSize;
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kSuccessCounter = kInput - kPointerSize;
- // First position register address on the stack. Following positions are
- // below it. A position is a 32 bit value.
- static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
- // A capture is a 64 bit value holding two position.
- static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
-
- // Initial size of code buffer.
- static const size_t kRegExpCodeSize = 1024;
-
- // When initializing registers to a non-position value we can unroll
- // the loop. Set the limit of registers to unroll.
- static const int kNumRegistersToUnroll = 16;
-
- // We are using x0 to x7 as a register cache. Each hardware register must
- // contain one capture, that is two 32 bit registers. We can cache at most
- // 16 registers.
- static const int kNumCachedRegisters = 16;
-
- // Load a number of characters at the given offset from the
- // current position, into the current-character register.
- void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
-
- // Check whether preemption has been requested.
- void CheckPreemption();
-
- // Check whether we are exceeding the stack limit on the backtrack stack.
- void CheckStackLimit();
-
- // Generate a call to CheckStackGuardState.
- void CallCheckStackGuardState(Register scratch);
-
- // Location of a 32 bit position register.
- MemOperand register_location(int register_index);
-
- // Location of a 64 bit capture, combining two position registers.
- MemOperand capture_location(int register_index, Register scratch);
-
- // Register holding the current input position as negative offset from
- // the end of the string.
- Register current_input_offset() { return w21; }
-
- // The register containing the current character after LoadCurrentCharacter.
- Register current_character() { return w22; }
-
- // Register holding address of the end of the input string.
- Register input_end() { return x25; }
-
- // Register holding address of the start of the input string.
- Register input_start() { return x26; }
-
- // Register holding the offset from the start of the string where we should
- // start matching.
- Register start_offset() { return w27; }
-
- // Pointer to the output array's first element.
- Register output_array() { return x28; }
-
- // Register holding the frame address. Local variables, parameters and
- // regexp registers are addressed relative to this.
- Register frame_pointer() { return fp; }
-
- // The register containing the backtrack stack top. Provides a meaningful
- // name to the register.
- Register backtrack_stackpointer() { return x23; }
-
- // Register holding pointer to the current code object.
- Register code_pointer() { return x20; }
-
- // Register holding the value used for clearing capture registers.
- Register non_position_value() { return w24; }
- // The top 32 bit of this register is used to store this value
- // twice. This is used for clearing more than one register at a time.
- Register twice_non_position_value() { return x24; }
-
- // Byte size of chars in the string to match (decided by the Mode argument)
- int char_size() { return static_cast<int>(mode_); }
-
- // Equivalent to a conditional branch to the label, unless the label
- // is NULL, in which case it is a conditional Backtrack.
- void BranchOrBacktrack(Condition condition, Label* to);
-
- // Compares reg against immmediate before calling BranchOrBacktrack.
- // It makes use of the Cbz and Cbnz instructions.
- void CompareAndBranchOrBacktrack(Register reg,
- int immediate,
- Condition condition,
- Label* to);
-
- inline void CallIf(Label* to, Condition condition);
-
- // Save and restore the link register on the stack in a way that
- // is GC-safe.
- inline void SaveLinkRegister();
- inline void RestoreLinkRegister();
-
- // Pushes the value of a register on the backtrack stack. Decrements the
- // stack pointer by a word size and stores the register's value there.
- inline void Push(Register source);
-
- // Pops a value from the backtrack stack. Reads the word at the stack pointer
- // and increments it by a word size.
- inline void Pop(Register target);
-
- // This state indicates where the register actually is.
- enum RegisterState {
- STACKED, // Resides in memory.
- CACHED_LSW, // Least Significant Word of a 64 bit hardware register.
- CACHED_MSW // Most Significant Word of a 64 bit hardware register.
- };
-
- RegisterState GetRegisterState(int register_index) {
- DCHECK(register_index >= 0);
- if (register_index >= kNumCachedRegisters) {
- return STACKED;
- } else {
- if ((register_index % 2) == 0) {
- return CACHED_LSW;
- } else {
- return CACHED_MSW;
- }
- }
- }
-
- // Store helper that takes the state of the register into account.
- inline void StoreRegister(int register_index, Register source);
-
- // Returns a hardware W register that holds the value of the capture
- // register.
- //
- // This function will try to use an existing cache register (w0-w7) for the
- // result. Otherwise, it will load the value into maybe_result.
- //
- // If the returned register is anything other than maybe_result, calling code
- // must not write to it.
- inline Register GetRegister(int register_index, Register maybe_result);
-
- // Returns the harware register (x0-x7) holding the value of the capture
- // register.
- // This assumes that the state of the register is not STACKED.
- inline Register GetCachedRegister(int register_index);
-
- Isolate* isolate() const { return masm_->isolate(); }
-
- MacroAssembler* masm_;
-
- // Which mode to generate code for (LATIN1 or UC16).
- Mode mode_;
-
- // One greater than maximal register index actually used.
- int num_registers_;
-
- // Number of registers to output at the end (the saved registers
- // are always 0..num_saved_registers_-1)
- int num_saved_registers_;
-
- // Labels used internally.
- Label entry_label_;
- Label start_label_;
- Label success_label_;
- Label backtrack_label_;
- Label exit_label_;
- Label check_preempt_label_;
- Label stack_overflow_label_;
-};
-
-#endif // V8_INTERPRETED_REGEXP
-
-
-}} // namespace v8::internal
-
-#endif // V8_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
#include "src/execution.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/serialize.h"
#include "src/token.h"
// Include native regexp-macro-assembler.
#ifndef V8_INTERPRETED_REGEXP
#if V8_TARGET_ARCH_IA32
-#include "src/ia32/regexp-macro-assembler-ia32.h" // NOLINT
+#include "src/regexp/ia32/regexp-macro-assembler-ia32.h" // NOLINT
#elif V8_TARGET_ARCH_X64
-#include "src/x64/regexp-macro-assembler-x64.h" // NOLINT
+#include "src/regexp/x64/regexp-macro-assembler-x64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM64
-#include "src/arm64/regexp-macro-assembler-arm64.h" // NOLINT
+#include "src/regexp/arm64/regexp-macro-assembler-arm64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM
-#include "src/arm/regexp-macro-assembler-arm.h" // NOLINT
+#include "src/regexp/arm/regexp-macro-assembler-arm.h" // NOLINT
#elif V8_TARGET_ARCH_PPC
-#include "src/ppc/regexp-macro-assembler-ppc.h" // NOLINT
+#include "src/regexp/ppc/regexp-macro-assembler-ppc.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS
-#include "src/mips/regexp-macro-assembler-mips.h" // NOLINT
+#include "src/regexp/mips/regexp-macro-assembler-mips.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS64
-#include "src/mips64/regexp-macro-assembler-mips64.h" // NOLINT
+#include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_X87
-#include "src/x87/regexp-macro-assembler-x87.h" // NOLINT
+#include "src/regexp/x87/regexp-macro-assembler-x87.h" // NOLINT
#else // Unknown architecture.
#error "Unknown architecture."
#endif // Target architecture.
#include "src/base/smart-pointers.h"
#include "src/factory.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
#include "src/list.h"
#include "src/modules.h"
+#include "src/regexp/jsregexp.h"
#include "src/runtime/runtime.h"
#include "src/small-pointer-list.h"
#include "src/token.h"
+++ /dev/null
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-
-#ifndef V8_BYTECODES_IRREGEXP_H_
-#define V8_BYTECODES_IRREGEXP_H_
-
-namespace v8 {
-namespace internal {
-
-
-const int BYTECODE_MASK = 0xff;
-// The first argument is packed in with the byte code in one word, but so it
-// has 24 bits, but it can be positive and negative so only use 23 bits for
-// positive values.
-const unsigned int MAX_FIRST_ARG = 0x7fffffu;
-const int BYTECODE_SHIFT = 8;
-
-#define BYTECODE_ITERATOR(V) \
-V(BREAK, 0, 4) /* bc8 */ \
-V(PUSH_CP, 1, 4) /* bc8 pad24 */ \
-V(PUSH_BT, 2, 8) /* bc8 pad24 offset32 */ \
-V(PUSH_REGISTER, 3, 4) /* bc8 reg_idx24 */ \
-V(SET_REGISTER_TO_CP, 4, 8) /* bc8 reg_idx24 offset32 */ \
-V(SET_CP_TO_REGISTER, 5, 4) /* bc8 reg_idx24 */ \
-V(SET_REGISTER_TO_SP, 6, 4) /* bc8 reg_idx24 */ \
-V(SET_SP_TO_REGISTER, 7, 4) /* bc8 reg_idx24 */ \
-V(SET_REGISTER, 8, 8) /* bc8 reg_idx24 value32 */ \
-V(ADVANCE_REGISTER, 9, 8) /* bc8 reg_idx24 value32 */ \
-V(POP_CP, 10, 4) /* bc8 pad24 */ \
-V(POP_BT, 11, 4) /* bc8 pad24 */ \
-V(POP_REGISTER, 12, 4) /* bc8 reg_idx24 */ \
-V(FAIL, 13, 4) /* bc8 pad24 */ \
-V(SUCCEED, 14, 4) /* bc8 pad24 */ \
-V(ADVANCE_CP, 15, 4) /* bc8 offset24 */ \
-V(GOTO, 16, 8) /* bc8 pad24 addr32 */ \
-V(LOAD_CURRENT_CHAR, 17, 8) /* bc8 offset24 addr32 */ \
-V(LOAD_CURRENT_CHAR_UNCHECKED, 18, 4) /* bc8 offset24 */ \
-V(LOAD_2_CURRENT_CHARS, 19, 8) /* bc8 offset24 addr32 */ \
-V(LOAD_2_CURRENT_CHARS_UNCHECKED, 20, 4) /* bc8 offset24 */ \
-V(LOAD_4_CURRENT_CHARS, 21, 8) /* bc8 offset24 addr32 */ \
-V(LOAD_4_CURRENT_CHARS_UNCHECKED, 22, 4) /* bc8 offset24 */ \
-V(CHECK_4_CHARS, 23, 12) /* bc8 pad24 uint32 addr32 */ \
-V(CHECK_CHAR, 24, 8) /* bc8 pad8 uint16 addr32 */ \
-V(CHECK_NOT_4_CHARS, 25, 12) /* bc8 pad24 uint32 addr32 */ \
-V(CHECK_NOT_CHAR, 26, 8) /* bc8 pad8 uint16 addr32 */ \
-V(AND_CHECK_4_CHARS, 27, 16) /* bc8 pad24 uint32 uint32 addr32 */ \
-V(AND_CHECK_CHAR, 28, 12) /* bc8 pad8 uint16 uint32 addr32 */ \
-V(AND_CHECK_NOT_4_CHARS, 29, 16) /* bc8 pad24 uint32 uint32 addr32 */ \
-V(AND_CHECK_NOT_CHAR, 30, 12) /* bc8 pad8 uint16 uint32 addr32 */ \
-V(MINUS_AND_CHECK_NOT_CHAR, 31, 12) /* bc8 pad8 uc16 uc16 uc16 addr32 */ \
-V(CHECK_CHAR_IN_RANGE, 32, 12) /* bc8 pad24 uc16 uc16 addr32 */ \
-V(CHECK_CHAR_NOT_IN_RANGE, 33, 12) /* bc8 pad24 uc16 uc16 addr32 */ \
-V(CHECK_BIT_IN_TABLE, 34, 24) /* bc8 pad24 addr32 bits128 */ \
-V(CHECK_LT, 35, 8) /* bc8 pad8 uc16 addr32 */ \
-V(CHECK_GT, 36, 8) /* bc8 pad8 uc16 addr32 */ \
-V(CHECK_NOT_BACK_REF, 37, 8) /* bc8 reg_idx24 addr32 */ \
-V(CHECK_NOT_BACK_REF_NO_CASE, 38, 8) /* bc8 reg_idx24 addr32 */ \
-V(CHECK_NOT_REGS_EQUAL, 39, 12) /* bc8 regidx24 reg_idx32 addr32 */ \
-V(CHECK_REGISTER_LT, 40, 12) /* bc8 reg_idx24 value32 addr32 */ \
-V(CHECK_REGISTER_GE, 41, 12) /* bc8 reg_idx24 value32 addr32 */ \
-V(CHECK_REGISTER_EQ_POS, 42, 8) /* bc8 reg_idx24 addr32 */ \
-V(CHECK_AT_START, 43, 8) /* bc8 pad24 addr32 */ \
-V(CHECK_NOT_AT_START, 44, 8) /* bc8 pad24 addr32 */ \
-V(CHECK_GREEDY, 45, 8) /* bc8 pad24 addr32 */ \
-V(ADVANCE_CP_AND_GOTO, 46, 8) /* bc8 offset24 addr32 */ \
-V(SET_CURRENT_POSITION_FROM_END, 47, 4) /* bc8 idx24 */
-
-#define DECLARE_BYTECODES(name, code, length) \
- static const int BC_##name = code;
-BYTECODE_ITERATOR(DECLARE_BYTECODES)
-#undef DECLARE_BYTECODES
-
-#define DECLARE_BYTECODE_LENGTH(name, code, length) \
- static const int BC_##name##_LENGTH = length;
-BYTECODE_ITERATOR(DECLARE_BYTECODE_LENGTH)
-#undef DECLARE_BYTECODE_LENGTH
-} }
-
-#endif // V8_BYTECODES_IRREGEXP_H_
#include "src/vm-state-inl.h"
#if V8_TARGET_ARCH_PPC && !V8_INTERPRETED_REGEXP
-#include "src/regexp-macro-assembler.h" // NOLINT
-#include "src/ppc/regexp-macro-assembler-ppc.h" // NOLINT
+#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
+#include "src/regexp/regexp-macro-assembler.h"
#endif
#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
-#include "src/regexp-macro-assembler.h" // NOLINT
-#include "src/arm/regexp-macro-assembler-arm.h" // NOLINT
+#include "src/regexp/arm/regexp-macro-assembler-arm.h"
+#include "src/regexp/regexp-macro-assembler.h"
#endif
#if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
-#include "src/regexp-macro-assembler.h" // NOLINT
-#include "src/mips/regexp-macro-assembler-mips.h" // NOLINT
+#include "src/regexp/mips/regexp-macro-assembler-mips.h"
+#include "src/regexp/regexp-macro-assembler.h"
#endif
#if V8_TARGET_ARCH_MIPS64 && !V8_INTERPRETED_REGEXP
-#include "src/regexp-macro-assembler.h"
-#include "src/mips64/regexp-macro-assembler-mips64.h"
+#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
+#include "src/regexp/regexp-macro-assembler.h"
#endif
namespace v8 {
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#if V8_TARGET_ARCH_IA32
-
-#include "src/cpu-profiler.h"
-#include "src/log.h"
-#include "src/macro-assembler.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/unicode.h"
-
-#include "src/ia32/regexp-macro-assembler-ia32.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-/*
- * This assembler uses the following register assignment convention
- * - edx : Current character. Must be loaded using LoadCurrentCharacter
- * before using any of the dispatch methods. Temporarily stores the
- * index of capture start after a matching pass for a global regexp.
- * - edi : Current position in input, as negative offset from end of string.
- * Please notice that this is the byte offset, not the character offset!
- * - esi : end of input (points to byte after last character in input).
- * - ebp : Frame pointer. Used to access arguments, local variables and
- * RegExp registers.
- * - esp : Points to tip of C stack.
- * - ecx : Points to tip of backtrack stack
- *
- * The registers eax and ebx are free to use for computations.
- *
- * Each call to a public method should retain this convention.
- * The stack will have the following structure:
- * - Isolate* isolate (address of the current isolate)
- * - direct_call (if 1, direct call from JavaScript code, if 0
- * call through the runtime system)
- * - stack_area_base (high end of the memory area to use as
- * backtracking stack)
- * - capture array size (may fit multiple sets of matches)
- * - int* capture_array (int[num_saved_registers_], for output).
- * - end of input (address of end of string)
- * - start of input (address of first character in string)
- * - start index (character index of start)
- * - String* input_string (location of a handle containing the string)
- * --- frame alignment (if applicable) ---
- * - return address
- * ebp-> - old ebp
- * - backup of caller esi
- * - backup of caller edi
- * - backup of caller ebx
- * - success counter (only for global regexps to count matches).
- * - Offset of location before start of input (effectively character
- * position -1). Used to initialize capture registers to a non-position.
- * - register 0 ebp[-4] (only positions must be stored in the first
- * - register 1 ebp[-8] num_saved_registers_ registers)
- * - ...
- *
- * The first num_saved_registers_ registers are initialized to point to
- * "character -1" in the string (i.e., char_size() bytes before the first
- * character of the string). The remaining registers starts out as garbage.
- *
- * The data up to the return address must be placed there by the calling
- * code, by calling the code entry as cast to a function with the signature:
- * int (*match)(String* input_string,
- * int start_index,
- * Address start,
- * Address end,
- * int* capture_output_array,
- * bool at_start,
- * byte* stack_area_base,
- * bool direct_call)
- */
-
-#define __ ACCESS_MASM(masm_)
-
-RegExpMacroAssemblerIA32::RegExpMacroAssemblerIA32(Isolate* isolate, Zone* zone,
- Mode mode,
- int registers_to_save)
- : NativeRegExpMacroAssembler(isolate, zone),
- masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
- mode_(mode),
- num_registers_(registers_to_save),
- num_saved_registers_(registers_to_save),
- entry_label_(),
- start_label_(),
- success_label_(),
- backtrack_label_(),
- exit_label_() {
- DCHECK_EQ(0, registers_to_save % 2);
- __ jmp(&entry_label_); // We'll write the entry code later.
- __ bind(&start_label_); // And then continue from here.
-}
-
-
-RegExpMacroAssemblerIA32::~RegExpMacroAssemblerIA32() {
- delete masm_;
- // Unuse labels in case we throw away the assembler without calling GetCode.
- entry_label_.Unuse();
- start_label_.Unuse();
- success_label_.Unuse();
- backtrack_label_.Unuse();
- exit_label_.Unuse();
- check_preempt_label_.Unuse();
- stack_overflow_label_.Unuse();
-}
-
-
-int RegExpMacroAssemblerIA32::stack_limit_slack() {
- return RegExpStack::kStackLimitSlack;
-}
-
-
-void RegExpMacroAssemblerIA32::AdvanceCurrentPosition(int by) {
- if (by != 0) {
- __ add(edi, Immediate(by * char_size()));
- }
-}
-
-
-void RegExpMacroAssemblerIA32::AdvanceRegister(int reg, int by) {
- DCHECK(reg >= 0);
- DCHECK(reg < num_registers_);
- if (by != 0) {
- __ add(register_location(reg), Immediate(by));
- }
-}
-
-
-void RegExpMacroAssemblerIA32::Backtrack() {
- CheckPreemption();
- // Pop Code* offset from backtrack stack, add Code* and jump to location.
- Pop(ebx);
- __ add(ebx, Immediate(masm_->CodeObject()));
- __ jmp(ebx);
-}
-
-
-void RegExpMacroAssemblerIA32::Bind(Label* label) {
- __ bind(label);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckCharacter(uint32_t c, Label* on_equal) {
- __ cmp(current_character(), c);
- BranchOrBacktrack(equal, on_equal);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckCharacterGT(uc16 limit, Label* on_greater) {
- __ cmp(current_character(), limit);
- BranchOrBacktrack(greater, on_greater);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckAtStart(Label* on_at_start) {
- Label not_at_start;
- // Did we start the match at the start of the string at all?
- __ cmp(Operand(ebp, kStartIndex), Immediate(0));
- BranchOrBacktrack(not_equal, ¬_at_start);
- // If we did, are we still at the start of the input?
- __ lea(eax, Operand(esi, edi, times_1, 0));
- __ cmp(eax, Operand(ebp, kInputStart));
- BranchOrBacktrack(equal, on_at_start);
- __ bind(¬_at_start);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckNotAtStart(Label* on_not_at_start) {
- // Did we start the match at the start of the string at all?
- __ cmp(Operand(ebp, kStartIndex), Immediate(0));
- BranchOrBacktrack(not_equal, on_not_at_start);
- // If we did, are we still at the start of the input?
- __ lea(eax, Operand(esi, edi, times_1, 0));
- __ cmp(eax, Operand(ebp, kInputStart));
- BranchOrBacktrack(not_equal, on_not_at_start);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckCharacterLT(uc16 limit, Label* on_less) {
- __ cmp(current_character(), limit);
- BranchOrBacktrack(less, on_less);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckGreedyLoop(Label* on_equal) {
- Label fallthrough;
- __ cmp(edi, Operand(backtrack_stackpointer(), 0));
- __ j(not_equal, &fallthrough);
- __ add(backtrack_stackpointer(), Immediate(kPointerSize)); // Pop.
- BranchOrBacktrack(no_condition, on_equal);
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- __ mov(edx, register_location(start_reg)); // Index of start of capture
- __ mov(ebx, register_location(start_reg + 1)); // Index of end of capture
- __ sub(ebx, edx); // Length of capture.
-
- // The length of a capture should not be negative. This can only happen
- // if the end of the capture is unrecorded, or at a point earlier than
- // the start of the capture.
- BranchOrBacktrack(less, on_no_match);
-
- // If length is zero, either the capture is empty or it is completely
- // uncaptured. In either case succeed immediately.
- __ j(equal, &fallthrough);
-
- // Check that there are sufficient characters left in the input.
- __ mov(eax, edi);
- __ add(eax, ebx);
- BranchOrBacktrack(greater, on_no_match);
-
- if (mode_ == LATIN1) {
- Label success;
- Label fail;
- Label loop_increment;
- // Save register contents to make the registers available below.
- __ push(edi);
- __ push(backtrack_stackpointer());
- // After this, the eax, ecx, and edi registers are available.
-
- __ add(edx, esi); // Start of capture
- __ add(edi, esi); // Start of text to match against capture.
- __ add(ebx, edi); // End of text to match against capture.
-
- Label loop;
- __ bind(&loop);
- __ movzx_b(eax, Operand(edi, 0));
- __ cmpb_al(Operand(edx, 0));
- __ j(equal, &loop_increment);
-
- // Mismatch, try case-insensitive match (converting letters to lower-case).
- __ or_(eax, 0x20); // Convert match character to lower-case.
- __ lea(ecx, Operand(eax, -'a'));
- __ cmp(ecx, static_cast<int32_t>('z' - 'a')); // Is eax a lowercase letter?
- Label convert_capture;
- __ j(below_equal, &convert_capture); // In range 'a'-'z'.
- // Latin-1: Check for values in range [224,254] but not 247.
- __ sub(ecx, Immediate(224 - 'a'));
- __ cmp(ecx, Immediate(254 - 224));
- __ j(above, &fail); // Weren't Latin-1 letters.
- __ cmp(ecx, Immediate(247 - 224)); // Check for 247.
- __ j(equal, &fail);
- __ bind(&convert_capture);
- // Also convert capture character.
- __ movzx_b(ecx, Operand(edx, 0));
- __ or_(ecx, 0x20);
-
- __ cmp(eax, ecx);
- __ j(not_equal, &fail);
-
- __ bind(&loop_increment);
- // Increment pointers into match and capture strings.
- __ add(edx, Immediate(1));
- __ add(edi, Immediate(1));
- // Compare to end of match, and loop if not done.
- __ cmp(edi, ebx);
- __ j(below, &loop);
- __ jmp(&success);
-
- __ bind(&fail);
- // Restore original values before failing.
- __ pop(backtrack_stackpointer());
- __ pop(edi);
- BranchOrBacktrack(no_condition, on_no_match);
-
- __ bind(&success);
- // Restore original value before continuing.
- __ pop(backtrack_stackpointer());
- // Drop original value of character position.
- __ add(esp, Immediate(kPointerSize));
- // Compute new value of character position after the matched part.
- __ sub(edi, esi);
- } else {
- DCHECK(mode_ == UC16);
- // Save registers before calling C function.
- __ push(esi);
- __ push(edi);
- __ push(backtrack_stackpointer());
- __ push(ebx);
-
- static const int argument_count = 4;
- __ PrepareCallCFunction(argument_count, ecx);
- // Put arguments into allocated stack area, last argument highest on stack.
- // Parameters are
- // Address byte_offset1 - Address captured substring's start.
- // Address byte_offset2 - Address of current character position.
- // size_t byte_length - length of capture in bytes(!)
- // Isolate* isolate
-
- // Set isolate.
- __ mov(Operand(esp, 3 * kPointerSize),
- Immediate(ExternalReference::isolate_address(isolate())));
- // Set byte_length.
- __ mov(Operand(esp, 2 * kPointerSize), ebx);
- // Set byte_offset2.
- // Found by adding negative string-end offset of current position (edi)
- // to end of string.
- __ add(edi, esi);
- __ mov(Operand(esp, 1 * kPointerSize), edi);
- // Set byte_offset1.
- // Start of capture, where edx already holds string-end negative offset.
- __ add(edx, esi);
- __ mov(Operand(esp, 0 * kPointerSize), edx);
-
- {
- AllowExternalCallThatCantCauseGC scope(masm_);
- ExternalReference compare =
- ExternalReference::re_case_insensitive_compare_uc16(isolate());
- __ CallCFunction(compare, argument_count);
- }
- // Pop original values before reacting on result value.
- __ pop(ebx);
- __ pop(backtrack_stackpointer());
- __ pop(edi);
- __ pop(esi);
-
- // Check if function returned non-zero for success or zero for failure.
- __ or_(eax, eax);
- BranchOrBacktrack(zero, on_no_match);
- // On success, increment position by length of capture.
- __ add(edi, ebx);
- }
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckNotBackReference(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- Label success;
- Label fail;
-
- // Find length of back-referenced capture.
- __ mov(edx, register_location(start_reg));
- __ mov(eax, register_location(start_reg + 1));
- __ sub(eax, edx); // Length to check.
- // Fail on partial or illegal capture (start of capture after end of capture).
- BranchOrBacktrack(less, on_no_match);
- // Succeed on empty capture (including no capture)
- __ j(equal, &fallthrough);
-
- // Check that there are sufficient characters left in the input.
- __ mov(ebx, edi);
- __ add(ebx, eax);
- BranchOrBacktrack(greater, on_no_match);
-
- // Save register to make it available below.
- __ push(backtrack_stackpointer());
-
- // Compute pointers to match string and capture string
- __ lea(ebx, Operand(esi, edi, times_1, 0)); // Start of match.
- __ add(edx, esi); // Start of capture.
- __ lea(ecx, Operand(eax, ebx, times_1, 0)); // End of match
-
- Label loop;
- __ bind(&loop);
- if (mode_ == LATIN1) {
- __ movzx_b(eax, Operand(edx, 0));
- __ cmpb_al(Operand(ebx, 0));
- } else {
- DCHECK(mode_ == UC16);
- __ movzx_w(eax, Operand(edx, 0));
- __ cmpw_ax(Operand(ebx, 0));
- }
- __ j(not_equal, &fail);
- // Increment pointers into capture and match string.
- __ add(edx, Immediate(char_size()));
- __ add(ebx, Immediate(char_size()));
- // Check if we have reached end of match area.
- __ cmp(ebx, ecx);
- __ j(below, &loop);
- __ jmp(&success);
-
- __ bind(&fail);
- // Restore backtrack stackpointer.
- __ pop(backtrack_stackpointer());
- BranchOrBacktrack(no_condition, on_no_match);
-
- __ bind(&success);
- // Move current character position to position after match.
- __ mov(edi, ecx);
- __ sub(edi, esi);
- // Restore backtrack stackpointer.
- __ pop(backtrack_stackpointer());
-
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckNotCharacter(uint32_t c,
- Label* on_not_equal) {
- __ cmp(current_character(), c);
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal) {
- if (c == 0) {
- __ test(current_character(), Immediate(mask));
- } else {
- __ mov(eax, mask);
- __ and_(eax, current_character());
- __ cmp(eax, c);
- }
- BranchOrBacktrack(equal, on_equal);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal) {
- if (c == 0) {
- __ test(current_character(), Immediate(mask));
- } else {
- __ mov(eax, mask);
- __ and_(eax, current_character());
- __ cmp(eax, c);
- }
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- DCHECK(minus < String::kMaxUtf16CodeUnit);
- __ lea(eax, Operand(current_character(), -minus));
- if (c == 0) {
- __ test(eax, Immediate(mask));
- } else {
- __ and_(eax, mask);
- __ cmp(eax, c);
- }
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- __ lea(eax, Operand(current_character(), -from));
- __ cmp(eax, to - from);
- BranchOrBacktrack(below_equal, on_in_range);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- __ lea(eax, Operand(current_character(), -from));
- __ cmp(eax, to - from);
- BranchOrBacktrack(above, on_not_in_range);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckBitInTable(
- Handle<ByteArray> table,
- Label* on_bit_set) {
- __ mov(eax, Immediate(table));
- Register index = current_character();
- if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
- __ mov(ebx, kTableSize - 1);
- __ and_(ebx, current_character());
- index = ebx;
- }
- __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize), 0);
- BranchOrBacktrack(not_equal, on_bit_set);
-}
-
-
-bool RegExpMacroAssemblerIA32::CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- // Range checks (c in min..max) are generally implemented by an unsigned
- // (c - min) <= (max - min) check
- switch (type) {
- case 's':
- // Match space-characters
- if (mode_ == LATIN1) {
- // One byte space characters are '\t'..'\r', ' ' and \u00a0.
- Label success;
- __ cmp(current_character(), ' ');
- __ j(equal, &success, Label::kNear);
- // Check range 0x09..0x0d
- __ lea(eax, Operand(current_character(), -'\t'));
- __ cmp(eax, '\r' - '\t');
- __ j(below_equal, &success, Label::kNear);
- // \u00a0 (NBSP).
- __ cmp(eax, 0x00a0 - '\t');
- BranchOrBacktrack(not_equal, on_no_match);
- __ bind(&success);
- return true;
- }
- return false;
- case 'S':
- // The emitted code for generic character classes is good enough.
- return false;
- case 'd':
- // Match ASCII digits ('0'..'9')
- __ lea(eax, Operand(current_character(), -'0'));
- __ cmp(eax, '9' - '0');
- BranchOrBacktrack(above, on_no_match);
- return true;
- case 'D':
- // Match non ASCII-digits
- __ lea(eax, Operand(current_character(), -'0'));
- __ cmp(eax, '9' - '0');
- BranchOrBacktrack(below_equal, on_no_match);
- return true;
- case '.': {
- // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- __ mov(eax, current_character());
- __ xor_(eax, Immediate(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ sub(eax, Immediate(0x0b));
- __ cmp(eax, 0x0c - 0x0b);
- BranchOrBacktrack(below_equal, on_no_match);
- if (mode_ == UC16) {
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ sub(eax, Immediate(0x2028 - 0x0b));
- __ cmp(eax, 0x2029 - 0x2028);
- BranchOrBacktrack(below_equal, on_no_match);
- }
- return true;
- }
- case 'w': {
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmp(current_character(), Immediate('z'));
- BranchOrBacktrack(above, on_no_match);
- }
- DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
- ExternalReference word_map = ExternalReference::re_word_character_map();
- __ test_b(current_character(),
- Operand::StaticArray(current_character(), times_1, word_map));
- BranchOrBacktrack(zero, on_no_match);
- return true;
- }
- case 'W': {
- Label done;
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmp(current_character(), Immediate('z'));
- __ j(above, &done);
- }
- DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
- ExternalReference word_map = ExternalReference::re_word_character_map();
- __ test_b(current_character(),
- Operand::StaticArray(current_character(), times_1, word_map));
- BranchOrBacktrack(not_zero, on_no_match);
- if (mode_ != LATIN1) {
- __ bind(&done);
- }
- return true;
- }
- // Non-standard classes (with no syntactic shorthand) used internally.
- case '*':
- // Match any character.
- return true;
- case 'n': {
- // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
- // The opposite of '.'.
- __ mov(eax, current_character());
- __ xor_(eax, Immediate(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ sub(eax, Immediate(0x0b));
- __ cmp(eax, 0x0c - 0x0b);
- if (mode_ == LATIN1) {
- BranchOrBacktrack(above, on_no_match);
- } else {
- Label done;
- BranchOrBacktrack(below_equal, &done);
- DCHECK_EQ(UC16, mode_);
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ sub(eax, Immediate(0x2028 - 0x0b));
- __ cmp(eax, 1);
- BranchOrBacktrack(above, on_no_match);
- __ bind(&done);
- }
- return true;
- }
- // No custom implementation (yet): s(UC16), S(UC16).
- default:
- return false;
- }
-}
-
-
-void RegExpMacroAssemblerIA32::Fail() {
- STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
- if (!global()) {
- __ Move(eax, Immediate(FAILURE));
- }
- __ jmp(&exit_label_);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerIA32::GetCode(Handle<String> source) {
- Label return_eax;
- // Finalize code - write the entry point code now we know how many
- // registers we need.
-
- // Entry code:
- __ bind(&entry_label_);
-
- // Tell the system that we have a stack frame. Because the type is MANUAL, no
- // code is generated.
- FrameScope scope(masm_, StackFrame::MANUAL);
-
- // Actually emit code to start a new stack frame.
- __ push(ebp);
- __ mov(ebp, esp);
- // Save callee-save registers. Order here should correspond to order of
- // kBackup_ebx etc.
- __ push(esi);
- __ push(edi);
- __ push(ebx); // Callee-save on MacOS.
- __ push(Immediate(0)); // Number of successful matches in a global regexp.
- __ push(Immediate(0)); // Make room for "input start - 1" constant.
-
- // Check if we have space on the stack for registers.
- Label stack_limit_hit;
- Label stack_ok;
-
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ mov(ecx, esp);
- __ sub(ecx, Operand::StaticVariable(stack_limit));
- // Handle it if the stack pointer is already below the stack limit.
- __ j(below_equal, &stack_limit_hit);
- // Check if there is room for the variable number of registers above
- // the stack limit.
- __ cmp(ecx, num_registers_ * kPointerSize);
- __ j(above_equal, &stack_ok);
- // Exit with OutOfMemory exception. There is not enough space on the stack
- // for our working registers.
- __ mov(eax, EXCEPTION);
- __ jmp(&return_eax);
-
- __ bind(&stack_limit_hit);
- CallCheckStackGuardState(ebx);
- __ or_(eax, eax);
- // If returned value is non-zero, we exit with the returned value as result.
- __ j(not_zero, &return_eax);
-
- __ bind(&stack_ok);
- // Load start index for later use.
- __ mov(ebx, Operand(ebp, kStartIndex));
-
- // Allocate space on stack for registers.
- __ sub(esp, Immediate(num_registers_ * kPointerSize));
- // Load string length.
- __ mov(esi, Operand(ebp, kInputEnd));
- // Load input position.
- __ mov(edi, Operand(ebp, kInputStart));
- // Set up edi to be negative offset from string end.
- __ sub(edi, esi);
-
- // Set eax to address of char before start of the string.
- // (effectively string position -1).
- __ neg(ebx);
- if (mode_ == UC16) {
- __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
- } else {
- __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
- }
- // Store this value in a local variable, for use when clearing
- // position registers.
- __ mov(Operand(ebp, kInputStartMinusOne), eax);
-
-#if V8_OS_WIN
- // Ensure that we write to each stack page, in order. Skipping a page
- // on Windows can cause segmentation faults. Assuming page size is 4k.
- const int kPageSize = 4096;
- const int kRegistersPerPage = kPageSize / kPointerSize;
- for (int i = num_saved_registers_ + kRegistersPerPage - 1;
- i < num_registers_;
- i += kRegistersPerPage) {
- __ mov(register_location(i), eax); // One write every page.
- }
-#endif // V8_OS_WIN
-
- Label load_char_start_regexp, start_regexp;
- // Load newline if index is at start, previous character otherwise.
- __ cmp(Operand(ebp, kStartIndex), Immediate(0));
- __ j(not_equal, &load_char_start_regexp, Label::kNear);
- __ mov(current_character(), '\n');
- __ jmp(&start_regexp, Label::kNear);
-
- // Global regexp restarts matching here.
- __ bind(&load_char_start_regexp);
- // Load previous char as initial value of current character register.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&start_regexp);
-
- // Initialize on-stack registers.
- if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
- // Fill saved registers with initial value = start offset - 1
- // Fill in stack push order, to avoid accessing across an unwritten
- // page (a problem on Windows).
- if (num_saved_registers_ > 8) {
- __ mov(ecx, kRegisterZero);
- Label init_loop;
- __ bind(&init_loop);
- __ mov(Operand(ebp, ecx, times_1, 0), eax);
- __ sub(ecx, Immediate(kPointerSize));
- __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
- __ j(greater, &init_loop);
- } else { // Unroll the loop.
- for (int i = 0; i < num_saved_registers_; i++) {
- __ mov(register_location(i), eax);
- }
- }
- }
-
- // Initialize backtrack stack pointer.
- __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
-
- __ jmp(&start_label_);
-
- // Exit code:
- if (success_label_.is_linked()) {
- // Save captures when successful.
- __ bind(&success_label_);
- if (num_saved_registers_ > 0) {
- // copy captures to output
- __ mov(ebx, Operand(ebp, kRegisterOutput));
- __ mov(ecx, Operand(ebp, kInputEnd));
- __ mov(edx, Operand(ebp, kStartIndex));
- __ sub(ecx, Operand(ebp, kInputStart));
- if (mode_ == UC16) {
- __ lea(ecx, Operand(ecx, edx, times_2, 0));
- } else {
- __ add(ecx, edx);
- }
- for (int i = 0; i < num_saved_registers_; i++) {
- __ mov(eax, register_location(i));
- if (i == 0 && global_with_zero_length_check()) {
- // Keep capture start in edx for the zero-length check later.
- __ mov(edx, eax);
- }
- // Convert to index from start of string, not end.
- __ add(eax, ecx);
- if (mode_ == UC16) {
- __ sar(eax, 1); // Convert byte index to character index.
- }
- __ mov(Operand(ebx, i * kPointerSize), eax);
- }
- }
-
- if (global()) {
- // Restart matching if the regular expression is flagged as global.
- // Increment success counter.
- __ inc(Operand(ebp, kSuccessfulCaptures));
- // Capture results have been stored, so the number of remaining global
- // output registers is reduced by the number of stored captures.
- __ mov(ecx, Operand(ebp, kNumOutputRegisters));
- __ sub(ecx, Immediate(num_saved_registers_));
- // Check whether we have enough room for another set of capture results.
- __ cmp(ecx, Immediate(num_saved_registers_));
- __ j(less, &exit_label_);
-
- __ mov(Operand(ebp, kNumOutputRegisters), ecx);
- // Advance the location for output.
- __ add(Operand(ebp, kRegisterOutput),
- Immediate(num_saved_registers_ * kPointerSize));
-
- // Prepare eax to initialize registers with its value in the next run.
- __ mov(eax, Operand(ebp, kInputStartMinusOne));
-
- if (global_with_zero_length_check()) {
- // Special case for zero-length matches.
- // edx: capture start index
- __ cmp(edi, edx);
- // Not a zero-length match, restart.
- __ j(not_equal, &load_char_start_regexp);
- // edi (offset from the end) is zero if we already reached the end.
- __ test(edi, edi);
- __ j(zero, &exit_label_, Label::kNear);
- // Advance current position after a zero-length match.
- if (mode_ == UC16) {
- __ add(edi, Immediate(2));
- } else {
- __ inc(edi);
- }
- }
-
- __ jmp(&load_char_start_regexp);
- } else {
- __ mov(eax, Immediate(SUCCESS));
- }
- }
-
- __ bind(&exit_label_);
- if (global()) {
- // Return the number of successful captures.
- __ mov(eax, Operand(ebp, kSuccessfulCaptures));
- }
-
- __ bind(&return_eax);
- // Skip esp past regexp registers.
- __ lea(esp, Operand(ebp, kBackup_ebx));
- // Restore callee-save registers.
- __ pop(ebx);
- __ pop(edi);
- __ pop(esi);
- // Exit function frame, restore previous one.
- __ pop(ebp);
- __ ret(0);
-
- // Backtrack code (branch target for conditional backtracks).
- if (backtrack_label_.is_linked()) {
- __ bind(&backtrack_label_);
- Backtrack();
- }
-
- Label exit_with_exception;
-
- // Preempt-code
- if (check_preempt_label_.is_linked()) {
- SafeCallTarget(&check_preempt_label_);
-
- __ push(backtrack_stackpointer());
- __ push(edi);
-
- CallCheckStackGuardState(ebx);
- __ or_(eax, eax);
- // If returning non-zero, we should end execution with the given
- // result as return value.
- __ j(not_zero, &return_eax);
-
- __ pop(edi);
- __ pop(backtrack_stackpointer());
- // String might have moved: Reload esi from frame.
- __ mov(esi, Operand(ebp, kInputEnd));
- SafeReturn();
- }
-
- // Backtrack stack overflow code.
- if (stack_overflow_label_.is_linked()) {
- SafeCallTarget(&stack_overflow_label_);
- // Reached if the backtrack-stack limit has been hit.
-
- Label grow_failed;
- // Save registers before calling C function
- __ push(esi);
- __ push(edi);
-
- // Call GrowStack(backtrack_stackpointer())
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments, ebx);
- __ mov(Operand(esp, 2 * kPointerSize),
- Immediate(ExternalReference::isolate_address(isolate())));
- __ lea(eax, Operand(ebp, kStackHighEnd));
- __ mov(Operand(esp, 1 * kPointerSize), eax);
- __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
- ExternalReference grow_stack =
- ExternalReference::re_grow_stack(isolate());
- __ CallCFunction(grow_stack, num_arguments);
- // If return NULL, we have failed to grow the stack, and
- // must exit with a stack-overflow exception.
- __ or_(eax, eax);
- __ j(equal, &exit_with_exception);
- // Otherwise use return value as new stack pointer.
- __ mov(backtrack_stackpointer(), eax);
- // Restore saved registers and continue.
- __ pop(edi);
- __ pop(esi);
- SafeReturn();
- }
-
- if (exit_with_exception.is_linked()) {
- // If any of the code above needed to exit with an exception.
- __ bind(&exit_with_exception);
- // Exit with Result EXCEPTION(-1) to signal thrown exception.
- __ mov(eax, EXCEPTION);
- __ jmp(&return_eax);
- }
-
- CodeDesc code_desc;
- masm_->GetCode(&code_desc);
- Handle<Code> code =
- isolate()->factory()->NewCode(code_desc,
- Code::ComputeFlags(Code::REGEXP),
- masm_->CodeObject());
- PROFILE(isolate(), RegExpCodeCreateEvent(*code, *source));
- return Handle<HeapObject>::cast(code);
-}
-
-
-void RegExpMacroAssemblerIA32::GoTo(Label* to) {
- BranchOrBacktrack(no_condition, to);
-}
-
-
-void RegExpMacroAssemblerIA32::IfRegisterGE(int reg,
- int comparand,
- Label* if_ge) {
- __ cmp(register_location(reg), Immediate(comparand));
- BranchOrBacktrack(greater_equal, if_ge);
-}
-
-
-void RegExpMacroAssemblerIA32::IfRegisterLT(int reg,
- int comparand,
- Label* if_lt) {
- __ cmp(register_location(reg), Immediate(comparand));
- BranchOrBacktrack(less, if_lt);
-}
-
-
-void RegExpMacroAssemblerIA32::IfRegisterEqPos(int reg,
- Label* if_eq) {
- __ cmp(edi, register_location(reg));
- BranchOrBacktrack(equal, if_eq);
-}
-
-
-RegExpMacroAssembler::IrregexpImplementation
- RegExpMacroAssemblerIA32::Implementation() {
- return kIA32Implementation;
-}
-
-
-void RegExpMacroAssemblerIA32::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
- DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
- if (check_bounds) {
- CheckPosition(cp_offset + characters - 1, on_end_of_input);
- }
- LoadCurrentCharacterUnchecked(cp_offset, characters);
-}
-
-
-void RegExpMacroAssemblerIA32::PopCurrentPosition() {
- Pop(edi);
-}
-
-
-void RegExpMacroAssemblerIA32::PopRegister(int register_index) {
- Pop(eax);
- __ mov(register_location(register_index), eax);
-}
-
-
-void RegExpMacroAssemblerIA32::PushBacktrack(Label* label) {
- Push(Immediate::CodeRelativeOffset(label));
- CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerIA32::PushCurrentPosition() {
- Push(edi);
-}
-
-
-void RegExpMacroAssemblerIA32::PushRegister(int register_index,
- StackCheckFlag check_stack_limit) {
- __ mov(eax, register_location(register_index));
- Push(eax);
- if (check_stack_limit) CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerIA32::ReadCurrentPositionFromRegister(int reg) {
- __ mov(edi, register_location(reg));
-}
-
-
-void RegExpMacroAssemblerIA32::ReadStackPointerFromRegister(int reg) {
- __ mov(backtrack_stackpointer(), register_location(reg));
- __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
-}
-
-void RegExpMacroAssemblerIA32::SetCurrentPositionFromEnd(int by) {
- Label after_position;
- __ cmp(edi, -by * char_size());
- __ j(greater_equal, &after_position, Label::kNear);
- __ mov(edi, -by * char_size());
- // On RegExp code entry (where this operation is used), the character before
- // the current position is expected to be already loaded.
- // We have advanced the position, so it's safe to read backwards.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&after_position);
-}
-
-
-void RegExpMacroAssemblerIA32::SetRegister(int register_index, int to) {
- DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
- __ mov(register_location(register_index), Immediate(to));
-}
-
-
-bool RegExpMacroAssemblerIA32::Succeed() {
- __ jmp(&success_label_);
- return global();
-}
-
-
-void RegExpMacroAssemblerIA32::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- if (cp_offset == 0) {
- __ mov(register_location(reg), edi);
- } else {
- __ lea(eax, Operand(edi, cp_offset * char_size()));
- __ mov(register_location(reg), eax);
- }
-}
-
-
-void RegExpMacroAssemblerIA32::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- __ mov(eax, Operand(ebp, kInputStartMinusOne));
- for (int reg = reg_from; reg <= reg_to; reg++) {
- __ mov(register_location(reg), eax);
- }
-}
-
-
-void RegExpMacroAssemblerIA32::WriteStackPointerToRegister(int reg) {
- __ mov(eax, backtrack_stackpointer());
- __ sub(eax, Operand(ebp, kStackHighEnd));
- __ mov(register_location(reg), eax);
-}
-
-
-// Private methods:
-
-void RegExpMacroAssemblerIA32::CallCheckStackGuardState(Register scratch) {
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments, scratch);
- // RegExp code frame pointer.
- __ mov(Operand(esp, 2 * kPointerSize), ebp);
- // Code* of self.
- __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
- // Next address on the stack (will be address of return address).
- __ lea(eax, Operand(esp, -kPointerSize));
- __ mov(Operand(esp, 0 * kPointerSize), eax);
- ExternalReference check_stack_guard =
- ExternalReference::re_check_stack_guard_state(isolate());
- __ CallCFunction(check_stack_guard, num_arguments);
-}
-
-
-// Helper function for reading a value out of a stack frame.
-template <typename T>
-static T& frame_entry(Address re_frame, int frame_offset) {
- return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
-}
-
-
-template <typename T>
-static T* frame_entry_address(Address re_frame, int frame_offset) {
- return reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame) {
- return NativeRegExpMacroAssembler::CheckStackGuardState(
- frame_entry<Isolate*>(re_frame, kIsolate),
- frame_entry<int>(re_frame, kStartIndex),
- frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
- frame_entry_address<String*>(re_frame, kInputString),
- frame_entry_address<const byte*>(re_frame, kInputStart),
- frame_entry_address<const byte*>(re_frame, kInputEnd));
-}
-
-
-Operand RegExpMacroAssemblerIA32::register_location(int register_index) {
- DCHECK(register_index < (1<<30));
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- return Operand(ebp, kRegisterZero - register_index * kPointerSize);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckPosition(int cp_offset,
- Label* on_outside_input) {
- __ cmp(edi, -cp_offset * char_size());
- BranchOrBacktrack(greater_equal, on_outside_input);
-}
-
-
-void RegExpMacroAssemblerIA32::BranchOrBacktrack(Condition condition,
- Label* to) {
- if (condition < 0) { // No condition
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ jmp(to);
- return;
- }
- if (to == NULL) {
- __ j(condition, &backtrack_label_);
- return;
- }
- __ j(condition, to);
-}
-
-
-void RegExpMacroAssemblerIA32::SafeCall(Label* to) {
- Label return_to;
- __ push(Immediate::CodeRelativeOffset(&return_to));
- __ jmp(to);
- __ bind(&return_to);
-}
-
-
-void RegExpMacroAssemblerIA32::SafeReturn() {
- __ pop(ebx);
- __ add(ebx, Immediate(masm_->CodeObject()));
- __ jmp(ebx);
-}
-
-
-void RegExpMacroAssemblerIA32::SafeCallTarget(Label* name) {
- __ bind(name);
-}
-
-
-void RegExpMacroAssemblerIA32::Push(Register source) {
- DCHECK(!source.is(backtrack_stackpointer()));
- // Notice: This updates flags, unlike normal Push.
- __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
- __ mov(Operand(backtrack_stackpointer(), 0), source);
-}
-
-
-void RegExpMacroAssemblerIA32::Push(Immediate value) {
- // Notice: This updates flags, unlike normal Push.
- __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
- __ mov(Operand(backtrack_stackpointer(), 0), value);
-}
-
-
-void RegExpMacroAssemblerIA32::Pop(Register target) {
- DCHECK(!target.is(backtrack_stackpointer()));
- __ mov(target, Operand(backtrack_stackpointer(), 0));
- // Notice: This updates flags, unlike normal Pop.
- __ add(backtrack_stackpointer(), Immediate(kPointerSize));
-}
-
-
-void RegExpMacroAssemblerIA32::CheckPreemption() {
- // Check for preemption.
- Label no_preempt;
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ cmp(esp, Operand::StaticVariable(stack_limit));
- __ j(above, &no_preempt);
-
- SafeCall(&check_preempt_label_);
-
- __ bind(&no_preempt);
-}
-
-
-void RegExpMacroAssemblerIA32::CheckStackLimit() {
- Label no_stack_overflow;
- ExternalReference stack_limit =
- ExternalReference::address_of_regexp_stack_limit(isolate());
- __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
- __ j(above, &no_stack_overflow);
-
- SafeCall(&stack_overflow_label_);
-
- __ bind(&no_stack_overflow);
-}
-
-
-void RegExpMacroAssemblerIA32::LoadCurrentCharacterUnchecked(int cp_offset,
- int characters) {
- if (mode_ == LATIN1) {
- if (characters == 4) {
- __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
- } else if (characters == 2) {
- __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
- } else {
- DCHECK(characters == 1);
- __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
- }
- } else {
- DCHECK(mode_ == UC16);
- if (characters == 2) {
- __ mov(current_character(),
- Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
- } else {
- DCHECK(characters == 1);
- __ movzx_w(current_character(),
- Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
- }
- }
-}
-
-
-#undef __
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
-
-#endif // V8_TARGET_ARCH_IA32
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
-#define V8_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
-
-#include "src/ia32/assembler-ia32.h"
-#include "src/macro-assembler.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-class RegExpMacroAssemblerIA32: public NativeRegExpMacroAssembler {
- public:
- RegExpMacroAssemblerIA32(Isolate* isolate, Zone* zone, Mode mode,
- int registers_to_save);
- virtual ~RegExpMacroAssemblerIA32();
- virtual int stack_limit_slack();
- virtual void AdvanceCurrentPosition(int by);
- virtual void AdvanceRegister(int reg, int by);
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(uint32_t c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- // A "greedy loop" is a loop that is both greedy and with a simple
- // body. It has a particularly simple implementation.
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
-
- // Checks whether the given offset from the current position is before
- // the end of the string.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input);
- virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
-
- // Called from RegExp if the stack-guard is triggered.
- // If the code object is relocated, the return address is fixed before
- // returning.
- static int CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame);
-
- private:
- // Offsets from ebp of function parameters and stored registers.
- static const int kFramePointer = 0;
- // Above the frame pointer - function parameters and return address.
- static const int kReturn_eip = kFramePointer + kPointerSize;
- static const int kFrameAlign = kReturn_eip + kPointerSize;
- // Parameters.
- static const int kInputString = kFrameAlign;
- static const int kStartIndex = kInputString + kPointerSize;
- static const int kInputStart = kStartIndex + kPointerSize;
- static const int kInputEnd = kInputStart + kPointerSize;
- static const int kRegisterOutput = kInputEnd + kPointerSize;
- // For the case of global regular expression, we have room to store at least
- // one set of capture results. For the case of non-global regexp, we ignore
- // this value.
- static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
- static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
- static const int kDirectCall = kStackHighEnd + kPointerSize;
- static const int kIsolate = kDirectCall + kPointerSize;
- // Below the frame pointer - local stack variables.
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kBackup_esi = kFramePointer - kPointerSize;
- static const int kBackup_edi = kBackup_esi - kPointerSize;
- static const int kBackup_ebx = kBackup_edi - kPointerSize;
- static const int kSuccessfulCaptures = kBackup_ebx - kPointerSize;
- static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
- // First register address. Following registers are below it on the stack.
- static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
-
- // Initial size of code buffer.
- static const size_t kRegExpCodeSize = 1024;
-
- // Load a number of characters at the given offset from the
- // current position, into the current-character register.
- void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
-
- // Check whether preemption has been requested.
- void CheckPreemption();
-
- // Check whether we are exceeding the stack limit on the backtrack stack.
- void CheckStackLimit();
-
- // Generate a call to CheckStackGuardState.
- void CallCheckStackGuardState(Register scratch);
-
- // The ebp-relative location of a regexp register.
- Operand register_location(int register_index);
-
- // The register containing the current character after LoadCurrentCharacter.
- inline Register current_character() { return edx; }
-
- // The register containing the backtrack stack top. Provides a meaningful
- // name to the register.
- inline Register backtrack_stackpointer() { return ecx; }
-
- // Byte size of chars in the string to match (decided by the Mode argument)
- inline int char_size() { return static_cast<int>(mode_); }
-
- // Equivalent to a conditional branch to the label, unless the label
- // is NULL, in which case it is a conditional Backtrack.
- void BranchOrBacktrack(Condition condition, Label* to);
-
- // Call and return internally in the generated code in a way that
- // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
- inline void SafeCall(Label* to);
- inline void SafeReturn();
- inline void SafeCallTarget(Label* name);
-
- // Pushes the value of a register on the backtrack stack. Decrements the
- // stack pointer (ecx) by a word size and stores the register's value there.
- inline void Push(Register source);
-
- // Pushes a value on the backtrack stack. Decrements the stack pointer (ecx)
- // by a word size and stores the value there.
- inline void Push(Immediate value);
-
- // Pops a value from the backtrack stack. Reads the word at the stack pointer
- // (ecx) and increments it by a word size.
- inline void Pop(Register target);
-
- Isolate* isolate() const { return masm_->isolate(); }
-
- MacroAssembler* masm_;
-
- // Which mode to generate code for (LATIN1 or UC16).
- Mode mode_;
-
- // One greater than maximal register index actually used.
- int num_registers_;
-
- // Number of registers to output at the end (the saved registers
- // are always 0..num_saved_registers_-1)
- int num_saved_registers_;
-
- // Labels used internally.
- Label entry_label_;
- Label start_label_;
- Label success_label_;
- Label backtrack_label_;
- Label exit_label_;
- Label check_preempt_label_;
- Label stack_overflow_label_;
-};
-#endif // V8_INTERPRETED_REGEXP
-
-}} // namespace v8::internal
-
-#endif // V8_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
+++ /dev/null
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// A simple interpreter for the Irregexp byte code.
-
-
-#include "src/v8.h"
-
-#include "src/ast.h"
-#include "src/bytecodes-irregexp.h"
-#include "src/interpreter-irregexp.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/unicode.h"
-#include "src/utils.h"
-
-namespace v8 {
-namespace internal {
-
-
-typedef unibrow::Mapping<unibrow::Ecma262Canonicalize> Canonicalize;
-
-static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize,
- int from,
- int current,
- int len,
- Vector<const uc16> subject) {
- for (int i = 0; i < len; i++) {
- unibrow::uchar old_char = subject[from++];
- unibrow::uchar new_char = subject[current++];
- if (old_char == new_char) continue;
- unibrow::uchar old_string[1] = { old_char };
- unibrow::uchar new_string[1] = { new_char };
- interp_canonicalize->get(old_char, '\0', old_string);
- interp_canonicalize->get(new_char, '\0', new_string);
- if (old_string[0] != new_string[0]) {
- return false;
- }
- }
- return true;
-}
-
-
-static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize,
- int from,
- int current,
- int len,
- Vector<const uint8_t> subject) {
- for (int i = 0; i < len; i++) {
- unsigned int old_char = subject[from++];
- unsigned int new_char = subject[current++];
- if (old_char == new_char) continue;
- // Convert both characters to lower case.
- old_char |= 0x20;
- new_char |= 0x20;
- if (old_char != new_char) return false;
- // Not letters in the ASCII range and Latin-1 range.
- if (!(old_char - 'a' <= 'z' - 'a') &&
- !(old_char - 224 <= 254 - 224 && old_char != 247)) {
- return false;
- }
- }
- return true;
-}
-
-
-#ifdef DEBUG
-static void TraceInterpreter(const byte* code_base,
- const byte* pc,
- int stack_depth,
- int current_position,
- uint32_t current_char,
- int bytecode_length,
- const char* bytecode_name) {
- if (FLAG_trace_regexp_bytecodes) {
- bool printable = (current_char < 127 && current_char >= 32);
- const char* format =
- printable ?
- "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" :
- "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s";
- PrintF(format,
- pc - code_base,
- stack_depth,
- current_position,
- current_char,
- printable ? current_char : '.',
- bytecode_name);
- for (int i = 0; i < bytecode_length; i++) {
- printf(", %02x", pc[i]);
- }
- printf(" ");
- for (int i = 1; i < bytecode_length; i++) {
- unsigned char b = pc[i];
- if (b < 127 && b >= 32) {
- printf("%c", b);
- } else {
- printf(".");
- }
- }
- printf("\n");
- }
-}
-
-
-#define BYTECODE(name) \
- case BC_##name: \
- TraceInterpreter(code_base, \
- pc, \
- static_cast<int>(backtrack_sp - backtrack_stack_base), \
- current, \
- current_char, \
- BC_##name##_LENGTH, \
- #name);
-#else
-#define BYTECODE(name) \
- case BC_##name:
-#endif
-
-
-static int32_t Load32Aligned(const byte* pc) {
- DCHECK((reinterpret_cast<intptr_t>(pc) & 3) == 0);
- return *reinterpret_cast<const int32_t *>(pc);
-}
-
-
-static int32_t Load16Aligned(const byte* pc) {
- DCHECK((reinterpret_cast<intptr_t>(pc) & 1) == 0);
- return *reinterpret_cast<const uint16_t *>(pc);
-}
-
-
-// A simple abstraction over the backtracking stack used by the interpreter.
-// This backtracking stack does not grow automatically, but it ensures that the
-// the memory held by the stack is released or remembered in a cache if the
-// matching terminates.
-class BacktrackStack {
- public:
- BacktrackStack() { data_ = NewArray<int>(kBacktrackStackSize); }
-
- ~BacktrackStack() {
- DeleteArray(data_);
- }
-
- int* data() const { return data_; }
-
- int max_size() const { return kBacktrackStackSize; }
-
- private:
- static const int kBacktrackStackSize = 10000;
-
- int* data_;
-
- DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
-};
-
-
-template <typename Char>
-static RegExpImpl::IrregexpResult RawMatch(Isolate* isolate,
- const byte* code_base,
- Vector<const Char> subject,
- int* registers,
- int current,
- uint32_t current_char) {
- const byte* pc = code_base;
- // BacktrackStack ensures that the memory allocated for the backtracking stack
- // is returned to the system or cached if there is no stack being cached at
- // the moment.
- BacktrackStack backtrack_stack;
- int* backtrack_stack_base = backtrack_stack.data();
- int* backtrack_sp = backtrack_stack_base;
- int backtrack_stack_space = backtrack_stack.max_size();
-#ifdef DEBUG
- if (FLAG_trace_regexp_bytecodes) {
- PrintF("\n\nStart bytecode interpreter\n\n");
- }
-#endif
- while (true) {
- int32_t insn = Load32Aligned(pc);
- switch (insn & BYTECODE_MASK) {
- BYTECODE(BREAK)
- UNREACHABLE();
- return RegExpImpl::RE_FAILURE;
- BYTECODE(PUSH_CP)
- if (--backtrack_stack_space < 0) {
- return RegExpImpl::RE_EXCEPTION;
- }
- *backtrack_sp++ = current;
- pc += BC_PUSH_CP_LENGTH;
- break;
- BYTECODE(PUSH_BT)
- if (--backtrack_stack_space < 0) {
- return RegExpImpl::RE_EXCEPTION;
- }
- *backtrack_sp++ = Load32Aligned(pc + 4);
- pc += BC_PUSH_BT_LENGTH;
- break;
- BYTECODE(PUSH_REGISTER)
- if (--backtrack_stack_space < 0) {
- return RegExpImpl::RE_EXCEPTION;
- }
- *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT];
- pc += BC_PUSH_REGISTER_LENGTH;
- break;
- BYTECODE(SET_REGISTER)
- registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
- pc += BC_SET_REGISTER_LENGTH;
- break;
- BYTECODE(ADVANCE_REGISTER)
- registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
- pc += BC_ADVANCE_REGISTER_LENGTH;
- break;
- BYTECODE(SET_REGISTER_TO_CP)
- registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
- pc += BC_SET_REGISTER_TO_CP_LENGTH;
- break;
- BYTECODE(SET_CP_TO_REGISTER)
- current = registers[insn >> BYTECODE_SHIFT];
- pc += BC_SET_CP_TO_REGISTER_LENGTH;
- break;
- BYTECODE(SET_REGISTER_TO_SP)
- registers[insn >> BYTECODE_SHIFT] =
- static_cast<int>(backtrack_sp - backtrack_stack_base);
- pc += BC_SET_REGISTER_TO_SP_LENGTH;
- break;
- BYTECODE(SET_SP_TO_REGISTER)
- backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT];
- backtrack_stack_space = backtrack_stack.max_size() -
- static_cast<int>(backtrack_sp - backtrack_stack_base);
- pc += BC_SET_SP_TO_REGISTER_LENGTH;
- break;
- BYTECODE(POP_CP)
- backtrack_stack_space++;
- --backtrack_sp;
- current = *backtrack_sp;
- pc += BC_POP_CP_LENGTH;
- break;
- BYTECODE(POP_BT)
- backtrack_stack_space++;
- --backtrack_sp;
- pc = code_base + *backtrack_sp;
- break;
- BYTECODE(POP_REGISTER)
- backtrack_stack_space++;
- --backtrack_sp;
- registers[insn >> BYTECODE_SHIFT] = *backtrack_sp;
- pc += BC_POP_REGISTER_LENGTH;
- break;
- BYTECODE(FAIL)
- return RegExpImpl::RE_FAILURE;
- BYTECODE(SUCCEED)
- return RegExpImpl::RE_SUCCESS;
- BYTECODE(ADVANCE_CP)
- current += insn >> BYTECODE_SHIFT;
- pc += BC_ADVANCE_CP_LENGTH;
- break;
- BYTECODE(GOTO)
- pc = code_base + Load32Aligned(pc + 4);
- break;
- BYTECODE(ADVANCE_CP_AND_GOTO)
- current += insn >> BYTECODE_SHIFT;
- pc = code_base + Load32Aligned(pc + 4);
- break;
- BYTECODE(CHECK_GREEDY)
- if (current == backtrack_sp[-1]) {
- backtrack_sp--;
- backtrack_stack_space++;
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_GREEDY_LENGTH;
- }
- break;
- BYTECODE(LOAD_CURRENT_CHAR) {
- int pos = current + (insn >> BYTECODE_SHIFT);
- if (pos >= subject.length()) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- current_char = subject[pos];
- pc += BC_LOAD_CURRENT_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
- int pos = current + (insn >> BYTECODE_SHIFT);
- current_char = subject[pos];
- pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
- break;
- }
- BYTECODE(LOAD_2_CURRENT_CHARS) {
- int pos = current + (insn >> BYTECODE_SHIFT);
- if (pos + 2 > subject.length()) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- Char next = subject[pos + 1];
- current_char =
- (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
- pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
- int pos = current + (insn >> BYTECODE_SHIFT);
- Char next = subject[pos + 1];
- current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
- pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
- break;
- }
- BYTECODE(LOAD_4_CURRENT_CHARS) {
- DCHECK(sizeof(Char) == 1);
- int pos = current + (insn >> BYTECODE_SHIFT);
- if (pos + 4 > subject.length()) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- Char next1 = subject[pos + 1];
- Char next2 = subject[pos + 2];
- Char next3 = subject[pos + 3];
- current_char = (subject[pos] |
- (next1 << 8) |
- (next2 << 16) |
- (next3 << 24));
- pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
- DCHECK(sizeof(Char) == 1);
- int pos = current + (insn >> BYTECODE_SHIFT);
- Char next1 = subject[pos + 1];
- Char next2 = subject[pos + 2];
- Char next3 = subject[pos + 3];
- current_char = (subject[pos] |
- (next1 << 8) |
- (next2 << 16) |
- (next3 << 24));
- pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
- break;
- }
- BYTECODE(CHECK_4_CHARS) {
- uint32_t c = Load32Aligned(pc + 4);
- if (c == current_char) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_4_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- if (c == current_char) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_NOT_4_CHARS) {
- uint32_t c = Load32Aligned(pc + 4);
- if (c != current_char) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_NOT_4_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_NOT_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- if (c != current_char) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_NOT_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(AND_CHECK_4_CHARS) {
- uint32_t c = Load32Aligned(pc + 4);
- if (c == (current_char & Load32Aligned(pc + 8))) {
- pc = code_base + Load32Aligned(pc + 12);
- } else {
- pc += BC_AND_CHECK_4_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(AND_CHECK_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- if (c == (current_char & Load32Aligned(pc + 4))) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_AND_CHECK_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(AND_CHECK_NOT_4_CHARS) {
- uint32_t c = Load32Aligned(pc + 4);
- if (c != (current_char & Load32Aligned(pc + 8))) {
- pc = code_base + Load32Aligned(pc + 12);
- } else {
- pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
- }
- break;
- }
- BYTECODE(AND_CHECK_NOT_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- if (c != (current_char & Load32Aligned(pc + 4))) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
- uint32_t c = (insn >> BYTECODE_SHIFT);
- uint32_t minus = Load16Aligned(pc + 4);
- uint32_t mask = Load16Aligned(pc + 6);
- if (c != ((current_char - minus) & mask)) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_CHAR_IN_RANGE) {
- uint32_t from = Load16Aligned(pc + 4);
- uint32_t to = Load16Aligned(pc + 6);
- if (from <= current_char && current_char <= to) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
- uint32_t from = Load16Aligned(pc + 4);
- uint32_t to = Load16Aligned(pc + 6);
- if (from > current_char || current_char > to) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_BIT_IN_TABLE) {
- int mask = RegExpMacroAssembler::kTableMask;
- byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
- int bit = (current_char & (kBitsPerByte - 1));
- if ((b & (1 << bit)) != 0) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_LT) {
- uint32_t limit = (insn >> BYTECODE_SHIFT);
- if (current_char < limit) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_LT_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_GT) {
- uint32_t limit = (insn >> BYTECODE_SHIFT);
- if (current_char > limit) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_GT_LENGTH;
- }
- break;
- }
- BYTECODE(CHECK_REGISTER_LT)
- if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_REGISTER_LT_LENGTH;
- }
- break;
- BYTECODE(CHECK_REGISTER_GE)
- if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
- pc = code_base + Load32Aligned(pc + 8);
- } else {
- pc += BC_CHECK_REGISTER_GE_LENGTH;
- }
- break;
- BYTECODE(CHECK_REGISTER_EQ_POS)
- if (registers[insn >> BYTECODE_SHIFT] == current) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
- }
- break;
- BYTECODE(CHECK_NOT_REGS_EQUAL)
- if (registers[insn >> BYTECODE_SHIFT] ==
- registers[Load32Aligned(pc + 4)]) {
- pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
- } else {
- pc = code_base + Load32Aligned(pc + 8);
- }
- break;
- BYTECODE(CHECK_NOT_BACK_REF) {
- int from = registers[insn >> BYTECODE_SHIFT];
- int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
- if (from < 0 || len <= 0) {
- pc += BC_CHECK_NOT_BACK_REF_LENGTH;
- break;
- }
- if (current + len > subject.length()) {
- pc = code_base + Load32Aligned(pc + 4);
- break;
- } else {
- int i;
- for (i = 0; i < len; i++) {
- if (subject[from + i] != subject[current + i]) {
- pc = code_base + Load32Aligned(pc + 4);
- break;
- }
- }
- if (i < len) break;
- current += len;
- }
- pc += BC_CHECK_NOT_BACK_REF_LENGTH;
- break;
- }
- BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
- int from = registers[insn >> BYTECODE_SHIFT];
- int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
- if (from < 0 || len <= 0) {
- pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
- break;
- }
- if (current + len > subject.length()) {
- pc = code_base + Load32Aligned(pc + 4);
- break;
- } else {
- if (BackRefMatchesNoCase(isolate->interp_canonicalize_mapping(),
- from, current, len, subject)) {
- current += len;
- pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
- } else {
- pc = code_base + Load32Aligned(pc + 4);
- }
- }
- break;
- }
- BYTECODE(CHECK_AT_START)
- if (current == 0) {
- pc = code_base + Load32Aligned(pc + 4);
- } else {
- pc += BC_CHECK_AT_START_LENGTH;
- }
- break;
- BYTECODE(CHECK_NOT_AT_START)
- if (current == 0) {
- pc += BC_CHECK_NOT_AT_START_LENGTH;
- } else {
- pc = code_base + Load32Aligned(pc + 4);
- }
- break;
- BYTECODE(SET_CURRENT_POSITION_FROM_END) {
- int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
- if (subject.length() - current > by) {
- current = subject.length() - by;
- current_char = subject[current - 1];
- }
- pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
- }
-}
-
-
-RegExpImpl::IrregexpResult IrregexpInterpreter::Match(
- Isolate* isolate,
- Handle<ByteArray> code_array,
- Handle<String> subject,
- int* registers,
- int start_position) {
- DCHECK(subject->IsFlat());
-
- DisallowHeapAllocation no_gc;
- const byte* code_base = code_array->GetDataStartAddress();
- uc16 previous_char = '\n';
- String::FlatContent subject_content = subject->GetFlatContent();
- if (subject_content.IsOneByte()) {
- Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
- if (start_position != 0) previous_char = subject_vector[start_position - 1];
- return RawMatch(isolate,
- code_base,
- subject_vector,
- registers,
- start_position,
- previous_char);
- } else {
- DCHECK(subject_content.IsTwoByte());
- Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
- if (start_position != 0) previous_char = subject_vector[start_position - 1];
- return RawMatch(isolate,
- code_base,
- subject_vector,
- registers,
- start_position,
- previous_char);
- }
-}
-
-} // namespace internal
-} // namespace v8
+++ /dev/null
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// A simple interpreter for the Irregexp byte code.
-
-#ifndef V8_INTERPRETER_IRREGEXP_H_
-#define V8_INTERPRETER_IRREGEXP_H_
-
-namespace v8 {
-namespace internal {
-
-
-class IrregexpInterpreter {
- public:
- static RegExpImpl::IrregexpResult Match(Isolate* isolate,
- Handle<ByteArray> code,
- Handle<String> subject,
- int* captures,
- int start_position);
-};
-
-
-} } // namespace v8::internal
-
-#endif // V8_INTERPRETER_IRREGEXP_H_
#include "src/log.h"
#include "src/messages.h"
#include "src/prototype.h"
-#include "src/regexp-stack.h"
+#include "src/regexp/regexp-stack.h"
#include "src/runtime-profiler.h"
#include "src/sampler.h"
#include "src/scopeinfo.h"
#include "src/heap/heap.h"
#include "src/messages.h"
#include "src/optimizing-compile-dispatcher.h"
-#include "src/regexp-stack.h"
+#include "src/regexp/regexp-stack.h"
#include "src/runtime/runtime.h"
#include "src/runtime-profiler.h"
#include "src/zone.h"
+++ /dev/null
-// Copyright 2013 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-
-#ifndef V8_JSREGEXP_INL_H_
-#define V8_JSREGEXP_INL_H_
-
-#include "src/allocation.h"
-#include "src/handles.h"
-#include "src/heap/heap.h"
-#include "src/jsregexp.h"
-#include "src/objects.h"
-
-namespace v8 {
-namespace internal {
-
-
-RegExpImpl::GlobalCache::~GlobalCache() {
- // Deallocate the register array if we allocated it in the constructor
- // (as opposed to using the existing jsregexp_static_offsets_vector).
- if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
- DeleteArray(register_array_);
- }
-}
-
-
-int32_t* RegExpImpl::GlobalCache::FetchNext() {
- current_match_index_++;
- if (current_match_index_ >= num_matches_) {
- // Current batch of results exhausted.
- // Fail if last batch was not even fully filled.
- if (num_matches_ < max_matches_) {
- num_matches_ = 0; // Signal failed match.
- return NULL;
- }
-
- int32_t* last_match =
- ®ister_array_[(current_match_index_ - 1) * registers_per_match_];
- int last_end_index = last_match[1];
-
- if (regexp_->TypeTag() == JSRegExp::ATOM) {
- num_matches_ = RegExpImpl::AtomExecRaw(regexp_,
- subject_,
- last_end_index,
- register_array_,
- register_array_size_);
- } else {
- int last_start_index = last_match[0];
- if (last_start_index == last_end_index) last_end_index++;
- if (last_end_index > subject_->length()) {
- num_matches_ = 0; // Signal failed match.
- return NULL;
- }
- num_matches_ = RegExpImpl::IrregexpExecRaw(regexp_,
- subject_,
- last_end_index,
- register_array_,
- register_array_size_);
- }
-
- if (num_matches_ <= 0) return NULL;
- current_match_index_ = 0;
- return register_array_;
- } else {
- return ®ister_array_[current_match_index_ * registers_per_match_];
- }
-}
-
-
-int32_t* RegExpImpl::GlobalCache::LastSuccessfulMatch() {
- int index = current_match_index_ * registers_per_match_;
- if (num_matches_ == 0) {
- // After a failed match we shift back by one result.
- index -= registers_per_match_;
- }
- return ®ister_array_[index];
-}
-
-
-} } // namespace v8::internal
-
-#endif // V8_JSREGEXP_INL_H_
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#include "src/ast.h"
-#include "src/base/platform/platform.h"
-#include "src/compilation-cache.h"
-#include "src/compiler.h"
-#include "src/execution.h"
-#include "src/factory.h"
-#include "src/jsregexp-inl.h"
-#include "src/jsregexp.h"
-#include "src/messages.h"
-#include "src/ostreams.h"
-#include "src/parser.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-macro-assembler-irregexp.h"
-#include "src/regexp-macro-assembler-tracer.h"
-#include "src/regexp-stack.h"
-#include "src/runtime/runtime.h"
-#include "src/splay-tree-inl.h"
-#include "src/string-search.h"
-#include "src/unicode-decoder.h"
-
-#ifndef V8_INTERPRETED_REGEXP
-#if V8_TARGET_ARCH_IA32
-#include "src/ia32/regexp-macro-assembler-ia32.h" // NOLINT
-#elif V8_TARGET_ARCH_X64
-#include "src/x64/regexp-macro-assembler-x64.h" // NOLINT
-#elif V8_TARGET_ARCH_ARM64
-#include "src/arm64/regexp-macro-assembler-arm64.h" // NOLINT
-#elif V8_TARGET_ARCH_ARM
-#include "src/arm/regexp-macro-assembler-arm.h" // NOLINT
-#elif V8_TARGET_ARCH_PPC
-#include "src/ppc/regexp-macro-assembler-ppc.h" // NOLINT
-#elif V8_TARGET_ARCH_MIPS
-#include "src/mips/regexp-macro-assembler-mips.h" // NOLINT
-#elif V8_TARGET_ARCH_MIPS64
-#include "src/mips64/regexp-macro-assembler-mips64.h" // NOLINT
-#elif V8_TARGET_ARCH_X87
-#include "src/x87/regexp-macro-assembler-x87.h" // NOLINT
-#else
-#error Unsupported target architecture.
-#endif
-#endif
-
-#include "src/interpreter-irregexp.h"
-
-
-namespace v8 {
-namespace internal {
-
-MaybeHandle<Object> RegExpImpl::CreateRegExpLiteral(
- Handle<JSFunction> constructor,
- Handle<String> pattern,
- Handle<String> flags) {
- // Call the construct code with 2 arguments.
- Handle<Object> argv[] = { pattern, flags };
- return Execution::New(constructor, arraysize(argv), argv);
-}
-
-
-MUST_USE_RESULT
-static inline MaybeHandle<Object> ThrowRegExpException(
- Handle<JSRegExp> re, Handle<String> pattern, Handle<String> error_text) {
- Isolate* isolate = re->GetIsolate();
- THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp,
- pattern, error_text),
- Object);
-}
-
-
-inline void ThrowRegExpException(Handle<JSRegExp> re,
- Handle<String> error_text) {
- USE(ThrowRegExpException(re, Handle<String>(re->Pattern()), error_text));
-}
-
-
-ContainedInLattice AddRange(ContainedInLattice containment,
- const int* ranges,
- int ranges_length,
- Interval new_range) {
- DCHECK((ranges_length & 1) == 1);
- DCHECK(ranges[ranges_length - 1] == String::kMaxUtf16CodeUnit + 1);
- if (containment == kLatticeUnknown) return containment;
- bool inside = false;
- int last = 0;
- for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
- // Consider the range from last to ranges[i].
- // We haven't got to the new range yet.
- if (ranges[i] <= new_range.from()) continue;
- // New range is wholly inside last-ranges[i]. Note that new_range.to() is
- // inclusive, but the values in ranges are not.
- if (last <= new_range.from() && new_range.to() < ranges[i]) {
- return Combine(containment, inside ? kLatticeIn : kLatticeOut);
- }
- return kLatticeUnknown;
- }
- return containment;
-}
-
-
-// More makes code generation slower, less makes V8 benchmark score lower.
-const int kMaxLookaheadForBoyerMoore = 8;
-// In a 3-character pattern you can maximally step forwards 3 characters
-// at a time, which is not always enough to pay for the extra logic.
-const int kPatternTooShortForBoyerMoore = 2;
-
-
-// Identifies the sort of regexps where the regexp engine is faster
-// than the code used for atom matches.
-static bool HasFewDifferentCharacters(Handle<String> pattern) {
- int length = Min(kMaxLookaheadForBoyerMoore, pattern->length());
- if (length <= kPatternTooShortForBoyerMoore) return false;
- const int kMod = 128;
- bool character_found[kMod];
- int different = 0;
- memset(&character_found[0], 0, sizeof(character_found));
- for (int i = 0; i < length; i++) {
- int ch = (pattern->Get(i) & (kMod - 1));
- if (!character_found[ch]) {
- character_found[ch] = true;
- different++;
- // We declare a regexp low-alphabet if it has at least 3 times as many
- // characters as it has different characters.
- if (different * 3 > length) return false;
- }
- }
- return true;
-}
-
-
-// Generic RegExp methods. Dispatches to implementation specific methods.
-
-
-MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
- Handle<String> pattern,
- JSRegExp::Flags flags) {
- Isolate* isolate = re->GetIsolate();
- Zone zone;
- CompilationCache* compilation_cache = isolate->compilation_cache();
- MaybeHandle<FixedArray> maybe_cached =
- compilation_cache->LookupRegExp(pattern, flags);
- Handle<FixedArray> cached;
- bool in_cache = maybe_cached.ToHandle(&cached);
- LOG(isolate, RegExpCompileEvent(re, in_cache));
-
- Handle<Object> result;
- if (in_cache) {
- re->set_data(*cached);
- return re;
- }
- pattern = String::Flatten(pattern);
- PostponeInterruptsScope postpone(isolate);
- RegExpCompileData parse_result;
- FlatStringReader reader(isolate, pattern);
- if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader,
- flags.is_multiline(), flags.is_unicode(),
- &parse_result)) {
- // Throw an exception if we fail to parse the pattern.
- return ThrowRegExpException(re, pattern, parse_result.error);
- }
-
- bool has_been_compiled = false;
-
- if (parse_result.simple &&
- !flags.is_ignore_case() &&
- !flags.is_sticky() &&
- !HasFewDifferentCharacters(pattern)) {
- // Parse-tree is a single atom that is equal to the pattern.
- AtomCompile(re, pattern, flags, pattern);
- has_been_compiled = true;
- } else if (parse_result.tree->IsAtom() &&
- !flags.is_ignore_case() &&
- !flags.is_sticky() &&
- parse_result.capture_count == 0) {
- RegExpAtom* atom = parse_result.tree->AsAtom();
- Vector<const uc16> atom_pattern = atom->data();
- Handle<String> atom_string;
- ASSIGN_RETURN_ON_EXCEPTION(
- isolate, atom_string,
- isolate->factory()->NewStringFromTwoByte(atom_pattern),
- Object);
- if (!HasFewDifferentCharacters(atom_string)) {
- AtomCompile(re, pattern, flags, atom_string);
- has_been_compiled = true;
- }
- }
- if (!has_been_compiled) {
- IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
- }
- DCHECK(re->data()->IsFixedArray());
- // Compilation succeeded so the data is set on the regexp
- // and we can store it in the cache.
- Handle<FixedArray> data(FixedArray::cast(re->data()));
- compilation_cache->PutRegExp(pattern, flags, data);
-
- return re;
-}
-
-
-MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
- Handle<String> subject,
- int index,
- Handle<JSArray> last_match_info) {
- switch (regexp->TypeTag()) {
- case JSRegExp::ATOM:
- return AtomExec(regexp, subject, index, last_match_info);
- case JSRegExp::IRREGEXP: {
- return IrregexpExec(regexp, subject, index, last_match_info);
- }
- default:
- UNREACHABLE();
- return MaybeHandle<Object>();
- }
-}
-
-
-// RegExp Atom implementation: Simple string search using indexOf.
-
-
-void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
- Handle<String> pattern,
- JSRegExp::Flags flags,
- Handle<String> match_pattern) {
- re->GetIsolate()->factory()->SetRegExpAtomData(re,
- JSRegExp::ATOM,
- pattern,
- flags,
- match_pattern);
-}
-
-
-static void SetAtomLastCapture(FixedArray* array,
- String* subject,
- int from,
- int to) {
- SealHandleScope shs(array->GetIsolate());
- RegExpImpl::SetLastCaptureCount(array, 2);
- RegExpImpl::SetLastSubject(array, subject);
- RegExpImpl::SetLastInput(array, subject);
- RegExpImpl::SetCapture(array, 0, from);
- RegExpImpl::SetCapture(array, 1, to);
-}
-
-
-int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp,
- Handle<String> subject,
- int index,
- int32_t* output,
- int output_size) {
- Isolate* isolate = regexp->GetIsolate();
-
- DCHECK(0 <= index);
- DCHECK(index <= subject->length());
-
- subject = String::Flatten(subject);
- DisallowHeapAllocation no_gc; // ensure vectors stay valid
-
- String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex));
- int needle_len = needle->length();
- DCHECK(needle->IsFlat());
- DCHECK_LT(0, needle_len);
-
- if (index + needle_len > subject->length()) {
- return RegExpImpl::RE_FAILURE;
- }
-
- for (int i = 0; i < output_size; i += 2) {
- String::FlatContent needle_content = needle->GetFlatContent();
- String::FlatContent subject_content = subject->GetFlatContent();
- DCHECK(needle_content.IsFlat());
- DCHECK(subject_content.IsFlat());
- // dispatch on type of strings
- index =
- (needle_content.IsOneByte()
- ? (subject_content.IsOneByte()
- ? SearchString(isolate, subject_content.ToOneByteVector(),
- needle_content.ToOneByteVector(), index)
- : SearchString(isolate, subject_content.ToUC16Vector(),
- needle_content.ToOneByteVector(), index))
- : (subject_content.IsOneByte()
- ? SearchString(isolate, subject_content.ToOneByteVector(),
- needle_content.ToUC16Vector(), index)
- : SearchString(isolate, subject_content.ToUC16Vector(),
- needle_content.ToUC16Vector(), index)));
- if (index == -1) {
- return i / 2; // Return number of matches.
- } else {
- output[i] = index;
- output[i+1] = index + needle_len;
- index += needle_len;
- }
- }
- return output_size / 2;
-}
-
-
-Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
- Handle<String> subject,
- int index,
- Handle<JSArray> last_match_info) {
- Isolate* isolate = re->GetIsolate();
-
- static const int kNumRegisters = 2;
- STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize);
- int32_t* output_registers = isolate->jsregexp_static_offsets_vector();
-
- int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters);
-
- if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value();
-
- DCHECK_EQ(res, RegExpImpl::RE_SUCCESS);
- SealHandleScope shs(isolate);
- FixedArray* array = FixedArray::cast(last_match_info->elements());
- SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]);
- return last_match_info;
-}
-
-
-// Irregexp implementation.
-
-// Ensures that the regexp object contains a compiled version of the
-// source for either one-byte or two-byte subject strings.
-// If the compiled version doesn't already exist, it is compiled
-// from the source pattern.
-// If compilation fails, an exception is thrown and this function
-// returns false.
-bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re,
- Handle<String> sample_subject,
- bool is_one_byte) {
- Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte));
-#ifdef V8_INTERPRETED_REGEXP
- if (compiled_code->IsByteArray()) return true;
-#else // V8_INTERPRETED_REGEXP (RegExp native code)
- if (compiled_code->IsCode()) return true;
-#endif
- // We could potentially have marked this as flushable, but have kept
- // a saved version if we did not flush it yet.
- Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
- if (saved_code->IsCode()) {
- // Reinstate the code in the original place.
- re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code);
- DCHECK(compiled_code->IsSmi());
- return true;
- }
- return CompileIrregexp(re, sample_subject, is_one_byte);
-}
-
-
-bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re,
- Handle<String> sample_subject,
- bool is_one_byte) {
- // Compile the RegExp.
- Isolate* isolate = re->GetIsolate();
- Zone zone;
- PostponeInterruptsScope postpone(isolate);
- // If we had a compilation error the last time this is saved at the
- // saved code index.
- Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte));
- // When arriving here entry can only be a smi, either representing an
- // uncompiled regexp, a previous compilation error, or code that has
- // been flushed.
- DCHECK(entry->IsSmi());
- int entry_value = Smi::cast(entry)->value();
- DCHECK(entry_value == JSRegExp::kUninitializedValue ||
- entry_value == JSRegExp::kCompilationErrorValue ||
- (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0));
-
- if (entry_value == JSRegExp::kCompilationErrorValue) {
- // A previous compilation failed and threw an error which we store in
- // the saved code index (we store the error message, not the actual
- // error). Recreate the error object and throw it.
- Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
- DCHECK(error_string->IsString());
- Handle<String> error_message(String::cast(error_string));
- ThrowRegExpException(re, error_message);
- return false;
- }
-
- JSRegExp::Flags flags = re->GetFlags();
-
- Handle<String> pattern(re->Pattern());
- pattern = String::Flatten(pattern);
- RegExpCompileData compile_data;
- FlatStringReader reader(isolate, pattern);
- if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags.is_multiline(),
- flags.is_unicode(), &compile_data)) {
- // Throw an exception if we fail to parse the pattern.
- // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
- USE(ThrowRegExpException(re, pattern, compile_data.error));
- return false;
- }
- RegExpEngine::CompilationResult result = RegExpEngine::Compile(
- isolate, &zone, &compile_data, flags.is_ignore_case(), flags.is_global(),
- flags.is_multiline(), flags.is_sticky(), pattern, sample_subject,
- is_one_byte);
- if (result.error_message != NULL) {
- // Unable to compile regexp.
- Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
- CStrVector(result.error_message)).ToHandleChecked();
- ThrowRegExpException(re, error_message);
- return false;
- }
-
- Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
- data->set(JSRegExp::code_index(is_one_byte), result.code);
- int register_max = IrregexpMaxRegisterCount(*data);
- if (result.num_registers > register_max) {
- SetIrregexpMaxRegisterCount(*data, result.num_registers);
- }
-
- return true;
-}
-
-
-int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
- return Smi::cast(
- re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
-}
-
-
-void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
- re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
-}
-
-
-int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
- return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
-}
-
-
-int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
- return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
-}
-
-
-ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) {
- return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte)));
-}
-
-
-Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) {
- return Code::cast(re->get(JSRegExp::code_index(is_one_byte)));
-}
-
-
-void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
- Handle<String> pattern,
- JSRegExp::Flags flags,
- int capture_count) {
- // Initialize compiled code entries to null.
- re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
- JSRegExp::IRREGEXP,
- pattern,
- flags,
- capture_count);
-}
-
-
-int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
- Handle<String> subject) {
- subject = String::Flatten(subject);
-
- // Check representation of the underlying storage.
- bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
- if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1;
-
-#ifdef V8_INTERPRETED_REGEXP
- // Byte-code regexp needs space allocated for all its registers.
- // The result captures are copied to the start of the registers array
- // if the match succeeds. This way those registers are not clobbered
- // when we set the last match info from last successful match.
- return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) +
- (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
-#else // V8_INTERPRETED_REGEXP
- // Native regexp only needs room to output captures. Registers are handled
- // internally.
- return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
-#endif // V8_INTERPRETED_REGEXP
-}
-
-
-int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp,
- Handle<String> subject,
- int index,
- int32_t* output,
- int output_size) {
- Isolate* isolate = regexp->GetIsolate();
-
- Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
-
- DCHECK(index >= 0);
- DCHECK(index <= subject->length());
- DCHECK(subject->IsFlat());
-
- bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
-
-#ifndef V8_INTERPRETED_REGEXP
- DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
- do {
- EnsureCompiledIrregexp(regexp, subject, is_one_byte);
- Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate);
- // The stack is used to allocate registers for the compiled regexp code.
- // This means that in case of failure, the output registers array is left
- // untouched and contains the capture results from the previous successful
- // match. We can use that to set the last match info lazily.
- NativeRegExpMacroAssembler::Result res =
- NativeRegExpMacroAssembler::Match(code,
- subject,
- output,
- output_size,
- index,
- isolate);
- if (res != NativeRegExpMacroAssembler::RETRY) {
- DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION ||
- isolate->has_pending_exception());
- STATIC_ASSERT(
- static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
- STATIC_ASSERT(
- static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
- STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
- == RE_EXCEPTION);
- return static_cast<IrregexpResult>(res);
- }
- // If result is RETRY, the string has changed representation, and we
- // must restart from scratch.
- // In this case, it means we must make sure we are prepared to handle
- // the, potentially, different subject (the string can switch between
- // being internal and external, and even between being Latin1 and UC16,
- // but the characters are always the same).
- IrregexpPrepare(regexp, subject);
- is_one_byte = subject->IsOneByteRepresentationUnderneath();
- } while (true);
- UNREACHABLE();
- return RE_EXCEPTION;
-#else // V8_INTERPRETED_REGEXP
-
- DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp));
- // We must have done EnsureCompiledIrregexp, so we can get the number of
- // registers.
- int number_of_capture_registers =
- (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
- int32_t* raw_output = &output[number_of_capture_registers];
- // We do not touch the actual capture result registers until we know there
- // has been a match so that we can use those capture results to set the
- // last match info.
- for (int i = number_of_capture_registers - 1; i >= 0; i--) {
- raw_output[i] = -1;
- }
- Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte),
- isolate);
-
- IrregexpResult result = IrregexpInterpreter::Match(isolate,
- byte_codes,
- subject,
- raw_output,
- index);
- if (result == RE_SUCCESS) {
- // Copy capture results to the start of the registers array.
- MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t));
- }
- if (result == RE_EXCEPTION) {
- DCHECK(!isolate->has_pending_exception());
- isolate->StackOverflow();
- }
- return result;
-#endif // V8_INTERPRETED_REGEXP
-}
-
-
-MaybeHandle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp,
- Handle<String> subject,
- int previous_index,
- Handle<JSArray> last_match_info) {
- Isolate* isolate = regexp->GetIsolate();
- DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
-
- // Prepare space for the return values.
-#if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG)
- if (FLAG_trace_regexp_bytecodes) {
- String* pattern = regexp->Pattern();
- PrintF("\n\nRegexp match: /%s/\n\n", pattern->ToCString().get());
- PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get());
- }
-#endif
- int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
- if (required_registers < 0) {
- // Compiling failed with an exception.
- DCHECK(isolate->has_pending_exception());
- return MaybeHandle<Object>();
- }
-
- int32_t* output_registers = NULL;
- if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) {
- output_registers = NewArray<int32_t>(required_registers);
- }
- base::SmartArrayPointer<int32_t> auto_release(output_registers);
- if (output_registers == NULL) {
- output_registers = isolate->jsregexp_static_offsets_vector();
- }
-
- int res = RegExpImpl::IrregexpExecRaw(
- regexp, subject, previous_index, output_registers, required_registers);
- if (res == RE_SUCCESS) {
- int capture_count =
- IrregexpNumberOfCaptures(FixedArray::cast(regexp->data()));
- return SetLastMatchInfo(
- last_match_info, subject, capture_count, output_registers);
- }
- if (res == RE_EXCEPTION) {
- DCHECK(isolate->has_pending_exception());
- return MaybeHandle<Object>();
- }
- DCHECK(res == RE_FAILURE);
- return isolate->factory()->null_value();
-}
-
-
-static void EnsureSize(Handle<JSArray> array, uint32_t minimum_size) {
- if (static_cast<uint32_t>(array->elements()->length()) < minimum_size) {
- JSArray::SetLength(array, minimum_size);
- }
-}
-
-
-Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info,
- Handle<String> subject,
- int capture_count,
- int32_t* match) {
- DCHECK(last_match_info->HasFastObjectElements());
- int capture_register_count = (capture_count + 1) * 2;
- EnsureSize(last_match_info, capture_register_count + kLastMatchOverhead);
- DisallowHeapAllocation no_allocation;
- FixedArray* array = FixedArray::cast(last_match_info->elements());
- if (match != NULL) {
- for (int i = 0; i < capture_register_count; i += 2) {
- SetCapture(array, i, match[i]);
- SetCapture(array, i + 1, match[i + 1]);
- }
- }
- SetLastCaptureCount(array, capture_register_count);
- SetLastSubject(array, *subject);
- SetLastInput(array, *subject);
- return last_match_info;
-}
-
-
-RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp,
- Handle<String> subject,
- bool is_global,
- Isolate* isolate)
- : register_array_(NULL),
- register_array_size_(0),
- regexp_(regexp),
- subject_(subject) {
-#ifdef V8_INTERPRETED_REGEXP
- bool interpreted = true;
-#else
- bool interpreted = false;
-#endif // V8_INTERPRETED_REGEXP
-
- if (regexp_->TypeTag() == JSRegExp::ATOM) {
- static const int kAtomRegistersPerMatch = 2;
- registers_per_match_ = kAtomRegistersPerMatch;
- // There is no distinction between interpreted and native for atom regexps.
- interpreted = false;
- } else {
- registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_);
- if (registers_per_match_ < 0) {
- num_matches_ = -1; // Signal exception.
- return;
- }
- }
-
- if (is_global && !interpreted) {
- register_array_size_ =
- Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize);
- max_matches_ = register_array_size_ / registers_per_match_;
- } else {
- // Global loop in interpreted regexp is not implemented. We choose
- // the size of the offsets vector so that it can only store one match.
- register_array_size_ = registers_per_match_;
- max_matches_ = 1;
- }
-
- if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
- register_array_ = NewArray<int32_t>(register_array_size_);
- } else {
- register_array_ = isolate->jsregexp_static_offsets_vector();
- }
-
- // Set state so that fetching the results the first time triggers a call
- // to the compiled regexp.
- current_match_index_ = max_matches_ - 1;
- num_matches_ = max_matches_;
- DCHECK(registers_per_match_ >= 2); // Each match has at least one capture.
- DCHECK_GE(register_array_size_, registers_per_match_);
- int32_t* last_match =
- ®ister_array_[current_match_index_ * registers_per_match_];
- last_match[0] = -1;
- last_match[1] = 0;
-}
-
-
-// -------------------------------------------------------------------
-// Implementation of the Irregexp regular expression engine.
-//
-// The Irregexp regular expression engine is intended to be a complete
-// implementation of ECMAScript regular expressions. It generates either
-// bytecodes or native code.
-
-// The Irregexp regexp engine is structured in three steps.
-// 1) The parser generates an abstract syntax tree. See ast.cc.
-// 2) From the AST a node network is created. The nodes are all
-// subclasses of RegExpNode. The nodes represent states when
-// executing a regular expression. Several optimizations are
-// performed on the node network.
-// 3) From the nodes we generate either byte codes or native code
-// that can actually execute the regular expression (perform
-// the search). The code generation step is described in more
-// detail below.
-
-// Code generation.
-//
-// The nodes are divided into four main categories.
-// * Choice nodes
-// These represent places where the regular expression can
-// match in more than one way. For example on entry to an
-// alternation (foo|bar) or a repetition (*, +, ? or {}).
-// * Action nodes
-// These represent places where some action should be
-// performed. Examples include recording the current position
-// in the input string to a register (in order to implement
-// captures) or other actions on register for example in order
-// to implement the counters needed for {} repetitions.
-// * Matching nodes
-// These attempt to match some element part of the input string.
-// Examples of elements include character classes, plain strings
-// or back references.
-// * End nodes
-// These are used to implement the actions required on finding
-// a successful match or failing to find a match.
-//
-// The code generated (whether as byte codes or native code) maintains
-// some state as it runs. This consists of the following elements:
-//
-// * The capture registers. Used for string captures.
-// * Other registers. Used for counters etc.
-// * The current position.
-// * The stack of backtracking information. Used when a matching node
-// fails to find a match and needs to try an alternative.
-//
-// Conceptual regular expression execution model:
-//
-// There is a simple conceptual model of regular expression execution
-// which will be presented first. The actual code generated is a more
-// efficient simulation of the simple conceptual model:
-//
-// * Choice nodes are implemented as follows:
-// For each choice except the last {
-// push current position
-// push backtrack code location
-// <generate code to test for choice>
-// backtrack code location:
-// pop current position
-// }
-// <generate code to test for last choice>
-//
-// * Actions nodes are generated as follows
-// <push affected registers on backtrack stack>
-// <generate code to perform action>
-// push backtrack code location
-// <generate code to test for following nodes>
-// backtrack code location:
-// <pop affected registers to restore their state>
-// <pop backtrack location from stack and go to it>
-//
-// * Matching nodes are generated as follows:
-// if input string matches at current position
-// update current position
-// <generate code to test for following nodes>
-// else
-// <pop backtrack location from stack and go to it>
-//
-// Thus it can be seen that the current position is saved and restored
-// by the choice nodes, whereas the registers are saved and restored by
-// by the action nodes that manipulate them.
-//
-// The other interesting aspect of this model is that nodes are generated
-// at the point where they are needed by a recursive call to Emit(). If
-// the node has already been code generated then the Emit() call will
-// generate a jump to the previously generated code instead. In order to
-// limit recursion it is possible for the Emit() function to put the node
-// on a work list for later generation and instead generate a jump. The
-// destination of the jump is resolved later when the code is generated.
-//
-// Actual regular expression code generation.
-//
-// Code generation is actually more complicated than the above. In order
-// to improve the efficiency of the generated code some optimizations are
-// performed
-//
-// * Choice nodes have 1-character lookahead.
-// A choice node looks at the following character and eliminates some of
-// the choices immediately based on that character. This is not yet
-// implemented.
-// * Simple greedy loops store reduced backtracking information.
-// A quantifier like /.*foo/m will greedily match the whole input. It will
-// then need to backtrack to a point where it can match "foo". The naive
-// implementation of this would push each character position onto the
-// backtracking stack, then pop them off one by one. This would use space
-// proportional to the length of the input string. However since the "."
-// can only match in one way and always has a constant length (in this case
-// of 1) it suffices to store the current position on the top of the stack
-// once. Matching now becomes merely incrementing the current position and
-// backtracking becomes decrementing the current position and checking the
-// result against the stored current position. This is faster and saves
-// space.
-// * The current state is virtualized.
-// This is used to defer expensive operations until it is clear that they
-// are needed and to generate code for a node more than once, allowing
-// specialized an efficient versions of the code to be created. This is
-// explained in the section below.
-//
-// Execution state virtualization.
-//
-// Instead of emitting code, nodes that manipulate the state can record their
-// manipulation in an object called the Trace. The Trace object can record a
-// current position offset, an optional backtrack code location on the top of
-// the virtualized backtrack stack and some register changes. When a node is
-// to be emitted it can flush the Trace or update it. Flushing the Trace
-// will emit code to bring the actual state into line with the virtual state.
-// Avoiding flushing the state can postpone some work (e.g. updates of capture
-// registers). Postponing work can save time when executing the regular
-// expression since it may be found that the work never has to be done as a
-// failure to match can occur. In addition it is much faster to jump to a
-// known backtrack code location than it is to pop an unknown backtrack
-// location from the stack and jump there.
-//
-// The virtual state found in the Trace affects code generation. For example
-// the virtual state contains the difference between the actual current
-// position and the virtual current position, and matching code needs to use
-// this offset to attempt a match in the correct location of the input
-// string. Therefore code generated for a non-trivial trace is specialized
-// to that trace. The code generator therefore has the ability to generate
-// code for each node several times. In order to limit the size of the
-// generated code there is an arbitrary limit on how many specialized sets of
-// code may be generated for a given node. If the limit is reached, the
-// trace is flushed and a generic version of the code for a node is emitted.
-// This is subsequently used for that node. The code emitted for non-generic
-// trace is not recorded in the node and so it cannot currently be reused in
-// the event that code generation is requested for an identical trace.
-
-
-void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
- UNREACHABLE();
-}
-
-
-void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
- text->AddElement(TextElement::Atom(this), zone);
-}
-
-
-void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
- text->AddElement(TextElement::CharClass(this), zone);
-}
-
-
-void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
- for (int i = 0; i < elements()->length(); i++)
- text->AddElement(elements()->at(i), zone);
-}
-
-
-TextElement TextElement::Atom(RegExpAtom* atom) {
- return TextElement(ATOM, atom);
-}
-
-
-TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
- return TextElement(CHAR_CLASS, char_class);
-}
-
-
-int TextElement::length() const {
- switch (text_type()) {
- case ATOM:
- return atom()->length();
-
- case CHAR_CLASS:
- return 1;
- }
- UNREACHABLE();
- return 0;
-}
-
-
-DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
- if (table_ == NULL) {
- table_ = new(zone()) DispatchTable(zone());
- DispatchTableConstructor cons(table_, ignore_case, zone());
- cons.BuildTable(this);
- }
- return table_;
-}
-
-
-class FrequencyCollator {
- public:
- FrequencyCollator() : total_samples_(0) {
- for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
- frequencies_[i] = CharacterFrequency(i);
- }
- }
-
- void CountCharacter(int character) {
- int index = (character & RegExpMacroAssembler::kTableMask);
- frequencies_[index].Increment();
- total_samples_++;
- }
-
- // Does not measure in percent, but rather per-128 (the table size from the
- // regexp macro assembler).
- int Frequency(int in_character) {
- DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
- if (total_samples_ < 1) return 1; // Division by zero.
- int freq_in_per128 =
- (frequencies_[in_character].counter() * 128) / total_samples_;
- return freq_in_per128;
- }
-
- private:
- class CharacterFrequency {
- public:
- CharacterFrequency() : counter_(0), character_(-1) { }
- explicit CharacterFrequency(int character)
- : counter_(0), character_(character) { }
-
- void Increment() { counter_++; }
- int counter() { return counter_; }
- int character() { return character_; }
-
- private:
- int counter_;
- int character_;
- };
-
-
- private:
- CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
- int total_samples_;
-};
-
-
-class RegExpCompiler {
- public:
- RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
- bool ignore_case, bool is_one_byte);
-
- int AllocateRegister() {
- if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
- reg_exp_too_big_ = true;
- return next_register_;
- }
- return next_register_++;
- }
-
- RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
- RegExpNode* start,
- int capture_count,
- Handle<String> pattern);
-
- inline void AddWork(RegExpNode* node) {
- if (!node->on_work_list() && !node->label()->is_bound()) {
- node->set_on_work_list(true);
- work_list_->Add(node);
- }
- }
-
- static const int kImplementationOffset = 0;
- static const int kNumberOfRegistersOffset = 0;
- static const int kCodeOffset = 1;
-
- RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
- EndNode* accept() { return accept_; }
-
- static const int kMaxRecursion = 100;
- inline int recursion_depth() { return recursion_depth_; }
- inline void IncrementRecursionDepth() { recursion_depth_++; }
- inline void DecrementRecursionDepth() { recursion_depth_--; }
-
- void SetRegExpTooBig() { reg_exp_too_big_ = true; }
-
- inline bool ignore_case() { return ignore_case_; }
- inline bool one_byte() { return one_byte_; }
- inline bool optimize() { return optimize_; }
- inline void set_optimize(bool value) { optimize_ = value; }
- inline bool limiting_recursion() { return limiting_recursion_; }
- inline void set_limiting_recursion(bool value) {
- limiting_recursion_ = value;
- }
- FrequencyCollator* frequency_collator() { return &frequency_collator_; }
-
- int current_expansion_factor() { return current_expansion_factor_; }
- void set_current_expansion_factor(int value) {
- current_expansion_factor_ = value;
- }
-
- Isolate* isolate() const { return isolate_; }
- Zone* zone() const { return zone_; }
-
- static const int kNoRegister = -1;
-
- private:
- EndNode* accept_;
- int next_register_;
- List<RegExpNode*>* work_list_;
- int recursion_depth_;
- RegExpMacroAssembler* macro_assembler_;
- bool ignore_case_;
- bool one_byte_;
- bool reg_exp_too_big_;
- bool limiting_recursion_;
- bool optimize_;
- int current_expansion_factor_;
- FrequencyCollator frequency_collator_;
- Isolate* isolate_;
- Zone* zone_;
-};
-
-
-class RecursionCheck {
- public:
- explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
- compiler->IncrementRecursionDepth();
- }
- ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
- private:
- RegExpCompiler* compiler_;
-};
-
-
-static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
- return RegExpEngine::CompilationResult(isolate, "RegExp too big");
-}
-
-
-// Attempts to compile the regexp using an Irregexp code generator. Returns
-// a fixed array or a null handle depending on whether it succeeded.
-RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
- bool ignore_case, bool one_byte)
- : next_register_(2 * (capture_count + 1)),
- work_list_(NULL),
- recursion_depth_(0),
- ignore_case_(ignore_case),
- one_byte_(one_byte),
- reg_exp_too_big_(false),
- limiting_recursion_(false),
- optimize_(FLAG_regexp_optimization),
- current_expansion_factor_(1),
- frequency_collator_(),
- isolate_(isolate),
- zone_(zone) {
- accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
- DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
-}
-
-
-RegExpEngine::CompilationResult RegExpCompiler::Assemble(
- RegExpMacroAssembler* macro_assembler,
- RegExpNode* start,
- int capture_count,
- Handle<String> pattern) {
- Heap* heap = pattern->GetHeap();
-
-#ifdef DEBUG
- if (FLAG_trace_regexp_assembler)
- macro_assembler_ =
- new RegExpMacroAssemblerTracer(isolate(), macro_assembler);
- else
-#endif
- macro_assembler_ = macro_assembler;
-
- List <RegExpNode*> work_list(0);
- work_list_ = &work_list;
- Label fail;
- macro_assembler_->PushBacktrack(&fail);
- Trace new_trace;
- start->Emit(this, &new_trace);
- macro_assembler_->Bind(&fail);
- macro_assembler_->Fail();
- while (!work_list.is_empty()) {
- RegExpNode* node = work_list.RemoveLast();
- node->set_on_work_list(false);
- if (!node->label()->is_bound()) node->Emit(this, &new_trace);
- }
- if (reg_exp_too_big_) {
- macro_assembler_->AbortedCodeGeneration();
- return IrregexpRegExpTooBig(isolate_);
- }
-
- Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
- heap->IncreaseTotalRegexpCodeGenerated(code->Size());
- work_list_ = NULL;
-#ifdef ENABLE_DISASSEMBLER
- if (FLAG_print_code) {
- CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
- OFStream os(trace_scope.file());
- Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
- }
-#endif
-#ifdef DEBUG
- if (FLAG_trace_regexp_assembler) {
- delete macro_assembler_;
- }
-#endif
- return RegExpEngine::CompilationResult(*code, next_register_);
-}
-
-
-bool Trace::DeferredAction::Mentions(int that) {
- if (action_type() == ActionNode::CLEAR_CAPTURES) {
- Interval range = static_cast<DeferredClearCaptures*>(this)->range();
- return range.Contains(that);
- } else {
- return reg() == that;
- }
-}
-
-
-bool Trace::mentions_reg(int reg) {
- for (DeferredAction* action = actions_;
- action != NULL;
- action = action->next()) {
- if (action->Mentions(reg))
- return true;
- }
- return false;
-}
-
-
-bool Trace::GetStoredPosition(int reg, int* cp_offset) {
- DCHECK_EQ(0, *cp_offset);
- for (DeferredAction* action = actions_;
- action != NULL;
- action = action->next()) {
- if (action->Mentions(reg)) {
- if (action->action_type() == ActionNode::STORE_POSITION) {
- *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
- return true;
- } else {
- return false;
- }
- }
- }
- return false;
-}
-
-
-int Trace::FindAffectedRegisters(OutSet* affected_registers,
- Zone* zone) {
- int max_register = RegExpCompiler::kNoRegister;
- for (DeferredAction* action = actions_;
- action != NULL;
- action = action->next()) {
- if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
- Interval range = static_cast<DeferredClearCaptures*>(action)->range();
- for (int i = range.from(); i <= range.to(); i++)
- affected_registers->Set(i, zone);
- if (range.to() > max_register) max_register = range.to();
- } else {
- affected_registers->Set(action->reg(), zone);
- if (action->reg() > max_register) max_register = action->reg();
- }
- }
- return max_register;
-}
-
-
-void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
- int max_register,
- const OutSet& registers_to_pop,
- const OutSet& registers_to_clear) {
- for (int reg = max_register; reg >= 0; reg--) {
- if (registers_to_pop.Get(reg)) {
- assembler->PopRegister(reg);
- } else if (registers_to_clear.Get(reg)) {
- int clear_to = reg;
- while (reg > 0 && registers_to_clear.Get(reg - 1)) {
- reg--;
- }
- assembler->ClearRegisters(reg, clear_to);
- }
- }
-}
-
-
-void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
- int max_register,
- const OutSet& affected_registers,
- OutSet* registers_to_pop,
- OutSet* registers_to_clear,
- Zone* zone) {
- // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
- const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
-
- // Count pushes performed to force a stack limit check occasionally.
- int pushes = 0;
-
- for (int reg = 0; reg <= max_register; reg++) {
- if (!affected_registers.Get(reg)) {
- continue;
- }
-
- // The chronologically first deferred action in the trace
- // is used to infer the action needed to restore a register
- // to its previous state (or not, if it's safe to ignore it).
- enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
- DeferredActionUndoType undo_action = IGNORE;
-
- int value = 0;
- bool absolute = false;
- bool clear = false;
- int store_position = -1;
- // This is a little tricky because we are scanning the actions in reverse
- // historical order (newest first).
- for (DeferredAction* action = actions_;
- action != NULL;
- action = action->next()) {
- if (action->Mentions(reg)) {
- switch (action->action_type()) {
- case ActionNode::SET_REGISTER: {
- Trace::DeferredSetRegister* psr =
- static_cast<Trace::DeferredSetRegister*>(action);
- if (!absolute) {
- value += psr->value();
- absolute = true;
- }
- // SET_REGISTER is currently only used for newly introduced loop
- // counters. They can have a significant previous value if they
- // occour in a loop. TODO(lrn): Propagate this information, so
- // we can set undo_action to IGNORE if we know there is no value to
- // restore.
- undo_action = RESTORE;
- DCHECK_EQ(store_position, -1);
- DCHECK(!clear);
- break;
- }
- case ActionNode::INCREMENT_REGISTER:
- if (!absolute) {
- value++;
- }
- DCHECK_EQ(store_position, -1);
- DCHECK(!clear);
- undo_action = RESTORE;
- break;
- case ActionNode::STORE_POSITION: {
- Trace::DeferredCapture* pc =
- static_cast<Trace::DeferredCapture*>(action);
- if (!clear && store_position == -1) {
- store_position = pc->cp_offset();
- }
-
- // For captures we know that stores and clears alternate.
- // Other register, are never cleared, and if the occur
- // inside a loop, they might be assigned more than once.
- if (reg <= 1) {
- // Registers zero and one, aka "capture zero", is
- // always set correctly if we succeed. There is no
- // need to undo a setting on backtrack, because we
- // will set it again or fail.
- undo_action = IGNORE;
- } else {
- undo_action = pc->is_capture() ? CLEAR : RESTORE;
- }
- DCHECK(!absolute);
- DCHECK_EQ(value, 0);
- break;
- }
- case ActionNode::CLEAR_CAPTURES: {
- // Since we're scanning in reverse order, if we've already
- // set the position we have to ignore historically earlier
- // clearing operations.
- if (store_position == -1) {
- clear = true;
- }
- undo_action = RESTORE;
- DCHECK(!absolute);
- DCHECK_EQ(value, 0);
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
- }
- }
- // Prepare for the undo-action (e.g., push if it's going to be popped).
- if (undo_action == RESTORE) {
- pushes++;
- RegExpMacroAssembler::StackCheckFlag stack_check =
- RegExpMacroAssembler::kNoStackLimitCheck;
- if (pushes == push_limit) {
- stack_check = RegExpMacroAssembler::kCheckStackLimit;
- pushes = 0;
- }
-
- assembler->PushRegister(reg, stack_check);
- registers_to_pop->Set(reg, zone);
- } else if (undo_action == CLEAR) {
- registers_to_clear->Set(reg, zone);
- }
- // Perform the chronologically last action (or accumulated increment)
- // for the register.
- if (store_position != -1) {
- assembler->WriteCurrentPositionToRegister(reg, store_position);
- } else if (clear) {
- assembler->ClearRegisters(reg, reg);
- } else if (absolute) {
- assembler->SetRegister(reg, value);
- } else if (value != 0) {
- assembler->AdvanceRegister(reg, value);
- }
- }
-}
-
-
-// This is called as we come into a loop choice node and some other tricky
-// nodes. It normalizes the state of the code generator to ensure we can
-// generate generic code.
-void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
-
- DCHECK(!is_trivial());
-
- if (actions_ == NULL && backtrack() == NULL) {
- // Here we just have some deferred cp advances to fix and we are back to
- // a normal situation. We may also have to forget some information gained
- // through a quick check that was already performed.
- if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
- // Create a new trivial state and generate the node with that.
- Trace new_state;
- successor->Emit(compiler, &new_state);
- return;
- }
-
- // Generate deferred actions here along with code to undo them again.
- OutSet affected_registers;
-
- if (backtrack() != NULL) {
- // Here we have a concrete backtrack location. These are set up by choice
- // nodes and so they indicate that we have a deferred save of the current
- // position which we may need to emit here.
- assembler->PushCurrentPosition();
- }
-
- int max_register = FindAffectedRegisters(&affected_registers,
- compiler->zone());
- OutSet registers_to_pop;
- OutSet registers_to_clear;
- PerformDeferredActions(assembler,
- max_register,
- affected_registers,
- ®isters_to_pop,
- ®isters_to_clear,
- compiler->zone());
- if (cp_offset_ != 0) {
- assembler->AdvanceCurrentPosition(cp_offset_);
- }
-
- // Create a new trivial state and generate the node with that.
- Label undo;
- assembler->PushBacktrack(&undo);
- if (successor->KeepRecursing(compiler)) {
- Trace new_state;
- successor->Emit(compiler, &new_state);
- } else {
- compiler->AddWork(successor);
- assembler->GoTo(successor->label());
- }
-
- // On backtrack we need to restore state.
- assembler->Bind(&undo);
- RestoreAffectedRegisters(assembler,
- max_register,
- registers_to_pop,
- registers_to_clear);
- if (backtrack() == NULL) {
- assembler->Backtrack();
- } else {
- assembler->PopCurrentPosition();
- assembler->GoTo(backtrack());
- }
-}
-
-
-void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
-
- // Omit flushing the trace. We discard the entire stack frame anyway.
-
- if (!label()->is_bound()) {
- // We are completely independent of the trace, since we ignore it,
- // so this code can be used as the generic version.
- assembler->Bind(label());
- }
-
- // Throw away everything on the backtrack stack since the start
- // of the negative submatch and restore the character position.
- assembler->ReadCurrentPositionFromRegister(current_position_register_);
- assembler->ReadStackPointerFromRegister(stack_pointer_register_);
- if (clear_capture_count_ > 0) {
- // Clear any captures that might have been performed during the success
- // of the body of the negative look-ahead.
- int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
- assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
- }
- // Now that we have unwound the stack we find at the top of the stack the
- // backtrack that the BeginSubmatch node got.
- assembler->Backtrack();
-}
-
-
-void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- return;
- }
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- if (!label()->is_bound()) {
- assembler->Bind(label());
- }
- switch (action_) {
- case ACCEPT:
- assembler->Succeed();
- return;
- case BACKTRACK:
- assembler->GoTo(trace->backtrack());
- return;
- case NEGATIVE_SUBMATCH_SUCCESS:
- // This case is handled in a different virtual method.
- UNREACHABLE();
- }
- UNIMPLEMENTED();
-}
-
-
-void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
- if (guards_ == NULL)
- guards_ = new(zone) ZoneList<Guard*>(1, zone);
- guards_->Add(guard, zone);
-}
-
-
-ActionNode* ActionNode::SetRegister(int reg,
- int val,
- RegExpNode* on_success) {
- ActionNode* result =
- new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
- result->data_.u_store_register.reg = reg;
- result->data_.u_store_register.value = val;
- return result;
-}
-
-
-ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
- ActionNode* result =
- new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
- result->data_.u_increment_register.reg = reg;
- return result;
-}
-
-
-ActionNode* ActionNode::StorePosition(int reg,
- bool is_capture,
- RegExpNode* on_success) {
- ActionNode* result =
- new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
- result->data_.u_position_register.reg = reg;
- result->data_.u_position_register.is_capture = is_capture;
- return result;
-}
-
-
-ActionNode* ActionNode::ClearCaptures(Interval range,
- RegExpNode* on_success) {
- ActionNode* result =
- new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
- result->data_.u_clear_captures.range_from = range.from();
- result->data_.u_clear_captures.range_to = range.to();
- return result;
-}
-
-
-ActionNode* ActionNode::BeginSubmatch(int stack_reg,
- int position_reg,
- RegExpNode* on_success) {
- ActionNode* result =
- new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
- result->data_.u_submatch.stack_pointer_register = stack_reg;
- result->data_.u_submatch.current_position_register = position_reg;
- return result;
-}
-
-
-ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
- int position_reg,
- int clear_register_count,
- int clear_register_from,
- RegExpNode* on_success) {
- ActionNode* result =
- new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
- result->data_.u_submatch.stack_pointer_register = stack_reg;
- result->data_.u_submatch.current_position_register = position_reg;
- result->data_.u_submatch.clear_register_count = clear_register_count;
- result->data_.u_submatch.clear_register_from = clear_register_from;
- return result;
-}
-
-
-ActionNode* ActionNode::EmptyMatchCheck(int start_register,
- int repetition_register,
- int repetition_limit,
- RegExpNode* on_success) {
- ActionNode* result =
- new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
- result->data_.u_empty_match_check.start_register = start_register;
- result->data_.u_empty_match_check.repetition_register = repetition_register;
- result->data_.u_empty_match_check.repetition_limit = repetition_limit;
- return result;
-}
-
-
-#define DEFINE_ACCEPT(Type) \
- void Type##Node::Accept(NodeVisitor* visitor) { \
- visitor->Visit##Type(this); \
- }
-FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
-#undef DEFINE_ACCEPT
-
-
-void LoopChoiceNode::Accept(NodeVisitor* visitor) {
- visitor->VisitLoopChoice(this);
-}
-
-
-// -------------------------------------------------------------------
-// Emit code.
-
-
-void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
- Guard* guard,
- Trace* trace) {
- switch (guard->op()) {
- case Guard::LT:
- DCHECK(!trace->mentions_reg(guard->reg()));
- macro_assembler->IfRegisterGE(guard->reg(),
- guard->value(),
- trace->backtrack());
- break;
- case Guard::GEQ:
- DCHECK(!trace->mentions_reg(guard->reg()));
- macro_assembler->IfRegisterLT(guard->reg(),
- guard->value(),
- trace->backtrack());
- break;
- }
-}
-
-
-// Returns the number of characters in the equivalence class, omitting those
-// that cannot occur in the source string because it is Latin1.
-static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
- bool one_byte_subject,
- unibrow::uchar* letters) {
- int length =
- isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
- // Unibrow returns 0 or 1 for characters where case independence is
- // trivial.
- if (length == 0) {
- letters[0] = character;
- length = 1;
- }
-
- if (one_byte_subject) {
- int new_length = 0;
- for (int i = 0; i < length; i++) {
- if (letters[i] <= String::kMaxOneByteCharCode) {
- letters[new_length++] = letters[i];
- }
- }
- length = new_length;
- }
-
- return length;
-}
-
-
-static inline bool EmitSimpleCharacter(Isolate* isolate,
- RegExpCompiler* compiler,
- uc16 c,
- Label* on_failure,
- int cp_offset,
- bool check,
- bool preloaded) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- bool bound_checked = false;
- if (!preloaded) {
- assembler->LoadCurrentCharacter(
- cp_offset,
- on_failure,
- check);
- bound_checked = true;
- }
- assembler->CheckNotCharacter(c, on_failure);
- return bound_checked;
-}
-
-
-// Only emits non-letters (things that don't have case). Only used for case
-// independent matches.
-static inline bool EmitAtomNonLetter(Isolate* isolate,
- RegExpCompiler* compiler,
- uc16 c,
- Label* on_failure,
- int cp_offset,
- bool check,
- bool preloaded) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- bool one_byte = compiler->one_byte();
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
- if (length < 1) {
- // This can't match. Must be an one-byte subject and a non-one-byte
- // character. We do not need to do anything since the one-byte pass
- // already handled this.
- return false; // Bounds not checked.
- }
- bool checked = false;
- // We handle the length > 1 case in a later pass.
- if (length == 1) {
- if (one_byte && c > String::kMaxOneByteCharCodeU) {
- // Can't match - see above.
- return false; // Bounds not checked.
- }
- if (!preloaded) {
- macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
- checked = check;
- }
- macro_assembler->CheckNotCharacter(c, on_failure);
- }
- return checked;
-}
-
-
-static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
- bool one_byte, uc16 c1, uc16 c2,
- Label* on_failure) {
- uc16 char_mask;
- if (one_byte) {
- char_mask = String::kMaxOneByteCharCode;
- } else {
- char_mask = String::kMaxUtf16CodeUnit;
- }
- uc16 exor = c1 ^ c2;
- // Check whether exor has only one bit set.
- if (((exor - 1) & exor) == 0) {
- // If c1 and c2 differ only by one bit.
- // Ecma262UnCanonicalize always gives the highest number last.
- DCHECK(c2 > c1);
- uc16 mask = char_mask ^ exor;
- macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
- return true;
- }
- DCHECK(c2 > c1);
- uc16 diff = c2 - c1;
- if (((diff - 1) & diff) == 0 && c1 >= diff) {
- // If the characters differ by 2^n but don't differ by one bit then
- // subtract the difference from the found character, then do the or
- // trick. We avoid the theoretical case where negative numbers are
- // involved in order to simplify code generation.
- uc16 mask = char_mask ^ diff;
- macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
- diff,
- mask,
- on_failure);
- return true;
- }
- return false;
-}
-
-
-typedef bool EmitCharacterFunction(Isolate* isolate,
- RegExpCompiler* compiler,
- uc16 c,
- Label* on_failure,
- int cp_offset,
- bool check,
- bool preloaded);
-
-// Only emits letters (things that have case). Only used for case independent
-// matches.
-static inline bool EmitAtomLetter(Isolate* isolate,
- RegExpCompiler* compiler,
- uc16 c,
- Label* on_failure,
- int cp_offset,
- bool check,
- bool preloaded) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- bool one_byte = compiler->one_byte();
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
- if (length <= 1) return false;
- // We may not need to check against the end of the input string
- // if this character lies before a character that matched.
- if (!preloaded) {
- macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
- }
- Label ok;
- DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
- switch (length) {
- case 2: {
- if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
- chars[1], on_failure)) {
- } else {
- macro_assembler->CheckCharacter(chars[0], &ok);
- macro_assembler->CheckNotCharacter(chars[1], on_failure);
- macro_assembler->Bind(&ok);
- }
- break;
- }
- case 4:
- macro_assembler->CheckCharacter(chars[3], &ok);
- // Fall through!
- case 3:
- macro_assembler->CheckCharacter(chars[0], &ok);
- macro_assembler->CheckCharacter(chars[1], &ok);
- macro_assembler->CheckNotCharacter(chars[2], on_failure);
- macro_assembler->Bind(&ok);
- break;
- default:
- UNREACHABLE();
- break;
- }
- return true;
-}
-
-
-static void EmitBoundaryTest(RegExpMacroAssembler* masm,
- int border,
- Label* fall_through,
- Label* above_or_equal,
- Label* below) {
- if (below != fall_through) {
- masm->CheckCharacterLT(border, below);
- if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
- } else {
- masm->CheckCharacterGT(border - 1, above_or_equal);
- }
-}
-
-
-static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
- int first,
- int last,
- Label* fall_through,
- Label* in_range,
- Label* out_of_range) {
- if (in_range == fall_through) {
- if (first == last) {
- masm->CheckNotCharacter(first, out_of_range);
- } else {
- masm->CheckCharacterNotInRange(first, last, out_of_range);
- }
- } else {
- if (first == last) {
- masm->CheckCharacter(first, in_range);
- } else {
- masm->CheckCharacterInRange(first, last, in_range);
- }
- if (out_of_range != fall_through) masm->GoTo(out_of_range);
- }
-}
-
-
-// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
-// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
-static void EmitUseLookupTable(
- RegExpMacroAssembler* masm,
- ZoneList<int>* ranges,
- int start_index,
- int end_index,
- int min_char,
- Label* fall_through,
- Label* even_label,
- Label* odd_label) {
- static const int kSize = RegExpMacroAssembler::kTableSize;
- static const int kMask = RegExpMacroAssembler::kTableMask;
-
- int base = (min_char & ~kMask);
- USE(base);
-
- // Assert that everything is on one kTableSize page.
- for (int i = start_index; i <= end_index; i++) {
- DCHECK_EQ(ranges->at(i) & ~kMask, base);
- }
- DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
-
- char templ[kSize];
- Label* on_bit_set;
- Label* on_bit_clear;
- int bit;
- if (even_label == fall_through) {
- on_bit_set = odd_label;
- on_bit_clear = even_label;
- bit = 1;
- } else {
- on_bit_set = even_label;
- on_bit_clear = odd_label;
- bit = 0;
- }
- for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
- templ[i] = bit;
- }
- int j = 0;
- bit ^= 1;
- for (int i = start_index; i < end_index; i++) {
- for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
- templ[j] = bit;
- }
- bit ^= 1;
- }
- for (int i = j; i < kSize; i++) {
- templ[i] = bit;
- }
- Factory* factory = masm->isolate()->factory();
- // TODO(erikcorry): Cache these.
- Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
- for (int i = 0; i < kSize; i++) {
- ba->set(i, templ[i]);
- }
- masm->CheckBitInTable(ba, on_bit_set);
- if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
-}
-
-
-static void CutOutRange(RegExpMacroAssembler* masm,
- ZoneList<int>* ranges,
- int start_index,
- int end_index,
- int cut_index,
- Label* even_label,
- Label* odd_label) {
- bool odd = (((cut_index - start_index) & 1) == 1);
- Label* in_range_label = odd ? odd_label : even_label;
- Label dummy;
- EmitDoubleBoundaryTest(masm,
- ranges->at(cut_index),
- ranges->at(cut_index + 1) - 1,
- &dummy,
- in_range_label,
- &dummy);
- DCHECK(!dummy.is_linked());
- // Cut out the single range by rewriting the array. This creates a new
- // range that is a merger of the two ranges on either side of the one we
- // are cutting out. The oddity of the labels is preserved.
- for (int j = cut_index; j > start_index; j--) {
- ranges->at(j) = ranges->at(j - 1);
- }
- for (int j = cut_index + 1; j < end_index; j++) {
- ranges->at(j) = ranges->at(j + 1);
- }
-}
-
-
-// Unicode case. Split the search space into kSize spaces that are handled
-// with recursion.
-static void SplitSearchSpace(ZoneList<int>* ranges,
- int start_index,
- int end_index,
- int* new_start_index,
- int* new_end_index,
- int* border) {
- static const int kSize = RegExpMacroAssembler::kTableSize;
- static const int kMask = RegExpMacroAssembler::kTableMask;
-
- int first = ranges->at(start_index);
- int last = ranges->at(end_index) - 1;
-
- *new_start_index = start_index;
- *border = (ranges->at(start_index) & ~kMask) + kSize;
- while (*new_start_index < end_index) {
- if (ranges->at(*new_start_index) > *border) break;
- (*new_start_index)++;
- }
- // new_start_index is the index of the first edge that is beyond the
- // current kSize space.
-
- // For very large search spaces we do a binary chop search of the non-Latin1
- // space instead of just going to the end of the current kSize space. The
- // heuristics are complicated a little by the fact that any 128-character
- // encoding space can be quickly tested with a table lookup, so we don't
- // wish to do binary chop search at a smaller granularity than that. A
- // 128-character space can take up a lot of space in the ranges array if,
- // for example, we only want to match every second character (eg. the lower
- // case characters on some Unicode pages).
- int binary_chop_index = (end_index + start_index) / 2;
- // The first test ensures that we get to the code that handles the Latin1
- // range with a single not-taken branch, speeding up this important
- // character range (even non-Latin1 charset-based text has spaces and
- // punctuation).
- if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case.
- end_index - start_index > (*new_start_index - start_index) * 2 &&
- last - first > kSize * 2 && binary_chop_index > *new_start_index &&
- ranges->at(binary_chop_index) >= first + 2 * kSize) {
- int scan_forward_for_section_border = binary_chop_index;;
- int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
-
- while (scan_forward_for_section_border < end_index) {
- if (ranges->at(scan_forward_for_section_border) > new_border) {
- *new_start_index = scan_forward_for_section_border;
- *border = new_border;
- break;
- }
- scan_forward_for_section_border++;
- }
- }
-
- DCHECK(*new_start_index > start_index);
- *new_end_index = *new_start_index - 1;
- if (ranges->at(*new_end_index) == *border) {
- (*new_end_index)--;
- }
- if (*border >= ranges->at(end_index)) {
- *border = ranges->at(end_index);
- *new_start_index = end_index; // Won't be used.
- *new_end_index = end_index - 1;
- }
-}
-
-
-// Gets a series of segment boundaries representing a character class. If the
-// character is in the range between an even and an odd boundary (counting from
-// start_index) then go to even_label, otherwise go to odd_label. We already
-// know that the character is in the range of min_char to max_char inclusive.
-// Either label can be NULL indicating backtracking. Either label can also be
-// equal to the fall_through label.
-static void GenerateBranches(RegExpMacroAssembler* masm,
- ZoneList<int>* ranges,
- int start_index,
- int end_index,
- uc16 min_char,
- uc16 max_char,
- Label* fall_through,
- Label* even_label,
- Label* odd_label) {
- int first = ranges->at(start_index);
- int last = ranges->at(end_index) - 1;
-
- DCHECK_LT(min_char, first);
-
- // Just need to test if the character is before or on-or-after
- // a particular character.
- if (start_index == end_index) {
- EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
- return;
- }
-
- // Another almost trivial case: There is one interval in the middle that is
- // different from the end intervals.
- if (start_index + 1 == end_index) {
- EmitDoubleBoundaryTest(
- masm, first, last, fall_through, even_label, odd_label);
- return;
- }
-
- // It's not worth using table lookup if there are very few intervals in the
- // character class.
- if (end_index - start_index <= 6) {
- // It is faster to test for individual characters, so we look for those
- // first, then try arbitrary ranges in the second round.
- static int kNoCutIndex = -1;
- int cut = kNoCutIndex;
- for (int i = start_index; i < end_index; i++) {
- if (ranges->at(i) == ranges->at(i + 1) - 1) {
- cut = i;
- break;
- }
- }
- if (cut == kNoCutIndex) cut = start_index;
- CutOutRange(
- masm, ranges, start_index, end_index, cut, even_label, odd_label);
- DCHECK_GE(end_index - start_index, 2);
- GenerateBranches(masm,
- ranges,
- start_index + 1,
- end_index - 1,
- min_char,
- max_char,
- fall_through,
- even_label,
- odd_label);
- return;
- }
-
- // If there are a lot of intervals in the regexp, then we will use tables to
- // determine whether the character is inside or outside the character class.
- static const int kBits = RegExpMacroAssembler::kTableSizeBits;
-
- if ((max_char >> kBits) == (min_char >> kBits)) {
- EmitUseLookupTable(masm,
- ranges,
- start_index,
- end_index,
- min_char,
- fall_through,
- even_label,
- odd_label);
- return;
- }
-
- if ((min_char >> kBits) != (first >> kBits)) {
- masm->CheckCharacterLT(first, odd_label);
- GenerateBranches(masm,
- ranges,
- start_index + 1,
- end_index,
- first,
- max_char,
- fall_through,
- odd_label,
- even_label);
- return;
- }
-
- int new_start_index = 0;
- int new_end_index = 0;
- int border = 0;
-
- SplitSearchSpace(ranges,
- start_index,
- end_index,
- &new_start_index,
- &new_end_index,
- &border);
-
- Label handle_rest;
- Label* above = &handle_rest;
- if (border == last + 1) {
- // We didn't find any section that started after the limit, so everything
- // above the border is one of the terminal labels.
- above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
- DCHECK(new_end_index == end_index - 1);
- }
-
- DCHECK_LE(start_index, new_end_index);
- DCHECK_LE(new_start_index, end_index);
- DCHECK_LT(start_index, new_start_index);
- DCHECK_LT(new_end_index, end_index);
- DCHECK(new_end_index + 1 == new_start_index ||
- (new_end_index + 2 == new_start_index &&
- border == ranges->at(new_end_index + 1)));
- DCHECK_LT(min_char, border - 1);
- DCHECK_LT(border, max_char);
- DCHECK_LT(ranges->at(new_end_index), border);
- DCHECK(border < ranges->at(new_start_index) ||
- (border == ranges->at(new_start_index) &&
- new_start_index == end_index &&
- new_end_index == end_index - 1 &&
- border == last + 1));
- DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
-
- masm->CheckCharacterGT(border - 1, above);
- Label dummy;
- GenerateBranches(masm,
- ranges,
- start_index,
- new_end_index,
- min_char,
- border - 1,
- &dummy,
- even_label,
- odd_label);
- if (handle_rest.is_linked()) {
- masm->Bind(&handle_rest);
- bool flip = (new_start_index & 1) != (start_index & 1);
- GenerateBranches(masm,
- ranges,
- new_start_index,
- end_index,
- border,
- max_char,
- &dummy,
- flip ? odd_label : even_label,
- flip ? even_label : odd_label);
- }
-}
-
-
-static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
- RegExpCharacterClass* cc, bool one_byte,
- Label* on_failure, int cp_offset, bool check_offset,
- bool preloaded, Zone* zone) {
- ZoneList<CharacterRange>* ranges = cc->ranges(zone);
- if (!CharacterRange::IsCanonical(ranges)) {
- CharacterRange::Canonicalize(ranges);
- }
-
- int max_char;
- if (one_byte) {
- max_char = String::kMaxOneByteCharCode;
- } else {
- max_char = String::kMaxUtf16CodeUnit;
- }
-
- int range_count = ranges->length();
-
- int last_valid_range = range_count - 1;
- while (last_valid_range >= 0) {
- CharacterRange& range = ranges->at(last_valid_range);
- if (range.from() <= max_char) {
- break;
- }
- last_valid_range--;
- }
-
- if (last_valid_range < 0) {
- if (!cc->is_negated()) {
- macro_assembler->GoTo(on_failure);
- }
- if (check_offset) {
- macro_assembler->CheckPosition(cp_offset, on_failure);
- }
- return;
- }
-
- if (last_valid_range == 0 &&
- ranges->at(0).IsEverything(max_char)) {
- if (cc->is_negated()) {
- macro_assembler->GoTo(on_failure);
- } else {
- // This is a common case hit by non-anchored expressions.
- if (check_offset) {
- macro_assembler->CheckPosition(cp_offset, on_failure);
- }
- }
- return;
- }
- if (last_valid_range == 0 &&
- !cc->is_negated() &&
- ranges->at(0).IsEverything(max_char)) {
- // This is a common case hit by non-anchored expressions.
- if (check_offset) {
- macro_assembler->CheckPosition(cp_offset, on_failure);
- }
- return;
- }
-
- if (!preloaded) {
- macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
- }
-
- if (cc->is_standard(zone) &&
- macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
- on_failure)) {
- return;
- }
-
-
- // A new list with ascending entries. Each entry is a code unit
- // where there is a boundary between code units that are part of
- // the class and code units that are not. Normally we insert an
- // entry at zero which goes to the failure label, but if there
- // was already one there we fall through for success on that entry.
- // Subsequent entries have alternating meaning (success/failure).
- ZoneList<int>* range_boundaries =
- new(zone) ZoneList<int>(last_valid_range, zone);
-
- bool zeroth_entry_is_failure = !cc->is_negated();
-
- for (int i = 0; i <= last_valid_range; i++) {
- CharacterRange& range = ranges->at(i);
- if (range.from() == 0) {
- DCHECK_EQ(i, 0);
- zeroth_entry_is_failure = !zeroth_entry_is_failure;
- } else {
- range_boundaries->Add(range.from(), zone);
- }
- range_boundaries->Add(range.to() + 1, zone);
- }
- int end_index = range_boundaries->length() - 1;
- if (range_boundaries->at(end_index) > max_char) {
- end_index--;
- }
-
- Label fall_through;
- GenerateBranches(macro_assembler,
- range_boundaries,
- 0, // start_index.
- end_index,
- 0, // min_char.
- max_char,
- &fall_through,
- zeroth_entry_is_failure ? &fall_through : on_failure,
- zeroth_entry_is_failure ? on_failure : &fall_through);
- macro_assembler->Bind(&fall_through);
-}
-
-
-RegExpNode::~RegExpNode() {
-}
-
-
-RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
- Trace* trace) {
- // If we are generating a greedy loop then don't stop and don't reuse code.
- if (trace->stop_node() != NULL) {
- return CONTINUE;
- }
-
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- if (trace->is_trivial()) {
- if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) {
- // If a generic version is already scheduled to be generated or we have
- // recursed too deeply then just generate a jump to that code.
- macro_assembler->GoTo(&label_);
- // This will queue it up for generation of a generic version if it hasn't
- // already been queued.
- compiler->AddWork(this);
- return DONE;
- }
- // Generate generic version of the node and bind the label for later use.
- macro_assembler->Bind(&label_);
- return CONTINUE;
- }
-
- // We are being asked to make a non-generic version. Keep track of how many
- // non-generic versions we generate so as not to overdo it.
- trace_count_++;
- if (KeepRecursing(compiler) && compiler->optimize() &&
- trace_count_ < kMaxCopiesCodeGenerated) {
- return CONTINUE;
- }
-
- // If we get here code has been generated for this node too many times or
- // recursion is too deep. Time to switch to a generic version. The code for
- // generic versions above can handle deep recursion properly.
- bool was_limiting = compiler->limiting_recursion();
- compiler->set_limiting_recursion(true);
- trace->Flush(compiler, this);
- compiler->set_limiting_recursion(was_limiting);
- return DONE;
-}
-
-
-bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) {
- return !compiler->limiting_recursion() &&
- compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion;
-}
-
-
-int ActionNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
- if (budget <= 0) return 0;
- if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
- return on_success()->EatsAtLeast(still_to_find,
- budget - 1,
- not_at_start);
-}
-
-
-void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- if (action_type_ == BEGIN_SUBMATCH) {
- bm->SetRest(offset);
- } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
- on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
- }
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-
-int AssertionNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
- if (budget <= 0) return 0;
- // If we know we are not at the start and we are asked "how many characters
- // will you match if you succeed?" then we can answer anything since false
- // implies false. So lets just return the max answer (still_to_find) since
- // that won't prevent us from preloading a lot of characters for the other
- // branches in the node graph.
- if (assertion_type() == AT_START && not_at_start) return still_to_find;
- return on_success()->EatsAtLeast(still_to_find,
- budget - 1,
- not_at_start);
-}
-
-
-void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- // Match the behaviour of EatsAtLeast on this node.
- if (assertion_type() == AT_START && not_at_start) return;
- on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-
-int BackReferenceNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
- if (budget <= 0) return 0;
- return on_success()->EatsAtLeast(still_to_find,
- budget - 1,
- not_at_start);
-}
-
-
-int TextNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
- int answer = Length();
- if (answer >= still_to_find) return answer;
- if (budget <= 0) return answer;
- // We are not at start after this node so we set the last argument to 'true'.
- return answer + on_success()->EatsAtLeast(still_to_find - answer,
- budget - 1,
- true);
-}
-
-
-int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
- if (budget <= 0) return 0;
- // Alternative 0 is the negative lookahead, alternative 1 is what comes
- // afterwards.
- RegExpNode* node = alternatives_->at(1).node();
- return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
-}
-
-
-void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
- QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int filled_in,
- bool not_at_start) {
- // Alternative 0 is the negative lookahead, alternative 1 is what comes
- // afterwards.
- RegExpNode* node = alternatives_->at(1).node();
- return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
-}
-
-
-int ChoiceNode::EatsAtLeastHelper(int still_to_find,
- int budget,
- RegExpNode* ignore_this_node,
- bool not_at_start) {
- if (budget <= 0) return 0;
- int min = 100;
- int choice_count = alternatives_->length();
- budget = (budget - 1) / choice_count;
- for (int i = 0; i < choice_count; i++) {
- RegExpNode* node = alternatives_->at(i).node();
- if (node == ignore_this_node) continue;
- int node_eats_at_least =
- node->EatsAtLeast(still_to_find, budget, not_at_start);
- if (node_eats_at_least < min) min = node_eats_at_least;
- if (min == 0) return 0;
- }
- return min;
-}
-
-
-int LoopChoiceNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
- return EatsAtLeastHelper(still_to_find,
- budget - 1,
- loop_node_,
- not_at_start);
-}
-
-
-int ChoiceNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
- return EatsAtLeastHelper(still_to_find,
- budget,
- NULL,
- not_at_start);
-}
-
-
-// Takes the left-most 1-bit and smears it out, setting all bits to its right.
-static inline uint32_t SmearBitsRight(uint32_t v) {
- v |= v >> 1;
- v |= v >> 2;
- v |= v >> 4;
- v |= v >> 8;
- v |= v >> 16;
- return v;
-}
-
-
-bool QuickCheckDetails::Rationalize(bool asc) {
- bool found_useful_op = false;
- uint32_t char_mask;
- if (asc) {
- char_mask = String::kMaxOneByteCharCode;
- } else {
- char_mask = String::kMaxUtf16CodeUnit;
- }
- mask_ = 0;
- value_ = 0;
- int char_shift = 0;
- for (int i = 0; i < characters_; i++) {
- Position* pos = &positions_[i];
- if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
- found_useful_op = true;
- }
- mask_ |= (pos->mask & char_mask) << char_shift;
- value_ |= (pos->value & char_mask) << char_shift;
- char_shift += asc ? 8 : 16;
- }
- return found_useful_op;
-}
-
-
-bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
- Trace* bounds_check_trace,
- Trace* trace,
- bool preload_has_checked_bounds,
- Label* on_possible_success,
- QuickCheckDetails* details,
- bool fall_through_on_failure) {
- if (details->characters() == 0) return false;
- GetQuickCheckDetails(
- details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
- if (details->cannot_match()) return false;
- if (!details->Rationalize(compiler->one_byte())) return false;
- DCHECK(details->characters() == 1 ||
- compiler->macro_assembler()->CanReadUnaligned());
- uint32_t mask = details->mask();
- uint32_t value = details->value();
-
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
-
- if (trace->characters_preloaded() != details->characters()) {
- DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
- // We are attempting to preload the minimum number of characters
- // any choice would eat, so if the bounds check fails, then none of the
- // choices can succeed, so we can just immediately backtrack, rather
- // than go to the next choice.
- assembler->LoadCurrentCharacter(trace->cp_offset(),
- bounds_check_trace->backtrack(),
- !preload_has_checked_bounds,
- details->characters());
- }
-
-
- bool need_mask = true;
-
- if (details->characters() == 1) {
- // If number of characters preloaded is 1 then we used a byte or 16 bit
- // load so the value is already masked down.
- uint32_t char_mask;
- if (compiler->one_byte()) {
- char_mask = String::kMaxOneByteCharCode;
- } else {
- char_mask = String::kMaxUtf16CodeUnit;
- }
- if ((mask & char_mask) == char_mask) need_mask = false;
- mask &= char_mask;
- } else {
- // For 2-character preloads in one-byte mode or 1-character preloads in
- // two-byte mode we also use a 16 bit load with zero extend.
- if (details->characters() == 2 && compiler->one_byte()) {
- if ((mask & 0xffff) == 0xffff) need_mask = false;
- } else if (details->characters() == 1 && !compiler->one_byte()) {
- if ((mask & 0xffff) == 0xffff) need_mask = false;
- } else {
- if (mask == 0xffffffff) need_mask = false;
- }
- }
-
- if (fall_through_on_failure) {
- if (need_mask) {
- assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
- } else {
- assembler->CheckCharacter(value, on_possible_success);
- }
- } else {
- if (need_mask) {
- assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
- } else {
- assembler->CheckNotCharacter(value, trace->backtrack());
- }
- }
- return true;
-}
-
-
-// Here is the meat of GetQuickCheckDetails (see also the comment on the
-// super-class in the .h file).
-//
-// We iterate along the text object, building up for each character a
-// mask and value that can be used to test for a quick failure to match.
-// The masks and values for the positions will be combined into a single
-// machine word for the current character width in order to be used in
-// generating a quick check.
-void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- Isolate* isolate = compiler->macro_assembler()->isolate();
- DCHECK(characters_filled_in < details->characters());
- int characters = details->characters();
- int char_mask;
- if (compiler->one_byte()) {
- char_mask = String::kMaxOneByteCharCode;
- } else {
- char_mask = String::kMaxUtf16CodeUnit;
- }
- for (int k = 0; k < elms_->length(); k++) {
- TextElement elm = elms_->at(k);
- if (elm.text_type() == TextElement::ATOM) {
- Vector<const uc16> quarks = elm.atom()->data();
- for (int i = 0; i < characters && i < quarks.length(); i++) {
- QuickCheckDetails::Position* pos =
- details->positions(characters_filled_in);
- uc16 c = quarks[i];
- if (compiler->ignore_case()) {
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int length = GetCaseIndependentLetters(isolate, c,
- compiler->one_byte(), chars);
- if (length == 0) {
- // This can happen because all case variants are non-Latin1, but we
- // know the input is Latin1.
- details->set_cannot_match();
- pos->determines_perfectly = false;
- return;
- }
- if (length == 1) {
- // This letter has no case equivalents, so it's nice and simple
- // and the mask-compare will determine definitely whether we have
- // a match at this character position.
- pos->mask = char_mask;
- pos->value = c;
- pos->determines_perfectly = true;
- } else {
- uint32_t common_bits = char_mask;
- uint32_t bits = chars[0];
- for (int j = 1; j < length; j++) {
- uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
- common_bits ^= differing_bits;
- bits &= common_bits;
- }
- // If length is 2 and common bits has only one zero in it then
- // our mask and compare instruction will determine definitely
- // whether we have a match at this character position. Otherwise
- // it can only be an approximate check.
- uint32_t one_zero = (common_bits | ~char_mask);
- if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
- pos->determines_perfectly = true;
- }
- pos->mask = common_bits;
- pos->value = bits;
- }
- } else {
- // Don't ignore case. Nice simple case where the mask-compare will
- // determine definitely whether we have a match at this character
- // position.
- if (c > char_mask) {
- details->set_cannot_match();
- pos->determines_perfectly = false;
- return;
- }
- pos->mask = char_mask;
- pos->value = c;
- pos->determines_perfectly = true;
- }
- characters_filled_in++;
- DCHECK(characters_filled_in <= details->characters());
- if (characters_filled_in == details->characters()) {
- return;
- }
- }
- } else {
- QuickCheckDetails::Position* pos =
- details->positions(characters_filled_in);
- RegExpCharacterClass* tree = elm.char_class();
- ZoneList<CharacterRange>* ranges = tree->ranges(zone());
- if (tree->is_negated()) {
- // A quick check uses multi-character mask and compare. There is no
- // useful way to incorporate a negative char class into this scheme
- // so we just conservatively create a mask and value that will always
- // succeed.
- pos->mask = 0;
- pos->value = 0;
- } else {
- int first_range = 0;
- while (ranges->at(first_range).from() > char_mask) {
- first_range++;
- if (first_range == ranges->length()) {
- details->set_cannot_match();
- pos->determines_perfectly = false;
- return;
- }
- }
- CharacterRange range = ranges->at(first_range);
- uc16 from = range.from();
- uc16 to = range.to();
- if (to > char_mask) {
- to = char_mask;
- }
- uint32_t differing_bits = (from ^ to);
- // A mask and compare is only perfect if the differing bits form a
- // number like 00011111 with one single block of trailing 1s.
- if ((differing_bits & (differing_bits + 1)) == 0 &&
- from + differing_bits == to) {
- pos->determines_perfectly = true;
- }
- uint32_t common_bits = ~SmearBitsRight(differing_bits);
- uint32_t bits = (from & common_bits);
- for (int i = first_range + 1; i < ranges->length(); i++) {
- CharacterRange range = ranges->at(i);
- uc16 from = range.from();
- uc16 to = range.to();
- if (from > char_mask) continue;
- if (to > char_mask) to = char_mask;
- // Here we are combining more ranges into the mask and compare
- // value. With each new range the mask becomes more sparse and
- // so the chances of a false positive rise. A character class
- // with multiple ranges is assumed never to be equivalent to a
- // mask and compare operation.
- pos->determines_perfectly = false;
- uint32_t new_common_bits = (from ^ to);
- new_common_bits = ~SmearBitsRight(new_common_bits);
- common_bits &= new_common_bits;
- bits &= new_common_bits;
- uint32_t differing_bits = (from & common_bits) ^ bits;
- common_bits ^= differing_bits;
- bits &= common_bits;
- }
- pos->mask = common_bits;
- pos->value = bits;
- }
- characters_filled_in++;
- DCHECK(characters_filled_in <= details->characters());
- if (characters_filled_in == details->characters()) {
- return;
- }
- }
- }
- DCHECK(characters_filled_in != details->characters());
- if (!details->cannot_match()) {
- on_success()-> GetQuickCheckDetails(details,
- compiler,
- characters_filled_in,
- true);
- }
-}
-
-
-void QuickCheckDetails::Clear() {
- for (int i = 0; i < characters_; i++) {
- positions_[i].mask = 0;
- positions_[i].value = 0;
- positions_[i].determines_perfectly = false;
- }
- characters_ = 0;
-}
-
-
-void QuickCheckDetails::Advance(int by, bool one_byte) {
- DCHECK(by >= 0);
- if (by >= characters_) {
- Clear();
- return;
- }
- for (int i = 0; i < characters_ - by; i++) {
- positions_[i] = positions_[by + i];
- }
- for (int i = characters_ - by; i < characters_; i++) {
- positions_[i].mask = 0;
- positions_[i].value = 0;
- positions_[i].determines_perfectly = false;
- }
- characters_ -= by;
- // We could change mask_ and value_ here but we would never advance unless
- // they had already been used in a check and they won't be used again because
- // it would gain us nothing. So there's no point.
-}
-
-
-void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
- DCHECK(characters_ == other->characters_);
- if (other->cannot_match_) {
- return;
- }
- if (cannot_match_) {
- *this = *other;
- return;
- }
- for (int i = from_index; i < characters_; i++) {
- QuickCheckDetails::Position* pos = positions(i);
- QuickCheckDetails::Position* other_pos = other->positions(i);
- if (pos->mask != other_pos->mask ||
- pos->value != other_pos->value ||
- !other_pos->determines_perfectly) {
- // Our mask-compare operation will be approximate unless we have the
- // exact same operation on both sides of the alternation.
- pos->determines_perfectly = false;
- }
- pos->mask &= other_pos->mask;
- pos->value &= pos->mask;
- other_pos->value &= pos->mask;
- uc16 differing_bits = (pos->value ^ other_pos->value);
- pos->mask &= ~differing_bits;
- pos->value &= pos->mask;
- }
-}
-
-
-class VisitMarker {
- public:
- explicit VisitMarker(NodeInfo* info) : info_(info) {
- DCHECK(!info->visited);
- info->visited = true;
- }
- ~VisitMarker() {
- info_->visited = false;
- }
- private:
- NodeInfo* info_;
-};
-
-
-RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- DCHECK(!info()->visited);
- VisitMarker marker(info());
- return FilterSuccessor(depth - 1, ignore_case);
-}
-
-
-RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
- RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
- if (next == NULL) return set_replacement(NULL);
- on_success_ = next;
- return set_replacement(this);
-}
-
-
-// We need to check for the following characters: 0x39c 0x3bc 0x178.
-static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
- // TODO(dcarney): this could be a lot more efficient.
- return range.Contains(0x39c) ||
- range.Contains(0x3bc) || range.Contains(0x178);
-}
-
-
-static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
- for (int i = 0; i < ranges->length(); i++) {
- // TODO(dcarney): this could be a lot more efficient.
- if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
- }
- return false;
-}
-
-
-RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- DCHECK(!info()->visited);
- VisitMarker marker(info());
- int element_count = elms_->length();
- for (int i = 0; i < element_count; i++) {
- TextElement elm = elms_->at(i);
- if (elm.text_type() == TextElement::ATOM) {
- Vector<const uc16> quarks = elm.atom()->data();
- for (int j = 0; j < quarks.length(); j++) {
- uint16_t c = quarks[j];
- if (c <= String::kMaxOneByteCharCode) continue;
- if (!ignore_case) return set_replacement(NULL);
- // Here, we need to check for characters whose upper and lower cases
- // are outside the Latin-1 range.
- uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
- // Character is outside Latin-1 completely
- if (converted == 0) return set_replacement(NULL);
- // Convert quark to Latin-1 in place.
- uint16_t* copy = const_cast<uint16_t*>(quarks.start());
- copy[j] = converted;
- }
- } else {
- DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
- RegExpCharacterClass* cc = elm.char_class();
- ZoneList<CharacterRange>* ranges = cc->ranges(zone());
- if (!CharacterRange::IsCanonical(ranges)) {
- CharacterRange::Canonicalize(ranges);
- }
- // Now they are in order so we only need to look at the first.
- int range_count = ranges->length();
- if (cc->is_negated()) {
- if (range_count != 0 &&
- ranges->at(0).from() == 0 &&
- ranges->at(0).to() >= String::kMaxOneByteCharCode) {
- // This will be handled in a later filter.
- if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
- return set_replacement(NULL);
- }
- } else {
- if (range_count == 0 ||
- ranges->at(0).from() > String::kMaxOneByteCharCode) {
- // This will be handled in a later filter.
- if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
- return set_replacement(NULL);
- }
- }
- }
- }
- return FilterSuccessor(depth - 1, ignore_case);
-}
-
-
-RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- if (info()->visited) return this;
- {
- VisitMarker marker(info());
-
- RegExpNode* continue_replacement =
- continue_node_->FilterOneByte(depth - 1, ignore_case);
- // If we can't continue after the loop then there is no sense in doing the
- // loop.
- if (continue_replacement == NULL) return set_replacement(NULL);
- }
-
- return ChoiceNode::FilterOneByte(depth - 1, ignore_case);
-}
-
-
-RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- if (info()->visited) return this;
- VisitMarker marker(info());
- int choice_count = alternatives_->length();
-
- for (int i = 0; i < choice_count; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
- if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
- set_replacement(this);
- return this;
- }
- }
-
- int surviving = 0;
- RegExpNode* survivor = NULL;
- for (int i = 0; i < choice_count; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
- RegExpNode* replacement =
- alternative.node()->FilterOneByte(depth - 1, ignore_case);
- DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK.
- if (replacement != NULL) {
- alternatives_->at(i).set_node(replacement);
- surviving++;
- survivor = replacement;
- }
- }
- if (surviving < 2) return set_replacement(survivor);
-
- set_replacement(this);
- if (surviving == choice_count) {
- return this;
- }
- // Only some of the nodes survived the filtering. We need to rebuild the
- // alternatives list.
- ZoneList<GuardedAlternative>* new_alternatives =
- new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
- for (int i = 0; i < choice_count; i++) {
- RegExpNode* replacement =
- alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
- if (replacement != NULL) {
- alternatives_->at(i).set_node(replacement);
- new_alternatives->Add(alternatives_->at(i), zone());
- }
- }
- alternatives_ = new_alternatives;
- return this;
-}
-
-
-RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
- bool ignore_case) {
- if (info()->replacement_calculated) return replacement();
- if (depth < 0) return this;
- if (info()->visited) return this;
- VisitMarker marker(info());
- // Alternative 0 is the negative lookahead, alternative 1 is what comes
- // afterwards.
- RegExpNode* node = alternatives_->at(1).node();
- RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
- if (replacement == NULL) return set_replacement(NULL);
- alternatives_->at(1).set_node(replacement);
-
- RegExpNode* neg_node = alternatives_->at(0).node();
- RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
- // If the negative lookahead is always going to fail then
- // we don't need to check it.
- if (neg_replacement == NULL) return set_replacement(replacement);
- alternatives_->at(0).set_node(neg_replacement);
- return set_replacement(this);
-}
-
-
-void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- if (body_can_be_zero_length_ || info()->visited) return;
- VisitMarker marker(info());
- return ChoiceNode::GetQuickCheckDetails(details,
- compiler,
- characters_filled_in,
- not_at_start);
-}
-
-
-void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- if (body_can_be_zero_length_ || budget <= 0) {
- bm->SetRest(offset);
- SaveBMInfo(bm, not_at_start, offset);
- return;
- }
- ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-
-void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- not_at_start = (not_at_start || not_at_start_);
- int choice_count = alternatives_->length();
- DCHECK(choice_count > 0);
- alternatives_->at(0).node()->GetQuickCheckDetails(details,
- compiler,
- characters_filled_in,
- not_at_start);
- for (int i = 1; i < choice_count; i++) {
- QuickCheckDetails new_details(details->characters());
- RegExpNode* node = alternatives_->at(i).node();
- node->GetQuickCheckDetails(&new_details, compiler,
- characters_filled_in,
- not_at_start);
- // Here we merge the quick match details of the two branches.
- details->Merge(&new_details, characters_filled_in);
- }
-}
-
-
-// Check for [0-9A-Z_a-z].
-static void EmitWordCheck(RegExpMacroAssembler* assembler,
- Label* word,
- Label* non_word,
- bool fall_through_on_word) {
- if (assembler->CheckSpecialCharacterClass(
- fall_through_on_word ? 'w' : 'W',
- fall_through_on_word ? non_word : word)) {
- // Optimized implementation available.
- return;
- }
- assembler->CheckCharacterGT('z', non_word);
- assembler->CheckCharacterLT('0', non_word);
- assembler->CheckCharacterGT('a' - 1, word);
- assembler->CheckCharacterLT('9' + 1, word);
- assembler->CheckCharacterLT('A', non_word);
- assembler->CheckCharacterLT('Z' + 1, word);
- if (fall_through_on_word) {
- assembler->CheckNotCharacter('_', non_word);
- } else {
- assembler->CheckCharacter('_', word);
- }
-}
-
-
-// Emit the code to check for a ^ in multiline mode (1-character lookbehind
-// that matches newline or the start of input).
-static void EmitHat(RegExpCompiler* compiler,
- RegExpNode* on_success,
- Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- // We will be loading the previous character into the current character
- // register.
- Trace new_trace(*trace);
- new_trace.InvalidateCurrentCharacter();
-
- Label ok;
- if (new_trace.cp_offset() == 0) {
- // The start of input counts as a newline in this context, so skip to
- // ok if we are at the start.
- assembler->CheckAtStart(&ok);
- }
- // We already checked that we are not at the start of input so it must be
- // OK to load the previous character.
- assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
- new_trace.backtrack(),
- false);
- if (!assembler->CheckSpecialCharacterClass('n',
- new_trace.backtrack())) {
- // Newline means \n, \r, 0x2028 or 0x2029.
- if (!compiler->one_byte()) {
- assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
- }
- assembler->CheckCharacter('\n', &ok);
- assembler->CheckNotCharacter('\r', new_trace.backtrack());
- }
- assembler->Bind(&ok);
- on_success->Emit(compiler, &new_trace);
-}
-
-
-// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
-void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- Isolate* isolate = assembler->isolate();
- Trace::TriBool next_is_word_character = Trace::UNKNOWN;
- bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
- BoyerMooreLookahead* lookahead = bm_info(not_at_start);
- if (lookahead == NULL) {
- int eats_at_least =
- Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
- kRecursionBudget,
- not_at_start));
- if (eats_at_least >= 1) {
- BoyerMooreLookahead* bm =
- new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
- FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start);
- if (bm->at(0)->is_non_word())
- next_is_word_character = Trace::FALSE_VALUE;
- if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
- }
- } else {
- if (lookahead->at(0)->is_non_word())
- next_is_word_character = Trace::FALSE_VALUE;
- if (lookahead->at(0)->is_word())
- next_is_word_character = Trace::TRUE_VALUE;
- }
- bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
- if (next_is_word_character == Trace::UNKNOWN) {
- Label before_non_word;
- Label before_word;
- if (trace->characters_preloaded() != 1) {
- assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
- }
- // Fall through on non-word.
- EmitWordCheck(assembler, &before_word, &before_non_word, false);
- // Next character is not a word character.
- assembler->Bind(&before_non_word);
- Label ok;
- BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
- assembler->GoTo(&ok);
-
- assembler->Bind(&before_word);
- BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
- assembler->Bind(&ok);
- } else if (next_is_word_character == Trace::TRUE_VALUE) {
- BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
- } else {
- DCHECK(next_is_word_character == Trace::FALSE_VALUE);
- BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
- }
-}
-
-
-void AssertionNode::BacktrackIfPrevious(
- RegExpCompiler* compiler,
- Trace* trace,
- AssertionNode::IfPrevious backtrack_if_previous) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- Trace new_trace(*trace);
- new_trace.InvalidateCurrentCharacter();
-
- Label fall_through, dummy;
-
- Label* non_word = backtrack_if_previous == kIsNonWord ?
- new_trace.backtrack() :
- &fall_through;
- Label* word = backtrack_if_previous == kIsNonWord ?
- &fall_through :
- new_trace.backtrack();
-
- if (new_trace.cp_offset() == 0) {
- // The start of input counts as a non-word character, so the question is
- // decided if we are at the start.
- assembler->CheckAtStart(non_word);
- }
- // We already checked that we are not at the start of input so it must be
- // OK to load the previous character.
- assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
- EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
-
- assembler->Bind(&fall_through);
- on_success()->Emit(compiler, &new_trace);
-}
-
-
-void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int filled_in,
- bool not_at_start) {
- if (assertion_type_ == AT_START && not_at_start) {
- details->set_cannot_match();
- return;
- }
- return on_success()->GetQuickCheckDetails(details,
- compiler,
- filled_in,
- not_at_start);
-}
-
-
-void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- switch (assertion_type_) {
- case AT_END: {
- Label ok;
- assembler->CheckPosition(trace->cp_offset(), &ok);
- assembler->GoTo(trace->backtrack());
- assembler->Bind(&ok);
- break;
- }
- case AT_START: {
- if (trace->at_start() == Trace::FALSE_VALUE) {
- assembler->GoTo(trace->backtrack());
- return;
- }
- if (trace->at_start() == Trace::UNKNOWN) {
- assembler->CheckNotAtStart(trace->backtrack());
- Trace at_start_trace = *trace;
- at_start_trace.set_at_start(true);
- on_success()->Emit(compiler, &at_start_trace);
- return;
- }
- }
- break;
- case AFTER_NEWLINE:
- EmitHat(compiler, on_success(), trace);
- return;
- case AT_BOUNDARY:
- case AT_NON_BOUNDARY: {
- EmitBoundaryCheck(compiler, trace);
- return;
- }
- }
- on_success()->Emit(compiler, trace);
-}
-
-
-static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
- if (quick_check == NULL) return false;
- if (offset >= quick_check->characters()) return false;
- return quick_check->positions(offset)->determines_perfectly;
-}
-
-
-static void UpdateBoundsCheck(int index, int* checked_up_to) {
- if (index > *checked_up_to) {
- *checked_up_to = index;
- }
-}
-
-
-// We call this repeatedly to generate code for each pass over the text node.
-// The passes are in increasing order of difficulty because we hope one
-// of the first passes will fail in which case we are saved the work of the
-// later passes. for example for the case independent regexp /%[asdfghjkl]a/
-// we will check the '%' in the first pass, the case independent 'a' in the
-// second pass and the character class in the last pass.
-//
-// The passes are done from right to left, so for example to test for /bar/
-// we will first test for an 'r' with offset 2, then an 'a' with offset 1
-// and then a 'b' with offset 0. This means we can avoid the end-of-input
-// bounds check most of the time. In the example we only need to check for
-// end-of-input when loading the putative 'r'.
-//
-// A slight complication involves the fact that the first character may already
-// be fetched into a register by the previous node. In this case we want to
-// do the test for that character first. We do this in separate passes. The
-// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
-// pass has been performed then subsequent passes will have true in
-// first_element_checked to indicate that that character does not need to be
-// checked again.
-//
-// In addition to all this we are passed a Trace, which can
-// contain an AlternativeGeneration object. In this AlternativeGeneration
-// object we can see details of any quick check that was already passed in
-// order to get to the code we are now generating. The quick check can involve
-// loading characters, which means we do not need to recheck the bounds
-// up to the limit the quick check already checked. In addition the quick
-// check can have involved a mask and compare operation which may simplify
-// or obviate the need for further checks at some character positions.
-void TextNode::TextEmitPass(RegExpCompiler* compiler,
- TextEmitPassType pass,
- bool preloaded,
- Trace* trace,
- bool first_element_checked,
- int* checked_up_to) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- Isolate* isolate = assembler->isolate();
- bool one_byte = compiler->one_byte();
- Label* backtrack = trace->backtrack();
- QuickCheckDetails* quick_check = trace->quick_check_performed();
- int element_count = elms_->length();
- for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
- TextElement elm = elms_->at(i);
- int cp_offset = trace->cp_offset() + elm.cp_offset();
- if (elm.text_type() == TextElement::ATOM) {
- Vector<const uc16> quarks = elm.atom()->data();
- for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
- if (first_element_checked && i == 0 && j == 0) continue;
- if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
- EmitCharacterFunction* emit_function = NULL;
- switch (pass) {
- case NON_LATIN1_MATCH:
- DCHECK(one_byte);
- if (quarks[j] > String::kMaxOneByteCharCode) {
- assembler->GoTo(backtrack);
- return;
- }
- break;
- case NON_LETTER_CHARACTER_MATCH:
- emit_function = &EmitAtomNonLetter;
- break;
- case SIMPLE_CHARACTER_MATCH:
- emit_function = &EmitSimpleCharacter;
- break;
- case CASE_CHARACTER_MATCH:
- emit_function = &EmitAtomLetter;
- break;
- default:
- break;
- }
- if (emit_function != NULL) {
- bool bound_checked = emit_function(isolate,
- compiler,
- quarks[j],
- backtrack,
- cp_offset + j,
- *checked_up_to < cp_offset + j,
- preloaded);
- if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
- }
- }
- } else {
- DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
- if (pass == CHARACTER_CLASS_MATCH) {
- if (first_element_checked && i == 0) continue;
- if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
- RegExpCharacterClass* cc = elm.char_class();
- EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
- *checked_up_to < cp_offset, preloaded, zone());
- UpdateBoundsCheck(cp_offset, checked_up_to);
- }
- }
- }
-}
-
-
-int TextNode::Length() {
- TextElement elm = elms_->last();
- DCHECK(elm.cp_offset() >= 0);
- return elm.cp_offset() + elm.length();
-}
-
-
-bool TextNode::SkipPass(int int_pass, bool ignore_case) {
- TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
- if (ignore_case) {
- return pass == SIMPLE_CHARACTER_MATCH;
- } else {
- return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
- }
-}
-
-
-// This generates the code to match a text node. A text node can contain
-// straight character sequences (possibly to be matched in a case-independent
-// way) and character classes. For efficiency we do not do this in a single
-// pass from left to right. Instead we pass over the text node several times,
-// emitting code for some character positions every time. See the comment on
-// TextEmitPass for details.
-void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- LimitResult limit_result = LimitVersions(compiler, trace);
- if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
-
- if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
- compiler->SetRegExpTooBig();
- return;
- }
-
- if (compiler->one_byte()) {
- int dummy = 0;
- TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
- }
-
- bool first_elt_done = false;
- int bound_checked_to = trace->cp_offset() - 1;
- bound_checked_to += trace->bound_checked_up_to();
-
- // If a character is preloaded into the current character register then
- // check that now.
- if (trace->characters_preloaded() == 1) {
- for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
- if (!SkipPass(pass, compiler->ignore_case())) {
- TextEmitPass(compiler,
- static_cast<TextEmitPassType>(pass),
- true,
- trace,
- false,
- &bound_checked_to);
- }
- }
- first_elt_done = true;
- }
-
- for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
- if (!SkipPass(pass, compiler->ignore_case())) {
- TextEmitPass(compiler,
- static_cast<TextEmitPassType>(pass),
- false,
- trace,
- first_elt_done,
- &bound_checked_to);
- }
- }
-
- Trace successor_trace(*trace);
- successor_trace.set_at_start(false);
- successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
- RecursionCheck rc(compiler);
- on_success()->Emit(compiler, &successor_trace);
-}
-
-
-void Trace::InvalidateCurrentCharacter() {
- characters_preloaded_ = 0;
-}
-
-
-void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
- DCHECK(by > 0);
- // We don't have an instruction for shifting the current character register
- // down or for using a shifted value for anything so lets just forget that
- // we preloaded any characters into it.
- characters_preloaded_ = 0;
- // Adjust the offsets of the quick check performed information. This
- // information is used to find out what we already determined about the
- // characters by means of mask and compare.
- quick_check_performed_.Advance(by, compiler->one_byte());
- cp_offset_ += by;
- if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
- compiler->SetRegExpTooBig();
- cp_offset_ = 0;
- }
- bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
-}
-
-
-void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) {
- int element_count = elms_->length();
- for (int i = 0; i < element_count; i++) {
- TextElement elm = elms_->at(i);
- if (elm.text_type() == TextElement::CHAR_CLASS) {
- RegExpCharacterClass* cc = elm.char_class();
- // None of the standard character classes is different in the case
- // independent case and it slows us down if we don't know that.
- if (cc->is_standard(zone())) continue;
- ZoneList<CharacterRange>* ranges = cc->ranges(zone());
- int range_count = ranges->length();
- for (int j = 0; j < range_count; j++) {
- ranges->at(j).AddCaseEquivalents(isolate, zone(), ranges, is_one_byte);
- }
- }
- }
-}
-
-
-int TextNode::GreedyLoopTextLength() {
- TextElement elm = elms_->at(elms_->length() - 1);
- return elm.cp_offset() + elm.length();
-}
-
-
-RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
- RegExpCompiler* compiler) {
- if (elms_->length() != 1) return NULL;
- TextElement elm = elms_->at(0);
- if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
- RegExpCharacterClass* node = elm.char_class();
- ZoneList<CharacterRange>* ranges = node->ranges(zone());
- if (!CharacterRange::IsCanonical(ranges)) {
- CharacterRange::Canonicalize(ranges);
- }
- if (node->is_negated()) {
- return ranges->length() == 0 ? on_success() : NULL;
- }
- if (ranges->length() != 1) return NULL;
- uint32_t max_char;
- if (compiler->one_byte()) {
- max_char = String::kMaxOneByteCharCode;
- } else {
- max_char = String::kMaxUtf16CodeUnit;
- }
- return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
-}
-
-
-// Finds the fixed match length of a sequence of nodes that goes from
-// this alternative and back to this choice node. If there are variable
-// length nodes or other complications in the way then return a sentinel
-// value indicating that a greedy loop cannot be constructed.
-int ChoiceNode::GreedyLoopTextLengthForAlternative(
- GuardedAlternative* alternative) {
- int length = 0;
- RegExpNode* node = alternative->node();
- // Later we will generate code for all these text nodes using recursion
- // so we have to limit the max number.
- int recursion_depth = 0;
- while (node != this) {
- if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
- return kNodeIsTooComplexForGreedyLoops;
- }
- int node_length = node->GreedyLoopTextLength();
- if (node_length == kNodeIsTooComplexForGreedyLoops) {
- return kNodeIsTooComplexForGreedyLoops;
- }
- length += node_length;
- SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
- node = seq_node->on_success();
- }
- return length;
-}
-
-
-void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
- DCHECK_NULL(loop_node_);
- AddAlternative(alt);
- loop_node_ = alt.node();
-}
-
-
-void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
- DCHECK_NULL(continue_node_);
- AddAlternative(alt);
- continue_node_ = alt.node();
-}
-
-
-void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- if (trace->stop_node() == this) {
- // Back edge of greedy optimized loop node graph.
- int text_length =
- GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
- DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
- // Update the counter-based backtracking info on the stack. This is an
- // optimization for greedy loops (see below).
- DCHECK(trace->cp_offset() == text_length);
- macro_assembler->AdvanceCurrentPosition(text_length);
- macro_assembler->GoTo(trace->loop_label());
- return;
- }
- DCHECK_NULL(trace->stop_node());
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- return;
- }
- ChoiceNode::Emit(compiler, trace);
-}
-
-
-int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
- int eats_at_least) {
- int preload_characters = Min(4, eats_at_least);
- if (compiler->macro_assembler()->CanReadUnaligned()) {
- bool one_byte = compiler->one_byte();
- if (one_byte) {
- if (preload_characters > 4) preload_characters = 4;
- // We can't preload 3 characters because there is no machine instruction
- // to do that. We can't just load 4 because we could be reading
- // beyond the end of the string, which could cause a memory fault.
- if (preload_characters == 3) preload_characters = 2;
- } else {
- if (preload_characters > 2) preload_characters = 2;
- }
- } else {
- if (preload_characters > 1) preload_characters = 1;
- }
- return preload_characters;
-}
-
-
-// This class is used when generating the alternatives in a choice node. It
-// records the way the alternative is being code generated.
-class AlternativeGeneration: public Malloced {
- public:
- AlternativeGeneration()
- : possible_success(),
- expects_preload(false),
- after(),
- quick_check_details() { }
- Label possible_success;
- bool expects_preload;
- Label after;
- QuickCheckDetails quick_check_details;
-};
-
-
-// Creates a list of AlternativeGenerations. If the list has a reasonable
-// size then it is on the stack, otherwise the excess is on the heap.
-class AlternativeGenerationList {
- public:
- AlternativeGenerationList(int count, Zone* zone)
- : alt_gens_(count, zone) {
- for (int i = 0; i < count && i < kAFew; i++) {
- alt_gens_.Add(a_few_alt_gens_ + i, zone);
- }
- for (int i = kAFew; i < count; i++) {
- alt_gens_.Add(new AlternativeGeneration(), zone);
- }
- }
- ~AlternativeGenerationList() {
- for (int i = kAFew; i < alt_gens_.length(); i++) {
- delete alt_gens_[i];
- alt_gens_[i] = NULL;
- }
- }
-
- AlternativeGeneration* at(int i) {
- return alt_gens_[i];
- }
-
- private:
- static const int kAFew = 10;
- ZoneList<AlternativeGeneration*> alt_gens_;
- AlternativeGeneration a_few_alt_gens_[kAFew];
-};
-
-
-// The '2' variant is has inclusive from and exclusive to.
-// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
-// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
-static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
- 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
- 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
- 0xFEFF, 0xFF00, 0x10000 };
-static const int kSpaceRangeCount = arraysize(kSpaceRanges);
-
-static const int kWordRanges[] = {
- '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
-static const int kWordRangeCount = arraysize(kWordRanges);
-static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
-static const int kDigitRangeCount = arraysize(kDigitRanges);
-static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
-static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
-static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
- 0x2028, 0x202A, 0x10000 };
-static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
-
-
-void BoyerMoorePositionInfo::Set(int character) {
- SetInterval(Interval(character, character));
-}
-
-
-void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
- s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
- w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
- d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
- surrogate_ =
- AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
- if (interval.to() - interval.from() >= kMapSize - 1) {
- if (map_count_ != kMapSize) {
- map_count_ = kMapSize;
- for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
- }
- return;
- }
- for (int i = interval.from(); i <= interval.to(); i++) {
- int mod_character = (i & kMask);
- if (!map_->at(mod_character)) {
- map_count_++;
- map_->at(mod_character) = true;
- }
- if (map_count_ == kMapSize) return;
- }
-}
-
-
-void BoyerMoorePositionInfo::SetAll() {
- s_ = w_ = d_ = kLatticeUnknown;
- if (map_count_ != kMapSize) {
- map_count_ = kMapSize;
- for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
- }
-}
-
-
-BoyerMooreLookahead::BoyerMooreLookahead(
- int length, RegExpCompiler* compiler, Zone* zone)
- : length_(length),
- compiler_(compiler) {
- if (compiler->one_byte()) {
- max_char_ = String::kMaxOneByteCharCode;
- } else {
- max_char_ = String::kMaxUtf16CodeUnit;
- }
- bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
- for (int i = 0; i < length; i++) {
- bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
- }
-}
-
-
-// Find the longest range of lookahead that has the fewest number of different
-// characters that can occur at a given position. Since we are optimizing two
-// different parameters at once this is a tradeoff.
-bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
- int biggest_points = 0;
- // If more than 32 characters out of 128 can occur it is unlikely that we can
- // be lucky enough to step forwards much of the time.
- const int kMaxMax = 32;
- for (int max_number_of_chars = 4;
- max_number_of_chars < kMaxMax;
- max_number_of_chars *= 2) {
- biggest_points =
- FindBestInterval(max_number_of_chars, biggest_points, from, to);
- }
- if (biggest_points == 0) return false;
- return true;
-}
-
-
-// Find the highest-points range between 0 and length_ where the character
-// information is not too vague. 'Too vague' means that there are more than
-// max_number_of_chars that can occur at this position. Calculates the number
-// of points as the product of width-of-the-range and
-// probability-of-finding-one-of-the-characters, where the probability is
-// calculated using the frequency distribution of the sample subject string.
-int BoyerMooreLookahead::FindBestInterval(
- int max_number_of_chars, int old_biggest_points, int* from, int* to) {
- int biggest_points = old_biggest_points;
- static const int kSize = RegExpMacroAssembler::kTableSize;
- for (int i = 0; i < length_; ) {
- while (i < length_ && Count(i) > max_number_of_chars) i++;
- if (i == length_) break;
- int remembered_from = i;
- bool union_map[kSize];
- for (int j = 0; j < kSize; j++) union_map[j] = false;
- while (i < length_ && Count(i) <= max_number_of_chars) {
- BoyerMoorePositionInfo* map = bitmaps_->at(i);
- for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
- i++;
- }
- int frequency = 0;
- for (int j = 0; j < kSize; j++) {
- if (union_map[j]) {
- // Add 1 to the frequency to give a small per-character boost for
- // the cases where our sampling is not good enough and many
- // characters have a frequency of zero. This means the frequency
- // can theoretically be up to 2*kSize though we treat it mostly as
- // a fraction of kSize.
- frequency += compiler_->frequency_collator()->Frequency(j) + 1;
- }
- }
- // We use the probability of skipping times the distance we are skipping to
- // judge the effectiveness of this. Actually we have a cut-off: By
- // dividing by 2 we switch off the skipping if the probability of skipping
- // is less than 50%. This is because the multibyte mask-and-compare
- // skipping in quickcheck is more likely to do well on this case.
- bool in_quickcheck_range =
- ((i - remembered_from < 4) ||
- (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
- // Called 'probability' but it is only a rough estimate and can actually
- // be outside the 0-kSize range.
- int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
- int points = (i - remembered_from) * probability;
- if (points > biggest_points) {
- *from = remembered_from;
- *to = i - 1;
- biggest_points = points;
- }
- }
- return biggest_points;
-}
-
-
-// Take all the characters that will not prevent a successful match if they
-// occur in the subject string in the range between min_lookahead and
-// max_lookahead (inclusive) measured from the current position. If the
-// character at max_lookahead offset is not one of these characters, then we
-// can safely skip forwards by the number of characters in the range.
-int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
- int max_lookahead,
- Handle<ByteArray> boolean_skip_table) {
- const int kSize = RegExpMacroAssembler::kTableSize;
-
- const int kSkipArrayEntry = 0;
- const int kDontSkipArrayEntry = 1;
-
- for (int i = 0; i < kSize; i++) {
- boolean_skip_table->set(i, kSkipArrayEntry);
- }
- int skip = max_lookahead + 1 - min_lookahead;
-
- for (int i = max_lookahead; i >= min_lookahead; i--) {
- BoyerMoorePositionInfo* map = bitmaps_->at(i);
- for (int j = 0; j < kSize; j++) {
- if (map->at(j)) {
- boolean_skip_table->set(j, kDontSkipArrayEntry);
- }
- }
- }
-
- return skip;
-}
-
-
-// See comment above on the implementation of GetSkipTable.
-void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
- const int kSize = RegExpMacroAssembler::kTableSize;
-
- int min_lookahead = 0;
- int max_lookahead = 0;
-
- if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
-
- bool found_single_character = false;
- int single_character = 0;
- for (int i = max_lookahead; i >= min_lookahead; i--) {
- BoyerMoorePositionInfo* map = bitmaps_->at(i);
- if (map->map_count() > 1 ||
- (found_single_character && map->map_count() != 0)) {
- found_single_character = false;
- break;
- }
- for (int j = 0; j < kSize; j++) {
- if (map->at(j)) {
- found_single_character = true;
- single_character = j;
- break;
- }
- }
- }
-
- int lookahead_width = max_lookahead + 1 - min_lookahead;
-
- if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
- // The mask-compare can probably handle this better.
- return;
- }
-
- if (found_single_character) {
- Label cont, again;
- masm->Bind(&again);
- masm->LoadCurrentCharacter(max_lookahead, &cont, true);
- if (max_char_ > kSize) {
- masm->CheckCharacterAfterAnd(single_character,
- RegExpMacroAssembler::kTableMask,
- &cont);
- } else {
- masm->CheckCharacter(single_character, &cont);
- }
- masm->AdvanceCurrentPosition(lookahead_width);
- masm->GoTo(&again);
- masm->Bind(&cont);
- return;
- }
-
- Factory* factory = masm->isolate()->factory();
- Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
- int skip_distance = GetSkipTable(
- min_lookahead, max_lookahead, boolean_skip_table);
- DCHECK(skip_distance != 0);
-
- Label cont, again;
- masm->Bind(&again);
- masm->LoadCurrentCharacter(max_lookahead, &cont, true);
- masm->CheckBitInTable(boolean_skip_table, &cont);
- masm->AdvanceCurrentPosition(skip_distance);
- masm->GoTo(&again);
- masm->Bind(&cont);
-}
-
-
-/* Code generation for choice nodes.
- *
- * We generate quick checks that do a mask and compare to eliminate a
- * choice. If the quick check succeeds then it jumps to the continuation to
- * do slow checks and check subsequent nodes. If it fails (the common case)
- * it falls through to the next choice.
- *
- * Here is the desired flow graph. Nodes directly below each other imply
- * fallthrough. Alternatives 1 and 2 have quick checks. Alternative
- * 3 doesn't have a quick check so we have to call the slow check.
- * Nodes are marked Qn for quick checks and Sn for slow checks. The entire
- * regexp continuation is generated directly after the Sn node, up to the
- * next GoTo if we decide to reuse some already generated code. Some
- * nodes expect preload_characters to be preloaded into the current
- * character register. R nodes do this preloading. Vertices are marked
- * F for failures and S for success (possible success in the case of quick
- * nodes). L, V, < and > are used as arrow heads.
- *
- * ----------> R
- * |
- * V
- * Q1 -----> S1
- * | S /
- * F| /
- * | F/
- * | /
- * | R
- * | /
- * V L
- * Q2 -----> S2
- * | S /
- * F| /
- * | F/
- * | /
- * | R
- * | /
- * V L
- * S3
- * |
- * F|
- * |
- * R
- * |
- * backtrack V
- * <----------Q4
- * \ F |
- * \ |S
- * \ F V
- * \-----S4
- *
- * For greedy loops we push the current position, then generate the code that
- * eats the input specially in EmitGreedyLoop. The other choice (the
- * continuation) is generated by the normal code in EmitChoices, and steps back
- * in the input to the starting position when it fails to match. The loop code
- * looks like this (U is the unwind code that steps back in the greedy loop).
- *
- * _____
- * / \
- * V |
- * ----------> S1 |
- * /| |
- * / |S |
- * F/ \_____/
- * /
- * |<-----
- * | \
- * V |S
- * Q2 ---> U----->backtrack
- * | F /
- * S| /
- * V F /
- * S2--/
- */
-
-GreedyLoopState::GreedyLoopState(bool not_at_start) {
- counter_backtrack_trace_.set_backtrack(&label_);
- if (not_at_start) counter_backtrack_trace_.set_at_start(false);
-}
-
-
-void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
-#ifdef DEBUG
- int choice_count = alternatives_->length();
- for (int i = 0; i < choice_count - 1; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == NULL) ? 0 : guards->length();
- for (int j = 0; j < guard_count; j++) {
- DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
- }
- }
-#endif
-}
-
-
-void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
- Trace* current_trace,
- PreloadState* state) {
- if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
- // Save some time by looking at most one machine word ahead.
- state->eats_at_least_ =
- EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
- current_trace->at_start() == Trace::FALSE_VALUE);
- }
- state->preload_characters_ =
- CalculatePreloadCharacters(compiler, state->eats_at_least_);
-
- state->preload_is_current_ =
- (current_trace->characters_preloaded() == state->preload_characters_);
- state->preload_has_checked_bounds_ = state->preload_is_current_;
-}
-
-
-void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- int choice_count = alternatives_->length();
-
- AssertGuardsMentionRegisters(trace);
-
- LimitResult limit_result = LimitVersions(compiler, trace);
- if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
-
- // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
- // other choice nodes we only flush if we are out of code size budget.
- if (trace->flush_budget() == 0 && trace->actions() != NULL) {
- trace->Flush(compiler, this);
- return;
- }
-
- RecursionCheck rc(compiler);
-
- PreloadState preload;
- preload.init();
- GreedyLoopState greedy_loop_state(not_at_start());
-
- int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
- AlternativeGenerationList alt_gens(choice_count, zone());
-
- if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
- trace = EmitGreedyLoop(compiler,
- trace,
- &alt_gens,
- &preload,
- &greedy_loop_state,
- text_length);
- } else {
- // TODO(erikcorry): Delete this. We don't need this label, but it makes us
- // match the traces produced pre-cleanup.
- Label second_choice;
- compiler->macro_assembler()->Bind(&second_choice);
-
- preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
-
- EmitChoices(compiler,
- &alt_gens,
- 0,
- trace,
- &preload);
- }
-
- // At this point we need to generate slow checks for the alternatives where
- // the quick check was inlined. We can recognize these because the associated
- // label was bound.
- int new_flush_budget = trace->flush_budget() / choice_count;
- for (int i = 0; i < choice_count; i++) {
- AlternativeGeneration* alt_gen = alt_gens.at(i);
- Trace new_trace(*trace);
- // If there are actions to be flushed we have to limit how many times
- // they are flushed. Take the budget of the parent trace and distribute
- // it fairly amongst the children.
- if (new_trace.actions() != NULL) {
- new_trace.set_flush_budget(new_flush_budget);
- }
- bool next_expects_preload =
- i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
- EmitOutOfLineContinuation(compiler,
- &new_trace,
- alternatives_->at(i),
- alt_gen,
- preload.preload_characters_,
- next_expects_preload);
- }
-}
-
-
-Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
- Trace* trace,
- AlternativeGenerationList* alt_gens,
- PreloadState* preload,
- GreedyLoopState* greedy_loop_state,
- int text_length) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- // Here we have special handling for greedy loops containing only text nodes
- // and other simple nodes. These are handled by pushing the current
- // position on the stack and then incrementing the current position each
- // time around the switch. On backtrack we decrement the current position
- // and check it against the pushed value. This avoids pushing backtrack
- // information for each iteration of the loop, which could take up a lot of
- // space.
- DCHECK(trace->stop_node() == NULL);
- macro_assembler->PushCurrentPosition();
- Label greedy_match_failed;
- Trace greedy_match_trace;
- if (not_at_start()) greedy_match_trace.set_at_start(false);
- greedy_match_trace.set_backtrack(&greedy_match_failed);
- Label loop_label;
- macro_assembler->Bind(&loop_label);
- greedy_match_trace.set_stop_node(this);
- greedy_match_trace.set_loop_label(&loop_label);
- alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
- macro_assembler->Bind(&greedy_match_failed);
-
- Label second_choice; // For use in greedy matches.
- macro_assembler->Bind(&second_choice);
-
- Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
-
- EmitChoices(compiler,
- alt_gens,
- 1,
- new_trace,
- preload);
-
- macro_assembler->Bind(greedy_loop_state->label());
- // If we have unwound to the bottom then backtrack.
- macro_assembler->CheckGreedyLoop(trace->backtrack());
- // Otherwise try the second priority at an earlier position.
- macro_assembler->AdvanceCurrentPosition(-text_length);
- macro_assembler->GoTo(&second_choice);
- return new_trace;
-}
-
-int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
- Trace* trace) {
- int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
- if (alternatives_->length() != 2) return eats_at_least;
-
- GuardedAlternative alt1 = alternatives_->at(1);
- if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
- return eats_at_least;
- }
- RegExpNode* eats_anything_node = alt1.node();
- if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
- return eats_at_least;
- }
-
- // Really we should be creating a new trace when we execute this function,
- // but there is no need, because the code it generates cannot backtrack, and
- // we always arrive here with a trivial trace (since it's the entry to a
- // loop. That also implies that there are no preloaded characters, which is
- // good, because it means we won't be violating any assumptions by
- // overwriting those characters with new load instructions.
- DCHECK(trace->is_trivial());
-
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- Isolate* isolate = macro_assembler->isolate();
- // At this point we know that we are at a non-greedy loop that will eat
- // any character one at a time. Any non-anchored regexp has such a
- // loop prepended to it in order to find where it starts. We look for
- // a pattern of the form ...abc... where we can look 6 characters ahead
- // and step forwards 3 if the character is not one of abc. Abc need
- // not be atoms, they can be any reasonably limited character class or
- // small alternation.
- BoyerMooreLookahead* bm = bm_info(false);
- if (bm == NULL) {
- eats_at_least = Min(kMaxLookaheadForBoyerMoore,
- EatsAtLeast(kMaxLookaheadForBoyerMoore,
- kRecursionBudget,
- false));
- if (eats_at_least >= 1) {
- bm = new(zone()) BoyerMooreLookahead(eats_at_least,
- compiler,
- zone());
- GuardedAlternative alt0 = alternatives_->at(0);
- alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false);
- }
- }
- if (bm != NULL) {
- bm->EmitSkipInstructions(macro_assembler);
- }
- return eats_at_least;
-}
-
-
-void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
- AlternativeGenerationList* alt_gens,
- int first_choice,
- Trace* trace,
- PreloadState* preload) {
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- SetUpPreLoad(compiler, trace, preload);
-
- // For now we just call all choices one after the other. The idea ultimately
- // is to use the Dispatch table to try only the relevant ones.
- int choice_count = alternatives_->length();
-
- int new_flush_budget = trace->flush_budget() / choice_count;
-
- for (int i = first_choice; i < choice_count; i++) {
- bool is_last = i == choice_count - 1;
- bool fall_through_on_failure = !is_last;
- GuardedAlternative alternative = alternatives_->at(i);
- AlternativeGeneration* alt_gen = alt_gens->at(i);
- alt_gen->quick_check_details.set_characters(preload->preload_characters_);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == NULL) ? 0 : guards->length();
- Trace new_trace(*trace);
- new_trace.set_characters_preloaded(preload->preload_is_current_ ?
- preload->preload_characters_ :
- 0);
- if (preload->preload_has_checked_bounds_) {
- new_trace.set_bound_checked_up_to(preload->preload_characters_);
- }
- new_trace.quick_check_performed()->Clear();
- if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
- if (!is_last) {
- new_trace.set_backtrack(&alt_gen->after);
- }
- alt_gen->expects_preload = preload->preload_is_current_;
- bool generate_full_check_inline = false;
- if (compiler->optimize() &&
- try_to_emit_quick_check_for_alternative(i == 0) &&
- alternative.node()->EmitQuickCheck(
- compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
- &alt_gen->possible_success, &alt_gen->quick_check_details,
- fall_through_on_failure)) {
- // Quick check was generated for this choice.
- preload->preload_is_current_ = true;
- preload->preload_has_checked_bounds_ = true;
- // If we generated the quick check to fall through on possible success,
- // we now need to generate the full check inline.
- if (!fall_through_on_failure) {
- macro_assembler->Bind(&alt_gen->possible_success);
- new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
- new_trace.set_characters_preloaded(preload->preload_characters_);
- new_trace.set_bound_checked_up_to(preload->preload_characters_);
- generate_full_check_inline = true;
- }
- } else if (alt_gen->quick_check_details.cannot_match()) {
- if (!fall_through_on_failure) {
- macro_assembler->GoTo(trace->backtrack());
- }
- continue;
- } else {
- // No quick check was generated. Put the full code here.
- // If this is not the first choice then there could be slow checks from
- // previous cases that go here when they fail. There's no reason to
- // insist that they preload characters since the slow check we are about
- // to generate probably can't use it.
- if (i != first_choice) {
- alt_gen->expects_preload = false;
- new_trace.InvalidateCurrentCharacter();
- }
- generate_full_check_inline = true;
- }
- if (generate_full_check_inline) {
- if (new_trace.actions() != NULL) {
- new_trace.set_flush_budget(new_flush_budget);
- }
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &new_trace);
- }
- alternative.node()->Emit(compiler, &new_trace);
- preload->preload_is_current_ = false;
- }
- macro_assembler->Bind(&alt_gen->after);
- }
-}
-
-
-void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
- Trace* trace,
- GuardedAlternative alternative,
- AlternativeGeneration* alt_gen,
- int preload_characters,
- bool next_expects_preload) {
- if (!alt_gen->possible_success.is_linked()) return;
-
- RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- macro_assembler->Bind(&alt_gen->possible_success);
- Trace out_of_line_trace(*trace);
- out_of_line_trace.set_characters_preloaded(preload_characters);
- out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
- if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == NULL) ? 0 : guards->length();
- if (next_expects_preload) {
- Label reload_current_char;
- out_of_line_trace.set_backtrack(&reload_current_char);
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
- }
- alternative.node()->Emit(compiler, &out_of_line_trace);
- macro_assembler->Bind(&reload_current_char);
- // Reload the current character, since the next quick check expects that.
- // We don't need to check bounds here because we only get into this
- // code through a quick check which already did the checked load.
- macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
- NULL,
- false,
- preload_characters);
- macro_assembler->GoTo(&(alt_gen->after));
- } else {
- out_of_line_trace.set_backtrack(&(alt_gen->after));
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
- }
- alternative.node()->Emit(compiler, &out_of_line_trace);
- }
-}
-
-
-void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- LimitResult limit_result = LimitVersions(compiler, trace);
- if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
-
- RecursionCheck rc(compiler);
-
- switch (action_type_) {
- case STORE_POSITION: {
- Trace::DeferredCapture
- new_capture(data_.u_position_register.reg,
- data_.u_position_register.is_capture,
- trace);
- Trace new_trace = *trace;
- new_trace.add_action(&new_capture);
- on_success()->Emit(compiler, &new_trace);
- break;
- }
- case INCREMENT_REGISTER: {
- Trace::DeferredIncrementRegister
- new_increment(data_.u_increment_register.reg);
- Trace new_trace = *trace;
- new_trace.add_action(&new_increment);
- on_success()->Emit(compiler, &new_trace);
- break;
- }
- case SET_REGISTER: {
- Trace::DeferredSetRegister
- new_set(data_.u_store_register.reg, data_.u_store_register.value);
- Trace new_trace = *trace;
- new_trace.add_action(&new_set);
- on_success()->Emit(compiler, &new_trace);
- break;
- }
- case CLEAR_CAPTURES: {
- Trace::DeferredClearCaptures
- new_capture(Interval(data_.u_clear_captures.range_from,
- data_.u_clear_captures.range_to));
- Trace new_trace = *trace;
- new_trace.add_action(&new_capture);
- on_success()->Emit(compiler, &new_trace);
- break;
- }
- case BEGIN_SUBMATCH:
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- } else {
- assembler->WriteCurrentPositionToRegister(
- data_.u_submatch.current_position_register, 0);
- assembler->WriteStackPointerToRegister(
- data_.u_submatch.stack_pointer_register);
- on_success()->Emit(compiler, trace);
- }
- break;
- case EMPTY_MATCH_CHECK: {
- int start_pos_reg = data_.u_empty_match_check.start_register;
- int stored_pos = 0;
- int rep_reg = data_.u_empty_match_check.repetition_register;
- bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
- bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
- if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
- // If we know we haven't advanced and there is no minimum we
- // can just backtrack immediately.
- assembler->GoTo(trace->backtrack());
- } else if (know_dist && stored_pos < trace->cp_offset()) {
- // If we know we've advanced we can generate the continuation
- // immediately.
- on_success()->Emit(compiler, trace);
- } else if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- } else {
- Label skip_empty_check;
- // If we have a minimum number of repetitions we check the current
- // number first and skip the empty check if it's not enough.
- if (has_minimum) {
- int limit = data_.u_empty_match_check.repetition_limit;
- assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
- }
- // If the match is empty we bail out, otherwise we fall through
- // to the on-success continuation.
- assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
- trace->backtrack());
- assembler->Bind(&skip_empty_check);
- on_success()->Emit(compiler, trace);
- }
- break;
- }
- case POSITIVE_SUBMATCH_SUCCESS: {
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- return;
- }
- assembler->ReadCurrentPositionFromRegister(
- data_.u_submatch.current_position_register);
- assembler->ReadStackPointerFromRegister(
- data_.u_submatch.stack_pointer_register);
- int clear_register_count = data_.u_submatch.clear_register_count;
- if (clear_register_count == 0) {
- on_success()->Emit(compiler, trace);
- return;
- }
- int clear_registers_from = data_.u_submatch.clear_register_from;
- Label clear_registers_backtrack;
- Trace new_trace = *trace;
- new_trace.set_backtrack(&clear_registers_backtrack);
- on_success()->Emit(compiler, &new_trace);
-
- assembler->Bind(&clear_registers_backtrack);
- int clear_registers_to = clear_registers_from + clear_register_count - 1;
- assembler->ClearRegisters(clear_registers_from, clear_registers_to);
-
- DCHECK(trace->backtrack() == NULL);
- assembler->Backtrack();
- return;
- }
- default:
- UNREACHABLE();
- }
-}
-
-
-void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- RegExpMacroAssembler* assembler = compiler->macro_assembler();
- if (!trace->is_trivial()) {
- trace->Flush(compiler, this);
- return;
- }
-
- LimitResult limit_result = LimitVersions(compiler, trace);
- if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
-
- RecursionCheck rc(compiler);
-
- DCHECK_EQ(start_reg_ + 1, end_reg_);
- if (compiler->ignore_case()) {
- assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
- trace->backtrack());
- } else {
- assembler->CheckNotBackReference(start_reg_, trace->backtrack());
- }
- on_success()->Emit(compiler, trace);
-}
-
-
-// -------------------------------------------------------------------
-// Dot/dotty output
-
-
-#ifdef DEBUG
-
-
-class DotPrinter: public NodeVisitor {
- public:
- DotPrinter(std::ostream& os, bool ignore_case) // NOLINT
- : os_(os),
- ignore_case_(ignore_case) {}
- void PrintNode(const char* label, RegExpNode* node);
- void Visit(RegExpNode* node);
- void PrintAttributes(RegExpNode* from);
- void PrintOnFailure(RegExpNode* from, RegExpNode* to);
-#define DECLARE_VISIT(Type) \
- virtual void Visit##Type(Type##Node* that);
-FOR_EACH_NODE_TYPE(DECLARE_VISIT)
-#undef DECLARE_VISIT
- private:
- std::ostream& os_;
- bool ignore_case_;
-};
-
-
-void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
- os_ << "digraph G {\n graph [label=\"";
- for (int i = 0; label[i]; i++) {
- switch (label[i]) {
- case '\\':
- os_ << "\\\\";
- break;
- case '"':
- os_ << "\"";
- break;
- default:
- os_ << label[i];
- break;
- }
- }
- os_ << "\"];\n";
- Visit(node);
- os_ << "}" << std::endl;
-}
-
-
-void DotPrinter::Visit(RegExpNode* node) {
- if (node->info()->visited) return;
- node->info()->visited = true;
- node->Accept(this);
-}
-
-
-void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
- os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n";
- Visit(on_failure);
-}
-
-
-class TableEntryBodyPrinter {
- public:
- TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice) // NOLINT
- : os_(os),
- choice_(choice) {}
- void Call(uc16 from, DispatchTable::Entry entry) {
- OutSet* out_set = entry.out_set();
- for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
- if (out_set->Get(i)) {
- os_ << " n" << choice() << ":s" << from << "o" << i << " -> n"
- << choice()->alternatives()->at(i).node() << ";\n";
- }
- }
- }
- private:
- ChoiceNode* choice() { return choice_; }
- std::ostream& os_;
- ChoiceNode* choice_;
-};
-
-
-class TableEntryHeaderPrinter {
- public:
- explicit TableEntryHeaderPrinter(std::ostream& os) // NOLINT
- : first_(true),
- os_(os) {}
- void Call(uc16 from, DispatchTable::Entry entry) {
- if (first_) {
- first_ = false;
- } else {
- os_ << "|";
- }
- os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
- OutSet* out_set = entry.out_set();
- int priority = 0;
- for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
- if (out_set->Get(i)) {
- if (priority > 0) os_ << "|";
- os_ << "<s" << from << "o" << i << "> " << priority;
- priority++;
- }
- }
- os_ << "}}";
- }
-
- private:
- bool first_;
- std::ostream& os_;
-};
-
-
-class AttributePrinter {
- public:
- explicit AttributePrinter(std::ostream& os) // NOLINT
- : os_(os),
- first_(true) {}
- void PrintSeparator() {
- if (first_) {
- first_ = false;
- } else {
- os_ << "|";
- }
- }
- void PrintBit(const char* name, bool value) {
- if (!value) return;
- PrintSeparator();
- os_ << "{" << name << "}";
- }
- void PrintPositive(const char* name, int value) {
- if (value < 0) return;
- PrintSeparator();
- os_ << "{" << name << "|" << value << "}";
- }
-
- private:
- std::ostream& os_;
- bool first_;
-};
-
-
-void DotPrinter::PrintAttributes(RegExpNode* that) {
- os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
- << "margin=0.1, fontsize=10, label=\"{";
- AttributePrinter printer(os_);
- NodeInfo* info = that->info();
- printer.PrintBit("NI", info->follows_newline_interest);
- printer.PrintBit("WI", info->follows_word_interest);
- printer.PrintBit("SI", info->follows_start_interest);
- Label* label = that->label();
- if (label->is_bound())
- printer.PrintPositive("@", label->pos());
- os_ << "}\"];\n"
- << " a" << that << " -> n" << that
- << " [style=dashed, color=grey, arrowhead=none];\n";
-}
-
-
-static const bool kPrintDispatchTable = false;
-void DotPrinter::VisitChoice(ChoiceNode* that) {
- if (kPrintDispatchTable) {
- os_ << " n" << that << " [shape=Mrecord, label=\"";
- TableEntryHeaderPrinter header_printer(os_);
- that->GetTable(ignore_case_)->ForEach(&header_printer);
- os_ << "\"]\n";
- PrintAttributes(that);
- TableEntryBodyPrinter body_printer(os_, that);
- that->GetTable(ignore_case_)->ForEach(&body_printer);
- } else {
- os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n";
- for (int i = 0; i < that->alternatives()->length(); i++) {
- GuardedAlternative alt = that->alternatives()->at(i);
- os_ << " n" << that << " -> n" << alt.node();
- }
- }
- for (int i = 0; i < that->alternatives()->length(); i++) {
- GuardedAlternative alt = that->alternatives()->at(i);
- alt.node()->Accept(this);
- }
-}
-
-
-void DotPrinter::VisitText(TextNode* that) {
- Zone* zone = that->zone();
- os_ << " n" << that << " [label=\"";
- for (int i = 0; i < that->elements()->length(); i++) {
- if (i > 0) os_ << " ";
- TextElement elm = that->elements()->at(i);
- switch (elm.text_type()) {
- case TextElement::ATOM: {
- Vector<const uc16> data = elm.atom()->data();
- for (int i = 0; i < data.length(); i++) {
- os_ << static_cast<char>(data[i]);
- }
- break;
- }
- case TextElement::CHAR_CLASS: {
- RegExpCharacterClass* node = elm.char_class();
- os_ << "[";
- if (node->is_negated()) os_ << "^";
- for (int j = 0; j < node->ranges(zone)->length(); j++) {
- CharacterRange range = node->ranges(zone)->at(j);
- os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
- }
- os_ << "]";
- break;
- }
- default:
- UNREACHABLE();
- }
- }
- os_ << "\", shape=box, peripheries=2];\n";
- PrintAttributes(that);
- os_ << " n" << that << " -> n" << that->on_success() << ";\n";
- Visit(that->on_success());
-}
-
-
-void DotPrinter::VisitBackReference(BackReferenceNode* that) {
- os_ << " n" << that << " [label=\"$" << that->start_register() << "..$"
- << that->end_register() << "\", shape=doubleoctagon];\n";
- PrintAttributes(that);
- os_ << " n" << that << " -> n" << that->on_success() << ";\n";
- Visit(that->on_success());
-}
-
-
-void DotPrinter::VisitEnd(EndNode* that) {
- os_ << " n" << that << " [style=bold, shape=point];\n";
- PrintAttributes(that);
-}
-
-
-void DotPrinter::VisitAssertion(AssertionNode* that) {
- os_ << " n" << that << " [";
- switch (that->assertion_type()) {
- case AssertionNode::AT_END:
- os_ << "label=\"$\", shape=septagon";
- break;
- case AssertionNode::AT_START:
- os_ << "label=\"^\", shape=septagon";
- break;
- case AssertionNode::AT_BOUNDARY:
- os_ << "label=\"\\b\", shape=septagon";
- break;
- case AssertionNode::AT_NON_BOUNDARY:
- os_ << "label=\"\\B\", shape=septagon";
- break;
- case AssertionNode::AFTER_NEWLINE:
- os_ << "label=\"(?<=\\n)\", shape=septagon";
- break;
- }
- os_ << "];\n";
- PrintAttributes(that);
- RegExpNode* successor = that->on_success();
- os_ << " n" << that << " -> n" << successor << ";\n";
- Visit(successor);
-}
-
-
-void DotPrinter::VisitAction(ActionNode* that) {
- os_ << " n" << that << " [";
- switch (that->action_type_) {
- case ActionNode::SET_REGISTER:
- os_ << "label=\"$" << that->data_.u_store_register.reg
- << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
- break;
- case ActionNode::INCREMENT_REGISTER:
- os_ << "label=\"$" << that->data_.u_increment_register.reg
- << "++\", shape=octagon";
- break;
- case ActionNode::STORE_POSITION:
- os_ << "label=\"$" << that->data_.u_position_register.reg
- << ":=$pos\", shape=octagon";
- break;
- case ActionNode::BEGIN_SUBMATCH:
- os_ << "label=\"$" << that->data_.u_submatch.current_position_register
- << ":=$pos,begin\", shape=septagon";
- break;
- case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
- os_ << "label=\"escape\", shape=septagon";
- break;
- case ActionNode::EMPTY_MATCH_CHECK:
- os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
- << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
- << "<" << that->data_.u_empty_match_check.repetition_limit
- << "?\", shape=septagon";
- break;
- case ActionNode::CLEAR_CAPTURES: {
- os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
- << " to $" << that->data_.u_clear_captures.range_to
- << "\", shape=septagon";
- break;
- }
- }
- os_ << "];\n";
- PrintAttributes(that);
- RegExpNode* successor = that->on_success();
- os_ << " n" << that << " -> n" << successor << ";\n";
- Visit(successor);
-}
-
-
-class DispatchTableDumper {
- public:
- explicit DispatchTableDumper(std::ostream& os) : os_(os) {}
- void Call(uc16 key, DispatchTable::Entry entry);
- private:
- std::ostream& os_;
-};
-
-
-void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
- os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
- OutSet* set = entry.out_set();
- bool first = true;
- for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
- if (set->Get(i)) {
- if (first) {
- first = false;
- } else {
- os_ << ", ";
- }
- os_ << i;
- }
- }
- os_ << "}\n";
-}
-
-
-void DispatchTable::Dump() {
- OFStream os(stderr);
- DispatchTableDumper dumper(os);
- tree()->ForEach(&dumper);
-}
-
-
-void RegExpEngine::DotPrint(const char* label,
- RegExpNode* node,
- bool ignore_case) {
- OFStream os(stdout);
- DotPrinter printer(os, ignore_case);
- printer.PrintNode(label, node);
-}
-
-
-#endif // DEBUG
-
-
-// -------------------------------------------------------------------
-// Tree to graph conversion
-
-RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- ZoneList<TextElement>* elms =
- new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
- elms->Add(TextElement::Atom(this), compiler->zone());
- return new(compiler->zone()) TextNode(elms, on_success);
-}
-
-
-RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- return new(compiler->zone()) TextNode(elements(), on_success);
-}
-
-
-static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
- const int* special_class,
- int length) {
- length--; // Remove final 0x10000.
- DCHECK(special_class[length] == 0x10000);
- DCHECK(ranges->length() != 0);
- DCHECK(length != 0);
- DCHECK(special_class[0] != 0);
- if (ranges->length() != (length >> 1) + 1) {
- return false;
- }
- CharacterRange range = ranges->at(0);
- if (range.from() != 0) {
- return false;
- }
- for (int i = 0; i < length; i += 2) {
- if (special_class[i] != (range.to() + 1)) {
- return false;
- }
- range = ranges->at((i >> 1) + 1);
- if (special_class[i+1] != range.from()) {
- return false;
- }
- }
- if (range.to() != 0xffff) {
- return false;
- }
- return true;
-}
-
-
-static bool CompareRanges(ZoneList<CharacterRange>* ranges,
- const int* special_class,
- int length) {
- length--; // Remove final 0x10000.
- DCHECK(special_class[length] == 0x10000);
- if (ranges->length() * 2 != length) {
- return false;
- }
- for (int i = 0; i < length; i += 2) {
- CharacterRange range = ranges->at(i >> 1);
- if (range.from() != special_class[i] ||
- range.to() != special_class[i + 1] - 1) {
- return false;
- }
- }
- return true;
-}
-
-
-bool RegExpCharacterClass::is_standard(Zone* zone) {
- // TODO(lrn): Remove need for this function, by not throwing away information
- // along the way.
- if (is_negated_) {
- return false;
- }
- if (set_.is_standard()) {
- return true;
- }
- if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
- set_.set_standard_set_type('s');
- return true;
- }
- if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
- set_.set_standard_set_type('S');
- return true;
- }
- if (CompareInverseRanges(set_.ranges(zone),
- kLineTerminatorRanges,
- kLineTerminatorRangeCount)) {
- set_.set_standard_set_type('.');
- return true;
- }
- if (CompareRanges(set_.ranges(zone),
- kLineTerminatorRanges,
- kLineTerminatorRangeCount)) {
- set_.set_standard_set_type('n');
- return true;
- }
- if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
- set_.set_standard_set_type('w');
- return true;
- }
- if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
- set_.set_standard_set_type('W');
- return true;
- }
- return false;
-}
-
-
-RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- return new(compiler->zone()) TextNode(this, on_success);
-}
-
-
-int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
- RegExpAtom* atom1 = (*a)->AsAtom();
- RegExpAtom* atom2 = (*b)->AsAtom();
- uc16 character1 = atom1->data().at(0);
- uc16 character2 = atom2->data().at(0);
- if (character1 < character2) return -1;
- if (character1 > character2) return 1;
- return 0;
-}
-
-
-static unibrow::uchar Canonical(
- unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
- unibrow::uchar c) {
- unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
- int length = canonicalize->get(c, '\0', chars);
- DCHECK_LE(length, 1);
- unibrow::uchar canonical = c;
- if (length == 1) canonical = chars[0];
- return canonical;
-}
-
-
-int CompareFirstCharCaseIndependent(
- unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
- RegExpTree* const* a, RegExpTree* const* b) {
- RegExpAtom* atom1 = (*a)->AsAtom();
- RegExpAtom* atom2 = (*b)->AsAtom();
- unibrow::uchar character1 = atom1->data().at(0);
- unibrow::uchar character2 = atom2->data().at(0);
- if (character1 == character2) return 0;
- if (character1 >= 'a' || character2 >= 'a') {
- character1 = Canonical(canonicalize, character1);
- character2 = Canonical(canonicalize, character2);
- }
- return static_cast<int>(character1) - static_cast<int>(character2);
-}
-
-
-// We can stable sort runs of atoms, since the order does not matter if they
-// start with different characters.
-// Returns true if any consecutive atoms were found.
-bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
- ZoneList<RegExpTree*>* alternatives = this->alternatives();
- int length = alternatives->length();
- bool found_consecutive_atoms = false;
- for (int i = 0; i < length; i++) {
- while (i < length) {
- RegExpTree* alternative = alternatives->at(i);
- if (alternative->IsAtom()) break;
- i++;
- }
- // i is length or it is the index of an atom.
- if (i == length) break;
- int first_atom = i;
- i++;
- while (i < length) {
- RegExpTree* alternative = alternatives->at(i);
- if (!alternative->IsAtom()) break;
- i++;
- }
- // Sort atoms to get ones with common prefixes together.
- // This step is more tricky if we are in a case-independent regexp,
- // because it would change /is|I/ to /I|is/, and order matters when
- // the regexp parts don't match only disjoint starting points. To fix
- // this we have a version of CompareFirstChar that uses case-
- // independent character classes for comparison.
- DCHECK_LT(first_atom, alternatives->length());
- DCHECK_LE(i, alternatives->length());
- DCHECK_LE(first_atom, i);
- if (compiler->ignore_case()) {
- unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
- compiler->isolate()->regexp_macro_assembler_canonicalize();
- auto compare_closure =
- [canonicalize](RegExpTree* const* a, RegExpTree* const* b) {
- return CompareFirstCharCaseIndependent(canonicalize, a, b);
- };
- alternatives->StableSort(compare_closure, first_atom, i - first_atom);
- } else {
- alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
- }
- if (i - first_atom > 1) found_consecutive_atoms = true;
- }
- return found_consecutive_atoms;
-}
-
-
-// Optimizes ab|ac|az to a(?:b|c|d).
-void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
- Zone* zone = compiler->zone();
- ZoneList<RegExpTree*>* alternatives = this->alternatives();
- int length = alternatives->length();
-
- int write_posn = 0;
- int i = 0;
- while (i < length) {
- RegExpTree* alternative = alternatives->at(i);
- if (!alternative->IsAtom()) {
- alternatives->at(write_posn++) = alternatives->at(i);
- i++;
- continue;
- }
- RegExpAtom* atom = alternative->AsAtom();
- unibrow::uchar common_prefix = atom->data().at(0);
- int first_with_prefix = i;
- int prefix_length = atom->length();
- i++;
- while (i < length) {
- alternative = alternatives->at(i);
- if (!alternative->IsAtom()) break;
- atom = alternative->AsAtom();
- unibrow::uchar new_prefix = atom->data().at(0);
- if (new_prefix != common_prefix) {
- if (!compiler->ignore_case()) break;
- unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
- compiler->isolate()->regexp_macro_assembler_canonicalize();
- new_prefix = Canonical(canonicalize, new_prefix);
- common_prefix = Canonical(canonicalize, common_prefix);
- if (new_prefix != common_prefix) break;
- }
- prefix_length = Min(prefix_length, atom->length());
- i++;
- }
- if (i > first_with_prefix + 2) {
- // Found worthwhile run of alternatives with common prefix of at least one
- // character. The sorting function above did not sort on more than one
- // character for reasons of correctness, but there may still be a longer
- // common prefix if the terms were similar or presorted in the input.
- // Find out how long the common prefix is.
- int run_length = i - first_with_prefix;
- atom = alternatives->at(first_with_prefix)->AsAtom();
- for (int j = 1; j < run_length && prefix_length > 1; j++) {
- RegExpAtom* old_atom =
- alternatives->at(j + first_with_prefix)->AsAtom();
- for (int k = 1; k < prefix_length; k++) {
- if (atom->data().at(k) != old_atom->data().at(k)) {
- prefix_length = k;
- break;
- }
- }
- }
- RegExpAtom* prefix =
- new (zone) RegExpAtom(atom->data().SubVector(0, prefix_length));
- ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
- pair->Add(prefix, zone);
- ZoneList<RegExpTree*>* suffixes =
- new (zone) ZoneList<RegExpTree*>(run_length, zone);
- for (int j = 0; j < run_length; j++) {
- RegExpAtom* old_atom =
- alternatives->at(j + first_with_prefix)->AsAtom();
- int len = old_atom->length();
- if (len == prefix_length) {
- suffixes->Add(new (zone) RegExpEmpty(), zone);
- } else {
- RegExpTree* suffix = new (zone) RegExpAtom(
- old_atom->data().SubVector(prefix_length, old_atom->length()));
- suffixes->Add(suffix, zone);
- }
- }
- pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
- alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
- } else {
- // Just copy any non-worthwhile alternatives.
- for (int j = first_with_prefix; j < i; j++) {
- alternatives->at(write_posn++) = alternatives->at(j);
- }
- }
- }
- alternatives->Rewind(write_posn); // Trim end of array.
-}
-
-
-// Optimizes b|c|z to [bcz].
-void RegExpDisjunction::FixSingleCharacterDisjunctions(
- RegExpCompiler* compiler) {
- Zone* zone = compiler->zone();
- ZoneList<RegExpTree*>* alternatives = this->alternatives();
- int length = alternatives->length();
-
- int write_posn = 0;
- int i = 0;
- while (i < length) {
- RegExpTree* alternative = alternatives->at(i);
- if (!alternative->IsAtom()) {
- alternatives->at(write_posn++) = alternatives->at(i);
- i++;
- continue;
- }
- RegExpAtom* atom = alternative->AsAtom();
- if (atom->length() != 1) {
- alternatives->at(write_posn++) = alternatives->at(i);
- i++;
- continue;
- }
- int first_in_run = i;
- i++;
- while (i < length) {
- alternative = alternatives->at(i);
- if (!alternative->IsAtom()) break;
- atom = alternative->AsAtom();
- if (atom->length() != 1) break;
- i++;
- }
- if (i > first_in_run + 1) {
- // Found non-trivial run of single-character alternatives.
- int run_length = i - first_in_run;
- ZoneList<CharacterRange>* ranges =
- new (zone) ZoneList<CharacterRange>(2, zone);
- for (int j = 0; j < run_length; j++) {
- RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
- DCHECK_EQ(old_atom->length(), 1);
- ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
- }
- alternatives->at(write_posn++) =
- new (zone) RegExpCharacterClass(ranges, false);
- } else {
- // Just copy any trivial alternatives.
- for (int j = first_in_run; j < i; j++) {
- alternatives->at(write_posn++) = alternatives->at(j);
- }
- }
- }
- alternatives->Rewind(write_posn); // Trim end of array.
-}
-
-
-RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- ZoneList<RegExpTree*>* alternatives = this->alternatives();
-
- if (alternatives->length() > 2) {
- bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
- if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
- FixSingleCharacterDisjunctions(compiler);
- if (alternatives->length() == 1) {
- return alternatives->at(0)->ToNode(compiler, on_success);
- }
- }
-
- int length = alternatives->length();
-
- ChoiceNode* result =
- new(compiler->zone()) ChoiceNode(length, compiler->zone());
- for (int i = 0; i < length; i++) {
- GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
- on_success));
- result->AddAlternative(alternative);
- }
- return result;
-}
-
-
-RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- return ToNode(min(),
- max(),
- is_greedy(),
- body(),
- compiler,
- on_success);
-}
-
-
-// Scoped object to keep track of how much we unroll quantifier loops in the
-// regexp graph generator.
-class RegExpExpansionLimiter {
- public:
- static const int kMaxExpansionFactor = 6;
- RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
- : compiler_(compiler),
- saved_expansion_factor_(compiler->current_expansion_factor()),
- ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
- DCHECK(factor > 0);
- if (ok_to_expand_) {
- if (factor > kMaxExpansionFactor) {
- // Avoid integer overflow of the current expansion factor.
- ok_to_expand_ = false;
- compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
- } else {
- int new_factor = saved_expansion_factor_ * factor;
- ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
- compiler->set_current_expansion_factor(new_factor);
- }
- }
- }
-
- ~RegExpExpansionLimiter() {
- compiler_->set_current_expansion_factor(saved_expansion_factor_);
- }
-
- bool ok_to_expand() { return ok_to_expand_; }
-
- private:
- RegExpCompiler* compiler_;
- int saved_expansion_factor_;
- bool ok_to_expand_;
-
- DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
-};
-
-
-RegExpNode* RegExpQuantifier::ToNode(int min,
- int max,
- bool is_greedy,
- RegExpTree* body,
- RegExpCompiler* compiler,
- RegExpNode* on_success,
- bool not_at_start) {
- // x{f, t} becomes this:
- //
- // (r++)<-.
- // | `
- // | (x)
- // v ^
- // (r=0)-->(?)---/ [if r < t]
- // |
- // [if r >= f] \----> ...
- //
-
- // 15.10.2.5 RepeatMatcher algorithm.
- // The parser has already eliminated the case where max is 0. In the case
- // where max_match is zero the parser has removed the quantifier if min was
- // > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
-
- // If we know that we cannot match zero length then things are a little
- // simpler since we don't need to make the special zero length match check
- // from step 2.1. If the min and max are small we can unroll a little in
- // this case.
- static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
- static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
- if (max == 0) return on_success; // This can happen due to recursion.
- bool body_can_be_empty = (body->min_match() == 0);
- int body_start_reg = RegExpCompiler::kNoRegister;
- Interval capture_registers = body->CaptureRegisters();
- bool needs_capture_clearing = !capture_registers.is_empty();
- Zone* zone = compiler->zone();
-
- if (body_can_be_empty) {
- body_start_reg = compiler->AllocateRegister();
- } else if (compiler->optimize() && !needs_capture_clearing) {
- // Only unroll if there are no captures and the body can't be
- // empty.
- {
- RegExpExpansionLimiter limiter(
- compiler, min + ((max != min) ? 1 : 0));
- if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
- int new_max = (max == kInfinity) ? max : max - min;
- // Recurse once to get the loop or optional matches after the fixed
- // ones.
- RegExpNode* answer = ToNode(
- 0, new_max, is_greedy, body, compiler, on_success, true);
- // Unroll the forced matches from 0 to min. This can cause chains of
- // TextNodes (which the parser does not generate). These should be
- // combined if it turns out they hinder good code generation.
- for (int i = 0; i < min; i++) {
- answer = body->ToNode(compiler, answer);
- }
- return answer;
- }
- }
- if (max <= kMaxUnrolledMaxMatches && min == 0) {
- DCHECK(max > 0); // Due to the 'if' above.
- RegExpExpansionLimiter limiter(compiler, max);
- if (limiter.ok_to_expand()) {
- // Unroll the optional matches up to max.
- RegExpNode* answer = on_success;
- for (int i = 0; i < max; i++) {
- ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
- if (is_greedy) {
- alternation->AddAlternative(
- GuardedAlternative(body->ToNode(compiler, answer)));
- alternation->AddAlternative(GuardedAlternative(on_success));
- } else {
- alternation->AddAlternative(GuardedAlternative(on_success));
- alternation->AddAlternative(
- GuardedAlternative(body->ToNode(compiler, answer)));
- }
- answer = alternation;
- if (not_at_start) alternation->set_not_at_start();
- }
- return answer;
- }
- }
- }
- bool has_min = min > 0;
- bool has_max = max < RegExpTree::kInfinity;
- bool needs_counter = has_min || has_max;
- int reg_ctr = needs_counter
- ? compiler->AllocateRegister()
- : RegExpCompiler::kNoRegister;
- LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0,
- zone);
- if (not_at_start) center->set_not_at_start();
- RegExpNode* loop_return = needs_counter
- ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
- : static_cast<RegExpNode*>(center);
- if (body_can_be_empty) {
- // If the body can be empty we need to check if it was and then
- // backtrack.
- loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
- reg_ctr,
- min,
- loop_return);
- }
- RegExpNode* body_node = body->ToNode(compiler, loop_return);
- if (body_can_be_empty) {
- // If the body can be empty we need to store the start position
- // so we can bail out if it was empty.
- body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
- }
- if (needs_capture_clearing) {
- // Before entering the body of this loop we need to clear captures.
- body_node = ActionNode::ClearCaptures(capture_registers, body_node);
- }
- GuardedAlternative body_alt(body_node);
- if (has_max) {
- Guard* body_guard =
- new(zone) Guard(reg_ctr, Guard::LT, max);
- body_alt.AddGuard(body_guard, zone);
- }
- GuardedAlternative rest_alt(on_success);
- if (has_min) {
- Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
- rest_alt.AddGuard(rest_guard, zone);
- }
- if (is_greedy) {
- center->AddLoopAlternative(body_alt);
- center->AddContinueAlternative(rest_alt);
- } else {
- center->AddContinueAlternative(rest_alt);
- center->AddLoopAlternative(body_alt);
- }
- if (needs_counter) {
- return ActionNode::SetRegister(reg_ctr, 0, center);
- } else {
- return center;
- }
-}
-
-
-RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- NodeInfo info;
- Zone* zone = compiler->zone();
-
- switch (assertion_type()) {
- case START_OF_LINE:
- return AssertionNode::AfterNewline(on_success);
- case START_OF_INPUT:
- return AssertionNode::AtStart(on_success);
- case BOUNDARY:
- return AssertionNode::AtBoundary(on_success);
- case NON_BOUNDARY:
- return AssertionNode::AtNonBoundary(on_success);
- case END_OF_INPUT:
- return AssertionNode::AtEnd(on_success);
- case END_OF_LINE: {
- // Compile $ in multiline regexps as an alternation with a positive
- // lookahead in one side and an end-of-input on the other side.
- // We need two registers for the lookahead.
- int stack_pointer_register = compiler->AllocateRegister();
- int position_register = compiler->AllocateRegister();
- // The ChoiceNode to distinguish between a newline and end-of-input.
- ChoiceNode* result = new(zone) ChoiceNode(2, zone);
- // Create a newline atom.
- ZoneList<CharacterRange>* newline_ranges =
- new(zone) ZoneList<CharacterRange>(3, zone);
- CharacterRange::AddClassEscape('n', newline_ranges, zone);
- RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n');
- TextNode* newline_matcher = new(zone) TextNode(
- newline_atom,
- ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
- position_register,
- 0, // No captures inside.
- -1, // Ignored if no captures.
- on_success));
- // Create an end-of-input matcher.
- RegExpNode* end_of_line = ActionNode::BeginSubmatch(
- stack_pointer_register,
- position_register,
- newline_matcher);
- // Add the two alternatives to the ChoiceNode.
- GuardedAlternative eol_alternative(end_of_line);
- result->AddAlternative(eol_alternative);
- GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
- result->AddAlternative(end_alternative);
- return result;
- }
- default:
- UNREACHABLE();
- }
- return on_success;
-}
-
-
-RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- return new(compiler->zone())
- BackReferenceNode(RegExpCapture::StartRegister(index()),
- RegExpCapture::EndRegister(index()),
- on_success);
-}
-
-
-RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- return on_success;
-}
-
-
-RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- int stack_pointer_register = compiler->AllocateRegister();
- int position_register = compiler->AllocateRegister();
-
- const int registers_per_capture = 2;
- const int register_of_first_capture = 2;
- int register_count = capture_count_ * registers_per_capture;
- int register_start =
- register_of_first_capture + capture_from_ * registers_per_capture;
-
- RegExpNode* success;
- if (is_positive()) {
- RegExpNode* node = ActionNode::BeginSubmatch(
- stack_pointer_register,
- position_register,
- body()->ToNode(
- compiler,
- ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
- position_register,
- register_count,
- register_start,
- on_success)));
- return node;
- } else {
- // We use a ChoiceNode for a negative lookahead because it has most of
- // the characteristics we need. It has the body of the lookahead as its
- // first alternative and the expression after the lookahead of the second
- // alternative. If the first alternative succeeds then the
- // NegativeSubmatchSuccess will unwind the stack including everything the
- // choice node set up and backtrack. If the first alternative fails then
- // the second alternative is tried, which is exactly the desired result
- // for a negative lookahead. The NegativeLookaheadChoiceNode is a special
- // ChoiceNode that knows to ignore the first exit when calculating quick
- // checks.
- Zone* zone = compiler->zone();
-
- GuardedAlternative body_alt(
- body()->ToNode(
- compiler,
- success = new(zone) NegativeSubmatchSuccess(stack_pointer_register,
- position_register,
- register_count,
- register_start,
- zone)));
- ChoiceNode* choice_node =
- new(zone) NegativeLookaheadChoiceNode(body_alt,
- GuardedAlternative(on_success),
- zone);
- return ActionNode::BeginSubmatch(stack_pointer_register,
- position_register,
- choice_node);
- }
-}
-
-
-RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- return ToNode(body(), index(), compiler, on_success);
-}
-
-
-RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
- int index,
- RegExpCompiler* compiler,
- RegExpNode* on_success) {
- int start_reg = RegExpCapture::StartRegister(index);
- int end_reg = RegExpCapture::EndRegister(index);
- RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
- RegExpNode* body_node = body->ToNode(compiler, store_end);
- return ActionNode::StorePosition(start_reg, true, body_node);
-}
-
-
-RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
- RegExpNode* on_success) {
- ZoneList<RegExpTree*>* children = nodes();
- RegExpNode* current = on_success;
- for (int i = children->length() - 1; i >= 0; i--) {
- current = children->at(i)->ToNode(compiler, current);
- }
- return current;
-}
-
-
-static void AddClass(const int* elmv,
- int elmc,
- ZoneList<CharacterRange>* ranges,
- Zone* zone) {
- elmc--;
- DCHECK(elmv[elmc] == 0x10000);
- for (int i = 0; i < elmc; i += 2) {
- DCHECK(elmv[i] < elmv[i + 1]);
- ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
- }
-}
-
-
-static void AddClassNegated(const int *elmv,
- int elmc,
- ZoneList<CharacterRange>* ranges,
- Zone* zone) {
- elmc--;
- DCHECK(elmv[elmc] == 0x10000);
- DCHECK(elmv[0] != 0x0000);
- DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
- uc16 last = 0x0000;
- for (int i = 0; i < elmc; i += 2) {
- DCHECK(last <= elmv[i] - 1);
- DCHECK(elmv[i] < elmv[i + 1]);
- ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
- last = elmv[i + 1];
- }
- ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
-}
-
-
-void CharacterRange::AddClassEscape(uc16 type,
- ZoneList<CharacterRange>* ranges,
- Zone* zone) {
- switch (type) {
- case 's':
- AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
- break;
- case 'S':
- AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
- break;
- case 'w':
- AddClass(kWordRanges, kWordRangeCount, ranges, zone);
- break;
- case 'W':
- AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
- break;
- case 'd':
- AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
- break;
- case 'D':
- AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
- break;
- case '.':
- AddClassNegated(kLineTerminatorRanges,
- kLineTerminatorRangeCount,
- ranges,
- zone);
- break;
- // This is not a character range as defined by the spec but a
- // convenient shorthand for a character class that matches any
- // character.
- case '*':
- ranges->Add(CharacterRange::Everything(), zone);
- break;
- // This is the set of characters matched by the $ and ^ symbols
- // in multiline mode.
- case 'n':
- AddClass(kLineTerminatorRanges,
- kLineTerminatorRangeCount,
- ranges,
- zone);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-Vector<const int> CharacterRange::GetWordBounds() {
- return Vector<const int>(kWordRanges, kWordRangeCount - 1);
-}
-
-
-class CharacterRangeSplitter {
- public:
- CharacterRangeSplitter(ZoneList<CharacterRange>** included,
- ZoneList<CharacterRange>** excluded,
- Zone* zone)
- : included_(included),
- excluded_(excluded),
- zone_(zone) { }
- void Call(uc16 from, DispatchTable::Entry entry);
-
- static const int kInBase = 0;
- static const int kInOverlay = 1;
-
- private:
- ZoneList<CharacterRange>** included_;
- ZoneList<CharacterRange>** excluded_;
- Zone* zone_;
-};
-
-
-void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
- if (!entry.out_set()->Get(kInBase)) return;
- ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
- ? included_
- : excluded_;
- if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
- (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
-}
-
-
-void CharacterRange::Split(ZoneList<CharacterRange>* base,
- Vector<const int> overlay,
- ZoneList<CharacterRange>** included,
- ZoneList<CharacterRange>** excluded,
- Zone* zone) {
- DCHECK_NULL(*included);
- DCHECK_NULL(*excluded);
- DispatchTable table(zone);
- for (int i = 0; i < base->length(); i++)
- table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
- for (int i = 0; i < overlay.length(); i += 2) {
- table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
- CharacterRangeSplitter::kInOverlay, zone);
- }
- CharacterRangeSplitter callback(included, excluded, zone);
- table.ForEach(&callback);
-}
-
-
-void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
- ZoneList<CharacterRange>* ranges,
- bool is_one_byte) {
- uc16 bottom = from();
- uc16 top = to();
- if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
- if (bottom > String::kMaxOneByteCharCode) return;
- if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
- }
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- if (top == bottom) {
- // If this is a singleton we just expand the one character.
- int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
- for (int i = 0; i < length; i++) {
- uc32 chr = chars[i];
- if (chr != bottom) {
- ranges->Add(CharacterRange::Singleton(chars[i]), zone);
- }
- }
- } else {
- // If this is a range we expand the characters block by block,
- // expanding contiguous subranges (blocks) one at a time.
- // The approach is as follows. For a given start character we
- // look up the remainder of the block that contains it (represented
- // by the end point), for instance we find 'z' if the character
- // is 'c'. A block is characterized by the property
- // that all characters uncanonicalize in the same way, except that
- // each entry in the result is incremented by the distance from the first
- // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
- // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
- // Once we've found the end point we look up its uncanonicalization
- // and produce a range for each element. For instance for [c-f]
- // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
- // add a range if it is not already contained in the input, so [c-f]
- // will be skipped but [C-F] will be added. If this range is not
- // completely contained in a block we do this for all the blocks
- // covered by the range (handling characters that is not in a block
- // as a "singleton block").
- unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int pos = bottom;
- while (pos <= top) {
- int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
- uc16 block_end;
- if (length == 0) {
- block_end = pos;
- } else {
- DCHECK_EQ(1, length);
- block_end = range[0];
- }
- int end = (block_end > top) ? top : block_end;
- length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
- for (int i = 0; i < length; i++) {
- uc32 c = range[i];
- uc16 range_from = c - (block_end - pos);
- uc16 range_to = c - (block_end - end);
- if (!(bottom <= range_from && range_to <= top)) {
- ranges->Add(CharacterRange(range_from, range_to), zone);
- }
- }
- pos = end + 1;
- }
- }
-}
-
-
-bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
- DCHECK_NOT_NULL(ranges);
- int n = ranges->length();
- if (n <= 1) return true;
- int max = ranges->at(0).to();
- for (int i = 1; i < n; i++) {
- CharacterRange next_range = ranges->at(i);
- if (next_range.from() <= max + 1) return false;
- max = next_range.to();
- }
- return true;
-}
-
-
-ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
- if (ranges_ == NULL) {
- ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
- CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
- }
- return ranges_;
-}
-
-
-// Move a number of elements in a zonelist to another position
-// in the same list. Handles overlapping source and target areas.
-static void MoveRanges(ZoneList<CharacterRange>* list,
- int from,
- int to,
- int count) {
- // Ranges are potentially overlapping.
- if (from < to) {
- for (int i = count - 1; i >= 0; i--) {
- list->at(to + i) = list->at(from + i);
- }
- } else {
- for (int i = 0; i < count; i++) {
- list->at(to + i) = list->at(from + i);
- }
- }
-}
-
-
-static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
- int count,
- CharacterRange insert) {
- // Inserts a range into list[0..count[, which must be sorted
- // by from value and non-overlapping and non-adjacent, using at most
- // list[0..count] for the result. Returns the number of resulting
- // canonicalized ranges. Inserting a range may collapse existing ranges into
- // fewer ranges, so the return value can be anything in the range 1..count+1.
- uc16 from = insert.from();
- uc16 to = insert.to();
- int start_pos = 0;
- int end_pos = count;
- for (int i = count - 1; i >= 0; i--) {
- CharacterRange current = list->at(i);
- if (current.from() > to + 1) {
- end_pos = i;
- } else if (current.to() + 1 < from) {
- start_pos = i + 1;
- break;
- }
- }
-
- // Inserted range overlaps, or is adjacent to, ranges at positions
- // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
- // not affected by the insertion.
- // If start_pos == end_pos, the range must be inserted before start_pos.
- // if start_pos < end_pos, the entire range from start_pos to end_pos
- // must be merged with the insert range.
-
- if (start_pos == end_pos) {
- // Insert between existing ranges at position start_pos.
- if (start_pos < count) {
- MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
- }
- list->at(start_pos) = insert;
- return count + 1;
- }
- if (start_pos + 1 == end_pos) {
- // Replace single existing range at position start_pos.
- CharacterRange to_replace = list->at(start_pos);
- int new_from = Min(to_replace.from(), from);
- int new_to = Max(to_replace.to(), to);
- list->at(start_pos) = CharacterRange(new_from, new_to);
- return count;
- }
- // Replace a number of existing ranges from start_pos to end_pos - 1.
- // Move the remaining ranges down.
-
- int new_from = Min(list->at(start_pos).from(), from);
- int new_to = Max(list->at(end_pos - 1).to(), to);
- if (end_pos < count) {
- MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
- }
- list->at(start_pos) = CharacterRange(new_from, new_to);
- return count - (end_pos - start_pos) + 1;
-}
-
-
-void CharacterSet::Canonicalize() {
- // Special/default classes are always considered canonical. The result
- // of calling ranges() will be sorted.
- if (ranges_ == NULL) return;
- CharacterRange::Canonicalize(ranges_);
-}
-
-
-void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
- if (character_ranges->length() <= 1) return;
- // Check whether ranges are already canonical (increasing, non-overlapping,
- // non-adjacent).
- int n = character_ranges->length();
- int max = character_ranges->at(0).to();
- int i = 1;
- while (i < n) {
- CharacterRange current = character_ranges->at(i);
- if (current.from() <= max + 1) {
- break;
- }
- max = current.to();
- i++;
- }
- // Canonical until the i'th range. If that's all of them, we are done.
- if (i == n) return;
-
- // The ranges at index i and forward are not canonicalized. Make them so by
- // doing the equivalent of insertion sort (inserting each into the previous
- // list, in order).
- // Notice that inserting a range can reduce the number of ranges in the
- // result due to combining of adjacent and overlapping ranges.
- int read = i; // Range to insert.
- int num_canonical = i; // Length of canonicalized part of list.
- do {
- num_canonical = InsertRangeInCanonicalList(character_ranges,
- num_canonical,
- character_ranges->at(read));
- read++;
- } while (read < n);
- character_ranges->Rewind(num_canonical);
-
- DCHECK(CharacterRange::IsCanonical(character_ranges));
-}
-
-
-void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
- ZoneList<CharacterRange>* negated_ranges,
- Zone* zone) {
- DCHECK(CharacterRange::IsCanonical(ranges));
- DCHECK_EQ(0, negated_ranges->length());
- int range_count = ranges->length();
- uc16 from = 0;
- int i = 0;
- if (range_count > 0 && ranges->at(0).from() == 0) {
- from = ranges->at(0).to();
- i = 1;
- }
- while (i < range_count) {
- CharacterRange range = ranges->at(i);
- negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
- from = range.to();
- i++;
- }
- if (from < String::kMaxUtf16CodeUnit) {
- negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
- zone);
- }
-}
-
-
-// -------------------------------------------------------------------
-// Splay tree
-
-
-OutSet* OutSet::Extend(unsigned value, Zone* zone) {
- if (Get(value))
- return this;
- if (successors(zone) != NULL) {
- for (int i = 0; i < successors(zone)->length(); i++) {
- OutSet* successor = successors(zone)->at(i);
- if (successor->Get(value))
- return successor;
- }
- } else {
- successors_ = new(zone) ZoneList<OutSet*>(2, zone);
- }
- OutSet* result = new(zone) OutSet(first_, remaining_);
- result->Set(value, zone);
- successors(zone)->Add(result, zone);
- return result;
-}
-
-
-void OutSet::Set(unsigned value, Zone *zone) {
- if (value < kFirstLimit) {
- first_ |= (1 << value);
- } else {
- if (remaining_ == NULL)
- remaining_ = new(zone) ZoneList<unsigned>(1, zone);
- if (remaining_->is_empty() || !remaining_->Contains(value))
- remaining_->Add(value, zone);
- }
-}
-
-
-bool OutSet::Get(unsigned value) const {
- if (value < kFirstLimit) {
- return (first_ & (1 << value)) != 0;
- } else if (remaining_ == NULL) {
- return false;
- } else {
- return remaining_->Contains(value);
- }
-}
-
-
-const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
-
-
-void DispatchTable::AddRange(CharacterRange full_range, int value,
- Zone* zone) {
- CharacterRange current = full_range;
- if (tree()->is_empty()) {
- // If this is the first range we just insert into the table.
- ZoneSplayTree<Config>::Locator loc;
- bool inserted = tree()->Insert(current.from(), &loc);
- DCHECK(inserted);
- USE(inserted);
- loc.set_value(Entry(current.from(), current.to(),
- empty()->Extend(value, zone)));
- return;
- }
- // First see if there is a range to the left of this one that
- // overlaps.
- ZoneSplayTree<Config>::Locator loc;
- if (tree()->FindGreatestLessThan(current.from(), &loc)) {
- Entry* entry = &loc.value();
- // If we've found a range that overlaps with this one, and it
- // starts strictly to the left of this one, we have to fix it
- // because the following code only handles ranges that start on
- // or after the start point of the range we're adding.
- if (entry->from() < current.from() && entry->to() >= current.from()) {
- // Snap the overlapping range in half around the start point of
- // the range we're adding.
- CharacterRange left(entry->from(), current.from() - 1);
- CharacterRange right(current.from(), entry->to());
- // The left part of the overlapping range doesn't overlap.
- // Truncate the whole entry to be just the left part.
- entry->set_to(left.to());
- // The right part is the one that overlaps. We add this part
- // to the map and let the next step deal with merging it with
- // the range we're adding.
- ZoneSplayTree<Config>::Locator loc;
- bool inserted = tree()->Insert(right.from(), &loc);
- DCHECK(inserted);
- USE(inserted);
- loc.set_value(Entry(right.from(),
- right.to(),
- entry->out_set()));
- }
- }
- while (current.is_valid()) {
- if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
- (loc.value().from() <= current.to()) &&
- (loc.value().to() >= current.from())) {
- Entry* entry = &loc.value();
- // We have overlap. If there is space between the start point of
- // the range we're adding and where the overlapping range starts
- // then we have to add a range covering just that space.
- if (current.from() < entry->from()) {
- ZoneSplayTree<Config>::Locator ins;
- bool inserted = tree()->Insert(current.from(), &ins);
- DCHECK(inserted);
- USE(inserted);
- ins.set_value(Entry(current.from(),
- entry->from() - 1,
- empty()->Extend(value, zone)));
- current.set_from(entry->from());
- }
- DCHECK_EQ(current.from(), entry->from());
- // If the overlapping range extends beyond the one we want to add
- // we have to snap the right part off and add it separately.
- if (entry->to() > current.to()) {
- ZoneSplayTree<Config>::Locator ins;
- bool inserted = tree()->Insert(current.to() + 1, &ins);
- DCHECK(inserted);
- USE(inserted);
- ins.set_value(Entry(current.to() + 1,
- entry->to(),
- entry->out_set()));
- entry->set_to(current.to());
- }
- DCHECK(entry->to() <= current.to());
- // The overlapping range is now completely contained by the range
- // we're adding so we can just update it and move the start point
- // of the range we're adding just past it.
- entry->AddValue(value, zone);
- // Bail out if the last interval ended at 0xFFFF since otherwise
- // adding 1 will wrap around to 0.
- if (entry->to() == String::kMaxUtf16CodeUnit)
- break;
- DCHECK(entry->to() + 1 > current.from());
- current.set_from(entry->to() + 1);
- } else {
- // There is no overlap so we can just add the range
- ZoneSplayTree<Config>::Locator ins;
- bool inserted = tree()->Insert(current.from(), &ins);
- DCHECK(inserted);
- USE(inserted);
- ins.set_value(Entry(current.from(),
- current.to(),
- empty()->Extend(value, zone)));
- break;
- }
- }
-}
-
-
-OutSet* DispatchTable::Get(uc16 value) {
- ZoneSplayTree<Config>::Locator loc;
- if (!tree()->FindGreatestLessThan(value, &loc))
- return empty();
- Entry* entry = &loc.value();
- if (value <= entry->to())
- return entry->out_set();
- else
- return empty();
-}
-
-
-// -------------------------------------------------------------------
-// Analysis
-
-
-void Analysis::EnsureAnalyzed(RegExpNode* that) {
- StackLimitCheck check(isolate());
- if (check.HasOverflowed()) {
- fail("Stack overflow");
- return;
- }
- if (that->info()->been_analyzed || that->info()->being_analyzed)
- return;
- that->info()->being_analyzed = true;
- that->Accept(this);
- that->info()->being_analyzed = false;
- that->info()->been_analyzed = true;
-}
-
-
-void Analysis::VisitEnd(EndNode* that) {
- // nothing to do
-}
-
-
-void TextNode::CalculateOffsets() {
- int element_count = elements()->length();
- // Set up the offsets of the elements relative to the start. This is a fixed
- // quantity since a TextNode can only contain fixed-width things.
- int cp_offset = 0;
- for (int i = 0; i < element_count; i++) {
- TextElement& elm = elements()->at(i);
- elm.set_cp_offset(cp_offset);
- cp_offset += elm.length();
- }
-}
-
-
-void Analysis::VisitText(TextNode* that) {
- if (ignore_case_) {
- that->MakeCaseIndependent(isolate(), is_one_byte_);
- }
- EnsureAnalyzed(that->on_success());
- if (!has_failed()) {
- that->CalculateOffsets();
- }
-}
-
-
-void Analysis::VisitAction(ActionNode* that) {
- RegExpNode* target = that->on_success();
- EnsureAnalyzed(target);
- if (!has_failed()) {
- // If the next node is interested in what it follows then this node
- // has to be interested too so it can pass the information on.
- that->info()->AddFromFollowing(target->info());
- }
-}
-
-
-void Analysis::VisitChoice(ChoiceNode* that) {
- NodeInfo* info = that->info();
- for (int i = 0; i < that->alternatives()->length(); i++) {
- RegExpNode* node = that->alternatives()->at(i).node();
- EnsureAnalyzed(node);
- if (has_failed()) return;
- // Anything the following nodes need to know has to be known by
- // this node also, so it can pass it on.
- info->AddFromFollowing(node->info());
- }
-}
-
-
-void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
- NodeInfo* info = that->info();
- for (int i = 0; i < that->alternatives()->length(); i++) {
- RegExpNode* node = that->alternatives()->at(i).node();
- if (node != that->loop_node()) {
- EnsureAnalyzed(node);
- if (has_failed()) return;
- info->AddFromFollowing(node->info());
- }
- }
- // Check the loop last since it may need the value of this node
- // to get a correct result.
- EnsureAnalyzed(that->loop_node());
- if (!has_failed()) {
- info->AddFromFollowing(that->loop_node()->info());
- }
-}
-
-
-void Analysis::VisitBackReference(BackReferenceNode* that) {
- EnsureAnalyzed(that->on_success());
-}
-
-
-void Analysis::VisitAssertion(AssertionNode* that) {
- EnsureAnalyzed(that->on_success());
-}
-
-
-void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm,
- bool not_at_start) {
- // Working out the set of characters that a backreference can match is too
- // hard, so we just say that any character can match.
- bm->SetRest(offset);
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-
-STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
- RegExpMacroAssembler::kTableSize);
-
-
-void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- ZoneList<GuardedAlternative>* alts = alternatives();
- budget = (budget - 1) / alts->length();
- for (int i = 0; i < alts->length(); i++) {
- GuardedAlternative& alt = alts->at(i);
- if (alt.guards() != NULL && alt.guards()->length() != 0) {
- bm->SetRest(offset); // Give up trying to fill in info.
- SaveBMInfo(bm, not_at_start, offset);
- return;
- }
- alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start);
- }
- SaveBMInfo(bm, not_at_start, offset);
-}
-
-
-void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- if (initial_offset >= bm->length()) return;
- int offset = initial_offset;
- int max_char = bm->max_char();
- for (int i = 0; i < elements()->length(); i++) {
- if (offset >= bm->length()) {
- if (initial_offset == 0) set_bm_info(not_at_start, bm);
- return;
- }
- TextElement text = elements()->at(i);
- if (text.text_type() == TextElement::ATOM) {
- RegExpAtom* atom = text.atom();
- for (int j = 0; j < atom->length(); j++, offset++) {
- if (offset >= bm->length()) {
- if (initial_offset == 0) set_bm_info(not_at_start, bm);
- return;
- }
- uc16 character = atom->data()[j];
- if (bm->compiler()->ignore_case()) {
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int length = GetCaseIndependentLetters(
- isolate, character, bm->max_char() == String::kMaxOneByteCharCode,
- chars);
- for (int j = 0; j < length; j++) {
- bm->Set(offset, chars[j]);
- }
- } else {
- if (character <= max_char) bm->Set(offset, character);
- }
- }
- } else {
- DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
- RegExpCharacterClass* char_class = text.char_class();
- ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
- if (char_class->is_negated()) {
- bm->SetAll(offset);
- } else {
- for (int k = 0; k < ranges->length(); k++) {
- CharacterRange& range = ranges->at(k);
- if (range.from() > max_char) continue;
- int to = Min(max_char, static_cast<int>(range.to()));
- bm->SetInterval(offset, Interval(range.from(), to));
- }
- }
- offset++;
- }
- }
- if (offset >= bm->length()) {
- if (initial_offset == 0) set_bm_info(not_at_start, bm);
- return;
- }
- on_success()->FillInBMInfo(isolate, offset, budget - 1, bm,
- true); // Not at start after a text node.
- if (initial_offset == 0) set_bm_info(not_at_start, bm);
-}
-
-
-// -------------------------------------------------------------------
-// Dispatch table construction
-
-
-void DispatchTableConstructor::VisitEnd(EndNode* that) {
- AddRange(CharacterRange::Everything());
-}
-
-
-void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
- node->set_being_calculated(true);
- ZoneList<GuardedAlternative>* alternatives = node->alternatives();
- for (int i = 0; i < alternatives->length(); i++) {
- set_choice_index(i);
- alternatives->at(i).node()->Accept(this);
- }
- node->set_being_calculated(false);
-}
-
-
-class AddDispatchRange {
- public:
- explicit AddDispatchRange(DispatchTableConstructor* constructor)
- : constructor_(constructor) { }
- void Call(uc32 from, DispatchTable::Entry entry);
- private:
- DispatchTableConstructor* constructor_;
-};
-
-
-void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
- CharacterRange range(from, entry.to());
- constructor_->AddRange(range);
-}
-
-
-void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
- if (node->being_calculated())
- return;
- DispatchTable* table = node->GetTable(ignore_case_);
- AddDispatchRange adder(this);
- table->ForEach(&adder);
-}
-
-
-void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
- // TODO(160): Find the node that we refer back to and propagate its start
- // set back to here. For now we just accept anything.
- AddRange(CharacterRange::Everything());
-}
-
-
-void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
- RegExpNode* target = that->on_success();
- target->Accept(this);
-}
-
-
-static int CompareRangeByFrom(const CharacterRange* a,
- const CharacterRange* b) {
- return Compare<uc16>(a->from(), b->from());
-}
-
-
-void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
- ranges->Sort(CompareRangeByFrom);
- uc16 last = 0;
- for (int i = 0; i < ranges->length(); i++) {
- CharacterRange range = ranges->at(i);
- if (last < range.from())
- AddRange(CharacterRange(last, range.from() - 1));
- if (range.to() >= last) {
- if (range.to() == String::kMaxUtf16CodeUnit) {
- return;
- } else {
- last = range.to() + 1;
- }
- }
- }
- AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
-}
-
-
-void DispatchTableConstructor::VisitText(TextNode* that) {
- TextElement elm = that->elements()->at(0);
- switch (elm.text_type()) {
- case TextElement::ATOM: {
- uc16 c = elm.atom()->data()[0];
- AddRange(CharacterRange(c, c));
- break;
- }
- case TextElement::CHAR_CLASS: {
- RegExpCharacterClass* tree = elm.char_class();
- ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
- if (tree->is_negated()) {
- AddInverse(ranges);
- } else {
- for (int i = 0; i < ranges->length(); i++)
- AddRange(ranges->at(i));
- }
- break;
- }
- default: {
- UNIMPLEMENTED();
- }
- }
-}
-
-
-void DispatchTableConstructor::VisitAction(ActionNode* that) {
- RegExpNode* target = that->on_success();
- target->Accept(this);
-}
-
-
-RegExpEngine::CompilationResult RegExpEngine::Compile(
- Isolate* isolate, Zone* zone, RegExpCompileData* data, bool ignore_case,
- bool is_global, bool is_multiline, bool is_sticky, Handle<String> pattern,
- Handle<String> sample_subject, bool is_one_byte) {
- if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
- return IrregexpRegExpTooBig(isolate);
- }
- RegExpCompiler compiler(isolate, zone, data->capture_count, ignore_case,
- is_one_byte);
-
- if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern));
-
- // Sample some characters from the middle of the string.
- static const int kSampleSize = 128;
-
- sample_subject = String::Flatten(sample_subject);
- int chars_sampled = 0;
- int half_way = (sample_subject->length() - kSampleSize) / 2;
- for (int i = Max(0, half_way);
- i < sample_subject->length() && chars_sampled < kSampleSize;
- i++, chars_sampled++) {
- compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
- }
-
- // Wrap the body of the regexp in capture #0.
- RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
- 0,
- &compiler,
- compiler.accept());
- RegExpNode* node = captured_body;
- bool is_end_anchored = data->tree->IsAnchoredAtEnd();
- bool is_start_anchored = data->tree->IsAnchoredAtStart();
- int max_length = data->tree->max_match();
- if (!is_start_anchored && !is_sticky) {
- // Add a .*? at the beginning, outside the body capture, unless
- // this expression is anchored at the beginning or sticky.
- RegExpNode* loop_node =
- RegExpQuantifier::ToNode(0,
- RegExpTree::kInfinity,
- false,
- new(zone) RegExpCharacterClass('*'),
- &compiler,
- captured_body,
- data->contains_anchor);
-
- if (data->contains_anchor) {
- // Unroll loop once, to take care of the case that might start
- // at the start of input.
- ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
- first_step_node->AddAlternative(GuardedAlternative(captured_body));
- first_step_node->AddAlternative(GuardedAlternative(
- new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node)));
- node = first_step_node;
- } else {
- node = loop_node;
- }
- }
- if (is_one_byte) {
- node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
- // Do it again to propagate the new nodes to places where they were not
- // put because they had not been calculated yet.
- if (node != NULL) {
- node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
- }
- }
-
- if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
- data->node = node;
- Analysis analysis(isolate, ignore_case, is_one_byte);
- analysis.EnsureAnalyzed(node);
- if (analysis.has_failed()) {
- const char* error_message = analysis.error_message();
- return CompilationResult(isolate, error_message);
- }
-
- // Create the correct assembler for the architecture.
-#ifndef V8_INTERPRETED_REGEXP
- // Native regexp implementation.
-
- NativeRegExpMacroAssembler::Mode mode =
- is_one_byte ? NativeRegExpMacroAssembler::LATIN1
- : NativeRegExpMacroAssembler::UC16;
-
-#if V8_TARGET_ARCH_IA32
- RegExpMacroAssemblerIA32 macro_assembler(isolate, zone, mode,
- (data->capture_count + 1) * 2);
-#elif V8_TARGET_ARCH_X64
- RegExpMacroAssemblerX64 macro_assembler(isolate, zone, mode,
- (data->capture_count + 1) * 2);
-#elif V8_TARGET_ARCH_ARM
- RegExpMacroAssemblerARM macro_assembler(isolate, zone, mode,
- (data->capture_count + 1) * 2);
-#elif V8_TARGET_ARCH_ARM64
- RegExpMacroAssemblerARM64 macro_assembler(isolate, zone, mode,
- (data->capture_count + 1) * 2);
-#elif V8_TARGET_ARCH_PPC
- RegExpMacroAssemblerPPC macro_assembler(isolate, zone, mode,
- (data->capture_count + 1) * 2);
-#elif V8_TARGET_ARCH_MIPS
- RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
- (data->capture_count + 1) * 2);
-#elif V8_TARGET_ARCH_MIPS64
- RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
- (data->capture_count + 1) * 2);
-#elif V8_TARGET_ARCH_X87
- RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode,
- (data->capture_count + 1) * 2);
-#else
-#error "Unsupported architecture"
-#endif
-
-#else // V8_INTERPRETED_REGEXP
- // Interpreted regexp implementation.
- EmbeddedVector<byte, 1024> codes;
- RegExpMacroAssemblerIrregexp macro_assembler(isolate, codes, zone);
-#endif // V8_INTERPRETED_REGEXP
-
- macro_assembler.set_slow_safe(TooMuchRegExpCode(pattern));
-
- // Inserted here, instead of in Assembler, because it depends on information
- // in the AST that isn't replicated in the Node structure.
- static const int kMaxBacksearchLimit = 1024;
- if (is_end_anchored &&
- !is_start_anchored &&
- max_length < kMaxBacksearchLimit) {
- macro_assembler.SetCurrentPositionFromEnd(max_length);
- }
-
- if (is_global) {
- macro_assembler.set_global_mode(
- (data->tree->min_match() > 0)
- ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
- : RegExpMacroAssembler::GLOBAL);
- }
-
- return compiler.Assemble(¯o_assembler,
- node,
- data->capture_count,
- pattern);
-}
-
-
-bool RegExpEngine::TooMuchRegExpCode(Handle<String> pattern) {
- Heap* heap = pattern->GetHeap();
- bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize;
- if (heap->total_regexp_code_generated() > RegExpImpl::kRegExpCompiledLimit &&
- heap->isolate()->memory_allocator()->SizeExecutable() >
- RegExpImpl::kRegExpExecutableMemoryLimit) {
- too_much = true;
- }
- return too_much;
-}
-} // namespace internal
-} // namespace v8
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_JSREGEXP_H_
-#define V8_JSREGEXP_H_
-
-#include "src/allocation.h"
-#include "src/assembler.h"
-
-namespace v8 {
-namespace internal {
-
-class NodeVisitor;
-class RegExpCompiler;
-class RegExpMacroAssembler;
-class RegExpNode;
-class RegExpTree;
-class BoyerMooreLookahead;
-
-class RegExpImpl {
- public:
- // Whether V8 is compiled with native regexp support or not.
- static bool UsesNativeRegExp() {
-#ifdef V8_INTERPRETED_REGEXP
- return false;
-#else
- return true;
-#endif
- }
-
- // Creates a regular expression literal in the old space.
- // This function calls the garbage collector if necessary.
- MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral(
- Handle<JSFunction> constructor,
- Handle<String> pattern,
- Handle<String> flags);
-
- // Returns a string representation of a regular expression.
- // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
- // This function calls the garbage collector if necessary.
- static Handle<String> ToString(Handle<Object> value);
-
- // Parses the RegExp pattern and prepares the JSRegExp object with
- // generic data and choice of implementation - as well as what
- // the implementation wants to store in the data field.
- // Returns false if compilation fails.
- MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
- Handle<String> pattern,
- JSRegExp::Flags flags);
-
- // See ECMA-262 section 15.10.6.2.
- // This function calls the garbage collector if necessary.
- MUST_USE_RESULT static MaybeHandle<Object> Exec(
- Handle<JSRegExp> regexp,
- Handle<String> subject,
- int index,
- Handle<JSArray> lastMatchInfo);
-
- // Prepares a JSRegExp object with Irregexp-specific data.
- static void IrregexpInitialize(Handle<JSRegExp> re,
- Handle<String> pattern,
- JSRegExp::Flags flags,
- int capture_register_count);
-
-
- static void AtomCompile(Handle<JSRegExp> re,
- Handle<String> pattern,
- JSRegExp::Flags flags,
- Handle<String> match_pattern);
-
-
- static int AtomExecRaw(Handle<JSRegExp> regexp,
- Handle<String> subject,
- int index,
- int32_t* output,
- int output_size);
-
-
- static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
- Handle<String> subject,
- int index,
- Handle<JSArray> lastMatchInfo);
-
- enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
-
- // Prepare a RegExp for being executed one or more times (using
- // IrregexpExecOnce) on the subject.
- // This ensures that the regexp is compiled for the subject, and that
- // the subject is flat.
- // Returns the number of integer spaces required by IrregexpExecOnce
- // as its "registers" argument. If the regexp cannot be compiled,
- // an exception is set as pending, and this function returns negative.
- static int IrregexpPrepare(Handle<JSRegExp> regexp,
- Handle<String> subject);
-
- // Execute a regular expression on the subject, starting from index.
- // If matching succeeds, return the number of matches. This can be larger
- // than one in the case of global regular expressions.
- // The captures and subcaptures are stored into the registers vector.
- // If matching fails, returns RE_FAILURE.
- // If execution fails, sets a pending exception and returns RE_EXCEPTION.
- static int IrregexpExecRaw(Handle<JSRegExp> regexp,
- Handle<String> subject,
- int index,
- int32_t* output,
- int output_size);
-
- // Execute an Irregexp bytecode pattern.
- // On a successful match, the result is a JSArray containing
- // captured positions. On a failure, the result is the null value.
- // Returns an empty handle in case of an exception.
- MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
- Handle<JSRegExp> regexp,
- Handle<String> subject,
- int index,
- Handle<JSArray> lastMatchInfo);
-
- // Set last match info. If match is NULL, then setting captures is omitted.
- static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
- Handle<String> subject,
- int capture_count,
- int32_t* match);
-
-
- class GlobalCache {
- public:
- GlobalCache(Handle<JSRegExp> regexp,
- Handle<String> subject,
- bool is_global,
- Isolate* isolate);
-
- INLINE(~GlobalCache());
-
- // Fetch the next entry in the cache for global regexp match results.
- // This does not set the last match info. Upon failure, NULL is returned.
- // The cause can be checked with Result(). The previous
- // result is still in available in memory when a failure happens.
- INLINE(int32_t* FetchNext());
-
- INLINE(int32_t* LastSuccessfulMatch());
-
- INLINE(bool HasException()) { return num_matches_ < 0; }
-
- private:
- int num_matches_;
- int max_matches_;
- int current_match_index_;
- int registers_per_match_;
- // Pointer to the last set of captures.
- int32_t* register_array_;
- int register_array_size_;
- Handle<JSRegExp> regexp_;
- Handle<String> subject_;
- };
-
-
- // Array index in the lastMatchInfo array.
- static const int kLastCaptureCount = 0;
- static const int kLastSubject = 1;
- static const int kLastInput = 2;
- static const int kFirstCapture = 3;
- static const int kLastMatchOverhead = 3;
-
- // Direct offset into the lastMatchInfo array.
- static const int kLastCaptureCountOffset =
- FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
- static const int kLastSubjectOffset =
- FixedArray::kHeaderSize + kLastSubject * kPointerSize;
- static const int kLastInputOffset =
- FixedArray::kHeaderSize + kLastInput * kPointerSize;
- static const int kFirstCaptureOffset =
- FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
-
- // Used to access the lastMatchInfo array.
- static int GetCapture(FixedArray* array, int index) {
- return Smi::cast(array->get(index + kFirstCapture))->value();
- }
-
- static void SetLastCaptureCount(FixedArray* array, int to) {
- array->set(kLastCaptureCount, Smi::FromInt(to));
- }
-
- static void SetLastSubject(FixedArray* array, String* to) {
- array->set(kLastSubject, to);
- }
-
- static void SetLastInput(FixedArray* array, String* to) {
- array->set(kLastInput, to);
- }
-
- static void SetCapture(FixedArray* array, int index, int to) {
- array->set(index + kFirstCapture, Smi::FromInt(to));
- }
-
- static int GetLastCaptureCount(FixedArray* array) {
- return Smi::cast(array->get(kLastCaptureCount))->value();
- }
-
- // For acting on the JSRegExp data FixedArray.
- static int IrregexpMaxRegisterCount(FixedArray* re);
- static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
- static int IrregexpNumberOfCaptures(FixedArray* re);
- static int IrregexpNumberOfRegisters(FixedArray* re);
- static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
- static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
-
- // Limit the space regexps take up on the heap. In order to limit this we
- // would like to keep track of the amount of regexp code on the heap. This
- // is not tracked, however. As a conservative approximation we track the
- // total regexp code compiled including code that has subsequently been freed
- // and the total executable memory at any point.
- static const int kRegExpExecutableMemoryLimit = 16 * MB;
- static const int kRegExpCompiledLimit = 1 * MB;
- static const int kRegExpTooLargeToOptimize = 20 * KB;
-
- private:
- static bool CompileIrregexp(Handle<JSRegExp> re,
- Handle<String> sample_subject, bool is_one_byte);
- static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
- Handle<String> sample_subject,
- bool is_one_byte);
-};
-
-
-// Represents the location of one element relative to the intersection of
-// two sets. Corresponds to the four areas of a Venn diagram.
-enum ElementInSetsRelation {
- kInsideNone = 0,
- kInsideFirst = 1,
- kInsideSecond = 2,
- kInsideBoth = 3
-};
-
-
-// Represents code units in the range from from_ to to_, both ends are
-// inclusive.
-class CharacterRange {
- public:
- CharacterRange() : from_(0), to_(0) { }
- // For compatibility with the CHECK_OK macro
- CharacterRange(void* null) { DCHECK_NULL(null); } // NOLINT
- CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
- static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
- Zone* zone);
- static Vector<const int> GetWordBounds();
- static inline CharacterRange Singleton(uc16 value) {
- return CharacterRange(value, value);
- }
- static inline CharacterRange Range(uc16 from, uc16 to) {
- DCHECK(from <= to);
- return CharacterRange(from, to);
- }
- static inline CharacterRange Everything() {
- return CharacterRange(0, 0xFFFF);
- }
- bool Contains(uc16 i) { return from_ <= i && i <= to_; }
- uc16 from() const { return from_; }
- void set_from(uc16 value) { from_ = value; }
- uc16 to() const { return to_; }
- void set_to(uc16 value) { to_ = value; }
- bool is_valid() { return from_ <= to_; }
- bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
- bool IsSingleton() { return (from_ == to_); }
- void AddCaseEquivalents(Isolate* isolate, Zone* zone,
- ZoneList<CharacterRange>* ranges, bool is_one_byte);
- static void Split(ZoneList<CharacterRange>* base,
- Vector<const int> overlay,
- ZoneList<CharacterRange>** included,
- ZoneList<CharacterRange>** excluded,
- Zone* zone);
- // Whether a range list is in canonical form: Ranges ordered by from value,
- // and ranges non-overlapping and non-adjacent.
- static bool IsCanonical(ZoneList<CharacterRange>* ranges);
- // Convert range list to canonical form. The characters covered by the ranges
- // will still be the same, but no character is in more than one range, and
- // adjacent ranges are merged. The resulting list may be shorter than the
- // original, but cannot be longer.
- static void Canonicalize(ZoneList<CharacterRange>* ranges);
- // Negate the contents of a character range in canonical form.
- static void Negate(ZoneList<CharacterRange>* src,
- ZoneList<CharacterRange>* dst,
- Zone* zone);
- static const int kStartMarker = (1 << 24);
- static const int kPayloadMask = (1 << 24) - 1;
-
- private:
- uc16 from_;
- uc16 to_;
-};
-
-
-// A set of unsigned integers that behaves especially well on small
-// integers (< 32). May do zone-allocation.
-class OutSet: public ZoneObject {
- public:
- OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
- OutSet* Extend(unsigned value, Zone* zone);
- bool Get(unsigned value) const;
- static const unsigned kFirstLimit = 32;
-
- private:
- // Destructively set a value in this set. In most cases you want
- // to use Extend instead to ensure that only one instance exists
- // that contains the same values.
- void Set(unsigned value, Zone* zone);
-
- // The successors are a list of sets that contain the same values
- // as this set and the one more value that is not present in this
- // set.
- ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
-
- OutSet(uint32_t first, ZoneList<unsigned>* remaining)
- : first_(first), remaining_(remaining), successors_(NULL) { }
- uint32_t first_;
- ZoneList<unsigned>* remaining_;
- ZoneList<OutSet*>* successors_;
- friend class Trace;
-};
-
-
-// A mapping from integers, specified as ranges, to a set of integers.
-// Used for mapping character ranges to choices.
-class DispatchTable : public ZoneObject {
- public:
- explicit DispatchTable(Zone* zone) : tree_(zone) { }
-
- class Entry {
- public:
- Entry() : from_(0), to_(0), out_set_(NULL) { }
- Entry(uc16 from, uc16 to, OutSet* out_set)
- : from_(from), to_(to), out_set_(out_set) { }
- uc16 from() { return from_; }
- uc16 to() { return to_; }
- void set_to(uc16 value) { to_ = value; }
- void AddValue(int value, Zone* zone) {
- out_set_ = out_set_->Extend(value, zone);
- }
- OutSet* out_set() { return out_set_; }
- private:
- uc16 from_;
- uc16 to_;
- OutSet* out_set_;
- };
-
- class Config {
- public:
- typedef uc16 Key;
- typedef Entry Value;
- static const uc16 kNoKey;
- static const Entry NoValue() { return Value(); }
- static inline int Compare(uc16 a, uc16 b) {
- if (a == b)
- return 0;
- else if (a < b)
- return -1;
- else
- return 1;
- }
- };
-
- void AddRange(CharacterRange range, int value, Zone* zone);
- OutSet* Get(uc16 value);
- void Dump();
-
- template <typename Callback>
- void ForEach(Callback* callback) {
- return tree()->ForEach(callback);
- }
-
- private:
- // There can't be a static empty set since it allocates its
- // successors in a zone and caches them.
- OutSet* empty() { return &empty_; }
- OutSet empty_;
- ZoneSplayTree<Config>* tree() { return &tree_; }
- ZoneSplayTree<Config> tree_;
-};
-
-
-#define FOR_EACH_NODE_TYPE(VISIT) \
- VISIT(End) \
- VISIT(Action) \
- VISIT(Choice) \
- VISIT(BackReference) \
- VISIT(Assertion) \
- VISIT(Text)
-
-
-#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
- VISIT(Disjunction) \
- VISIT(Alternative) \
- VISIT(Assertion) \
- VISIT(CharacterClass) \
- VISIT(Atom) \
- VISIT(Quantifier) \
- VISIT(Capture) \
- VISIT(Lookahead) \
- VISIT(BackReference) \
- VISIT(Empty) \
- VISIT(Text)
-
-
-#define FORWARD_DECLARE(Name) class RegExp##Name;
-FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
-#undef FORWARD_DECLARE
-
-
-class TextElement final BASE_EMBEDDED {
- public:
- enum TextType {
- ATOM,
- CHAR_CLASS
- };
-
- static TextElement Atom(RegExpAtom* atom);
- static TextElement CharClass(RegExpCharacterClass* char_class);
-
- int cp_offset() const { return cp_offset_; }
- void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
- int length() const;
-
- TextType text_type() const { return text_type_; }
-
- RegExpTree* tree() const { return tree_; }
-
- RegExpAtom* atom() const {
- DCHECK(text_type() == ATOM);
- return reinterpret_cast<RegExpAtom*>(tree());
- }
-
- RegExpCharacterClass* char_class() const {
- DCHECK(text_type() == CHAR_CLASS);
- return reinterpret_cast<RegExpCharacterClass*>(tree());
- }
-
- private:
- TextElement(TextType text_type, RegExpTree* tree)
- : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
-
- int cp_offset_;
- TextType text_type_;
- RegExpTree* tree_;
-};
-
-
-class Trace;
-struct PreloadState;
-class GreedyLoopState;
-class AlternativeGenerationList;
-
-struct NodeInfo {
- NodeInfo()
- : being_analyzed(false),
- been_analyzed(false),
- follows_word_interest(false),
- follows_newline_interest(false),
- follows_start_interest(false),
- at_end(false),
- visited(false),
- replacement_calculated(false) { }
-
- // Returns true if the interests and assumptions of this node
- // matches the given one.
- bool Matches(NodeInfo* that) {
- return (at_end == that->at_end) &&
- (follows_word_interest == that->follows_word_interest) &&
- (follows_newline_interest == that->follows_newline_interest) &&
- (follows_start_interest == that->follows_start_interest);
- }
-
- // Updates the interests of this node given the interests of the
- // node preceding it.
- void AddFromPreceding(NodeInfo* that) {
- at_end |= that->at_end;
- follows_word_interest |= that->follows_word_interest;
- follows_newline_interest |= that->follows_newline_interest;
- follows_start_interest |= that->follows_start_interest;
- }
-
- bool HasLookbehind() {
- return follows_word_interest ||
- follows_newline_interest ||
- follows_start_interest;
- }
-
- // Sets the interests of this node to include the interests of the
- // following node.
- void AddFromFollowing(NodeInfo* that) {
- follows_word_interest |= that->follows_word_interest;
- follows_newline_interest |= that->follows_newline_interest;
- follows_start_interest |= that->follows_start_interest;
- }
-
- void ResetCompilationState() {
- being_analyzed = false;
- been_analyzed = false;
- }
-
- bool being_analyzed: 1;
- bool been_analyzed: 1;
-
- // These bits are set of this node has to know what the preceding
- // character was.
- bool follows_word_interest: 1;
- bool follows_newline_interest: 1;
- bool follows_start_interest: 1;
-
- bool at_end: 1;
- bool visited: 1;
- bool replacement_calculated: 1;
-};
-
-
-// Details of a quick mask-compare check that can look ahead in the
-// input stream.
-class QuickCheckDetails {
- public:
- QuickCheckDetails()
- : characters_(0),
- mask_(0),
- value_(0),
- cannot_match_(false) { }
- explicit QuickCheckDetails(int characters)
- : characters_(characters),
- mask_(0),
- value_(0),
- cannot_match_(false) { }
- bool Rationalize(bool one_byte);
- // Merge in the information from another branch of an alternation.
- void Merge(QuickCheckDetails* other, int from_index);
- // Advance the current position by some amount.
- void Advance(int by, bool one_byte);
- void Clear();
- bool cannot_match() { return cannot_match_; }
- void set_cannot_match() { cannot_match_ = true; }
- struct Position {
- Position() : mask(0), value(0), determines_perfectly(false) { }
- uc16 mask;
- uc16 value;
- bool determines_perfectly;
- };
- int characters() { return characters_; }
- void set_characters(int characters) { characters_ = characters; }
- Position* positions(int index) {
- DCHECK(index >= 0);
- DCHECK(index < characters_);
- return positions_ + index;
- }
- uint32_t mask() { return mask_; }
- uint32_t value() { return value_; }
-
- private:
- // How many characters do we have quick check information from. This is
- // the same for all branches of a choice node.
- int characters_;
- Position positions_[4];
- // These values are the condensate of the above array after Rationalize().
- uint32_t mask_;
- uint32_t value_;
- // If set to true, there is no way this quick check can match at all.
- // E.g., if it requires to be at the start of the input, and isn't.
- bool cannot_match_;
-};
-
-
-extern int kUninitializedRegExpNodePlaceHolder;
-
-
-class RegExpNode: public ZoneObject {
- public:
- explicit RegExpNode(Zone* zone)
- : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
- bm_info_[0] = bm_info_[1] = NULL;
- }
- virtual ~RegExpNode();
- virtual void Accept(NodeVisitor* visitor) = 0;
- // Generates a goto to this node or actually generates the code at this point.
- virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
- // How many characters must this node consume at a minimum in order to
- // succeed. If we have found at least 'still_to_find' characters that
- // must be consumed there is no need to ask any following nodes whether
- // they are sure to eat any more characters. The not_at_start argument is
- // used to indicate that we know we are not at the start of the input. In
- // this case anchored branches will always fail and can be ignored when
- // determining how many characters are consumed on success.
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
- // Emits some quick code that checks whether the preloaded characters match.
- // Falls through on certain failure, jumps to the label on possible success.
- // If the node cannot make a quick check it does nothing and returns false.
- bool EmitQuickCheck(RegExpCompiler* compiler,
- Trace* bounds_check_trace,
- Trace* trace,
- bool preload_has_checked_bounds,
- Label* on_possible_success,
- QuickCheckDetails* details_return,
- bool fall_through_on_failure);
- // For a given number of characters this returns a mask and a value. The
- // next n characters are anded with the mask and compared with the value.
- // A comparison failure indicates the node cannot match the next n characters.
- // A comparison success indicates the node may match.
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) = 0;
- static const int kNodeIsTooComplexForGreedyLoops = -1;
- virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
- // Only returns the successor for a text node of length 1 that matches any
- // character and that has no guards on it.
- virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
- RegExpCompiler* compiler) {
- return NULL;
- }
-
- // Collects information on the possible code units (mod 128) that can match if
- // we look forward. This is used for a Boyer-Moore-like string searching
- // implementation. TODO(erikcorry): This should share more code with
- // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
- // the number of nodes we are willing to look at in order to create this data.
- static const int kRecursionBudget = 200;
- bool KeepRecursing(RegExpCompiler* compiler);
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- UNREACHABLE();
- }
-
- // If we know that the input is one-byte then there are some nodes that can
- // never match. This method returns a node that can be substituted for
- // itself, or NULL if the node can never match.
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
- return this;
- }
- // Helper for FilterOneByte.
- RegExpNode* replacement() {
- DCHECK(info()->replacement_calculated);
- return replacement_;
- }
- RegExpNode* set_replacement(RegExpNode* replacement) {
- info()->replacement_calculated = true;
- replacement_ = replacement;
- return replacement; // For convenience.
- }
-
- // We want to avoid recalculating the lookahead info, so we store it on the
- // node. Only info that is for this node is stored. We can tell that the
- // info is for this node when offset == 0, so the information is calculated
- // relative to this node.
- void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
- if (offset == 0) set_bm_info(not_at_start, bm);
- }
-
- Label* label() { return &label_; }
- // If non-generic code is generated for a node (i.e. the node is not at the
- // start of the trace) then it cannot be reused. This variable sets a limit
- // on how often we allow that to happen before we insist on starting a new
- // trace and generating generic code for a node that can be reused by flushing
- // the deferred actions in the current trace and generating a goto.
- static const int kMaxCopiesCodeGenerated = 10;
-
- bool on_work_list() { return on_work_list_; }
- void set_on_work_list(bool value) { on_work_list_ = value; }
-
- NodeInfo* info() { return &info_; }
-
- BoyerMooreLookahead* bm_info(bool not_at_start) {
- return bm_info_[not_at_start ? 1 : 0];
- }
-
- Zone* zone() const { return zone_; }
-
- protected:
- enum LimitResult { DONE, CONTINUE };
- RegExpNode* replacement_;
-
- LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
-
- void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
- bm_info_[not_at_start ? 1 : 0] = bm;
- }
-
- private:
- static const int kFirstCharBudget = 10;
- Label label_;
- bool on_work_list_;
- NodeInfo info_;
- // This variable keeps track of how many times code has been generated for
- // this node (in different traces). We don't keep track of where the
- // generated code is located unless the code is generated at the start of
- // a trace, in which case it is generic and can be reused by flushing the
- // deferred operations in the current trace and generating a goto.
- int trace_count_;
- BoyerMooreLookahead* bm_info_[2];
-
- Zone* zone_;
-};
-
-
-// A simple closed interval.
-class Interval {
- public:
- Interval() : from_(kNone), to_(kNone) { }
- Interval(int from, int to) : from_(from), to_(to) { }
- Interval Union(Interval that) {
- if (that.from_ == kNone)
- return *this;
- else if (from_ == kNone)
- return that;
- else
- return Interval(Min(from_, that.from_), Max(to_, that.to_));
- }
- bool Contains(int value) {
- return (from_ <= value) && (value <= to_);
- }
- bool is_empty() { return from_ == kNone; }
- int from() const { return from_; }
- int to() const { return to_; }
- static Interval Empty() { return Interval(); }
- static const int kNone = -1;
- private:
- int from_;
- int to_;
-};
-
-
-class SeqRegExpNode: public RegExpNode {
- public:
- explicit SeqRegExpNode(RegExpNode* on_success)
- : RegExpNode(on_success->zone()), on_success_(on_success) { }
- RegExpNode* on_success() { return on_success_; }
- void set_on_success(RegExpNode* node) { on_success_ = node; }
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
- if (offset == 0) set_bm_info(not_at_start, bm);
- }
-
- protected:
- RegExpNode* FilterSuccessor(int depth, bool ignore_case);
-
- private:
- RegExpNode* on_success_;
-};
-
-
-class ActionNode: public SeqRegExpNode {
- public:
- enum ActionType {
- SET_REGISTER,
- INCREMENT_REGISTER,
- STORE_POSITION,
- BEGIN_SUBMATCH,
- POSITIVE_SUBMATCH_SUCCESS,
- EMPTY_MATCH_CHECK,
- CLEAR_CAPTURES
- };
- static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
- static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
- static ActionNode* StorePosition(int reg,
- bool is_capture,
- RegExpNode* on_success);
- static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
- static ActionNode* BeginSubmatch(int stack_pointer_reg,
- int position_reg,
- RegExpNode* on_success);
- static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
- int restore_reg,
- int clear_capture_count,
- int clear_capture_from,
- RegExpNode* on_success);
- static ActionNode* EmptyMatchCheck(int start_register,
- int repetition_register,
- int repetition_limit,
- RegExpNode* on_success);
- virtual void Accept(NodeVisitor* visitor);
- virtual void Emit(RegExpCompiler* compiler, Trace* trace);
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int filled_in,
- bool not_at_start) {
- return on_success()->GetQuickCheckDetails(
- details, compiler, filled_in, not_at_start);
- }
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start);
- ActionType action_type() { return action_type_; }
- // TODO(erikcorry): We should allow some action nodes in greedy loops.
- virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
-
- private:
- union {
- struct {
- int reg;
- int value;
- } u_store_register;
- struct {
- int reg;
- } u_increment_register;
- struct {
- int reg;
- bool is_capture;
- } u_position_register;
- struct {
- int stack_pointer_register;
- int current_position_register;
- int clear_register_count;
- int clear_register_from;
- } u_submatch;
- struct {
- int start_register;
- int repetition_register;
- int repetition_limit;
- } u_empty_match_check;
- struct {
- int range_from;
- int range_to;
- } u_clear_captures;
- } data_;
- ActionNode(ActionType action_type, RegExpNode* on_success)
- : SeqRegExpNode(on_success),
- action_type_(action_type) { }
- ActionType action_type_;
- friend class DotPrinter;
-};
-
-
-class TextNode: public SeqRegExpNode {
- public:
- TextNode(ZoneList<TextElement>* elms,
- RegExpNode* on_success)
- : SeqRegExpNode(on_success),
- elms_(elms) { }
- TextNode(RegExpCharacterClass* that,
- RegExpNode* on_success)
- : SeqRegExpNode(on_success),
- elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
- elms_->Add(TextElement::CharClass(that), zone());
- }
- virtual void Accept(NodeVisitor* visitor);
- virtual void Emit(RegExpCompiler* compiler, Trace* trace);
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start);
- ZoneList<TextElement>* elements() { return elms_; }
- void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
- virtual int GreedyLoopTextLength();
- virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
- RegExpCompiler* compiler);
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start);
- void CalculateOffsets();
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
-
- private:
- enum TextEmitPassType {
- NON_LATIN1_MATCH, // Check for characters that can't match.
- SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
- NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
- CASE_CHARACTER_MATCH, // Case-independent single character check.
- CHARACTER_CLASS_MATCH // Character class.
- };
- static bool SkipPass(int pass, bool ignore_case);
- static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
- static const int kLastPass = CHARACTER_CLASS_MATCH;
- void TextEmitPass(RegExpCompiler* compiler,
- TextEmitPassType pass,
- bool preloaded,
- Trace* trace,
- bool first_element_checked,
- int* checked_up_to);
- int Length();
- ZoneList<TextElement>* elms_;
-};
-
-
-class AssertionNode: public SeqRegExpNode {
- public:
- enum AssertionType {
- AT_END,
- AT_START,
- AT_BOUNDARY,
- AT_NON_BOUNDARY,
- AFTER_NEWLINE
- };
- static AssertionNode* AtEnd(RegExpNode* on_success) {
- return new(on_success->zone()) AssertionNode(AT_END, on_success);
- }
- static AssertionNode* AtStart(RegExpNode* on_success) {
- return new(on_success->zone()) AssertionNode(AT_START, on_success);
- }
- static AssertionNode* AtBoundary(RegExpNode* on_success) {
- return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
- }
- static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
- return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
- }
- static AssertionNode* AfterNewline(RegExpNode* on_success) {
- return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
- }
- virtual void Accept(NodeVisitor* visitor);
- virtual void Emit(RegExpCompiler* compiler, Trace* trace);
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int filled_in,
- bool not_at_start);
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start);
- AssertionType assertion_type() { return assertion_type_; }
-
- private:
- void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
- enum IfPrevious { kIsNonWord, kIsWord };
- void BacktrackIfPrevious(RegExpCompiler* compiler,
- Trace* trace,
- IfPrevious backtrack_if_previous);
- AssertionNode(AssertionType t, RegExpNode* on_success)
- : SeqRegExpNode(on_success), assertion_type_(t) { }
- AssertionType assertion_type_;
-};
-
-
-class BackReferenceNode: public SeqRegExpNode {
- public:
- BackReferenceNode(int start_reg,
- int end_reg,
- RegExpNode* on_success)
- : SeqRegExpNode(on_success),
- start_reg_(start_reg),
- end_reg_(end_reg) { }
- virtual void Accept(NodeVisitor* visitor);
- int start_register() { return start_reg_; }
- int end_register() { return end_reg_; }
- virtual void Emit(RegExpCompiler* compiler, Trace* trace);
- virtual int EatsAtLeast(int still_to_find,
- int recursion_depth,
- bool not_at_start);
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- return;
- }
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start);
-
- private:
- int start_reg_;
- int end_reg_;
-};
-
-
-class EndNode: public RegExpNode {
- public:
- enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
- explicit EndNode(Action action, Zone* zone)
- : RegExpNode(zone), action_(action) { }
- virtual void Accept(NodeVisitor* visitor);
- virtual void Emit(RegExpCompiler* compiler, Trace* trace);
- virtual int EatsAtLeast(int still_to_find,
- int recursion_depth,
- bool not_at_start) { return 0; }
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start) {
- // Returning 0 from EatsAtLeast should ensure we never get here.
- UNREACHABLE();
- }
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- // Returning 0 from EatsAtLeast should ensure we never get here.
- UNREACHABLE();
- }
-
- private:
- Action action_;
-};
-
-
-class NegativeSubmatchSuccess: public EndNode {
- public:
- NegativeSubmatchSuccess(int stack_pointer_reg,
- int position_reg,
- int clear_capture_count,
- int clear_capture_start,
- Zone* zone)
- : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
- stack_pointer_register_(stack_pointer_reg),
- current_position_register_(position_reg),
- clear_capture_count_(clear_capture_count),
- clear_capture_start_(clear_capture_start) { }
- virtual void Emit(RegExpCompiler* compiler, Trace* trace);
-
- private:
- int stack_pointer_register_;
- int current_position_register_;
- int clear_capture_count_;
- int clear_capture_start_;
-};
-
-
-class Guard: public ZoneObject {
- public:
- enum Relation { LT, GEQ };
- Guard(int reg, Relation op, int value)
- : reg_(reg),
- op_(op),
- value_(value) { }
- int reg() { return reg_; }
- Relation op() { return op_; }
- int value() { return value_; }
-
- private:
- int reg_;
- Relation op_;
- int value_;
-};
-
-
-class GuardedAlternative {
- public:
- explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
- void AddGuard(Guard* guard, Zone* zone);
- RegExpNode* node() { return node_; }
- void set_node(RegExpNode* node) { node_ = node; }
- ZoneList<Guard*>* guards() { return guards_; }
-
- private:
- RegExpNode* node_;
- ZoneList<Guard*>* guards_;
-};
-
-
-class AlternativeGeneration;
-
-
-class ChoiceNode: public RegExpNode {
- public:
- explicit ChoiceNode(int expected_size, Zone* zone)
- : RegExpNode(zone),
- alternatives_(new(zone)
- ZoneList<GuardedAlternative>(expected_size, zone)),
- table_(NULL),
- not_at_start_(false),
- being_calculated_(false) { }
- virtual void Accept(NodeVisitor* visitor);
- void AddAlternative(GuardedAlternative node) {
- alternatives()->Add(node, zone());
- }
- ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
- DispatchTable* GetTable(bool ignore_case);
- virtual void Emit(RegExpCompiler* compiler, Trace* trace);
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
- int EatsAtLeastHelper(int still_to_find,
- int budget,
- RegExpNode* ignore_this_node,
- bool not_at_start);
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start);
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start);
-
- bool being_calculated() { return being_calculated_; }
- bool not_at_start() { return not_at_start_; }
- void set_not_at_start() { not_at_start_ = true; }
- void set_being_calculated(bool b) { being_calculated_ = b; }
- virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
- return true;
- }
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
-
- protected:
- int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
- ZoneList<GuardedAlternative>* alternatives_;
-
- private:
- friend class DispatchTableConstructor;
- friend class Analysis;
- void GenerateGuard(RegExpMacroAssembler* macro_assembler,
- Guard* guard,
- Trace* trace);
- int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
- void EmitOutOfLineContinuation(RegExpCompiler* compiler,
- Trace* trace,
- GuardedAlternative alternative,
- AlternativeGeneration* alt_gen,
- int preload_characters,
- bool next_expects_preload);
- void SetUpPreLoad(RegExpCompiler* compiler,
- Trace* current_trace,
- PreloadState* preloads);
- void AssertGuardsMentionRegisters(Trace* trace);
- int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
- Trace* EmitGreedyLoop(RegExpCompiler* compiler,
- Trace* trace,
- AlternativeGenerationList* alt_gens,
- PreloadState* preloads,
- GreedyLoopState* greedy_loop_state,
- int text_length);
- void EmitChoices(RegExpCompiler* compiler,
- AlternativeGenerationList* alt_gens,
- int first_choice,
- Trace* trace,
- PreloadState* preloads);
- DispatchTable* table_;
- // If true, this node is never checked at the start of the input.
- // Allows a new trace to start with at_start() set to false.
- bool not_at_start_;
- bool being_calculated_;
-};
-
-
-class NegativeLookaheadChoiceNode: public ChoiceNode {
- public:
- explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
- GuardedAlternative then_do_this,
- Zone* zone)
- : ChoiceNode(2, zone) {
- AddAlternative(this_must_fail);
- AddAlternative(then_do_this);
- }
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start);
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start) {
- alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
- not_at_start);
- if (offset == 0) set_bm_info(not_at_start, bm);
- }
- // For a negative lookahead we don't emit the quick check for the
- // alternative that is expected to fail. This is because quick check code
- // starts by loading enough characters for the alternative that takes fewest
- // characters, but on a negative lookahead the negative branch did not take
- // part in that calculation (EatsAtLeast) so the assumptions don't hold.
- virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
- return !is_first;
- }
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
-};
-
-
-class LoopChoiceNode: public ChoiceNode {
- public:
- explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
- : ChoiceNode(2, zone),
- loop_node_(NULL),
- continue_node_(NULL),
- body_can_be_zero_length_(body_can_be_zero_length)
- { }
- void AddLoopAlternative(GuardedAlternative alt);
- void AddContinueAlternative(GuardedAlternative alt);
- virtual void Emit(RegExpCompiler* compiler, Trace* trace);
- virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
- virtual void GetQuickCheckDetails(QuickCheckDetails* details,
- RegExpCompiler* compiler,
- int characters_filled_in,
- bool not_at_start);
- virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
- BoyerMooreLookahead* bm, bool not_at_start);
- RegExpNode* loop_node() { return loop_node_; }
- RegExpNode* continue_node() { return continue_node_; }
- bool body_can_be_zero_length() { return body_can_be_zero_length_; }
- virtual void Accept(NodeVisitor* visitor);
- virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
-
- private:
- // AddAlternative is made private for loop nodes because alternatives
- // should not be added freely, we need to keep track of which node
- // goes back to the node itself.
- void AddAlternative(GuardedAlternative node) {
- ChoiceNode::AddAlternative(node);
- }
-
- RegExpNode* loop_node_;
- RegExpNode* continue_node_;
- bool body_can_be_zero_length_;
-};
-
-
-// Improve the speed that we scan for an initial point where a non-anchored
-// regexp can match by using a Boyer-Moore-like table. This is done by
-// identifying non-greedy non-capturing loops in the nodes that eat any
-// character one at a time. For example in the middle of the regexp
-// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
-// inserted at the start of any non-anchored regexp.
-//
-// When we have found such a loop we look ahead in the nodes to find the set of
-// characters that can come at given distances. For example for the regexp
-// /.?foo/ we know that there are at least 3 characters ahead of us, and the
-// sets of characters that can occur are [any, [f, o], [o]]. We find a range in
-// the lookahead info where the set of characters is reasonably constrained. In
-// our example this is from index 1 to 2 (0 is not constrained). We can now
-// look 3 characters ahead and if we don't find one of [f, o] (the union of
-// [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
-//
-// For Unicode input strings we do the same, but modulo 128.
-//
-// We also look at the first string fed to the regexp and use that to get a hint
-// of the character frequencies in the inputs. This affects the assessment of
-// whether the set of characters is 'reasonably constrained'.
-//
-// We also have another lookahead mechanism (called quick check in the code),
-// which uses a wide load of multiple characters followed by a mask and compare
-// to determine whether a match is possible at this point.
-enum ContainedInLattice {
- kNotYet = 0,
- kLatticeIn = 1,
- kLatticeOut = 2,
- kLatticeUnknown = 3 // Can also mean both in and out.
-};
-
-
-inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
- return static_cast<ContainedInLattice>(a | b);
-}
-
-
-ContainedInLattice AddRange(ContainedInLattice a,
- const int* ranges,
- int ranges_size,
- Interval new_range);
-
-
-class BoyerMoorePositionInfo : public ZoneObject {
- public:
- explicit BoyerMoorePositionInfo(Zone* zone)
- : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
- map_count_(0),
- w_(kNotYet),
- s_(kNotYet),
- d_(kNotYet),
- surrogate_(kNotYet) {
- for (int i = 0; i < kMapSize; i++) {
- map_->Add(false, zone);
- }
- }
-
- bool& at(int i) { return map_->at(i); }
-
- static const int kMapSize = 128;
- static const int kMask = kMapSize - 1;
-
- int map_count() const { return map_count_; }
-
- void Set(int character);
- void SetInterval(const Interval& interval);
- void SetAll();
- bool is_non_word() { return w_ == kLatticeOut; }
- bool is_word() { return w_ == kLatticeIn; }
-
- private:
- ZoneList<bool>* map_;
- int map_count_; // Number of set bits in the map.
- ContainedInLattice w_; // The \w character class.
- ContainedInLattice s_; // The \s character class.
- ContainedInLattice d_; // The \d character class.
- ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
-};
-
-
-class BoyerMooreLookahead : public ZoneObject {
- public:
- BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
-
- int length() { return length_; }
- int max_char() { return max_char_; }
- RegExpCompiler* compiler() { return compiler_; }
-
- int Count(int map_number) {
- return bitmaps_->at(map_number)->map_count();
- }
-
- BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
-
- void Set(int map_number, int character) {
- if (character > max_char_) return;
- BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
- info->Set(character);
- }
-
- void SetInterval(int map_number, const Interval& interval) {
- if (interval.from() > max_char_) return;
- BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
- if (interval.to() > max_char_) {
- info->SetInterval(Interval(interval.from(), max_char_));
- } else {
- info->SetInterval(interval);
- }
- }
-
- void SetAll(int map_number) {
- bitmaps_->at(map_number)->SetAll();
- }
-
- void SetRest(int from_map) {
- for (int i = from_map; i < length_; i++) SetAll(i);
- }
- void EmitSkipInstructions(RegExpMacroAssembler* masm);
-
- private:
- // This is the value obtained by EatsAtLeast. If we do not have at least this
- // many characters left in the sample string then the match is bound to fail.
- // Therefore it is OK to read a character this far ahead of the current match
- // point.
- int length_;
- RegExpCompiler* compiler_;
- // 0xff for Latin1, 0xffff for UTF-16.
- int max_char_;
- ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
-
- int GetSkipTable(int min_lookahead,
- int max_lookahead,
- Handle<ByteArray> boolean_skip_table);
- bool FindWorthwhileInterval(int* from, int* to);
- int FindBestInterval(
- int max_number_of_chars, int old_biggest_points, int* from, int* to);
-};
-
-
-// There are many ways to generate code for a node. This class encapsulates
-// the current way we should be generating. In other words it encapsulates
-// the current state of the code generator. The effect of this is that we
-// generate code for paths that the matcher can take through the regular
-// expression. A given node in the regexp can be code-generated several times
-// as it can be part of several traces. For example for the regexp:
-// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
-// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
-// to match foo is generated only once (the traces have a common prefix). The
-// code to store the capture is deferred and generated (twice) after the places
-// where baz has been matched.
-class Trace {
- public:
- // A value for a property that is either known to be true, know to be false,
- // or not known.
- enum TriBool {
- UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
- };
-
- class DeferredAction {
- public:
- DeferredAction(ActionNode::ActionType action_type, int reg)
- : action_type_(action_type), reg_(reg), next_(NULL) { }
- DeferredAction* next() { return next_; }
- bool Mentions(int reg);
- int reg() { return reg_; }
- ActionNode::ActionType action_type() { return action_type_; }
- private:
- ActionNode::ActionType action_type_;
- int reg_;
- DeferredAction* next_;
- friend class Trace;
- };
-
- class DeferredCapture : public DeferredAction {
- public:
- DeferredCapture(int reg, bool is_capture, Trace* trace)
- : DeferredAction(ActionNode::STORE_POSITION, reg),
- cp_offset_(trace->cp_offset()),
- is_capture_(is_capture) { }
- int cp_offset() { return cp_offset_; }
- bool is_capture() { return is_capture_; }
- private:
- int cp_offset_;
- bool is_capture_;
- void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
- };
-
- class DeferredSetRegister : public DeferredAction {
- public:
- DeferredSetRegister(int reg, int value)
- : DeferredAction(ActionNode::SET_REGISTER, reg),
- value_(value) { }
- int value() { return value_; }
- private:
- int value_;
- };
-
- class DeferredClearCaptures : public DeferredAction {
- public:
- explicit DeferredClearCaptures(Interval range)
- : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
- range_(range) { }
- Interval range() { return range_; }
- private:
- Interval range_;
- };
-
- class DeferredIncrementRegister : public DeferredAction {
- public:
- explicit DeferredIncrementRegister(int reg)
- : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
- };
-
- Trace()
- : cp_offset_(0),
- actions_(NULL),
- backtrack_(NULL),
- stop_node_(NULL),
- loop_label_(NULL),
- characters_preloaded_(0),
- bound_checked_up_to_(0),
- flush_budget_(100),
- at_start_(UNKNOWN) { }
-
- // End the trace. This involves flushing the deferred actions in the trace
- // and pushing a backtrack location onto the backtrack stack. Once this is
- // done we can start a new trace or go to one that has already been
- // generated.
- void Flush(RegExpCompiler* compiler, RegExpNode* successor);
- int cp_offset() { return cp_offset_; }
- DeferredAction* actions() { return actions_; }
- // A trivial trace is one that has no deferred actions or other state that
- // affects the assumptions used when generating code. There is no recorded
- // backtrack location in a trivial trace, so with a trivial trace we will
- // generate code that, on a failure to match, gets the backtrack location
- // from the backtrack stack rather than using a direct jump instruction. We
- // always start code generation with a trivial trace and non-trivial traces
- // are created as we emit code for nodes or add to the list of deferred
- // actions in the trace. The location of the code generated for a node using
- // a trivial trace is recorded in a label in the node so that gotos can be
- // generated to that code.
- bool is_trivial() {
- return backtrack_ == NULL &&
- actions_ == NULL &&
- cp_offset_ == 0 &&
- characters_preloaded_ == 0 &&
- bound_checked_up_to_ == 0 &&
- quick_check_performed_.characters() == 0 &&
- at_start_ == UNKNOWN;
- }
- TriBool at_start() { return at_start_; }
- void set_at_start(bool at_start) {
- at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
- }
- Label* backtrack() { return backtrack_; }
- Label* loop_label() { return loop_label_; }
- RegExpNode* stop_node() { return stop_node_; }
- int characters_preloaded() { return characters_preloaded_; }
- int bound_checked_up_to() { return bound_checked_up_to_; }
- int flush_budget() { return flush_budget_; }
- QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
- bool mentions_reg(int reg);
- // Returns true if a deferred position store exists to the specified
- // register and stores the offset in the out-parameter. Otherwise
- // returns false.
- bool GetStoredPosition(int reg, int* cp_offset);
- // These set methods and AdvanceCurrentPositionInTrace should be used only on
- // new traces - the intention is that traces are immutable after creation.
- void add_action(DeferredAction* new_action) {
- DCHECK(new_action->next_ == NULL);
- new_action->next_ = actions_;
- actions_ = new_action;
- }
- void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
- void set_stop_node(RegExpNode* node) { stop_node_ = node; }
- void set_loop_label(Label* label) { loop_label_ = label; }
- void set_characters_preloaded(int count) { characters_preloaded_ = count; }
- void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
- void set_flush_budget(int to) { flush_budget_ = to; }
- void set_quick_check_performed(QuickCheckDetails* d) {
- quick_check_performed_ = *d;
- }
- void InvalidateCurrentCharacter();
- void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
-
- private:
- int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
- void PerformDeferredActions(RegExpMacroAssembler* macro,
- int max_register,
- const OutSet& affected_registers,
- OutSet* registers_to_pop,
- OutSet* registers_to_clear,
- Zone* zone);
- void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
- int max_register,
- const OutSet& registers_to_pop,
- const OutSet& registers_to_clear);
- int cp_offset_;
- DeferredAction* actions_;
- Label* backtrack_;
- RegExpNode* stop_node_;
- Label* loop_label_;
- int characters_preloaded_;
- int bound_checked_up_to_;
- QuickCheckDetails quick_check_performed_;
- int flush_budget_;
- TriBool at_start_;
-};
-
-
-class GreedyLoopState {
- public:
- explicit GreedyLoopState(bool not_at_start);
-
- Label* label() { return &label_; }
- Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
-
- private:
- Label label_;
- Trace counter_backtrack_trace_;
-};
-
-
-struct PreloadState {
- static const int kEatsAtLeastNotYetInitialized = -1;
- bool preload_is_current_;
- bool preload_has_checked_bounds_;
- int preload_characters_;
- int eats_at_least_;
- void init() {
- eats_at_least_ = kEatsAtLeastNotYetInitialized;
- }
-};
-
-
-class NodeVisitor {
- public:
- virtual ~NodeVisitor() { }
-#define DECLARE_VISIT(Type) \
- virtual void Visit##Type(Type##Node* that) = 0;
-FOR_EACH_NODE_TYPE(DECLARE_VISIT)
-#undef DECLARE_VISIT
- virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
-};
-
-
-// Node visitor used to add the start set of the alternatives to the
-// dispatch table of a choice node.
-class DispatchTableConstructor: public NodeVisitor {
- public:
- DispatchTableConstructor(DispatchTable* table, bool ignore_case,
- Zone* zone)
- : table_(table),
- choice_index_(-1),
- ignore_case_(ignore_case),
- zone_(zone) { }
-
- void BuildTable(ChoiceNode* node);
-
- void AddRange(CharacterRange range) {
- table()->AddRange(range, choice_index_, zone_);
- }
-
- void AddInverse(ZoneList<CharacterRange>* ranges);
-
-#define DECLARE_VISIT(Type) \
- virtual void Visit##Type(Type##Node* that);
-FOR_EACH_NODE_TYPE(DECLARE_VISIT)
-#undef DECLARE_VISIT
-
- DispatchTable* table() { return table_; }
- void set_choice_index(int value) { choice_index_ = value; }
-
- protected:
- DispatchTable* table_;
- int choice_index_;
- bool ignore_case_;
- Zone* zone_;
-};
-
-
-// Assertion propagation moves information about assertions such as
-// \b to the affected nodes. For instance, in /.\b./ information must
-// be propagated to the first '.' that whatever follows needs to know
-// if it matched a word or a non-word, and to the second '.' that it
-// has to check if it succeeds a word or non-word. In this case the
-// result will be something like:
-//
-// +-------+ +------------+
-// | . | | . |
-// +-------+ ---> +------------+
-// | word? | | check word |
-// +-------+ +------------+
-class Analysis: public NodeVisitor {
- public:
- Analysis(Isolate* isolate, bool ignore_case, bool is_one_byte)
- : isolate_(isolate),
- ignore_case_(ignore_case),
- is_one_byte_(is_one_byte),
- error_message_(NULL) {}
- void EnsureAnalyzed(RegExpNode* node);
-
-#define DECLARE_VISIT(Type) \
- virtual void Visit##Type(Type##Node* that);
-FOR_EACH_NODE_TYPE(DECLARE_VISIT)
-#undef DECLARE_VISIT
- virtual void VisitLoopChoice(LoopChoiceNode* that);
-
- bool has_failed() { return error_message_ != NULL; }
- const char* error_message() {
- DCHECK(error_message_ != NULL);
- return error_message_;
- }
- void fail(const char* error_message) {
- error_message_ = error_message;
- }
-
- Isolate* isolate() const { return isolate_; }
-
- private:
- Isolate* isolate_;
- bool ignore_case_;
- bool is_one_byte_;
- const char* error_message_;
-
- DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
-};
-
-
-struct RegExpCompileData {
- RegExpCompileData()
- : tree(NULL),
- node(NULL),
- simple(true),
- contains_anchor(false),
- capture_count(0) { }
- RegExpTree* tree;
- RegExpNode* node;
- bool simple;
- bool contains_anchor;
- Handle<String> error;
- int capture_count;
-};
-
-
-class RegExpEngine: public AllStatic {
- public:
- struct CompilationResult {
- CompilationResult(Isolate* isolate, const char* error_message)
- : error_message(error_message),
- code(isolate->heap()->the_hole_value()),
- num_registers(0) {}
- CompilationResult(Object* code, int registers)
- : error_message(NULL), code(code), num_registers(registers) {}
- const char* error_message;
- Object* code;
- int num_registers;
- };
-
- static CompilationResult Compile(Isolate* isolate, Zone* zone,
- RegExpCompileData* input, bool ignore_case,
- bool global, bool multiline, bool sticky,
- Handle<String> pattern,
- Handle<String> sample_subject,
- bool is_one_byte);
-
- static bool TooMuchRegExpCode(Handle<String> pattern);
-
- static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
-};
-
-
-} } // namespace v8::internal
-
-#endif // V8_JSREGEXP_H_
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#if V8_TARGET_ARCH_MIPS
-
-#include "src/code-stubs.h"
-#include "src/log.h"
-#include "src/macro-assembler.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/unicode.h"
-
-#include "src/mips/regexp-macro-assembler-mips.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-/*
- * This assembler uses the following register assignment convention
- * - t7 : Temporarily stores the index of capture start after a matching pass
- * for a global regexp.
- * - t1 : Pointer to current code object (Code*) including heap object tag.
- * - t2 : Current position in input, as negative offset from end of string.
- * Please notice that this is the byte offset, not the character offset!
- * - t3 : Currently loaded character. Must be loaded using
- * LoadCurrentCharacter before using any of the dispatch methods.
- * - t4 : Points to tip of backtrack stack
- * - t5 : Unused.
- * - t6 : End of input (points to byte after last character in input).
- * - fp : Frame pointer. Used to access arguments, local variables and
- * RegExp registers.
- * - sp : Points to tip of C stack.
- *
- * The remaining registers are free for computations.
- * Each call to a public method should retain this convention.
- *
- * The stack will have the following structure:
- *
- * - fp[64] Isolate* isolate (address of the current isolate)
- * - fp[60] direct_call (if 1, direct call from JavaScript code,
- * if 0, call through the runtime system).
- * - fp[56] stack_area_base (High end of the memory area to use as
- * backtracking stack).
- * - fp[52] capture array size (may fit multiple sets of matches)
- * - fp[48] int* capture_array (int[num_saved_registers_], for output).
- * - fp[44] secondary link/return address used by native call.
- * --- sp when called ---
- * - fp[40] return address (lr).
- * - fp[36] old frame pointer (r11).
- * - fp[0..32] backup of registers s0..s7.
- * --- frame pointer ----
- * - fp[-4] end of input (address of end of string).
- * - fp[-8] start of input (address of first character in string).
- * - fp[-12] start index (character index of start).
- * - fp[-16] void* input_string (location of a handle containing the string).
- * - fp[-20] success counter (only for global regexps to count matches).
- * - fp[-24] Offset of location before start of input (effectively character
- * position -1). Used to initialize capture registers to a
- * non-position.
- * - fp[-28] At start (if 1, we are starting at the start of the
- * string, otherwise 0)
- * - fp[-32] register 0 (Only positions must be stored in the first
- * - register 1 num_saved_registers_ registers)
- * - ...
- * - register num_registers-1
- * --- sp ---
- *
- * The first num_saved_registers_ registers are initialized to point to
- * "character -1" in the string (i.e., char_size() bytes before the first
- * character of the string). The remaining registers start out as garbage.
- *
- * The data up to the return address must be placed there by the calling
- * code and the remaining arguments are passed in registers, e.g. by calling the
- * code entry as cast to a function with the signature:
- * int (*match)(String* input_string,
- * int start_index,
- * Address start,
- * Address end,
- * Address secondary_return_address, // Only used by native call.
- * int* capture_output_array,
- * byte* stack_area_base,
- * bool direct_call = false)
- * The call is performed by NativeRegExpMacroAssembler::Execute()
- * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
- * in mips/simulator-mips.h.
- * When calling as a non-direct call (i.e., from C++ code), the return address
- * area is overwritten with the ra register by the RegExp code. When doing a
- * direct call from generated code, the return address is placed there by
- * the calling code, as in a normal exit frame.
- */
-
-#define __ ACCESS_MASM(masm_)
-
-RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
- Mode mode,
- int registers_to_save)
- : NativeRegExpMacroAssembler(isolate, zone),
- masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
- mode_(mode),
- num_registers_(registers_to_save),
- num_saved_registers_(registers_to_save),
- entry_label_(),
- start_label_(),
- success_label_(),
- backtrack_label_(),
- exit_label_(),
- internal_failure_label_() {
- DCHECK_EQ(0, registers_to_save % 2);
- __ jmp(&entry_label_); // We'll write the entry code later.
- // If the code gets too big or corrupted, an internal exception will be
- // raised, and we will exit right away.
- __ bind(&internal_failure_label_);
- __ li(v0, Operand(FAILURE));
- __ Ret();
- __ bind(&start_label_); // And then continue from here.
-}
-
-
-RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
- delete masm_;
- // Unuse labels in case we throw away the assembler without calling GetCode.
- entry_label_.Unuse();
- start_label_.Unuse();
- success_label_.Unuse();
- backtrack_label_.Unuse();
- exit_label_.Unuse();
- check_preempt_label_.Unuse();
- stack_overflow_label_.Unuse();
- internal_failure_label_.Unuse();
-}
-
-
-int RegExpMacroAssemblerMIPS::stack_limit_slack() {
- return RegExpStack::kStackLimitSlack;
-}
-
-
-void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
- if (by != 0) {
- __ Addu(current_input_offset(),
- current_input_offset(), Operand(by * char_size()));
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
- DCHECK(reg >= 0);
- DCHECK(reg < num_registers_);
- if (by != 0) {
- __ lw(a0, register_location(reg));
- __ Addu(a0, a0, Operand(by));
- __ sw(a0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::Backtrack() {
- CheckPreemption();
- // Pop Code* offset from backtrack stack, add Code* and jump to location.
- Pop(a0);
- __ Addu(a0, a0, code_pointer());
- __ Jump(a0);
-}
-
-
-void RegExpMacroAssemblerMIPS::Bind(Label* label) {
- __ bind(label);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
- BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
- BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
- Label not_at_start;
- // Did we start the match at the start of the string at all?
- __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
- BranchOrBacktrack(¬_at_start, ne, a0, Operand(zero_reg));
-
- // If we did, are we still at the start of the input?
- __ lw(a1, MemOperand(frame_pointer(), kInputStart));
- __ Addu(a0, end_of_input_address(), Operand(current_input_offset()));
- BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
- __ bind(¬_at_start);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) {
- // Did we start the match at the start of the string at all?
- __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
- BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg));
- // If we did, are we still at the start of the input?
- __ lw(a1, MemOperand(frame_pointer(), kInputStart));
- __ Addu(a0, end_of_input_address(), Operand(current_input_offset()));
- BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
- BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
- Label backtrack_non_equal;
- __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
- __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
- __ Addu(backtrack_stackpointer(),
- backtrack_stackpointer(),
- Operand(kPointerSize));
- __ bind(&backtrack_non_equal);
- BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- __ lw(a0, register_location(start_reg)); // Index of start of capture.
- __ lw(a1, register_location(start_reg + 1)); // Index of end of capture.
- __ Subu(a1, a1, a0); // Length of capture.
-
- // If length is zero, either the capture is empty or it is not participating.
- // In either case succeed immediately.
- __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
-
- __ Addu(t5, a1, current_input_offset());
- // Check that there are enough characters left in the input.
- BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
-
- if (mode_ == LATIN1) {
- Label success;
- Label fail;
- Label loop_check;
-
- // a0 - offset of start of capture.
- // a1 - length of capture.
- __ Addu(a0, a0, Operand(end_of_input_address()));
- __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
- __ Addu(a1, a0, Operand(a1));
-
- // a0 - Address of start of capture.
- // a1 - Address of end of capture.
- // a2 - Address of current input position.
-
- Label loop;
- __ bind(&loop);
- __ lbu(a3, MemOperand(a0, 0));
- __ addiu(a0, a0, char_size());
- __ lbu(t0, MemOperand(a2, 0));
- __ addiu(a2, a2, char_size());
-
- __ Branch(&loop_check, eq, t0, Operand(a3));
-
- // Mismatch, try case-insensitive match (converting letters to lower-case).
- __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
- __ Or(t0, t0, Operand(0x20)); // Also convert input character.
- __ Branch(&fail, ne, t0, Operand(a3));
- __ Subu(a3, a3, Operand('a'));
- __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
- // Latin-1: Check for values in range [224,254] but not 247.
- __ Subu(a3, a3, Operand(224 - 'a'));
- // Weren't Latin-1 letters.
- __ Branch(&fail, hi, a3, Operand(254 - 224));
- // Check for 247.
- __ Branch(&fail, eq, a3, Operand(247 - 224));
-
- __ bind(&loop_check);
- __ Branch(&loop, lt, a0, Operand(a1));
- __ jmp(&success);
-
- __ bind(&fail);
- GoTo(on_no_match);
-
- __ bind(&success);
- // Compute new value of character position after the matched part.
- __ Subu(current_input_offset(), a2, end_of_input_address());
- } else {
- DCHECK(mode_ == UC16);
- // Put regexp engine registers on stack.
- RegList regexp_registers_to_retain = current_input_offset().bit() |
- current_character().bit() | backtrack_stackpointer().bit();
- __ MultiPush(regexp_registers_to_retain);
-
- int argument_count = 4;
- __ PrepareCallCFunction(argument_count, a2);
-
- // a0 - offset of start of capture.
- // a1 - length of capture.
-
- // Put arguments into arguments registers.
- // Parameters are
- // a0: Address byte_offset1 - Address captured substring's start.
- // a1: Address byte_offset2 - Address of current character position.
- // a2: size_t byte_length - length of capture in bytes(!).
- // a3: Isolate* isolate.
-
- // Address of start of capture.
- __ Addu(a0, a0, Operand(end_of_input_address()));
- // Length of capture.
- __ mov(a2, a1);
- // Save length in callee-save register for use on return.
- __ mov(s3, a1);
- // Address of current input position.
- __ Addu(a1, current_input_offset(), Operand(end_of_input_address()));
- // Isolate.
- __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
-
- {
- AllowExternalCallThatCantCauseGC scope(masm_);
- ExternalReference function =
- ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
- __ CallCFunction(function, argument_count);
- }
-
- // Restore regexp engine registers.
- __ MultiPop(regexp_registers_to_retain);
- __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
- __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
-
- // Check if function returned non-zero for success or zero for failure.
- BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
- // On success, increment position by length of capture.
- __ Addu(current_input_offset(), current_input_offset(), Operand(s3));
- }
-
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotBackReference(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- Label success;
-
- // Find length of back-referenced capture.
- __ lw(a0, register_location(start_reg));
- __ lw(a1, register_location(start_reg + 1));
- __ Subu(a1, a1, a0); // Length to check.
- // Succeed on empty capture (including no capture).
- __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
-
- __ Addu(t5, a1, current_input_offset());
- // Check that there are enough characters left in the input.
- BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
-
- // Compute pointers to match string and capture string.
- __ Addu(a0, a0, Operand(end_of_input_address()));
- __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
- __ Addu(a1, a1, Operand(a0));
-
- Label loop;
- __ bind(&loop);
- if (mode_ == LATIN1) {
- __ lbu(a3, MemOperand(a0, 0));
- __ addiu(a0, a0, char_size());
- __ lbu(t0, MemOperand(a2, 0));
- __ addiu(a2, a2, char_size());
- } else {
- DCHECK(mode_ == UC16);
- __ lhu(a3, MemOperand(a0, 0));
- __ addiu(a0, a0, char_size());
- __ lhu(t0, MemOperand(a2, 0));
- __ addiu(a2, a2, char_size());
- }
- BranchOrBacktrack(on_no_match, ne, a3, Operand(t0));
- __ Branch(&loop, lt, a0, Operand(a1));
-
- // Move current character position to position after match.
- __ Subu(current_input_offset(), a2, end_of_input_address());
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
- Label* on_not_equal) {
- BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal) {
- __ And(a0, current_character(), Operand(mask));
- Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
- BranchOrBacktrack(on_equal, eq, a0, rhs);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal) {
- __ And(a0, current_character(), Operand(mask));
- Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
- BranchOrBacktrack(on_not_equal, ne, a0, rhs);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- DCHECK(minus < String::kMaxUtf16CodeUnit);
- __ Subu(a0, current_character(), Operand(minus));
- __ And(a0, a0, Operand(mask));
- BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- __ Subu(a0, current_character(), Operand(from));
- // Unsigned lower-or-same condition.
- BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- __ Subu(a0, current_character(), Operand(from));
- // Unsigned higher condition.
- BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckBitInTable(
- Handle<ByteArray> table,
- Label* on_bit_set) {
- __ li(a0, Operand(table));
- if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
- __ And(a1, current_character(), Operand(kTableSize - 1));
- __ Addu(a0, a0, a1);
- } else {
- __ Addu(a0, a0, current_character());
- }
-
- __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
- BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
-}
-
-
-bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- // Range checks (c in min..max) are generally implemented by an unsigned
- // (c - min) <= (max - min) check.
- switch (type) {
- case 's':
- // Match space-characters.
- if (mode_ == LATIN1) {
- // One byte space characters are '\t'..'\r', ' ' and \u00a0.
- Label success;
- __ Branch(&success, eq, current_character(), Operand(' '));
- // Check range 0x09..0x0d.
- __ Subu(a0, current_character(), Operand('\t'));
- __ Branch(&success, ls, a0, Operand('\r' - '\t'));
- // \u00a0 (NBSP).
- BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
- __ bind(&success);
- return true;
- }
- return false;
- case 'S':
- // The emitted code for generic character classes is good enough.
- return false;
- case 'd':
- // Match Latin1 digits ('0'..'9').
- __ Subu(a0, current_character(), Operand('0'));
- BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
- return true;
- case 'D':
- // Match non Latin1-digits.
- __ Subu(a0, current_character(), Operand('0'));
- BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
- return true;
- case '.': {
- // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
- __ Xor(a0, current_character(), Operand(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
- __ Subu(a0, a0, Operand(0x0b));
- BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
- if (mode_ == UC16) {
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ Subu(a0, a0, Operand(0x2028 - 0x0b));
- BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
- }
- return true;
- }
- case 'n': {
- // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
- __ Xor(a0, current_character(), Operand(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
- __ Subu(a0, a0, Operand(0x0b));
- if (mode_ == LATIN1) {
- BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
- } else {
- Label done;
- BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ Subu(a0, a0, Operand(0x2028 - 0x0b));
- BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
- __ bind(&done);
- }
- return true;
- }
- case 'w': {
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ li(a0, Operand(map));
- __ Addu(a0, a0, current_character());
- __ lbu(a0, MemOperand(a0, 0));
- BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
- return true;
- }
- case 'W': {
- Label done;
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ Branch(&done, hi, current_character(), Operand('z'));
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ li(a0, Operand(map));
- __ Addu(a0, a0, current_character());
- __ lbu(a0, MemOperand(a0, 0));
- BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
- if (mode_ != LATIN1) {
- __ bind(&done);
- }
- return true;
- }
- case '*':
- // Match any character.
- return true;
- // No custom implementation (yet): s(UC16), S(UC16).
- default:
- return false;
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::Fail() {
- __ li(v0, Operand(FAILURE));
- __ jmp(&exit_label_);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
- Label return_v0;
- if (masm_->has_exception()) {
- // If the code gets corrupted due to long regular expressions and lack of
- // space on trampolines, an internal exception flag is set. If this case
- // is detected, we will jump into exit sequence right away.
- __ bind_to(&entry_label_, internal_failure_label_.pos());
- } else {
- // Finalize code - write the entry point code now we know how many
- // registers we need.
-
- // Entry code:
- __ bind(&entry_label_);
-
- // Tell the system that we have a stack frame. Because the type is MANUAL,
- // no is generated.
- FrameScope scope(masm_, StackFrame::MANUAL);
-
- // Actually emit code to start a new stack frame.
- // Push arguments
- // Save callee-save registers.
- // Start new stack frame.
- // Store link register in existing stack-cell.
- // Order here should correspond to order of offset constants in header file.
- RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
- s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
- RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
- __ MultiPush(argument_registers | registers_to_retain | ra.bit());
- // Set frame pointer in space for it if this is not a direct call
- // from generated code.
- __ Addu(frame_pointer(), sp, Operand(4 * kPointerSize));
- __ mov(a0, zero_reg);
- __ push(a0); // Make room for success counter and initialize it to 0.
- __ push(a0); // Make room for "position - 1" constant (value irrelevant).
-
- // Check if we have space on the stack for registers.
- Label stack_limit_hit;
- Label stack_ok;
-
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(masm_->isolate());
- __ li(a0, Operand(stack_limit));
- __ lw(a0, MemOperand(a0));
- __ Subu(a0, sp, a0);
- // Handle it if the stack pointer is already below the stack limit.
- __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
- // Check if there is room for the variable number of registers above
- // the stack limit.
- __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
- // Exit with OutOfMemory exception. There is not enough space on the stack
- // for our working registers.
- __ li(v0, Operand(EXCEPTION));
- __ jmp(&return_v0);
-
- __ bind(&stack_limit_hit);
- CallCheckStackGuardState(a0);
- // If returned value is non-zero, we exit with the returned value as result.
- __ Branch(&return_v0, ne, v0, Operand(zero_reg));
-
- __ bind(&stack_ok);
- // Allocate space on stack for registers.
- __ Subu(sp, sp, Operand(num_registers_ * kPointerSize));
- // Load string end.
- __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- // Load input start.
- __ lw(a0, MemOperand(frame_pointer(), kInputStart));
- // Find negative length (offset of start relative to end).
- __ Subu(current_input_offset(), a0, end_of_input_address());
- // Set a0 to address of char before start of the input string
- // (effectively string position -1).
- __ lw(a1, MemOperand(frame_pointer(), kStartIndex));
- __ Subu(a0, current_input_offset(), Operand(char_size()));
- __ sll(t5, a1, (mode_ == UC16) ? 1 : 0);
- __ Subu(a0, a0, t5);
- // Store this value in a local variable, for use when clearing
- // position registers.
- __ sw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
-
- // Initialize code pointer register
- __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
-
- Label load_char_start_regexp, start_regexp;
- // Load newline if index is at start, previous character otherwise.
- __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
- __ li(current_character(), Operand('\n'));
- __ jmp(&start_regexp);
-
- // Global regexp restarts matching here.
- __ bind(&load_char_start_regexp);
- // Load previous char as initial value of current character register.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&start_regexp);
-
- // Initialize on-stack registers.
- if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
- // Fill saved registers with initial value = start offset - 1.
- if (num_saved_registers_ > 8) {
- // Address of register 0.
- __ Addu(a1, frame_pointer(), Operand(kRegisterZero));
- __ li(a2, Operand(num_saved_registers_));
- Label init_loop;
- __ bind(&init_loop);
- __ sw(a0, MemOperand(a1));
- __ Addu(a1, a1, Operand(-kPointerSize));
- __ Subu(a2, a2, Operand(1));
- __ Branch(&init_loop, ne, a2, Operand(zero_reg));
- } else {
- for (int i = 0; i < num_saved_registers_; i++) {
- __ sw(a0, register_location(i));
- }
- }
- }
-
- // Initialize backtrack stack pointer.
- __ lw(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
-
- __ jmp(&start_label_);
-
-
- // Exit code:
- if (success_label_.is_linked()) {
- // Save captures when successful.
- __ bind(&success_label_);
- if (num_saved_registers_ > 0) {
- // Copy captures to output.
- __ lw(a1, MemOperand(frame_pointer(), kInputStart));
- __ lw(a0, MemOperand(frame_pointer(), kRegisterOutput));
- __ lw(a2, MemOperand(frame_pointer(), kStartIndex));
- __ Subu(a1, end_of_input_address(), a1);
- // a1 is length of input in bytes.
- if (mode_ == UC16) {
- __ srl(a1, a1, 1);
- }
- // a1 is length of input in characters.
- __ Addu(a1, a1, Operand(a2));
- // a1 is length of string in characters.
-
- DCHECK_EQ(0, num_saved_registers_ % 2);
- // Always an even number of capture registers. This allows us to
- // unroll the loop once to add an operation between a load of a register
- // and the following use of that register.
- for (int i = 0; i < num_saved_registers_; i += 2) {
- __ lw(a2, register_location(i));
- __ lw(a3, register_location(i + 1));
- if (i == 0 && global_with_zero_length_check()) {
- // Keep capture start in a4 for the zero-length check later.
- __ mov(t7, a2);
- }
- if (mode_ == UC16) {
- __ sra(a2, a2, 1);
- __ Addu(a2, a2, a1);
- __ sra(a3, a3, 1);
- __ Addu(a3, a3, a1);
- } else {
- __ Addu(a2, a1, Operand(a2));
- __ Addu(a3, a1, Operand(a3));
- }
- __ sw(a2, MemOperand(a0));
- __ Addu(a0, a0, kPointerSize);
- __ sw(a3, MemOperand(a0));
- __ Addu(a0, a0, kPointerSize);
- }
- }
-
- if (global()) {
- // Restart matching if the regular expression is flagged as global.
- __ lw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
- __ lw(a2, MemOperand(frame_pointer(), kRegisterOutput));
- // Increment success counter.
- __ Addu(a0, a0, 1);
- __ sw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- // Capture results have been stored, so the number of remaining global
- // output registers is reduced by the number of stored captures.
- __ Subu(a1, a1, num_saved_registers_);
- // Check whether we have enough room for another set of capture results.
- __ mov(v0, a0);
- __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
-
- __ sw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
- // Advance the location for output.
- __ Addu(a2, a2, num_saved_registers_ * kPointerSize);
- __ sw(a2, MemOperand(frame_pointer(), kRegisterOutput));
-
- // Prepare a0 to initialize registers with its value in the next run.
- __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
-
- if (global_with_zero_length_check()) {
- // Special case for zero-length matches.
- // t7: capture start index
- // Not a zero-length match, restart.
- __ Branch(
- &load_char_start_regexp, ne, current_input_offset(), Operand(t7));
- // Offset from the end is zero if we already reached the end.
- __ Branch(&exit_label_, eq, current_input_offset(),
- Operand(zero_reg));
- // Advance current position after a zero-length match.
- __ Addu(current_input_offset(),
- current_input_offset(),
- Operand((mode_ == UC16) ? 2 : 1));
- }
-
- __ Branch(&load_char_start_regexp);
- } else {
- __ li(v0, Operand(SUCCESS));
- }
- }
- // Exit and return v0.
- __ bind(&exit_label_);
- if (global()) {
- __ lw(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- }
-
- __ bind(&return_v0);
- // Skip sp past regexp registers and local variables..
- __ mov(sp, frame_pointer());
- // Restore registers s0..s7 and return (restoring ra to pc).
- __ MultiPop(registers_to_retain | ra.bit());
- __ Ret();
-
- // Backtrack code (branch target for conditional backtracks).
- if (backtrack_label_.is_linked()) {
- __ bind(&backtrack_label_);
- Backtrack();
- }
-
- Label exit_with_exception;
-
- // Preempt-code.
- if (check_preempt_label_.is_linked()) {
- SafeCallTarget(&check_preempt_label_);
- // Put regexp engine registers on stack.
- RegList regexp_registers_to_retain = current_input_offset().bit() |
- current_character().bit() | backtrack_stackpointer().bit();
- __ MultiPush(regexp_registers_to_retain);
- CallCheckStackGuardState(a0);
- __ MultiPop(regexp_registers_to_retain);
- // If returning non-zero, we should end execution with the given
- // result as return value.
- __ Branch(&return_v0, ne, v0, Operand(zero_reg));
-
- // String might have moved: Reload end of string from frame.
- __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
- SafeReturn();
- }
-
- // Backtrack stack overflow code.
- if (stack_overflow_label_.is_linked()) {
- SafeCallTarget(&stack_overflow_label_);
- // Reached if the backtrack-stack limit has been hit.
- // Put regexp engine registers on stack first.
- RegList regexp_registers = current_input_offset().bit() |
- current_character().bit();
- __ MultiPush(regexp_registers);
- Label grow_failed;
- // Call GrowStack(backtrack_stackpointer(), &stack_base)
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments, a0);
- __ mov(a0, backtrack_stackpointer());
- __ Addu(a1, frame_pointer(), Operand(kStackHighEnd));
- __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
- ExternalReference grow_stack =
- ExternalReference::re_grow_stack(masm_->isolate());
- __ CallCFunction(grow_stack, num_arguments);
- // Restore regexp registers.
- __ MultiPop(regexp_registers);
- // If return NULL, we have failed to grow the stack, and
- // must exit with a stack-overflow exception.
- __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
- // Otherwise use return value as new stack pointer.
- __ mov(backtrack_stackpointer(), v0);
- // Restore saved registers and continue.
- __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
- __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- SafeReturn();
- }
-
- if (exit_with_exception.is_linked()) {
- // If any of the code above needed to exit with an exception.
- __ bind(&exit_with_exception);
- // Exit with Result EXCEPTION(-1) to signal thrown exception.
- __ li(v0, Operand(EXCEPTION));
- __ jmp(&return_v0);
- }
- }
-
- CodeDesc code_desc;
- masm_->GetCode(&code_desc);
- Handle<Code> code = isolate()->factory()->NewCode(
- code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
- LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
- return Handle<HeapObject>::cast(code);
-}
-
-
-void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ jmp(to);
- return;
-}
-
-
-void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
- int comparand,
- Label* if_ge) {
- __ lw(a0, register_location(reg));
- BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
-}
-
-
-void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
- int comparand,
- Label* if_lt) {
- __ lw(a0, register_location(reg));
- BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
-}
-
-
-void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
- Label* if_eq) {
- __ lw(a0, register_location(reg));
- BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
-}
-
-
-RegExpMacroAssembler::IrregexpImplementation
- RegExpMacroAssemblerMIPS::Implementation() {
- return kMIPSImplementation;
-}
-
-
-void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
- DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
- if (check_bounds) {
- CheckPosition(cp_offset + characters - 1, on_end_of_input);
- }
- LoadCurrentCharacterUnchecked(cp_offset, characters);
-}
-
-
-void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
- Pop(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
- Pop(a0);
- __ sw(a0, register_location(register_index));
-}
-
-
-void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
- if (label->is_bound()) {
- int target = label->pos();
- __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
- } else {
- Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
- Label after_constant;
- __ Branch(&after_constant);
- int offset = masm_->pc_offset();
- int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
- __ emit(0);
- masm_->label_at_put(label, offset);
- __ bind(&after_constant);
- if (is_int16(cp_offset)) {
- __ lw(a0, MemOperand(code_pointer(), cp_offset));
- } else {
- __ Addu(a0, code_pointer(), cp_offset);
- __ lw(a0, MemOperand(a0, 0));
- }
- }
- Push(a0);
- CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
- Push(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
- StackCheckFlag check_stack_limit) {
- __ lw(a0, register_location(register_index));
- Push(a0);
- if (check_stack_limit) CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
- __ lw(current_input_offset(), register_location(reg));
-}
-
-
-void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
- __ lw(backtrack_stackpointer(), register_location(reg));
- __ lw(a0, MemOperand(frame_pointer(), kStackHighEnd));
- __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
-}
-
-
-void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
- Label after_position;
- __ Branch(&after_position,
- ge,
- current_input_offset(),
- Operand(-by * char_size()));
- __ li(current_input_offset(), -by * char_size());
- // On RegExp code entry (where this operation is used), the character before
- // the current position is expected to be already loaded.
- // We have advanced the position, so it's safe to read backwards.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&after_position);
-}
-
-
-void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
- DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
- __ li(a0, Operand(to));
- __ sw(a0, register_location(register_index));
-}
-
-
-bool RegExpMacroAssemblerMIPS::Succeed() {
- __ jmp(&success_label_);
- return global();
-}
-
-
-void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- if (cp_offset == 0) {
- __ sw(current_input_offset(), register_location(reg));
- } else {
- __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size()));
- __ sw(a0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
- for (int reg = reg_from; reg <= reg_to; reg++) {
- __ sw(a0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
- __ lw(a1, MemOperand(frame_pointer(), kStackHighEnd));
- __ Subu(a0, backtrack_stackpointer(), a1);
- __ sw(a0, register_location(reg));
-}
-
-
-bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
- return false;
-}
-
-
-// Private methods:
-
-void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
- int stack_alignment = base::OS::ActivationFrameAlignment();
-
- // Align the stack pointer and save the original sp value on the stack.
- __ mov(scratch, sp);
- __ Subu(sp, sp, Operand(kPointerSize));
- DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
- __ And(sp, sp, Operand(-stack_alignment));
- __ sw(scratch, MemOperand(sp));
-
- __ mov(a2, frame_pointer());
- // Code* of self.
- __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
-
- // We need to make room for the return address on the stack.
- DCHECK(IsAligned(stack_alignment, kPointerSize));
- __ Subu(sp, sp, Operand(stack_alignment));
-
- // Stack pointer now points to cell where return address is to be written.
- // Arguments are in registers, meaning we teat the return address as
- // argument 5. Since DirectCEntryStub will handleallocating space for the C
- // argument slots, we don't need to care about that here. This is how the
- // stack will look (sp meaning the value of sp at this moment):
- // [sp + 3] - empty slot if needed for alignment.
- // [sp + 2] - saved sp.
- // [sp + 1] - second word reserved for return value.
- // [sp + 0] - first word reserved for return value.
-
- // a0 will point to the return address, placed by DirectCEntry.
- __ mov(a0, sp);
-
- ExternalReference stack_guard_check =
- ExternalReference::re_check_stack_guard_state(masm_->isolate());
- __ li(t9, Operand(stack_guard_check));
- DirectCEntryStub stub(isolate());
- stub.GenerateCall(masm_, t9);
-
- // DirectCEntryStub allocated space for the C argument slots so we have to
- // drop them with the return address from the stack with loading saved sp.
- // At this point stack must look:
- // [sp + 7] - empty slot if needed for alignment.
- // [sp + 6] - saved sp.
- // [sp + 5] - second word reserved for return value.
- // [sp + 4] - first word reserved for return value.
- // [sp + 3] - C argument slot.
- // [sp + 2] - C argument slot.
- // [sp + 1] - C argument slot.
- // [sp + 0] - C argument slot.
- __ lw(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
-
- __ li(code_pointer(), Operand(masm_->CodeObject()));
-}
-
-
-// Helper function for reading a value out of a stack frame.
-template <typename T>
-static T& frame_entry(Address re_frame, int frame_offset) {
- return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
-}
-
-
-template <typename T>
-static T* frame_entry_address(Address re_frame, int frame_offset) {
- return reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame) {
- return NativeRegExpMacroAssembler::CheckStackGuardState(
- frame_entry<Isolate*>(re_frame, kIsolate),
- frame_entry<int>(re_frame, kStartIndex),
- frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
- frame_entry_address<String*>(re_frame, kInputString),
- frame_entry_address<const byte*>(re_frame, kInputStart),
- frame_entry_address<const byte*>(re_frame, kInputEnd));
-}
-
-
-MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
- DCHECK(register_index < (1<<30));
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- return MemOperand(frame_pointer(),
- kRegisterZero - register_index * kPointerSize);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
- Label* on_outside_input) {
- BranchOrBacktrack(on_outside_input,
- ge,
- current_input_offset(),
- Operand(-cp_offset * char_size()));
-}
-
-
-void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
- Condition condition,
- Register rs,
- const Operand& rt) {
- if (condition == al) { // Unconditional.
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ jmp(to);
- return;
- }
- if (to == NULL) {
- __ Branch(&backtrack_label_, condition, rs, rt);
- return;
- }
- __ Branch(to, condition, rs, rt);
-}
-
-
-void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
- Condition cond,
- Register rs,
- const Operand& rt) {
- __ BranchAndLink(to, cond, rs, rt);
-}
-
-
-void RegExpMacroAssemblerMIPS::SafeReturn() {
- __ pop(ra);
- __ Addu(t5, ra, Operand(masm_->CodeObject()));
- __ Jump(t5);
-}
-
-
-void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
- __ bind(name);
- __ Subu(ra, ra, Operand(masm_->CodeObject()));
- __ push(ra);
-}
-
-
-void RegExpMacroAssemblerMIPS::Push(Register source) {
- DCHECK(!source.is(backtrack_stackpointer()));
- __ Addu(backtrack_stackpointer(),
- backtrack_stackpointer(),
- Operand(-kPointerSize));
- __ sw(source, MemOperand(backtrack_stackpointer()));
-}
-
-
-void RegExpMacroAssemblerMIPS::Pop(Register target) {
- DCHECK(!target.is(backtrack_stackpointer()));
- __ lw(target, MemOperand(backtrack_stackpointer()));
- __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), kPointerSize);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckPreemption() {
- // Check for preemption.
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(masm_->isolate());
- __ li(a0, Operand(stack_limit));
- __ lw(a0, MemOperand(a0));
- SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckStackLimit() {
- ExternalReference stack_limit =
- ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
-
- __ li(a0, Operand(stack_limit));
- __ lw(a0, MemOperand(a0));
- SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
-}
-
-
-void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
- int characters) {
- Register offset = current_input_offset();
- if (cp_offset != 0) {
- // t7 is not being used to store the capture start index at this point.
- __ Addu(t7, current_input_offset(), Operand(cp_offset * char_size()));
- offset = t7;
- }
- // We assume that we cannot do unaligned loads on MIPS, so this function
- // must only be used to load a single character at a time.
- DCHECK(characters == 1);
- __ Addu(t5, end_of_input_address(), Operand(offset));
- if (mode_ == LATIN1) {
- __ lbu(current_character(), MemOperand(t5, 0));
- } else {
- DCHECK(mode_ == UC16);
- __ lhu(current_character(), MemOperand(t5, 0));
- }
-}
-
-
-#undef __
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
-
-#endif // V8_TARGET_ARCH_MIPS
+++ /dev/null
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
-#define V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
-
-#include "src/macro-assembler.h"
-#include "src/mips/assembler-mips.h"
-#include "src/mips/macro-assembler-mips.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-class RegExpMacroAssemblerMIPS: public NativeRegExpMacroAssembler {
- public:
- RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, Mode mode,
- int registers_to_save);
- virtual ~RegExpMacroAssemblerMIPS();
- virtual int stack_limit_slack();
- virtual void AdvanceCurrentPosition(int by);
- virtual void AdvanceRegister(int reg, int by);
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(uint32_t c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- // A "greedy loop" is a loop that is both greedy and with a simple
- // body. It has a particularly simple implementation.
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
-
- // Checks whether the given offset from the current position is before
- // the end of the string.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input);
- virtual bool CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
- virtual bool CanReadUnaligned();
-
- // Called from RegExp if the stack-guard is triggered.
- // If the code object is relocated, the return address is fixed before
- // returning.
- static int CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame);
-
- private:
- // Offsets from frame_pointer() of function parameters and stored registers.
- static const int kFramePointer = 0;
-
- // Above the frame pointer - Stored registers and stack passed parameters.
- // Registers s0 to s7, fp, and ra.
- static const int kStoredRegisters = kFramePointer;
- // Return address (stored from link register, read into pc on return).
- static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
- static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
- // Stack frame header.
- static const int kStackFrameHeader = kReturnAddress + kPointerSize;
- // Stack parameters placed by caller.
- static const int kRegisterOutput = kStackFrameHeader + 20;
- static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
- static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
- static const int kDirectCall = kStackHighEnd + kPointerSize;
- static const int kIsolate = kDirectCall + kPointerSize;
-
- // Below the frame pointer.
- // Register parameters stored by setup code.
- static const int kInputEnd = kFramePointer - kPointerSize;
- static const int kInputStart = kInputEnd - kPointerSize;
- static const int kStartIndex = kInputStart - kPointerSize;
- static const int kInputString = kStartIndex - kPointerSize;
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kSuccessfulCaptures = kInputString - kPointerSize;
- static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
- // First register address. Following registers are below it on the stack.
- static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
-
- // Initial size of code buffer.
- static const size_t kRegExpCodeSize = 1024;
-
- // Load a number of characters at the given offset from the
- // current position, into the current-character register.
- void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
-
- // Check whether preemption has been requested.
- void CheckPreemption();
-
- // Check whether we are exceeding the stack limit on the backtrack stack.
- void CheckStackLimit();
-
-
- // Generate a call to CheckStackGuardState.
- void CallCheckStackGuardState(Register scratch);
-
- // The ebp-relative location of a regexp register.
- MemOperand register_location(int register_index);
-
- // Register holding the current input position as negative offset from
- // the end of the string.
- inline Register current_input_offset() { return t2; }
-
- // The register containing the current character after LoadCurrentCharacter.
- inline Register current_character() { return t3; }
-
- // Register holding address of the end of the input string.
- inline Register end_of_input_address() { return t6; }
-
- // Register holding the frame address. Local variables, parameters and
- // regexp registers are addressed relative to this.
- inline Register frame_pointer() { return fp; }
-
- // The register containing the backtrack stack top. Provides a meaningful
- // name to the register.
- inline Register backtrack_stackpointer() { return t4; }
-
- // Register holding pointer to the current code object.
- inline Register code_pointer() { return t1; }
-
- // Byte size of chars in the string to match (decided by the Mode argument).
- inline int char_size() { return static_cast<int>(mode_); }
-
- // Equivalent to a conditional branch to the label, unless the label
- // is NULL, in which case it is a conditional Backtrack.
- void BranchOrBacktrack(Label* to,
- Condition condition,
- Register rs,
- const Operand& rt);
-
- // Call and return internally in the generated code in a way that
- // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
- inline void SafeCall(Label* to,
- Condition cond,
- Register rs,
- const Operand& rt);
- inline void SafeReturn();
- inline void SafeCallTarget(Label* name);
-
- // Pushes the value of a register on the backtrack stack. Decrements the
- // stack pointer by a word size and stores the register's value there.
- inline void Push(Register source);
-
- // Pops a value from the backtrack stack. Reads the word at the stack pointer
- // and increments it by a word size.
- inline void Pop(Register target);
-
- Isolate* isolate() const { return masm_->isolate(); }
-
- MacroAssembler* masm_;
-
- // Which mode to generate code for (Latin1 or UC16).
- Mode mode_;
-
- // One greater than maximal register index actually used.
- int num_registers_;
-
- // Number of registers to output at the end (the saved registers
- // are always 0..num_saved_registers_-1).
- int num_saved_registers_;
-
- // Labels used internally.
- Label entry_label_;
- Label start_label_;
- Label success_label_;
- Label backtrack_label_;
- Label exit_label_;
- Label check_preempt_label_;
- Label stack_overflow_label_;
- Label internal_failure_label_;
-};
-
-#endif // V8_INTERPRETED_REGEXP
-
-
-}} // namespace v8::internal
-
-#endif // V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#if V8_TARGET_ARCH_MIPS64
-
-#include "src/code-stubs.h"
-#include "src/log.h"
-#include "src/macro-assembler.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/unicode.h"
-
-#include "src/mips64/regexp-macro-assembler-mips64.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-/*
- * This assembler uses the following register assignment convention
- * - t3 : Temporarily stores the index of capture start after a matching pass
- * for a global regexp.
- * - a5 : Pointer to current code object (Code*) including heap object tag.
- * - a6 : Current position in input, as negative offset from end of string.
- * Please notice that this is the byte offset, not the character offset!
- * - a7 : Currently loaded character. Must be loaded using
- * LoadCurrentCharacter before using any of the dispatch methods.
- * - t0 : Points to tip of backtrack stack
- * - t1 : Unused.
- * - t2 : End of input (points to byte after last character in input).
- * - fp : Frame pointer. Used to access arguments, local variables and
- * RegExp registers.
- * - sp : Points to tip of C stack.
- *
- * The remaining registers are free for computations.
- * Each call to a public method should retain this convention.
- *
- * TODO(plind): O32 documented here with intent of having single 32/64 codebase
- * in the future.
- *
- * The O32 stack will have the following structure:
- *
- * - fp[76] Isolate* isolate (address of the current isolate)
- * - fp[72] direct_call (if 1, direct call from JavaScript code,
- * if 0, call through the runtime system).
- * - fp[68] stack_area_base (High end of the memory area to use as
- * backtracking stack).
- * - fp[64] capture array size (may fit multiple sets of matches)
- * - fp[60] int* capture_array (int[num_saved_registers_], for output).
- * - fp[44..59] MIPS O32 four argument slots
- * - fp[40] secondary link/return address used by native call.
- * --- sp when called ---
- * - fp[36] return address (lr).
- * - fp[32] old frame pointer (r11).
- * - fp[0..31] backup of registers s0..s7.
- * --- frame pointer ----
- * - fp[-4] end of input (address of end of string).
- * - fp[-8] start of input (address of first character in string).
- * - fp[-12] start index (character index of start).
- * - fp[-16] void* input_string (location of a handle containing the string).
- * - fp[-20] success counter (only for global regexps to count matches).
- * - fp[-24] Offset of location before start of input (effectively character
- * position -1). Used to initialize capture registers to a
- * non-position.
- * - fp[-28] At start (if 1, we are starting at the start of the
- * string, otherwise 0)
- * - fp[-32] register 0 (Only positions must be stored in the first
- * - register 1 num_saved_registers_ registers)
- * - ...
- * - register num_registers-1
- * --- sp ---
- *
- *
- * The N64 stack will have the following structure:
- *
- * - fp[88] Isolate* isolate (address of the current isolate) kIsolate
- * - fp[80] secondary link/return address used by exit frame on native call. kSecondaryReturnAddress
- kStackFrameHeader
- * --- sp when called ---
- * - fp[72] ra Return from RegExp code (ra). kReturnAddress
- * - fp[64] s9, old-fp Old fp, callee saved(s9).
- * - fp[0..63] s0..s7 Callee-saved registers s0..s7.
- * --- frame pointer ----
- * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall
- * - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd
- * - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters
- * - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput
- * - fp[-40] end of input (address of end of string). kInputEnd
- * - fp[-48] start of input (address of first character in string). kInputStart
- * - fp[-56] start index (character index of start). kStartIndex
- * - fp[-64] void* input_string (location of a handle containing the string). kInputString
- * - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures
- * - fp[-80] Offset of location before start of input (effectively character kInputStartMinusOne
- * position -1). Used to initialize capture registers to a
- * non-position.
- * --------- The following output registers are 32-bit values. ---------
- * - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero
- * - register 1 num_saved_registers_ registers)
- * - ...
- * - register num_registers-1
- * --- sp ---
- *
- * The first num_saved_registers_ registers are initialized to point to
- * "character -1" in the string (i.e., char_size() bytes before the first
- * character of the string). The remaining registers start out as garbage.
- *
- * The data up to the return address must be placed there by the calling
- * code and the remaining arguments are passed in registers, e.g. by calling the
- * code entry as cast to a function with the signature:
- * int (*match)(String* input_string,
- * int start_index,
- * Address start,
- * Address end,
- * Address secondary_return_address, // Only used by native call.
- * int* capture_output_array,
- * byte* stack_area_base,
- * bool direct_call = false,
- * void* return_address,
- * Isolate* isolate);
- * The call is performed by NativeRegExpMacroAssembler::Execute()
- * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
- * in mips/simulator-mips.h.
- * When calling as a non-direct call (i.e., from C++ code), the return address
- * area is overwritten with the ra register by the RegExp code. When doing a
- * direct call from generated code, the return address is placed there by
- * the calling code, as in a normal exit frame.
- */
-
-#define __ ACCESS_MASM(masm_)
-
-RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
- Mode mode,
- int registers_to_save)
- : NativeRegExpMacroAssembler(isolate, zone),
- masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
- mode_(mode),
- num_registers_(registers_to_save),
- num_saved_registers_(registers_to_save),
- entry_label_(),
- start_label_(),
- success_label_(),
- backtrack_label_(),
- exit_label_(),
- internal_failure_label_() {
- DCHECK_EQ(0, registers_to_save % 2);
- __ jmp(&entry_label_); // We'll write the entry code later.
- // If the code gets too big or corrupted, an internal exception will be
- // raised, and we will exit right away.
- __ bind(&internal_failure_label_);
- __ li(v0, Operand(FAILURE));
- __ Ret();
- __ bind(&start_label_); // And then continue from here.
-}
-
-
-RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
- delete masm_;
- // Unuse labels in case we throw away the assembler without calling GetCode.
- entry_label_.Unuse();
- start_label_.Unuse();
- success_label_.Unuse();
- backtrack_label_.Unuse();
- exit_label_.Unuse();
- check_preempt_label_.Unuse();
- stack_overflow_label_.Unuse();
- internal_failure_label_.Unuse();
-}
-
-
-int RegExpMacroAssemblerMIPS::stack_limit_slack() {
- return RegExpStack::kStackLimitSlack;
-}
-
-
-void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
- if (by != 0) {
- __ Daddu(current_input_offset(),
- current_input_offset(), Operand(by * char_size()));
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
- DCHECK(reg >= 0);
- DCHECK(reg < num_registers_);
- if (by != 0) {
- __ ld(a0, register_location(reg));
- __ Daddu(a0, a0, Operand(by));
- __ sd(a0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::Backtrack() {
- CheckPreemption();
- // Pop Code* offset from backtrack stack, add Code* and jump to location.
- Pop(a0);
- __ Daddu(a0, a0, code_pointer());
- __ Jump(a0);
-}
-
-
-void RegExpMacroAssemblerMIPS::Bind(Label* label) {
- __ bind(label);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
- BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
- BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
- Label not_at_start;
- // Did we start the match at the start of the string at all?
- __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
- BranchOrBacktrack(¬_at_start, ne, a0, Operand(zero_reg));
-
- // If we did, are we still at the start of the input?
- __ ld(a1, MemOperand(frame_pointer(), kInputStart));
- __ Daddu(a0, end_of_input_address(), Operand(current_input_offset()));
- BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
- __ bind(¬_at_start);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) {
- // Did we start the match at the start of the string at all?
- __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
- BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg));
- // If we did, are we still at the start of the input?
- __ ld(a1, MemOperand(frame_pointer(), kInputStart));
- __ Daddu(a0, end_of_input_address(), Operand(current_input_offset()));
- BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
- BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
- Label backtrack_non_equal;
- __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
- __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
- __ Daddu(backtrack_stackpointer(),
- backtrack_stackpointer(),
- Operand(kIntSize));
- __ bind(&backtrack_non_equal);
- BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- __ ld(a0, register_location(start_reg)); // Index of start of capture.
- __ ld(a1, register_location(start_reg + 1)); // Index of end of capture.
- __ Dsubu(a1, a1, a0); // Length of capture.
-
- // If length is zero, either the capture is empty or it is not participating.
- // In either case succeed immediately.
- __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
-
- __ Daddu(t1, a1, current_input_offset());
- // Check that there are enough characters left in the input.
- BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
-
- if (mode_ == LATIN1) {
- Label success;
- Label fail;
- Label loop_check;
-
- // a0 - offset of start of capture.
- // a1 - length of capture.
- __ Daddu(a0, a0, Operand(end_of_input_address()));
- __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
- __ Daddu(a1, a0, Operand(a1));
-
- // a0 - Address of start of capture.
- // a1 - Address of end of capture.
- // a2 - Address of current input position.
-
- Label loop;
- __ bind(&loop);
- __ lbu(a3, MemOperand(a0, 0));
- __ daddiu(a0, a0, char_size());
- __ lbu(a4, MemOperand(a2, 0));
- __ daddiu(a2, a2, char_size());
-
- __ Branch(&loop_check, eq, a4, Operand(a3));
-
- // Mismatch, try case-insensitive match (converting letters to lower-case).
- __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
- __ Or(a4, a4, Operand(0x20)); // Also convert input character.
- __ Branch(&fail, ne, a4, Operand(a3));
- __ Dsubu(a3, a3, Operand('a'));
- __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
- // Latin-1: Check for values in range [224,254] but not 247.
- __ Dsubu(a3, a3, Operand(224 - 'a'));
- // Weren't Latin-1 letters.
- __ Branch(&fail, hi, a3, Operand(254 - 224));
- // Check for 247.
- __ Branch(&fail, eq, a3, Operand(247 - 224));
-
- __ bind(&loop_check);
- __ Branch(&loop, lt, a0, Operand(a1));
- __ jmp(&success);
-
- __ bind(&fail);
- GoTo(on_no_match);
-
- __ bind(&success);
- // Compute new value of character position after the matched part.
- __ Dsubu(current_input_offset(), a2, end_of_input_address());
- } else {
- DCHECK(mode_ == UC16);
- // Put regexp engine registers on stack.
- RegList regexp_registers_to_retain = current_input_offset().bit() |
- current_character().bit() | backtrack_stackpointer().bit();
- __ MultiPush(regexp_registers_to_retain);
-
- int argument_count = 4;
- __ PrepareCallCFunction(argument_count, a2);
-
- // a0 - offset of start of capture.
- // a1 - length of capture.
-
- // Put arguments into arguments registers.
- // Parameters are
- // a0: Address byte_offset1 - Address captured substring's start.
- // a1: Address byte_offset2 - Address of current character position.
- // a2: size_t byte_length - length of capture in bytes(!).
- // a3: Isolate* isolate.
-
- // Address of start of capture.
- __ Daddu(a0, a0, Operand(end_of_input_address()));
- // Length of capture.
- __ mov(a2, a1);
- // Save length in callee-save register for use on return.
- __ mov(s3, a1);
- // Address of current input position.
- __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
- // Isolate.
- __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
-
- {
- AllowExternalCallThatCantCauseGC scope(masm_);
- ExternalReference function =
- ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
- __ CallCFunction(function, argument_count);
- }
-
- // Restore regexp engine registers.
- __ MultiPop(regexp_registers_to_retain);
- __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
- __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
-
- // Check if function returned non-zero for success or zero for failure.
- BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
- // On success, increment position by length of capture.
- __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
- }
-
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotBackReference(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- Label success;
-
- // Find length of back-referenced capture.
- __ ld(a0, register_location(start_reg));
- __ ld(a1, register_location(start_reg + 1));
- __ Dsubu(a1, a1, a0); // Length to check.
- // Succeed on empty capture (including no capture).
- __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
-
- __ Daddu(t1, a1, current_input_offset());
- // Check that there are enough characters left in the input.
- BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
-
- // Compute pointers to match string and capture string.
- __ Daddu(a0, a0, Operand(end_of_input_address()));
- __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
- __ Daddu(a1, a1, Operand(a0));
-
- Label loop;
- __ bind(&loop);
- if (mode_ == LATIN1) {
- __ lbu(a3, MemOperand(a0, 0));
- __ daddiu(a0, a0, char_size());
- __ lbu(a4, MemOperand(a2, 0));
- __ daddiu(a2, a2, char_size());
- } else {
- DCHECK(mode_ == UC16);
- __ lhu(a3, MemOperand(a0, 0));
- __ daddiu(a0, a0, char_size());
- __ lhu(a4, MemOperand(a2, 0));
- __ daddiu(a2, a2, char_size());
- }
- BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
- __ Branch(&loop, lt, a0, Operand(a1));
-
- // Move current character position to position after match.
- __ Dsubu(current_input_offset(), a2, end_of_input_address());
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
- Label* on_not_equal) {
- BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal) {
- __ And(a0, current_character(), Operand(mask));
- Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
- BranchOrBacktrack(on_equal, eq, a0, rhs);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal) {
- __ And(a0, current_character(), Operand(mask));
- Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
- BranchOrBacktrack(on_not_equal, ne, a0, rhs);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- DCHECK(minus < String::kMaxUtf16CodeUnit);
- __ Dsubu(a0, current_character(), Operand(minus));
- __ And(a0, a0, Operand(mask));
- BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- __ Dsubu(a0, current_character(), Operand(from));
- // Unsigned lower-or-same condition.
- BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- __ Dsubu(a0, current_character(), Operand(from));
- // Unsigned higher condition.
- BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckBitInTable(
- Handle<ByteArray> table,
- Label* on_bit_set) {
- __ li(a0, Operand(table));
- if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
- __ And(a1, current_character(), Operand(kTableSize - 1));
- __ Daddu(a0, a0, a1);
- } else {
- __ Daddu(a0, a0, current_character());
- }
-
- __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
- BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
-}
-
-
-bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- // Range checks (c in min..max) are generally implemented by an unsigned
- // (c - min) <= (max - min) check.
- switch (type) {
- case 's':
- // Match space-characters.
- if (mode_ == LATIN1) {
- // One byte space characters are '\t'..'\r', ' ' and \u00a0.
- Label success;
- __ Branch(&success, eq, current_character(), Operand(' '));
- // Check range 0x09..0x0d.
- __ Dsubu(a0, current_character(), Operand('\t'));
- __ Branch(&success, ls, a0, Operand('\r' - '\t'));
- // \u00a0 (NBSP).
- BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
- __ bind(&success);
- return true;
- }
- return false;
- case 'S':
- // The emitted code for generic character classes is good enough.
- return false;
- case 'd':
- // Match Latin1 digits ('0'..'9').
- __ Dsubu(a0, current_character(), Operand('0'));
- BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
- return true;
- case 'D':
- // Match non Latin1-digits.
- __ Dsubu(a0, current_character(), Operand('0'));
- BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
- return true;
- case '.': {
- // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
- __ Xor(a0, current_character(), Operand(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
- __ Dsubu(a0, a0, Operand(0x0b));
- BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
- if (mode_ == UC16) {
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
- BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
- }
- return true;
- }
- case 'n': {
- // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
- __ Xor(a0, current_character(), Operand(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
- __ Dsubu(a0, a0, Operand(0x0b));
- if (mode_ == LATIN1) {
- BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
- } else {
- Label done;
- BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
- BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
- __ bind(&done);
- }
- return true;
- }
- case 'w': {
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ li(a0, Operand(map));
- __ Daddu(a0, a0, current_character());
- __ lbu(a0, MemOperand(a0, 0));
- BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
- return true;
- }
- case 'W': {
- Label done;
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ Branch(&done, hi, current_character(), Operand('z'));
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ li(a0, Operand(map));
- __ Daddu(a0, a0, current_character());
- __ lbu(a0, MemOperand(a0, 0));
- BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
- if (mode_ != LATIN1) {
- __ bind(&done);
- }
- return true;
- }
- case '*':
- // Match any character.
- return true;
- // No custom implementation (yet): s(UC16), S(UC16).
- default:
- return false;
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::Fail() {
- __ li(v0, Operand(FAILURE));
- __ jmp(&exit_label_);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
- Label return_v0;
- if (masm_->has_exception()) {
- // If the code gets corrupted due to long regular expressions and lack of
- // space on trampolines, an internal exception flag is set. If this case
- // is detected, we will jump into exit sequence right away.
- __ bind_to(&entry_label_, internal_failure_label_.pos());
- } else {
- // Finalize code - write the entry point code now we know how many
- // registers we need.
-
- // Entry code:
- __ bind(&entry_label_);
-
- // Tell the system that we have a stack frame. Because the type is MANUAL,
- // no is generated.
- FrameScope scope(masm_, StackFrame::MANUAL);
-
- // Actually emit code to start a new stack frame.
- // Push arguments
- // Save callee-save registers.
- // Start new stack frame.
- // Store link register in existing stack-cell.
- // Order here should correspond to order of offset constants in header file.
- // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
- // or dont save.
- RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
- s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
- RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
-
- if (kMipsAbi == kN64) {
- // TODO(plind): Should probably alias a4-a7, for clarity.
- argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
- }
-
- __ MultiPush(argument_registers | registers_to_retain | ra.bit());
- // Set frame pointer in space for it if this is not a direct call
- // from generated code.
- // TODO(plind): this 8 is the # of argument regs, should have definition.
- __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
- __ mov(a0, zero_reg);
- __ push(a0); // Make room for success counter and initialize it to 0.
- __ push(a0); // Make room for "position - 1" constant (value irrelevant).
-
- // Check if we have space on the stack for registers.
- Label stack_limit_hit;
- Label stack_ok;
-
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(masm_->isolate());
- __ li(a0, Operand(stack_limit));
- __ ld(a0, MemOperand(a0));
- __ Dsubu(a0, sp, a0);
- // Handle it if the stack pointer is already below the stack limit.
- __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
- // Check if there is room for the variable number of registers above
- // the stack limit.
- __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
- // Exit with OutOfMemory exception. There is not enough space on the stack
- // for our working registers.
- __ li(v0, Operand(EXCEPTION));
- __ jmp(&return_v0);
-
- __ bind(&stack_limit_hit);
- CallCheckStackGuardState(a0);
- // If returned value is non-zero, we exit with the returned value as result.
- __ Branch(&return_v0, ne, v0, Operand(zero_reg));
-
- __ bind(&stack_ok);
- // Allocate space on stack for registers.
- __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
- // Load string end.
- __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- // Load input start.
- __ ld(a0, MemOperand(frame_pointer(), kInputStart));
- // Find negative length (offset of start relative to end).
- __ Dsubu(current_input_offset(), a0, end_of_input_address());
- // Set a0 to address of char before start of the input string
- // (effectively string position -1).
- __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
- __ Dsubu(a0, current_input_offset(), Operand(char_size()));
- __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
- __ Dsubu(a0, a0, t1);
- // Store this value in a local variable, for use when clearing
- // position registers.
- __ sd(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
-
- // Initialize code pointer register
- __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
-
- Label load_char_start_regexp, start_regexp;
- // Load newline if index is at start, previous character otherwise.
- __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
- __ li(current_character(), Operand('\n'));
- __ jmp(&start_regexp);
-
- // Global regexp restarts matching here.
- __ bind(&load_char_start_regexp);
- // Load previous char as initial value of current character register.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&start_regexp);
-
- // Initialize on-stack registers.
- if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
- // Fill saved registers with initial value = start offset - 1.
- if (num_saved_registers_ > 8) {
- // Address of register 0.
- __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
- __ li(a2, Operand(num_saved_registers_));
- Label init_loop;
- __ bind(&init_loop);
- __ sd(a0, MemOperand(a1));
- __ Daddu(a1, a1, Operand(-kPointerSize));
- __ Dsubu(a2, a2, Operand(1));
- __ Branch(&init_loop, ne, a2, Operand(zero_reg));
- } else {
- for (int i = 0; i < num_saved_registers_; i++) {
- __ sd(a0, register_location(i));
- }
- }
- }
-
- // Initialize backtrack stack pointer.
- __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
-
- __ jmp(&start_label_);
-
-
- // Exit code:
- if (success_label_.is_linked()) {
- // Save captures when successful.
- __ bind(&success_label_);
- if (num_saved_registers_ > 0) {
- // Copy captures to output.
- __ ld(a1, MemOperand(frame_pointer(), kInputStart));
- __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
- __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
- __ Dsubu(a1, end_of_input_address(), a1);
- // a1 is length of input in bytes.
- if (mode_ == UC16) {
- __ dsrl(a1, a1, 1);
- }
- // a1 is length of input in characters.
- __ Daddu(a1, a1, Operand(a2));
- // a1 is length of string in characters.
-
- DCHECK_EQ(0, num_saved_registers_ % 2);
- // Always an even number of capture registers. This allows us to
- // unroll the loop once to add an operation between a load of a register
- // and the following use of that register.
- for (int i = 0; i < num_saved_registers_; i += 2) {
- __ ld(a2, register_location(i));
- __ ld(a3, register_location(i + 1));
- if (i == 0 && global_with_zero_length_check()) {
- // Keep capture start in a4 for the zero-length check later.
- __ mov(t3, a2);
- }
- if (mode_ == UC16) {
- __ dsra(a2, a2, 1);
- __ Daddu(a2, a2, a1);
- __ dsra(a3, a3, 1);
- __ Daddu(a3, a3, a1);
- } else {
- __ Daddu(a2, a1, Operand(a2));
- __ Daddu(a3, a1, Operand(a3));
- }
- // V8 expects the output to be an int32_t array.
- __ sw(a2, MemOperand(a0));
- __ Daddu(a0, a0, kIntSize);
- __ sw(a3, MemOperand(a0));
- __ Daddu(a0, a0, kIntSize);
- }
- }
-
- if (global()) {
- // Restart matching if the regular expression is flagged as global.
- __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
- __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
- // Increment success counter.
- __ Daddu(a0, a0, 1);
- __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- // Capture results have been stored, so the number of remaining global
- // output registers is reduced by the number of stored captures.
- __ Dsubu(a1, a1, num_saved_registers_);
- // Check whether we have enough room for another set of capture results.
- __ mov(v0, a0);
- __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
-
- __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
- // Advance the location for output.
- __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
- __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
-
- // Prepare a0 to initialize registers with its value in the next run.
- __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
-
- if (global_with_zero_length_check()) {
- // Special case for zero-length matches.
- // t3: capture start index
- // Not a zero-length match, restart.
- __ Branch(
- &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
- // Offset from the end is zero if we already reached the end.
- __ Branch(&exit_label_, eq, current_input_offset(),
- Operand(zero_reg));
- // Advance current position after a zero-length match.
- __ Daddu(current_input_offset(),
- current_input_offset(),
- Operand((mode_ == UC16) ? 2 : 1));
- }
-
- __ Branch(&load_char_start_regexp);
- } else {
- __ li(v0, Operand(SUCCESS));
- }
- }
- // Exit and return v0.
- __ bind(&exit_label_);
- if (global()) {
- __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
- }
-
- __ bind(&return_v0);
- // Skip sp past regexp registers and local variables..
- __ mov(sp, frame_pointer());
- // Restore registers s0..s7 and return (restoring ra to pc).
- __ MultiPop(registers_to_retain | ra.bit());
- __ Ret();
-
- // Backtrack code (branch target for conditional backtracks).
- if (backtrack_label_.is_linked()) {
- __ bind(&backtrack_label_);
- Backtrack();
- }
-
- Label exit_with_exception;
-
- // Preempt-code.
- if (check_preempt_label_.is_linked()) {
- SafeCallTarget(&check_preempt_label_);
- // Put regexp engine registers on stack.
- RegList regexp_registers_to_retain = current_input_offset().bit() |
- current_character().bit() | backtrack_stackpointer().bit();
- __ MultiPush(regexp_registers_to_retain);
- CallCheckStackGuardState(a0);
- __ MultiPop(regexp_registers_to_retain);
- // If returning non-zero, we should end execution with the given
- // result as return value.
- __ Branch(&return_v0, ne, v0, Operand(zero_reg));
-
- // String might have moved: Reload end of string from frame.
- __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
- SafeReturn();
- }
-
- // Backtrack stack overflow code.
- if (stack_overflow_label_.is_linked()) {
- SafeCallTarget(&stack_overflow_label_);
- // Reached if the backtrack-stack limit has been hit.
- // Put regexp engine registers on stack first.
- RegList regexp_registers = current_input_offset().bit() |
- current_character().bit();
- __ MultiPush(regexp_registers);
- Label grow_failed;
- // Call GrowStack(backtrack_stackpointer(), &stack_base)
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments, a0);
- __ mov(a0, backtrack_stackpointer());
- __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
- __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
- ExternalReference grow_stack =
- ExternalReference::re_grow_stack(masm_->isolate());
- __ CallCFunction(grow_stack, num_arguments);
- // Restore regexp registers.
- __ MultiPop(regexp_registers);
- // If return NULL, we have failed to grow the stack, and
- // must exit with a stack-overflow exception.
- __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
- // Otherwise use return value as new stack pointer.
- __ mov(backtrack_stackpointer(), v0);
- // Restore saved registers and continue.
- __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
- __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- SafeReturn();
- }
-
- if (exit_with_exception.is_linked()) {
- // If any of the code above needed to exit with an exception.
- __ bind(&exit_with_exception);
- // Exit with Result EXCEPTION(-1) to signal thrown exception.
- __ li(v0, Operand(EXCEPTION));
- __ jmp(&return_v0);
- }
- }
-
- CodeDesc code_desc;
- masm_->GetCode(&code_desc);
- Handle<Code> code = isolate()->factory()->NewCode(
- code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
- LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
- return Handle<HeapObject>::cast(code);
-}
-
-
-void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ jmp(to);
- return;
-}
-
-
-void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
- int comparand,
- Label* if_ge) {
- __ ld(a0, register_location(reg));
- BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
-}
-
-
-void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
- int comparand,
- Label* if_lt) {
- __ ld(a0, register_location(reg));
- BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
-}
-
-
-void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
- Label* if_eq) {
- __ ld(a0, register_location(reg));
- BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
-}
-
-
-RegExpMacroAssembler::IrregexpImplementation
- RegExpMacroAssemblerMIPS::Implementation() {
- return kMIPSImplementation;
-}
-
-
-void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
- DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
- if (check_bounds) {
- CheckPosition(cp_offset + characters - 1, on_end_of_input);
- }
- LoadCurrentCharacterUnchecked(cp_offset, characters);
-}
-
-
-void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
- Pop(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
- Pop(a0);
- __ sd(a0, register_location(register_index));
-}
-
-
-void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
- if (label->is_bound()) {
- int target = label->pos();
- __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
- } else {
- Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
- Label after_constant;
- __ Branch(&after_constant);
- int offset = masm_->pc_offset();
- int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
- __ emit(0);
- masm_->label_at_put(label, offset);
- __ bind(&after_constant);
- if (is_int16(cp_offset)) {
- __ lwu(a0, MemOperand(code_pointer(), cp_offset));
- } else {
- __ Daddu(a0, code_pointer(), cp_offset);
- __ lwu(a0, MemOperand(a0, 0));
- }
- }
- Push(a0);
- CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
- Push(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
- StackCheckFlag check_stack_limit) {
- __ ld(a0, register_location(register_index));
- Push(a0);
- if (check_stack_limit) CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
- __ ld(current_input_offset(), register_location(reg));
-}
-
-
-void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
- __ ld(backtrack_stackpointer(), register_location(reg));
- __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
- __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
-}
-
-
-void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
- Label after_position;
- __ Branch(&after_position,
- ge,
- current_input_offset(),
- Operand(-by * char_size()));
- __ li(current_input_offset(), -by * char_size());
- // On RegExp code entry (where this operation is used), the character before
- // the current position is expected to be already loaded.
- // We have advanced the position, so it's safe to read backwards.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&after_position);
-}
-
-
-void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
- DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
- __ li(a0, Operand(to));
- __ sd(a0, register_location(register_index));
-}
-
-
-bool RegExpMacroAssemblerMIPS::Succeed() {
- __ jmp(&success_label_);
- return global();
-}
-
-
-void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- if (cp_offset == 0) {
- __ sd(current_input_offset(), register_location(reg));
- } else {
- __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
- __ sd(a0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
- for (int reg = reg_from; reg <= reg_to; reg++) {
- __ sd(a0, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
- __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
- __ Dsubu(a0, backtrack_stackpointer(), a1);
- __ sd(a0, register_location(reg));
-}
-
-
-bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
- return false;
-}
-
-
-// Private methods:
-
-void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
- int stack_alignment = base::OS::ActivationFrameAlignment();
-
- // Align the stack pointer and save the original sp value on the stack.
- __ mov(scratch, sp);
- __ Dsubu(sp, sp, Operand(kPointerSize));
- DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
- __ And(sp, sp, Operand(-stack_alignment));
- __ sd(scratch, MemOperand(sp));
-
- __ mov(a2, frame_pointer());
- // Code* of self.
- __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
-
- // We need to make room for the return address on the stack.
- DCHECK(IsAligned(stack_alignment, kPointerSize));
- __ Dsubu(sp, sp, Operand(stack_alignment));
-
- // Stack pointer now points to cell where return address is to be written.
- // Arguments are in registers, meaning we teat the return address as
- // argument 5. Since DirectCEntryStub will handleallocating space for the C
- // argument slots, we don't need to care about that here. This is how the
- // stack will look (sp meaning the value of sp at this moment):
- // [sp + 3] - empty slot if needed for alignment.
- // [sp + 2] - saved sp.
- // [sp + 1] - second word reserved for return value.
- // [sp + 0] - first word reserved for return value.
-
- // a0 will point to the return address, placed by DirectCEntry.
- __ mov(a0, sp);
-
- ExternalReference stack_guard_check =
- ExternalReference::re_check_stack_guard_state(masm_->isolate());
- __ li(t9, Operand(stack_guard_check));
- DirectCEntryStub stub(isolate());
- stub.GenerateCall(masm_, t9);
-
- // DirectCEntryStub allocated space for the C argument slots so we have to
- // drop them with the return address from the stack with loading saved sp.
- // At this point stack must look:
- // [sp + 7] - empty slot if needed for alignment.
- // [sp + 6] - saved sp.
- // [sp + 5] - second word reserved for return value.
- // [sp + 4] - first word reserved for return value.
- // [sp + 3] - C argument slot.
- // [sp + 2] - C argument slot.
- // [sp + 1] - C argument slot.
- // [sp + 0] - C argument slot.
- __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
-
- __ li(code_pointer(), Operand(masm_->CodeObject()));
-}
-
-
-// Helper function for reading a value out of a stack frame.
-template <typename T>
-static T& frame_entry(Address re_frame, int frame_offset) {
- return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
-}
-
-
-template <typename T>
-static T* frame_entry_address(Address re_frame, int frame_offset) {
- return reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame) {
- return NativeRegExpMacroAssembler::CheckStackGuardState(
- frame_entry<Isolate*>(re_frame, kIsolate),
- frame_entry<int>(re_frame, kStartIndex),
- frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
- frame_entry_address<String*>(re_frame, kInputString),
- frame_entry_address<const byte*>(re_frame, kInputStart),
- frame_entry_address<const byte*>(re_frame, kInputEnd));
-}
-
-
-MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
- DCHECK(register_index < (1<<30));
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- return MemOperand(frame_pointer(),
- kRegisterZero - register_index * kPointerSize);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
- Label* on_outside_input) {
- BranchOrBacktrack(on_outside_input,
- ge,
- current_input_offset(),
- Operand(-cp_offset * char_size()));
-}
-
-
-void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
- Condition condition,
- Register rs,
- const Operand& rt) {
- if (condition == al) { // Unconditional.
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ jmp(to);
- return;
- }
- if (to == NULL) {
- __ Branch(&backtrack_label_, condition, rs, rt);
- return;
- }
- __ Branch(to, condition, rs, rt);
-}
-
-
-void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
- Condition cond,
- Register rs,
- const Operand& rt) {
- __ BranchAndLink(to, cond, rs, rt);
-}
-
-
-void RegExpMacroAssemblerMIPS::SafeReturn() {
- __ pop(ra);
- __ Daddu(t1, ra, Operand(masm_->CodeObject()));
- __ Jump(t1);
-}
-
-
-void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
- __ bind(name);
- __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
- __ push(ra);
-}
-
-
-void RegExpMacroAssemblerMIPS::Push(Register source) {
- DCHECK(!source.is(backtrack_stackpointer()));
- __ Daddu(backtrack_stackpointer(),
- backtrack_stackpointer(),
- Operand(-kIntSize));
- __ sw(source, MemOperand(backtrack_stackpointer()));
-}
-
-
-void RegExpMacroAssemblerMIPS::Pop(Register target) {
- DCHECK(!target.is(backtrack_stackpointer()));
- __ lw(target, MemOperand(backtrack_stackpointer()));
- __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckPreemption() {
- // Check for preemption.
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(masm_->isolate());
- __ li(a0, Operand(stack_limit));
- __ ld(a0, MemOperand(a0));
- SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
-}
-
-
-void RegExpMacroAssemblerMIPS::CheckStackLimit() {
- ExternalReference stack_limit =
- ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
-
- __ li(a0, Operand(stack_limit));
- __ ld(a0, MemOperand(a0));
- SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
-}
-
-
-void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
- int characters) {
- Register offset = current_input_offset();
- if (cp_offset != 0) {
- // t3 is not being used to store the capture start index at this point.
- __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
- offset = t3;
- }
- // We assume that we cannot do unaligned loads on MIPS, so this function
- // must only be used to load a single character at a time.
- DCHECK(characters == 1);
- __ Daddu(t1, end_of_input_address(), Operand(offset));
- if (mode_ == LATIN1) {
- __ lbu(current_character(), MemOperand(t1, 0));
- } else {
- DCHECK(mode_ == UC16);
- __ lhu(current_character(), MemOperand(t1, 0));
- }
-}
-
-#undef __
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
-
-#endif // V8_TARGET_ARCH_MIPS64
+++ /dev/null
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
-#define V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
-
-#include "src/macro-assembler.h"
-#include "src/mips64/assembler-mips64.h"
-#include "src/mips64/macro-assembler-mips64.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-class RegExpMacroAssemblerMIPS: public NativeRegExpMacroAssembler {
- public:
- RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, Mode mode,
- int registers_to_save);
- virtual ~RegExpMacroAssemblerMIPS();
- virtual int stack_limit_slack();
- virtual void AdvanceCurrentPosition(int by);
- virtual void AdvanceRegister(int reg, int by);
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(uint32_t c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- // A "greedy loop" is a loop that is both greedy and with a simple
- // body. It has a particularly simple implementation.
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
-
- // Checks whether the given offset from the current position is before
- // the end of the string.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input);
- virtual bool CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
- virtual bool CanReadUnaligned();
-
- // Called from RegExp if the stack-guard is triggered.
- // If the code object is relocated, the return address is fixed before
- // returning.
- static int64_t CheckStackGuardState(Address* return_address, Code* re_code,
- Address re_frame);
-
- void print_regexp_frame_constants();
-
- private:
-#if defined(MIPS_ABI_N64)
- // Offsets from frame_pointer() of function parameters and stored registers.
- static const int kFramePointer = 0;
-
- // Above the frame pointer - Stored registers and stack passed parameters.
- // Registers s0 to s7, fp, and ra.
- static const int kStoredRegisters = kFramePointer;
- // Return address (stored from link register, read into pc on return).
-
-// TODO(plind): This 9 - is 8 s-regs (s0..s7) plus fp.
-
- static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
- static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
- // Stack frame header.
- static const int kStackFrameHeader = kSecondaryReturnAddress;
- // Stack parameters placed by caller.
- static const int kIsolate = kStackFrameHeader + kPointerSize;
-
- // Below the frame pointer.
- // Register parameters stored by setup code.
- static const int kDirectCall = kFramePointer - kPointerSize;
- static const int kStackHighEnd = kDirectCall - kPointerSize;
- static const int kNumOutputRegisters = kStackHighEnd - kPointerSize;
- static const int kRegisterOutput = kNumOutputRegisters - kPointerSize;
- static const int kInputEnd = kRegisterOutput - kPointerSize;
- static const int kInputStart = kInputEnd - kPointerSize;
- static const int kStartIndex = kInputStart - kPointerSize;
- static const int kInputString = kStartIndex - kPointerSize;
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kSuccessfulCaptures = kInputString - kPointerSize;
- static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
- // First register address. Following registers are below it on the stack.
- static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
-
-#elif defined(MIPS_ABI_O32)
- // Offsets from frame_pointer() of function parameters and stored registers.
- static const int kFramePointer = 0;
-
- // Above the frame pointer - Stored registers and stack passed parameters.
- // Registers s0 to s7, fp, and ra.
- static const int kStoredRegisters = kFramePointer;
- // Return address (stored from link register, read into pc on return).
- static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
- static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
- // Stack frame header.
- static const int kStackFrameHeader = kReturnAddress + kPointerSize;
- // Stack parameters placed by caller.
- static const int kRegisterOutput =
- kStackFrameHeader + 4 * kPointerSize + kPointerSize;
- static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
- static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
- static const int kDirectCall = kStackHighEnd + kPointerSize;
- static const int kIsolate = kDirectCall + kPointerSize;
-
- // Below the frame pointer.
- // Register parameters stored by setup code.
- static const int kInputEnd = kFramePointer - kPointerSize;
- static const int kInputStart = kInputEnd - kPointerSize;
- static const int kStartIndex = kInputStart - kPointerSize;
- static const int kInputString = kStartIndex - kPointerSize;
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kSuccessfulCaptures = kInputString - kPointerSize;
- static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
- // First register address. Following registers are below it on the stack.
- static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
-
-#else
-# error "undefined MIPS ABI"
-#endif
-
- // Initial size of code buffer.
- static const size_t kRegExpCodeSize = 1024;
-
- // Load a number of characters at the given offset from the
- // current position, into the current-character register.
- void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
-
- // Check whether preemption has been requested.
- void CheckPreemption();
-
- // Check whether we are exceeding the stack limit on the backtrack stack.
- void CheckStackLimit();
-
-
- // Generate a call to CheckStackGuardState.
- void CallCheckStackGuardState(Register scratch);
-
- // The ebp-relative location of a regexp register.
- MemOperand register_location(int register_index);
-
- // Register holding the current input position as negative offset from
- // the end of the string.
- inline Register current_input_offset() { return a6; }
-
- // The register containing the current character after LoadCurrentCharacter.
- inline Register current_character() { return a7; }
-
- // Register holding address of the end of the input string.
- inline Register end_of_input_address() { return t2; }
-
- // Register holding the frame address. Local variables, parameters and
- // regexp registers are addressed relative to this.
- inline Register frame_pointer() { return fp; }
-
- // The register containing the backtrack stack top. Provides a meaningful
- // name to the register.
- inline Register backtrack_stackpointer() { return t0; }
-
- // Register holding pointer to the current code object.
- inline Register code_pointer() { return a5; }
-
- // Byte size of chars in the string to match (decided by the Mode argument).
- inline int char_size() { return static_cast<int>(mode_); }
-
- // Equivalent to a conditional branch to the label, unless the label
- // is NULL, in which case it is a conditional Backtrack.
- void BranchOrBacktrack(Label* to,
- Condition condition,
- Register rs,
- const Operand& rt);
-
- // Call and return internally in the generated code in a way that
- // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
- inline void SafeCall(Label* to,
- Condition cond,
- Register rs,
- const Operand& rt);
- inline void SafeReturn();
- inline void SafeCallTarget(Label* name);
-
- // Pushes the value of a register on the backtrack stack. Decrements the
- // stack pointer by a word size and stores the register's value there.
- inline void Push(Register source);
-
- // Pops a value from the backtrack stack. Reads the word at the stack pointer
- // and increments it by a word size.
- inline void Pop(Register target);
-
- Isolate* isolate() const { return masm_->isolate(); }
-
- MacroAssembler* masm_;
-
- // Which mode to generate code for (Latin1 or UC16).
- Mode mode_;
-
- // One greater than maximal register index actually used.
- int num_registers_;
-
- // Number of registers to output at the end (the saved registers
- // are always 0..num_saved_registers_-1).
- int num_saved_registers_;
-
- // Labels used internally.
- Label entry_label_;
- Label start_label_;
- Label success_label_;
- Label backtrack_label_;
- Label exit_label_;
- Label check_preempt_label_;
- Label stack_overflow_label_;
- Label internal_failure_label_;
-};
-
-#endif // V8_INTERPRETED_REGEXP
-
-
-}} // namespace v8::internal
-
-#endif // V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
#include "src/disasm.h"
#include "src/disassembler.h"
-#include "src/jsregexp.h"
#include "src/macro-assembler.h"
#include "src/ostreams.h"
+#include "src/regexp/jsregexp.h"
namespace v8 {
namespace internal {
#include "src/disasm.h"
#include "src/disassembler.h"
#include "src/interpreter/bytecodes.h"
-#include "src/jsregexp.h"
#include "src/ostreams.h"
+#include "src/regexp/jsregexp.h"
namespace v8 {
namespace internal {
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
+++ /dev/null
-// Copyright 2014 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#if V8_TARGET_ARCH_PPC
-
-#include "src/base/bits.h"
-#include "src/code-stubs.h"
-#include "src/cpu-profiler.h"
-#include "src/log.h"
-#include "src/macro-assembler.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/unicode.h"
-
-#include "src/ppc/regexp-macro-assembler-ppc.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-/*
- * This assembler uses the following register assignment convention
- * - r25: Temporarily stores the index of capture start after a matching pass
- * for a global regexp.
- * - r26: Pointer to current code object (Code*) including heap object tag.
- * - r27: Current position in input, as negative offset from end of string.
- * Please notice that this is the byte offset, not the character offset!
- * - r28: Currently loaded character. Must be loaded using
- * LoadCurrentCharacter before using any of the dispatch methods.
- * - r29: Points to tip of backtrack stack
- * - r30: End of input (points to byte after last character in input).
- * - r31: Frame pointer. Used to access arguments, local variables and
- * RegExp registers.
- * - r12: IP register, used by assembler. Very volatile.
- * - r1/sp : Points to tip of C stack.
- *
- * The remaining registers are free for computations.
- * Each call to a public method should retain this convention.
- *
- * The stack will have the following structure:
- * - fp[44] Isolate* isolate (address of the current isolate)
- * - fp[40] secondary link/return address used by native call.
- * - fp[36] lr save area (currently unused)
- * - fp[32] backchain (currently unused)
- * --- sp when called ---
- * - fp[28] return address (lr).
- * - fp[24] old frame pointer (r31).
- * - fp[0..20] backup of registers r25..r30
- * --- frame pointer ----
- * - fp[-4] direct_call (if 1, direct call from JavaScript code,
- * if 0, call through the runtime system).
- * - fp[-8] stack_area_base (high end of the memory area to use as
- * backtracking stack).
- * - fp[-12] capture array size (may fit multiple sets of matches)
- * - fp[-16] int* capture_array (int[num_saved_registers_], for output).
- * - fp[-20] end of input (address of end of string).
- * - fp[-24] start of input (address of first character in string).
- * - fp[-28] start index (character index of start).
- * - fp[-32] void* input_string (location of a handle containing the string).
- * - fp[-36] success counter (only for global regexps to count matches).
- * - fp[-40] Offset of location before start of input (effectively character
- * position -1). Used to initialize capture registers to a
- * non-position.
- * - fp[-44] At start (if 1, we are starting at the start of the
- * string, otherwise 0)
- * - fp[-48] register 0 (Only positions must be stored in the first
- * - register 1 num_saved_registers_ registers)
- * - ...
- * - register num_registers-1
- * --- sp ---
- *
- * The first num_saved_registers_ registers are initialized to point to
- * "character -1" in the string (i.e., char_size() bytes before the first
- * character of the string). The remaining registers start out as garbage.
- *
- * The data up to the return address must be placed there by the calling
- * code and the remaining arguments are passed in registers, e.g. by calling the
- * code entry as cast to a function with the signature:
- * int (*match)(String* input_string,
- * int start_index,
- * Address start,
- * Address end,
- * int* capture_output_array,
- * byte* stack_area_base,
- * Address secondary_return_address, // Only used by native call.
- * bool direct_call = false)
- * The call is performed by NativeRegExpMacroAssembler::Execute()
- * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
- * in ppc/simulator-ppc.h.
- * When calling as a non-direct call (i.e., from C++ code), the return address
- * area is overwritten with the LR register by the RegExp code. When doing a
- * direct call from generated code, the return address is placed there by
- * the calling code, as in a normal exit frame.
- */
-
-#define __ ACCESS_MASM(masm_)
-
-RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
- Mode mode,
- int registers_to_save)
- : NativeRegExpMacroAssembler(isolate, zone),
- masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
- mode_(mode),
- num_registers_(registers_to_save),
- num_saved_registers_(registers_to_save),
- entry_label_(),
- start_label_(),
- success_label_(),
- backtrack_label_(),
- exit_label_(),
- internal_failure_label_() {
- DCHECK_EQ(0, registers_to_save % 2);
-
-// Called from C
- __ function_descriptor();
-
- __ b(&entry_label_); // We'll write the entry code later.
- // If the code gets too big or corrupted, an internal exception will be
- // raised, and we will exit right away.
- __ bind(&internal_failure_label_);
- __ li(r3, Operand(FAILURE));
- __ Ret();
- __ bind(&start_label_); // And then continue from here.
-}
-
-
-RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
- delete masm_;
- // Unuse labels in case we throw away the assembler without calling GetCode.
- entry_label_.Unuse();
- start_label_.Unuse();
- success_label_.Unuse();
- backtrack_label_.Unuse();
- exit_label_.Unuse();
- check_preempt_label_.Unuse();
- stack_overflow_label_.Unuse();
- internal_failure_label_.Unuse();
-}
-
-
-int RegExpMacroAssemblerPPC::stack_limit_slack() {
- return RegExpStack::kStackLimitSlack;
-}
-
-
-void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
- if (by != 0) {
- __ addi(current_input_offset(), current_input_offset(),
- Operand(by * char_size()));
- }
-}
-
-
-void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
- DCHECK(reg >= 0);
- DCHECK(reg < num_registers_);
- if (by != 0) {
- __ LoadP(r3, register_location(reg), r0);
- __ mov(r0, Operand(by));
- __ add(r3, r3, r0);
- __ StoreP(r3, register_location(reg), r0);
- }
-}
-
-
-void RegExpMacroAssemblerPPC::Backtrack() {
- CheckPreemption();
- // Pop Code* offset from backtrack stack, add Code* and jump to location.
- Pop(r3);
- __ add(r3, r3, code_pointer());
- __ Jump(r3);
-}
-
-
-void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
-
-
-void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
- __ Cmpli(current_character(), Operand(c), r0);
- BranchOrBacktrack(eq, on_equal);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
- __ Cmpli(current_character(), Operand(limit), r0);
- BranchOrBacktrack(gt, on_greater);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
- Label not_at_start;
- // Did we start the match at the start of the string at all?
- __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
- __ cmpi(r3, Operand::Zero());
- BranchOrBacktrack(ne, ¬_at_start);
-
- // If we did, are we still at the start of the input?
- __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
- __ mr(r0, current_input_offset());
- __ add(r3, end_of_input_address(), r0);
- __ cmp(r4, r3);
- BranchOrBacktrack(eq, on_at_start);
- __ bind(¬_at_start);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckNotAtStart(Label* on_not_at_start) {
- // Did we start the match at the start of the string at all?
- __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
- __ cmpi(r3, Operand::Zero());
- BranchOrBacktrack(ne, on_not_at_start);
- // If we did, are we still at the start of the input?
- __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
- __ add(r3, end_of_input_address(), current_input_offset());
- __ cmp(r3, r4);
- BranchOrBacktrack(ne, on_not_at_start);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
- __ Cmpli(current_character(), Operand(limit), r0);
- BranchOrBacktrack(lt, on_less);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
- Label backtrack_non_equal;
- __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
- __ cmp(current_input_offset(), r3);
- __ bne(&backtrack_non_equal);
- __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
- Operand(kPointerSize));
-
- __ bind(&backtrack_non_equal);
- BranchOrBacktrack(eq, on_equal);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
- int start_reg, Label* on_no_match) {
- Label fallthrough;
- __ LoadP(r3, register_location(start_reg), r0); // Index of start of capture
- __ LoadP(r4, register_location(start_reg + 1), r0); // Index of end
- __ sub(r4, r4, r3, LeaveOE, SetRC); // Length of capture.
-
- // If length is zero, either the capture is empty or it is not participating.
- // In either case succeed immediately.
- __ beq(&fallthrough, cr0);
-
- // Check that there are enough characters left in the input.
- __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
- // __ cmn(r1, Operand(current_input_offset()));
- BranchOrBacktrack(gt, on_no_match, cr0);
-
- if (mode_ == LATIN1) {
- Label success;
- Label fail;
- Label loop_check;
-
- // r3 - offset of start of capture
- // r4 - length of capture
- __ add(r3, r3, end_of_input_address());
- __ add(r5, end_of_input_address(), current_input_offset());
- __ add(r4, r3, r4);
-
- // r3 - Address of start of capture.
- // r4 - Address of end of capture
- // r5 - Address of current input position.
-
- Label loop;
- __ bind(&loop);
- __ lbz(r6, MemOperand(r3));
- __ addi(r3, r3, Operand(char_size()));
- __ lbz(r25, MemOperand(r5));
- __ addi(r5, r5, Operand(char_size()));
- __ cmp(r25, r6);
- __ beq(&loop_check);
-
- // Mismatch, try case-insensitive match (converting letters to lower-case).
- __ ori(r6, r6, Operand(0x20)); // Convert capture character to lower-case.
- __ ori(r25, r25, Operand(0x20)); // Also convert input character.
- __ cmp(r25, r6);
- __ bne(&fail);
- __ subi(r6, r6, Operand('a'));
- __ cmpli(r6, Operand('z' - 'a')); // Is r6 a lowercase letter?
- __ ble(&loop_check); // In range 'a'-'z'.
- // Latin-1: Check for values in range [224,254] but not 247.
- __ subi(r6, r6, Operand(224 - 'a'));
- __ cmpli(r6, Operand(254 - 224));
- __ bgt(&fail); // Weren't Latin-1 letters.
- __ cmpi(r6, Operand(247 - 224)); // Check for 247.
- __ beq(&fail);
-
- __ bind(&loop_check);
- __ cmp(r3, r4);
- __ blt(&loop);
- __ b(&success);
-
- __ bind(&fail);
- BranchOrBacktrack(al, on_no_match);
-
- __ bind(&success);
- // Compute new value of character position after the matched part.
- __ sub(current_input_offset(), r5, end_of_input_address());
- } else {
- DCHECK(mode_ == UC16);
- int argument_count = 4;
- __ PrepareCallCFunction(argument_count, r5);
-
- // r3 - offset of start of capture
- // r4 - length of capture
-
- // Put arguments into arguments registers.
- // Parameters are
- // r3: Address byte_offset1 - Address captured substring's start.
- // r4: Address byte_offset2 - Address of current character position.
- // r5: size_t byte_length - length of capture in bytes(!)
- // r6: Isolate* isolate
-
- // Address of start of capture.
- __ add(r3, r3, end_of_input_address());
- // Length of capture.
- __ mr(r5, r4);
- // Save length in callee-save register for use on return.
- __ mr(r25, r4);
- // Address of current input position.
- __ add(r4, current_input_offset(), end_of_input_address());
- // Isolate.
- __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
-
- {
- AllowExternalCallThatCantCauseGC scope(masm_);
- ExternalReference function =
- ExternalReference::re_case_insensitive_compare_uc16(isolate());
- __ CallCFunction(function, argument_count);
- }
-
- // Check if function returned non-zero for success or zero for failure.
- __ cmpi(r3, Operand::Zero());
- BranchOrBacktrack(eq, on_no_match);
- // On success, increment position by length of capture.
- __ add(current_input_offset(), current_input_offset(), r25);
- }
-
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- Label success;
-
- // Find length of back-referenced capture.
- __ LoadP(r3, register_location(start_reg), r0);
- __ LoadP(r4, register_location(start_reg + 1), r0);
- __ sub(r4, r4, r3, LeaveOE, SetRC); // Length to check.
- // Succeed on empty capture (including no capture).
- __ beq(&fallthrough, cr0);
-
- // Check that there are enough characters left in the input.
- __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
- BranchOrBacktrack(gt, on_no_match, cr0);
-
- // Compute pointers to match string and capture string
- __ add(r3, r3, end_of_input_address());
- __ add(r5, end_of_input_address(), current_input_offset());
- __ add(r4, r4, r3);
-
- Label loop;
- __ bind(&loop);
- if (mode_ == LATIN1) {
- __ lbz(r6, MemOperand(r3));
- __ addi(r3, r3, Operand(char_size()));
- __ lbz(r25, MemOperand(r5));
- __ addi(r5, r5, Operand(char_size()));
- } else {
- DCHECK(mode_ == UC16);
- __ lhz(r6, MemOperand(r3));
- __ addi(r3, r3, Operand(char_size()));
- __ lhz(r25, MemOperand(r5));
- __ addi(r5, r5, Operand(char_size()));
- }
- __ cmp(r6, r25);
- BranchOrBacktrack(ne, on_no_match);
- __ cmp(r3, r4);
- __ blt(&loop);
-
- // Move current character position to position after match.
- __ sub(current_input_offset(), r5, end_of_input_address());
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
- Label* on_not_equal) {
- __ Cmpli(current_character(), Operand(c), r0);
- BranchOrBacktrack(ne, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
- Label* on_equal) {
- __ mov(r0, Operand(mask));
- if (c == 0) {
- __ and_(r3, current_character(), r0, SetRC);
- } else {
- __ and_(r3, current_character(), r0);
- __ Cmpli(r3, Operand(c), r0, cr0);
- }
- BranchOrBacktrack(eq, on_equal, cr0);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_not_equal) {
- __ mov(r0, Operand(mask));
- if (c == 0) {
- __ and_(r3, current_character(), r0, SetRC);
- } else {
- __ and_(r3, current_character(), r0);
- __ Cmpli(r3, Operand(c), r0, cr0);
- }
- BranchOrBacktrack(ne, on_not_equal, cr0);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
- uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
- DCHECK(minus < String::kMaxUtf16CodeUnit);
- __ subi(r3, current_character(), Operand(minus));
- __ mov(r0, Operand(mask));
- __ and_(r3, r3, r0);
- __ Cmpli(r3, Operand(c), r0);
- BranchOrBacktrack(ne, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
- Label* on_in_range) {
- __ mov(r0, Operand(from));
- __ sub(r3, current_character(), r0);
- __ Cmpli(r3, Operand(to - from), r0);
- BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
-}
-
-
-void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
- Label* on_not_in_range) {
- __ mov(r0, Operand(from));
- __ sub(r3, current_character(), r0);
- __ Cmpli(r3, Operand(to - from), r0);
- BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
-}
-
-
-void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
- Label* on_bit_set) {
- __ mov(r3, Operand(table));
- if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
- __ andi(r4, current_character(), Operand(kTableSize - 1));
- __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
- } else {
- __ addi(r4, current_character(),
- Operand(ByteArray::kHeaderSize - kHeapObjectTag));
- }
- __ lbzx(r3, MemOperand(r3, r4));
- __ cmpi(r3, Operand::Zero());
- BranchOrBacktrack(ne, on_bit_set);
-}
-
-
-bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- // Range checks (c in min..max) are generally implemented by an unsigned
- // (c - min) <= (max - min) check
- switch (type) {
- case 's':
- // Match space-characters
- if (mode_ == LATIN1) {
- // One byte space characters are '\t'..'\r', ' ' and \u00a0.
- Label success;
- __ cmpi(current_character(), Operand(' '));
- __ beq(&success);
- // Check range 0x09..0x0d
- __ subi(r3, current_character(), Operand('\t'));
- __ cmpli(r3, Operand('\r' - '\t'));
- __ ble(&success);
- // \u00a0 (NBSP).
- __ cmpi(r3, Operand(0x00a0 - '\t'));
- BranchOrBacktrack(ne, on_no_match);
- __ bind(&success);
- return true;
- }
- return false;
- case 'S':
- // The emitted code for generic character classes is good enough.
- return false;
- case 'd':
- // Match ASCII digits ('0'..'9')
- __ subi(r3, current_character(), Operand('0'));
- __ cmpli(r3, Operand('9' - '0'));
- BranchOrBacktrack(gt, on_no_match);
- return true;
- case 'D':
- // Match non ASCII-digits
- __ subi(r3, current_character(), Operand('0'));
- __ cmpli(r3, Operand('9' - '0'));
- BranchOrBacktrack(le, on_no_match);
- return true;
- case '.': {
- // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- __ xori(r3, current_character(), Operand(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ subi(r3, r3, Operand(0x0b));
- __ cmpli(r3, Operand(0x0c - 0x0b));
- BranchOrBacktrack(le, on_no_match);
- if (mode_ == UC16) {
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ subi(r3, r3, Operand(0x2028 - 0x0b));
- __ cmpli(r3, Operand(1));
- BranchOrBacktrack(le, on_no_match);
- }
- return true;
- }
- case 'n': {
- // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- __ xori(r3, current_character(), Operand(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ subi(r3, r3, Operand(0x0b));
- __ cmpli(r3, Operand(0x0c - 0x0b));
- if (mode_ == LATIN1) {
- BranchOrBacktrack(gt, on_no_match);
- } else {
- Label done;
- __ ble(&done);
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ subi(r3, r3, Operand(0x2028 - 0x0b));
- __ cmpli(r3, Operand(1));
- BranchOrBacktrack(gt, on_no_match);
- __ bind(&done);
- }
- return true;
- }
- case 'w': {
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmpi(current_character(), Operand('z'));
- BranchOrBacktrack(gt, on_no_match);
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ mov(r3, Operand(map));
- __ lbzx(r3, MemOperand(r3, current_character()));
- __ cmpli(r3, Operand::Zero());
- BranchOrBacktrack(eq, on_no_match);
- return true;
- }
- case 'W': {
- Label done;
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmpli(current_character(), Operand('z'));
- __ bgt(&done);
- }
- ExternalReference map = ExternalReference::re_word_character_map();
- __ mov(r3, Operand(map));
- __ lbzx(r3, MemOperand(r3, current_character()));
- __ cmpli(r3, Operand::Zero());
- BranchOrBacktrack(ne, on_no_match);
- if (mode_ != LATIN1) {
- __ bind(&done);
- }
- return true;
- }
- case '*':
- // Match any character.
- return true;
- // No custom implementation (yet): s(UC16), S(UC16).
- default:
- return false;
- }
-}
-
-
-void RegExpMacroAssemblerPPC::Fail() {
- __ li(r3, Operand(FAILURE));
- __ b(&exit_label_);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
- Label return_r3;
-
- if (masm_->has_exception()) {
- // If the code gets corrupted due to long regular expressions and lack of
- // space on trampolines, an internal exception flag is set. If this case
- // is detected, we will jump into exit sequence right away.
- __ bind_to(&entry_label_, internal_failure_label_.pos());
- } else {
- // Finalize code - write the entry point code now we know how many
- // registers we need.
-
- // Entry code:
- __ bind(&entry_label_);
-
- // Tell the system that we have a stack frame. Because the type
- // is MANUAL, no is generated.
- FrameScope scope(masm_, StackFrame::MANUAL);
-
- // Ensure register assigments are consistent with callee save mask
- DCHECK(r25.bit() & kRegExpCalleeSaved);
- DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
- DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
- DCHECK(current_character().bit() & kRegExpCalleeSaved);
- DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
- DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
- DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
-
- // Actually emit code to start a new stack frame.
- // Push arguments
- // Save callee-save registers.
- // Start new stack frame.
- // Store link register in existing stack-cell.
- // Order here should correspond to order of offset constants in header file.
- RegList registers_to_retain = kRegExpCalleeSaved;
- RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
- r7.bit() | r8.bit() | r9.bit() | r10.bit();
- __ mflr(r0);
- __ push(r0);
- __ MultiPush(argument_registers | registers_to_retain);
- // Set frame pointer in space for it if this is not a direct call
- // from generated code.
- __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
- __ li(r3, Operand::Zero());
- __ push(r3); // Make room for success counter and initialize it to 0.
- __ push(r3); // Make room for "position - 1" constant (value is irrelevant)
- // Check if we have space on the stack for registers.
- Label stack_limit_hit;
- Label stack_ok;
-
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ mov(r3, Operand(stack_limit));
- __ LoadP(r3, MemOperand(r3));
- __ sub(r3, sp, r3, LeaveOE, SetRC);
- // Handle it if the stack pointer is already below the stack limit.
- __ ble(&stack_limit_hit, cr0);
- // Check if there is room for the variable number of registers above
- // the stack limit.
- __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
- __ bge(&stack_ok);
- // Exit with OutOfMemory exception. There is not enough space on the stack
- // for our working registers.
- __ li(r3, Operand(EXCEPTION));
- __ b(&return_r3);
-
- __ bind(&stack_limit_hit);
- CallCheckStackGuardState(r3);
- __ cmpi(r3, Operand::Zero());
- // If returned value is non-zero, we exit with the returned value as result.
- __ bne(&return_r3);
-
- __ bind(&stack_ok);
-
- // Allocate space on stack for registers.
- __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
- // Load string end.
- __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- // Load input start.
- __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
- // Find negative length (offset of start relative to end).
- __ sub(current_input_offset(), r3, end_of_input_address());
- // Set r3 to address of char before start of the input string
- // (effectively string position -1).
- __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
- __ subi(r3, current_input_offset(), Operand(char_size()));
- if (mode_ == UC16) {
- __ ShiftLeftImm(r0, r4, Operand(1));
- __ sub(r3, r3, r0);
- } else {
- __ sub(r3, r3, r4);
- }
- // Store this value in a local variable, for use when clearing
- // position registers.
- __ StoreP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
-
- // Initialize code pointer register
- __ mov(code_pointer(), Operand(masm_->CodeObject()));
-
- Label load_char_start_regexp, start_regexp;
- // Load newline if index is at start, previous character otherwise.
- __ cmpi(r4, Operand::Zero());
- __ bne(&load_char_start_regexp);
- __ li(current_character(), Operand('\n'));
- __ b(&start_regexp);
-
- // Global regexp restarts matching here.
- __ bind(&load_char_start_regexp);
- // Load previous char as initial value of current character register.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&start_regexp);
-
- // Initialize on-stack registers.
- if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
- // Fill saved registers with initial value = start offset - 1
- if (num_saved_registers_ > 8) {
- // One slot beyond address of register 0.
- __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
- __ li(r5, Operand(num_saved_registers_));
- __ mtctr(r5);
- Label init_loop;
- __ bind(&init_loop);
- __ StorePU(r3, MemOperand(r4, -kPointerSize));
- __ bdnz(&init_loop);
- } else {
- for (int i = 0; i < num_saved_registers_; i++) {
- __ StoreP(r3, register_location(i), r0);
- }
- }
- }
-
- // Initialize backtrack stack pointer.
- __ LoadP(backtrack_stackpointer(),
- MemOperand(frame_pointer(), kStackHighEnd));
-
- __ b(&start_label_);
-
- // Exit code:
- if (success_label_.is_linked()) {
- // Save captures when successful.
- __ bind(&success_label_);
- if (num_saved_registers_ > 0) {
- // copy captures to output
- __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
- __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
- __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
- __ sub(r4, end_of_input_address(), r4);
- // r4 is length of input in bytes.
- if (mode_ == UC16) {
- __ ShiftRightImm(r4, r4, Operand(1));
- }
- // r4 is length of input in characters.
- __ add(r4, r4, r5);
- // r4 is length of string in characters.
-
- DCHECK_EQ(0, num_saved_registers_ % 2);
- // Always an even number of capture registers. This allows us to
- // unroll the loop once to add an operation between a load of a register
- // and the following use of that register.
- for (int i = 0; i < num_saved_registers_; i += 2) {
- __ LoadP(r5, register_location(i), r0);
- __ LoadP(r6, register_location(i + 1), r0);
- if (i == 0 && global_with_zero_length_check()) {
- // Keep capture start in r25 for the zero-length check later.
- __ mr(r25, r5);
- }
- if (mode_ == UC16) {
- __ ShiftRightArithImm(r5, r5, 1);
- __ add(r5, r4, r5);
- __ ShiftRightArithImm(r6, r6, 1);
- __ add(r6, r4, r6);
- } else {
- __ add(r5, r4, r5);
- __ add(r6, r4, r6);
- }
- __ stw(r5, MemOperand(r3));
- __ addi(r3, r3, Operand(kIntSize));
- __ stw(r6, MemOperand(r3));
- __ addi(r3, r3, Operand(kIntSize));
- }
- }
-
- if (global()) {
- // Restart matching if the regular expression is flagged as global.
- __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
- __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
- __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
- // Increment success counter.
- __ addi(r3, r3, Operand(1));
- __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
- // Capture results have been stored, so the number of remaining global
- // output registers is reduced by the number of stored captures.
- __ subi(r4, r4, Operand(num_saved_registers_));
- // Check whether we have enough room for another set of capture results.
- __ cmpi(r4, Operand(num_saved_registers_));
- __ blt(&return_r3);
-
- __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
- // Advance the location for output.
- __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
- __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
-
- // Prepare r3 to initialize registers with its value in the next run.
- __ LoadP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
-
- if (global_with_zero_length_check()) {
- // Special case for zero-length matches.
- // r25: capture start index
- __ cmp(current_input_offset(), r25);
- // Not a zero-length match, restart.
- __ bne(&load_char_start_regexp);
- // Offset from the end is zero if we already reached the end.
- __ cmpi(current_input_offset(), Operand::Zero());
- __ beq(&exit_label_);
- // Advance current position after a zero-length match.
- __ addi(current_input_offset(), current_input_offset(),
- Operand((mode_ == UC16) ? 2 : 1));
- }
-
- __ b(&load_char_start_regexp);
- } else {
- __ li(r3, Operand(SUCCESS));
- }
- }
-
- // Exit and return r3
- __ bind(&exit_label_);
- if (global()) {
- __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
- }
-
- __ bind(&return_r3);
- // Skip sp past regexp registers and local variables..
- __ mr(sp, frame_pointer());
- // Restore registers r25..r31 and return (restoring lr to pc).
- __ MultiPop(registers_to_retain);
- __ pop(r0);
- __ mtlr(r0);
- __ blr();
-
- // Backtrack code (branch target for conditional backtracks).
- if (backtrack_label_.is_linked()) {
- __ bind(&backtrack_label_);
- Backtrack();
- }
-
- Label exit_with_exception;
-
- // Preempt-code
- if (check_preempt_label_.is_linked()) {
- SafeCallTarget(&check_preempt_label_);
-
- CallCheckStackGuardState(r3);
- __ cmpi(r3, Operand::Zero());
- // If returning non-zero, we should end execution with the given
- // result as return value.
- __ bne(&return_r3);
-
- // String might have moved: Reload end of string from frame.
- __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
- SafeReturn();
- }
-
- // Backtrack stack overflow code.
- if (stack_overflow_label_.is_linked()) {
- SafeCallTarget(&stack_overflow_label_);
- // Reached if the backtrack-stack limit has been hit.
- Label grow_failed;
-
- // Call GrowStack(backtrack_stackpointer(), &stack_base)
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments, r3);
- __ mr(r3, backtrack_stackpointer());
- __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
- __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
- ExternalReference grow_stack =
- ExternalReference::re_grow_stack(isolate());
- __ CallCFunction(grow_stack, num_arguments);
- // If return NULL, we have failed to grow the stack, and
- // must exit with a stack-overflow exception.
- __ cmpi(r3, Operand::Zero());
- __ beq(&exit_with_exception);
- // Otherwise use return value as new stack pointer.
- __ mr(backtrack_stackpointer(), r3);
- // Restore saved registers and continue.
- SafeReturn();
- }
-
- if (exit_with_exception.is_linked()) {
- // If any of the code above needed to exit with an exception.
- __ bind(&exit_with_exception);
- // Exit with Result EXCEPTION(-1) to signal thrown exception.
- __ li(r3, Operand(EXCEPTION));
- __ b(&return_r3);
- }
- }
-
- CodeDesc code_desc;
- masm_->GetCode(&code_desc);
- Handle<Code> code = isolate()->factory()->NewCode(
- code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
- PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
- return Handle<HeapObject>::cast(code);
-}
-
-
-void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
-
-
-void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
- Label* if_ge) {
- __ LoadP(r3, register_location(reg), r0);
- __ Cmpi(r3, Operand(comparand), r0);
- BranchOrBacktrack(ge, if_ge);
-}
-
-
-void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
- Label* if_lt) {
- __ LoadP(r3, register_location(reg), r0);
- __ Cmpi(r3, Operand(comparand), r0);
- BranchOrBacktrack(lt, if_lt);
-}
-
-
-void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
- __ LoadP(r3, register_location(reg), r0);
- __ cmp(r3, current_input_offset());
- BranchOrBacktrack(eq, if_eq);
-}
-
-
-RegExpMacroAssembler::IrregexpImplementation
-RegExpMacroAssemblerPPC::Implementation() {
- return kPPCImplementation;
-}
-
-
-void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
- DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works)
- if (check_bounds) {
- CheckPosition(cp_offset + characters - 1, on_end_of_input);
- }
- LoadCurrentCharacterUnchecked(cp_offset, characters);
-}
-
-
-void RegExpMacroAssemblerPPC::PopCurrentPosition() {
- Pop(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
- Pop(r3);
- __ StoreP(r3, register_location(register_index), r0);
-}
-
-
-void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
- __ mov_label_offset(r3, label);
- Push(r3);
- CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerPPC::PushCurrentPosition() {
- Push(current_input_offset());
-}
-
-
-void RegExpMacroAssemblerPPC::PushRegister(int register_index,
- StackCheckFlag check_stack_limit) {
- __ LoadP(r3, register_location(register_index), r0);
- Push(r3);
- if (check_stack_limit) CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
- __ LoadP(current_input_offset(), register_location(reg), r0);
-}
-
-
-void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
- __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
- __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
- __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
-}
-
-
-void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
- Label after_position;
- __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
- __ bge(&after_position);
- __ mov(current_input_offset(), Operand(-by * char_size()));
- // On RegExp code entry (where this operation is used), the character before
- // the current position is expected to be already loaded.
- // We have advanced the position, so it's safe to read backwards.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&after_position);
-}
-
-
-void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
- DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
- __ mov(r3, Operand(to));
- __ StoreP(r3, register_location(register_index), r0);
-}
-
-
-bool RegExpMacroAssemblerPPC::Succeed() {
- __ b(&success_label_);
- return global();
-}
-
-
-void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- if (cp_offset == 0) {
- __ StoreP(current_input_offset(), register_location(reg), r0);
- } else {
- __ mov(r0, Operand(cp_offset * char_size()));
- __ add(r3, current_input_offset(), r0);
- __ StoreP(r3, register_location(reg), r0);
- }
-}
-
-
-void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- __ LoadP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
- for (int reg = reg_from; reg <= reg_to; reg++) {
- __ StoreP(r3, register_location(reg), r0);
- }
-}
-
-
-void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
- __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
- __ sub(r3, backtrack_stackpointer(), r4);
- __ StoreP(r3, register_location(reg), r0);
-}
-
-
-// Private methods:
-
-void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
- int frame_alignment = masm_->ActivationFrameAlignment();
- int stack_space = kNumRequiredStackFrameSlots;
- int stack_passed_arguments = 1; // space for return address pointer
-
- // The following stack manipulation logic is similar to
- // PrepareCallCFunction. However, we need an extra slot on the
- // stack to house the return address parameter.
- if (frame_alignment > kPointerSize) {
- // Make stack end at alignment and make room for stack arguments
- // -- preserving original value of sp.
- __ mr(scratch, sp);
- __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
- DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
- __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
- __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
- } else {
- // Make room for stack arguments
- stack_space += stack_passed_arguments;
- }
-
- // Allocate frame with required slots to make ABI work.
- __ li(r0, Operand::Zero());
- __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
-
- // RegExp code frame pointer.
- __ mr(r5, frame_pointer());
- // Code* of self.
- __ mov(r4, Operand(masm_->CodeObject()));
- // r3 will point to the return address, placed by DirectCEntry.
- __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
-
- ExternalReference stack_guard_check =
- ExternalReference::re_check_stack_guard_state(isolate());
- __ mov(ip, Operand(stack_guard_check));
- DirectCEntryStub stub(isolate());
- stub.GenerateCall(masm_, ip);
-
- // Restore the stack pointer
- stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
- if (frame_alignment > kPointerSize) {
- __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
- } else {
- __ addi(sp, sp, Operand(stack_space * kPointerSize));
- }
-
- __ mov(code_pointer(), Operand(masm_->CodeObject()));
-}
-
-
-// Helper function for reading a value out of a stack frame.
-template <typename T>
-static T& frame_entry(Address re_frame, int frame_offset) {
- return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
-}
-
-
-template <typename T>
-static T* frame_entry_address(Address re_frame, int frame_offset) {
- return reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame) {
- return NativeRegExpMacroAssembler::CheckStackGuardState(
- frame_entry<Isolate*>(re_frame, kIsolate),
- frame_entry<intptr_t>(re_frame, kStartIndex),
- frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
- re_code, frame_entry_address<String*>(re_frame, kInputString),
- frame_entry_address<const byte*>(re_frame, kInputStart),
- frame_entry_address<const byte*>(re_frame, kInputEnd));
-}
-
-
-MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
- DCHECK(register_index < (1 << 30));
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- return MemOperand(frame_pointer(),
- kRegisterZero - register_index * kPointerSize);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
- Label* on_outside_input) {
- __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
- BranchOrBacktrack(ge, on_outside_input);
-}
-
-
-void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
- CRegister cr) {
- if (condition == al) { // Unconditional.
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ b(to);
- return;
- }
- if (to == NULL) {
- __ b(condition, &backtrack_label_, cr);
- return;
- }
- __ b(condition, to, cr);
-}
-
-
-void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
- CRegister cr) {
- __ b(cond, to, cr, SetLK);
-}
-
-
-void RegExpMacroAssemblerPPC::SafeReturn() {
- __ pop(r0);
- __ mov(ip, Operand(masm_->CodeObject()));
- __ add(r0, r0, ip);
- __ mtlr(r0);
- __ blr();
-}
-
-
-void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
- __ bind(name);
- __ mflr(r0);
- __ mov(ip, Operand(masm_->CodeObject()));
- __ sub(r0, r0, ip);
- __ push(r0);
-}
-
-
-void RegExpMacroAssemblerPPC::Push(Register source) {
- DCHECK(!source.is(backtrack_stackpointer()));
- __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
-}
-
-
-void RegExpMacroAssemblerPPC::Pop(Register target) {
- DCHECK(!target.is(backtrack_stackpointer()));
- __ LoadP(target, MemOperand(backtrack_stackpointer()));
- __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
- Operand(kPointerSize));
-}
-
-
-void RegExpMacroAssemblerPPC::CheckPreemption() {
- // Check for preemption.
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ mov(r3, Operand(stack_limit));
- __ LoadP(r3, MemOperand(r3));
- __ cmpl(sp, r3);
- SafeCall(&check_preempt_label_, le);
-}
-
-
-void RegExpMacroAssemblerPPC::CheckStackLimit() {
- ExternalReference stack_limit =
- ExternalReference::address_of_regexp_stack_limit(isolate());
- __ mov(r3, Operand(stack_limit));
- __ LoadP(r3, MemOperand(r3));
- __ cmpl(backtrack_stackpointer(), r3);
- SafeCall(&stack_overflow_label_, le);
-}
-
-
-bool RegExpMacroAssemblerPPC::CanReadUnaligned() {
- return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
-}
-
-
-void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
- int characters) {
- Register offset = current_input_offset();
- if (cp_offset != 0) {
- // r25 is not being used to store the capture start index at this point.
- __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
- offset = r25;
- }
- // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
- // and the operating system running on the target allow it.
- // We assume we don't want to do unaligned loads on PPC, so this function
- // must only be used to load a single character at a time.
-
- DCHECK(characters == 1);
- __ add(current_character(), end_of_input_address(), offset);
- if (mode_ == LATIN1) {
- __ lbz(current_character(), MemOperand(current_character()));
- } else {
- DCHECK(mode_ == UC16);
- __ lhz(current_character(), MemOperand(current_character()));
- }
-}
-
-
-#undef __
-
-#endif // V8_INTERPRETED_REGEXP
-} // namespace internal
-} // namespace v8
-
-#endif // V8_TARGET_ARCH_PPC
+++ /dev/null
-// Copyright 2014 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
-#define V8_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
-
-#include "src/macro-assembler.h"
-#include "src/ppc/assembler-ppc.h"
-#include "src/ppc/frames-ppc.h"
-
-namespace v8 {
-namespace internal {
-
-
-#ifndef V8_INTERPRETED_REGEXP
-class RegExpMacroAssemblerPPC : public NativeRegExpMacroAssembler {
- public:
- RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone, Mode mode,
- int registers_to_save);
- virtual ~RegExpMacroAssemblerPPC();
- virtual int stack_limit_slack();
- virtual void AdvanceCurrentPosition(int by);
- virtual void AdvanceRegister(int reg, int by);
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(unsigned c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(unsigned c, unsigned mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- // A "greedy loop" is a loop that is both greedy and with a simple
- // body. It has a particularly simple implementation.
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(unsigned c, unsigned mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from, uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
-
- // Checks whether the given offset from the current position is before
- // the end of the string.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input);
- virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset, Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
- virtual bool CanReadUnaligned();
-
- // Called from RegExp if the stack-guard is triggered.
- // If the code object is relocated, the return address is fixed before
- // returning.
- static int CheckStackGuardState(Address* return_address, Code* re_code,
- Address re_frame);
-
- private:
- // Offsets from frame_pointer() of function parameters and stored registers.
- static const int kFramePointer = 0;
-
- // Above the frame pointer - Stored registers and stack passed parameters.
- // Register 25..31.
- static const int kStoredRegisters = kFramePointer;
- // Return address (stored from link register, read into pc on return).
- static const int kReturnAddress = kStoredRegisters + 7 * kPointerSize;
- static const int kCallerFrame = kReturnAddress + kPointerSize;
- // Stack parameters placed by caller.
- static const int kSecondaryReturnAddress =
- kCallerFrame + kStackFrameExtraParamSlot * kPointerSize;
- static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
-
- // Below the frame pointer.
- // Register parameters stored by setup code.
- static const int kDirectCall = kFramePointer - kPointerSize;
- static const int kStackHighEnd = kDirectCall - kPointerSize;
- static const int kNumOutputRegisters = kStackHighEnd - kPointerSize;
- static const int kRegisterOutput = kNumOutputRegisters - kPointerSize;
- static const int kInputEnd = kRegisterOutput - kPointerSize;
- static const int kInputStart = kInputEnd - kPointerSize;
- static const int kStartIndex = kInputStart - kPointerSize;
- static const int kInputString = kStartIndex - kPointerSize;
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kSuccessfulCaptures = kInputString - kPointerSize;
- static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
- // First register address. Following registers are below it on the stack.
- static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
-
- // Initial size of code buffer.
- static const size_t kRegExpCodeSize = 1024;
-
- // Load a number of characters at the given offset from the
- // current position, into the current-character register.
- void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
-
- // Check whether preemption has been requested.
- void CheckPreemption();
-
- // Check whether we are exceeding the stack limit on the backtrack stack.
- void CheckStackLimit();
-
-
- // Generate a call to CheckStackGuardState.
- void CallCheckStackGuardState(Register scratch);
-
- // The ebp-relative location of a regexp register.
- MemOperand register_location(int register_index);
-
- // Register holding the current input position as negative offset from
- // the end of the string.
- inline Register current_input_offset() { return r27; }
-
- // The register containing the current character after LoadCurrentCharacter.
- inline Register current_character() { return r28; }
-
- // Register holding address of the end of the input string.
- inline Register end_of_input_address() { return r30; }
-
- // Register holding the frame address. Local variables, parameters and
- // regexp registers are addressed relative to this.
- inline Register frame_pointer() { return fp; }
-
- // The register containing the backtrack stack top. Provides a meaningful
- // name to the register.
- inline Register backtrack_stackpointer() { return r29; }
-
- // Register holding pointer to the current code object.
- inline Register code_pointer() { return r26; }
-
- // Byte size of chars in the string to match (decided by the Mode argument)
- inline int char_size() { return static_cast<int>(mode_); }
-
- // Equivalent to a conditional branch to the label, unless the label
- // is NULL, in which case it is a conditional Backtrack.
- void BranchOrBacktrack(Condition condition, Label* to, CRegister cr = cr7);
-
- // Call and return internally in the generated code in a way that
- // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
- inline void SafeCall(Label* to, Condition cond = al, CRegister cr = cr7);
- inline void SafeReturn();
- inline void SafeCallTarget(Label* name);
-
- // Pushes the value of a register on the backtrack stack. Decrements the
- // stack pointer by a word size and stores the register's value there.
- inline void Push(Register source);
-
- // Pops a value from the backtrack stack. Reads the word at the stack pointer
- // and increments it by a word size.
- inline void Pop(Register target);
-
- Isolate* isolate() const { return masm_->isolate(); }
-
- MacroAssembler* masm_;
-
- // Which mode to generate code for (Latin1 or UC16).
- Mode mode_;
-
- // One greater than maximal register index actually used.
- int num_registers_;
-
- // Number of registers to output at the end (the saved registers
- // are always 0..num_saved_registers_-1)
- int num_saved_registers_;
-
- // Labels used internally.
- Label entry_label_;
- Label start_label_;
- Label success_label_;
- Label backtrack_label_;
- Label exit_label_;
- Label check_preempt_label_;
- Label stack_overflow_label_;
- Label internal_failure_label_;
-};
-
-// Set of non-volatile registers saved/restored by generated regexp code.
-const RegList kRegExpCalleeSaved =
- 1 << 25 | 1 << 26 | 1 << 27 | 1 << 28 | 1 << 29 | 1 << 30 | 1 << 31;
-
-#endif // V8_INTERPRETED_REGEXP
-}
-} // namespace v8::internal
-
-#endif // V8_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
+++ /dev/null
-// Copyright 2008-2009 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
-#define V8_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
-
-#include "src/ast.h"
-#include "src/bytecodes-irregexp.h"
-
-namespace v8 {
-namespace internal {
-
-#ifdef V8_INTERPRETED_REGEXP
-
-void RegExpMacroAssemblerIrregexp::Emit(uint32_t byte,
- uint32_t twenty_four_bits) {
- uint32_t word = ((twenty_four_bits << BYTECODE_SHIFT) | byte);
- DCHECK(pc_ <= buffer_.length());
- if (pc_ + 3 >= buffer_.length()) {
- Expand();
- }
- *reinterpret_cast<uint32_t*>(buffer_.start() + pc_) = word;
- pc_ += 4;
-}
-
-
-void RegExpMacroAssemblerIrregexp::Emit16(uint32_t word) {
- DCHECK(pc_ <= buffer_.length());
- if (pc_ + 1 >= buffer_.length()) {
- Expand();
- }
- *reinterpret_cast<uint16_t*>(buffer_.start() + pc_) = word;
- pc_ += 2;
-}
-
-
-void RegExpMacroAssemblerIrregexp::Emit8(uint32_t word) {
- DCHECK(pc_ <= buffer_.length());
- if (pc_ == buffer_.length()) {
- Expand();
- }
- *reinterpret_cast<unsigned char*>(buffer_.start() + pc_) = word;
- pc_ += 1;
-}
-
-
-void RegExpMacroAssemblerIrregexp::Emit32(uint32_t word) {
- DCHECK(pc_ <= buffer_.length());
- if (pc_ + 3 >= buffer_.length()) {
- Expand();
- }
- *reinterpret_cast<uint32_t*>(buffer_.start() + pc_) = word;
- pc_ += 4;
-}
-
-#endif // V8_INTERPRETED_REGEXP
-
-} } // namespace v8::internal
-
-#endif // V8_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
+++ /dev/null
-// Copyright 2008-2009 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#include "src/ast.h"
-#include "src/bytecodes-irregexp.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-macro-assembler-irregexp.h"
-#include "src/regexp-macro-assembler-irregexp-inl.h"
-
-
-namespace v8 {
-namespace internal {
-
-#ifdef V8_INTERPRETED_REGEXP
-
-RegExpMacroAssemblerIrregexp::RegExpMacroAssemblerIrregexp(Isolate* isolate,
- Vector<byte> buffer,
- Zone* zone)
- : RegExpMacroAssembler(isolate, zone),
- buffer_(buffer),
- pc_(0),
- own_buffer_(false),
- advance_current_end_(kInvalidPC),
- isolate_(isolate) {}
-
-
-RegExpMacroAssemblerIrregexp::~RegExpMacroAssemblerIrregexp() {
- if (backtrack_.is_linked()) backtrack_.Unuse();
- if (own_buffer_) buffer_.Dispose();
-}
-
-
-RegExpMacroAssemblerIrregexp::IrregexpImplementation
-RegExpMacroAssemblerIrregexp::Implementation() {
- return kBytecodeImplementation;
-}
-
-
-void RegExpMacroAssemblerIrregexp::Bind(Label* l) {
- advance_current_end_ = kInvalidPC;
- DCHECK(!l->is_bound());
- if (l->is_linked()) {
- int pos = l->pos();
- while (pos != 0) {
- int fixup = pos;
- pos = *reinterpret_cast<int32_t*>(buffer_.start() + fixup);
- *reinterpret_cast<uint32_t*>(buffer_.start() + fixup) = pc_;
- }
- }
- l->bind_to(pc_);
-}
-
-
-void RegExpMacroAssemblerIrregexp::EmitOrLink(Label* l) {
- if (l == NULL) l = &backtrack_;
- if (l->is_bound()) {
- Emit32(l->pos());
- } else {
- int pos = 0;
- if (l->is_linked()) {
- pos = l->pos();
- }
- l->link_to(pc_);
- Emit32(pos);
- }
-}
-
-
-void RegExpMacroAssemblerIrregexp::PopRegister(int register_index) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_POP_REGISTER, register_index);
-}
-
-
-void RegExpMacroAssemblerIrregexp::PushRegister(
- int register_index,
- StackCheckFlag check_stack_limit) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_PUSH_REGISTER, register_index);
-}
-
-
-void RegExpMacroAssemblerIrregexp::WriteCurrentPositionToRegister(
- int register_index, int cp_offset) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_SET_REGISTER_TO_CP, register_index);
- Emit32(cp_offset); // Current position offset.
-}
-
-
-void RegExpMacroAssemblerIrregexp::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- for (int reg = reg_from; reg <= reg_to; reg++) {
- SetRegister(reg, -1);
- }
-}
-
-
-void RegExpMacroAssemblerIrregexp::ReadCurrentPositionFromRegister(
- int register_index) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_SET_CP_TO_REGISTER, register_index);
-}
-
-
-void RegExpMacroAssemblerIrregexp::WriteStackPointerToRegister(
- int register_index) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_SET_REGISTER_TO_SP, register_index);
-}
-
-
-void RegExpMacroAssemblerIrregexp::ReadStackPointerFromRegister(
- int register_index) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_SET_SP_TO_REGISTER, register_index);
-}
-
-
-void RegExpMacroAssemblerIrregexp::SetCurrentPositionFromEnd(int by) {
- DCHECK(is_uint24(by));
- Emit(BC_SET_CURRENT_POSITION_FROM_END, by);
-}
-
-
-void RegExpMacroAssemblerIrregexp::SetRegister(int register_index, int to) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_SET_REGISTER, register_index);
- Emit32(to);
-}
-
-
-void RegExpMacroAssemblerIrregexp::AdvanceRegister(int register_index, int by) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_ADVANCE_REGISTER, register_index);
- Emit32(by);
-}
-
-
-void RegExpMacroAssemblerIrregexp::PopCurrentPosition() {
- Emit(BC_POP_CP, 0);
-}
-
-
-void RegExpMacroAssemblerIrregexp::PushCurrentPosition() {
- Emit(BC_PUSH_CP, 0);
-}
-
-
-void RegExpMacroAssemblerIrregexp::Backtrack() {
- Emit(BC_POP_BT, 0);
-}
-
-
-void RegExpMacroAssemblerIrregexp::GoTo(Label* l) {
- if (advance_current_end_ == pc_) {
- // Combine advance current and goto.
- pc_ = advance_current_start_;
- Emit(BC_ADVANCE_CP_AND_GOTO, advance_current_offset_);
- EmitOrLink(l);
- advance_current_end_ = kInvalidPC;
- } else {
- // Regular goto.
- Emit(BC_GOTO, 0);
- EmitOrLink(l);
- }
-}
-
-
-void RegExpMacroAssemblerIrregexp::PushBacktrack(Label* l) {
- Emit(BC_PUSH_BT, 0);
- EmitOrLink(l);
-}
-
-
-bool RegExpMacroAssemblerIrregexp::Succeed() {
- Emit(BC_SUCCEED, 0);
- return false; // Restart matching for global regexp not supported.
-}
-
-
-void RegExpMacroAssemblerIrregexp::Fail() {
- Emit(BC_FAIL, 0);
-}
-
-
-void RegExpMacroAssemblerIrregexp::AdvanceCurrentPosition(int by) {
- DCHECK(by >= kMinCPOffset);
- DCHECK(by <= kMaxCPOffset);
- advance_current_start_ = pc_;
- advance_current_offset_ = by;
- Emit(BC_ADVANCE_CP, by);
- advance_current_end_ = pc_;
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckGreedyLoop(
- Label* on_tos_equals_current_position) {
- Emit(BC_CHECK_GREEDY, 0);
- EmitOrLink(on_tos_equals_current_position);
-}
-
-
-void RegExpMacroAssemblerIrregexp::LoadCurrentCharacter(int cp_offset,
- Label* on_failure,
- bool check_bounds,
- int characters) {
- DCHECK(cp_offset >= kMinCPOffset);
- DCHECK(cp_offset <= kMaxCPOffset);
- int bytecode;
- if (check_bounds) {
- if (characters == 4) {
- bytecode = BC_LOAD_4_CURRENT_CHARS;
- } else if (characters == 2) {
- bytecode = BC_LOAD_2_CURRENT_CHARS;
- } else {
- DCHECK(characters == 1);
- bytecode = BC_LOAD_CURRENT_CHAR;
- }
- } else {
- if (characters == 4) {
- bytecode = BC_LOAD_4_CURRENT_CHARS_UNCHECKED;
- } else if (characters == 2) {
- bytecode = BC_LOAD_2_CURRENT_CHARS_UNCHECKED;
- } else {
- DCHECK(characters == 1);
- bytecode = BC_LOAD_CURRENT_CHAR_UNCHECKED;
- }
- }
- Emit(bytecode, cp_offset);
- if (check_bounds) EmitOrLink(on_failure);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckCharacterLT(uc16 limit,
- Label* on_less) {
- Emit(BC_CHECK_LT, limit);
- EmitOrLink(on_less);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckCharacterGT(uc16 limit,
- Label* on_greater) {
- Emit(BC_CHECK_GT, limit);
- EmitOrLink(on_greater);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckCharacter(uint32_t c, Label* on_equal) {
- if (c > MAX_FIRST_ARG) {
- Emit(BC_CHECK_4_CHARS, 0);
- Emit32(c);
- } else {
- Emit(BC_CHECK_CHAR, c);
- }
- EmitOrLink(on_equal);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckAtStart(Label* on_at_start) {
- Emit(BC_CHECK_AT_START, 0);
- EmitOrLink(on_at_start);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckNotAtStart(Label* on_not_at_start) {
- Emit(BC_CHECK_NOT_AT_START, 0);
- EmitOrLink(on_not_at_start);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckNotCharacter(uint32_t c,
- Label* on_not_equal) {
- if (c > MAX_FIRST_ARG) {
- Emit(BC_CHECK_NOT_4_CHARS, 0);
- Emit32(c);
- } else {
- Emit(BC_CHECK_NOT_CHAR, c);
- }
- EmitOrLink(on_not_equal);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckCharacterAfterAnd(
- uint32_t c,
- uint32_t mask,
- Label* on_equal) {
- if (c > MAX_FIRST_ARG) {
- Emit(BC_AND_CHECK_4_CHARS, 0);
- Emit32(c);
- } else {
- Emit(BC_AND_CHECK_CHAR, c);
- }
- Emit32(mask);
- EmitOrLink(on_equal);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckNotCharacterAfterAnd(
- uint32_t c,
- uint32_t mask,
- Label* on_not_equal) {
- if (c > MAX_FIRST_ARG) {
- Emit(BC_AND_CHECK_NOT_4_CHARS, 0);
- Emit32(c);
- } else {
- Emit(BC_AND_CHECK_NOT_CHAR, c);
- }
- Emit32(mask);
- EmitOrLink(on_not_equal);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- Emit(BC_MINUS_AND_CHECK_NOT_CHAR, c);
- Emit16(minus);
- Emit16(mask);
- EmitOrLink(on_not_equal);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- Emit(BC_CHECK_CHAR_IN_RANGE, 0);
- Emit16(from);
- Emit16(to);
- EmitOrLink(on_in_range);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- Emit(BC_CHECK_CHAR_NOT_IN_RANGE, 0);
- Emit16(from);
- Emit16(to);
- EmitOrLink(on_not_in_range);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckBitInTable(
- Handle<ByteArray> table, Label* on_bit_set) {
- Emit(BC_CHECK_BIT_IN_TABLE, 0);
- EmitOrLink(on_bit_set);
- for (int i = 0; i < kTableSize; i += kBitsPerByte) {
- int byte = 0;
- for (int j = 0; j < kBitsPerByte; j++) {
- if (table->get(i + j) != 0) byte |= 1 << j;
- }
- Emit8(byte);
- }
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckNotBackReference(int start_reg,
- Label* on_not_equal) {
- DCHECK(start_reg >= 0);
- DCHECK(start_reg <= kMaxRegister);
- Emit(BC_CHECK_NOT_BACK_REF, start_reg);
- EmitOrLink(on_not_equal);
-}
-
-
-void RegExpMacroAssemblerIrregexp::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_not_equal) {
- DCHECK(start_reg >= 0);
- DCHECK(start_reg <= kMaxRegister);
- Emit(BC_CHECK_NOT_BACK_REF_NO_CASE, start_reg);
- EmitOrLink(on_not_equal);
-}
-
-
-void RegExpMacroAssemblerIrregexp::IfRegisterLT(int register_index,
- int comparand,
- Label* on_less_than) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_CHECK_REGISTER_LT, register_index);
- Emit32(comparand);
- EmitOrLink(on_less_than);
-}
-
-
-void RegExpMacroAssemblerIrregexp::IfRegisterGE(int register_index,
- int comparand,
- Label* on_greater_or_equal) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_CHECK_REGISTER_GE, register_index);
- Emit32(comparand);
- EmitOrLink(on_greater_or_equal);
-}
-
-
-void RegExpMacroAssemblerIrregexp::IfRegisterEqPos(int register_index,
- Label* on_eq) {
- DCHECK(register_index >= 0);
- DCHECK(register_index <= kMaxRegister);
- Emit(BC_CHECK_REGISTER_EQ_POS, register_index);
- EmitOrLink(on_eq);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerIrregexp::GetCode(
- Handle<String> source) {
- Bind(&backtrack_);
- Emit(BC_POP_BT, 0);
- Handle<ByteArray> array = isolate_->factory()->NewByteArray(length());
- Copy(array->GetDataStartAddress());
- return array;
-}
-
-
-int RegExpMacroAssemblerIrregexp::length() {
- return pc_;
-}
-
-
-void RegExpMacroAssemblerIrregexp::Copy(Address a) {
- MemCopy(a, buffer_.start(), length());
-}
-
-
-void RegExpMacroAssemblerIrregexp::Expand() {
- bool old_buffer_was_our_own = own_buffer_;
- Vector<byte> old_buffer = buffer_;
- buffer_ = Vector<byte>::New(old_buffer.length() * 2);
- own_buffer_ = true;
- MemCopy(buffer_.start(), old_buffer.start(), old_buffer.length());
- if (old_buffer_was_our_own) {
- old_buffer.Dispose();
- }
-}
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
-#define V8_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
-
-#include "src/regexp-macro-assembler.h"
-
-namespace v8 {
-namespace internal {
-
-#ifdef V8_INTERPRETED_REGEXP
-
-// A light-weight assembler for the Irregexp byte code.
-class RegExpMacroAssemblerIrregexp: public RegExpMacroAssembler {
- public:
- // Create an assembler. Instructions and relocation information are emitted
- // into a buffer, with the instructions starting from the beginning and the
- // relocation information starting from the end of the buffer. See CodeDesc
- // for a detailed comment on the layout (globals.h).
- //
- // If the provided buffer is NULL, the assembler allocates and grows its own
- // buffer, and buffer_size determines the initial buffer size. The buffer is
- // owned by the assembler and deallocated upon destruction of the assembler.
- //
- // If the provided buffer is not NULL, the assembler uses the provided buffer
- // for code generation and assumes its size to be buffer_size. If the buffer
- // is too small, a fatal error occurs. No deallocation of the buffer is done
- // upon destruction of the assembler.
- RegExpMacroAssemblerIrregexp(Isolate* isolate, Vector<byte> buffer,
- Zone* zone);
- virtual ~RegExpMacroAssemblerIrregexp();
- // The byte-code interpreter checks on each push anyway.
- virtual int stack_limit_slack() { return 1; }
- virtual bool CanReadUnaligned() { return false; }
- virtual void Bind(Label* label);
- virtual void AdvanceCurrentPosition(int by); // Signed cp change.
- virtual void PopCurrentPosition();
- virtual void PushCurrentPosition();
- virtual void Backtrack();
- virtual void GoTo(Label* label);
- virtual void PushBacktrack(Label* label);
- virtual bool Succeed();
- virtual void Fail();
- virtual void PopRegister(int register_index);
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void AdvanceRegister(int reg, int by); // r[reg] += by.
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void WriteStackPointerToRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void CheckCharacter(unsigned c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(unsigned c,
- unsigned mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void IfRegisterLT(int register_index, int comparand, Label* if_lt);
- virtual void IfRegisterGE(int register_index, int comparand, Label* if_ge);
- virtual void IfRegisterEqPos(int register_index, Label* if_eq);
-
- virtual IrregexpImplementation Implementation();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
-
- private:
- void Expand();
- // Code and bitmap emission.
- inline void EmitOrLink(Label* label);
- inline void Emit32(uint32_t x);
- inline void Emit16(uint32_t x);
- inline void Emit8(uint32_t x);
- inline void Emit(uint32_t bc, uint32_t arg);
- // Bytecode buffer.
- int length();
- void Copy(Address a);
-
- // The buffer into which code and relocation info are generated.
- Vector<byte> buffer_;
- // The program counter.
- int pc_;
- // True if the assembler owns the buffer, false if buffer is external.
- bool own_buffer_;
- Label backtrack_;
-
- int advance_current_start_;
- int advance_current_offset_;
- int advance_current_end_;
-
- Isolate* isolate_;
-
- static const int kInvalidPC = -1;
-
- DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpMacroAssemblerIrregexp);
-};
-
-#endif // V8_INTERPRETED_REGEXP
-
-} } // namespace v8::internal
-
-#endif // V8_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#include "src/ast.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-macro-assembler-tracer.h"
-
-namespace v8 {
-namespace internal {
-
-RegExpMacroAssemblerTracer::RegExpMacroAssemblerTracer(
- Isolate* isolate, RegExpMacroAssembler* assembler)
- : RegExpMacroAssembler(isolate, assembler->zone()), assembler_(assembler) {
- unsigned int type = assembler->Implementation();
- DCHECK(type < 6);
- const char* impl_names[] = {"IA32", "ARM", "ARM64",
- "MIPS", "X64", "X87", "Bytecode"};
- PrintF("RegExpMacroAssembler%s();\n", impl_names[type]);
-}
-
-
-RegExpMacroAssemblerTracer::~RegExpMacroAssemblerTracer() {
-}
-
-
-void RegExpMacroAssemblerTracer::AbortedCodeGeneration() {
- PrintF(" AbortedCodeGeneration\n");
- assembler_->AbortedCodeGeneration();
-}
-
-
-// This is used for printing out debugging information. It makes an integer
-// that is closely related to the address of an object.
-static int LabelToInt(Label* label) {
- return static_cast<int>(reinterpret_cast<intptr_t>(label));
-}
-
-
-void RegExpMacroAssemblerTracer::Bind(Label* label) {
- PrintF("label[%08x]: (Bind)\n", LabelToInt(label));
- assembler_->Bind(label);
-}
-
-
-void RegExpMacroAssemblerTracer::AdvanceCurrentPosition(int by) {
- PrintF(" AdvanceCurrentPosition(by=%d);\n", by);
- assembler_->AdvanceCurrentPosition(by);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckGreedyLoop(Label* label) {
- PrintF(" CheckGreedyLoop(label[%08x]);\n\n", LabelToInt(label));
- assembler_->CheckGreedyLoop(label);
-}
-
-
-void RegExpMacroAssemblerTracer::PopCurrentPosition() {
- PrintF(" PopCurrentPosition();\n");
- assembler_->PopCurrentPosition();
-}
-
-
-void RegExpMacroAssemblerTracer::PushCurrentPosition() {
- PrintF(" PushCurrentPosition();\n");
- assembler_->PushCurrentPosition();
-}
-
-
-void RegExpMacroAssemblerTracer::Backtrack() {
- PrintF(" Backtrack();\n");
- assembler_->Backtrack();
-}
-
-
-void RegExpMacroAssemblerTracer::GoTo(Label* label) {
- PrintF(" GoTo(label[%08x]);\n\n", LabelToInt(label));
- assembler_->GoTo(label);
-}
-
-
-void RegExpMacroAssemblerTracer::PushBacktrack(Label* label) {
- PrintF(" PushBacktrack(label[%08x]);\n", LabelToInt(label));
- assembler_->PushBacktrack(label);
-}
-
-
-bool RegExpMacroAssemblerTracer::Succeed() {
- bool restart = assembler_->Succeed();
- PrintF(" Succeed();%s\n", restart ? " [restart for global match]" : "");
- return restart;
-}
-
-
-void RegExpMacroAssemblerTracer::Fail() {
- PrintF(" Fail();");
- assembler_->Fail();
-}
-
-
-void RegExpMacroAssemblerTracer::PopRegister(int register_index) {
- PrintF(" PopRegister(register=%d);\n", register_index);
- assembler_->PopRegister(register_index);
-}
-
-
-void RegExpMacroAssemblerTracer::PushRegister(
- int register_index,
- StackCheckFlag check_stack_limit) {
- PrintF(" PushRegister(register=%d, %s);\n",
- register_index,
- check_stack_limit ? "check stack limit" : "");
- assembler_->PushRegister(register_index, check_stack_limit);
-}
-
-
-void RegExpMacroAssemblerTracer::AdvanceRegister(int reg, int by) {
- PrintF(" AdvanceRegister(register=%d, by=%d);\n", reg, by);
- assembler_->AdvanceRegister(reg, by);
-}
-
-
-void RegExpMacroAssemblerTracer::SetCurrentPositionFromEnd(int by) {
- PrintF(" SetCurrentPositionFromEnd(by=%d);\n", by);
- assembler_->SetCurrentPositionFromEnd(by);
-}
-
-
-void RegExpMacroAssemblerTracer::SetRegister(int register_index, int to) {
- PrintF(" SetRegister(register=%d, to=%d);\n", register_index, to);
- assembler_->SetRegister(register_index, to);
-}
-
-
-void RegExpMacroAssemblerTracer::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- PrintF(" WriteCurrentPositionToRegister(register=%d,cp_offset=%d);\n",
- reg,
- cp_offset);
- assembler_->WriteCurrentPositionToRegister(reg, cp_offset);
-}
-
-
-void RegExpMacroAssemblerTracer::ClearRegisters(int reg_from, int reg_to) {
- PrintF(" ClearRegister(from=%d, to=%d);\n", reg_from, reg_to);
- assembler_->ClearRegisters(reg_from, reg_to);
-}
-
-
-void RegExpMacroAssemblerTracer::ReadCurrentPositionFromRegister(int reg) {
- PrintF(" ReadCurrentPositionFromRegister(register=%d);\n", reg);
- assembler_->ReadCurrentPositionFromRegister(reg);
-}
-
-
-void RegExpMacroAssemblerTracer::WriteStackPointerToRegister(int reg) {
- PrintF(" WriteStackPointerToRegister(register=%d);\n", reg);
- assembler_->WriteStackPointerToRegister(reg);
-}
-
-
-void RegExpMacroAssemblerTracer::ReadStackPointerFromRegister(int reg) {
- PrintF(" ReadStackPointerFromRegister(register=%d);\n", reg);
- assembler_->ReadStackPointerFromRegister(reg);
-}
-
-
-void RegExpMacroAssemblerTracer::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- const char* check_msg = check_bounds ? "" : " (unchecked)";
- PrintF(" LoadCurrentCharacter(cp_offset=%d, label[%08x]%s (%d chars));\n",
- cp_offset,
- LabelToInt(on_end_of_input),
- check_msg,
- characters);
- assembler_->LoadCurrentCharacter(cp_offset,
- on_end_of_input,
- check_bounds,
- characters);
-}
-
-
-class PrintablePrinter {
- public:
- explicit PrintablePrinter(uc16 character) : character_(character) { }
-
- const char* operator*() {
- if (character_ >= ' ' && character_ <= '~') {
- buffer_[0] = '(';
- buffer_[1] = static_cast<char>(character_);
- buffer_[2] = ')';
- buffer_[3] = '\0';
- } else {
- buffer_[0] = '\0';
- }
- return &buffer_[0];
- }
-
- private:
- uc16 character_;
- char buffer_[4];
-};
-
-
-void RegExpMacroAssemblerTracer::CheckCharacterLT(uc16 limit, Label* on_less) {
- PrintablePrinter printable(limit);
- PrintF(" CheckCharacterLT(c=0x%04x%s, label[%08x]);\n",
- limit,
- *printable,
- LabelToInt(on_less));
- assembler_->CheckCharacterLT(limit, on_less);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckCharacterGT(uc16 limit,
- Label* on_greater) {
- PrintablePrinter printable(limit);
- PrintF(" CheckCharacterGT(c=0x%04x%s, label[%08x]);\n",
- limit,
- *printable,
- LabelToInt(on_greater));
- assembler_->CheckCharacterGT(limit, on_greater);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckCharacter(unsigned c, Label* on_equal) {
- PrintablePrinter printable(c);
- PrintF(" CheckCharacter(c=0x%04x%s, label[%08x]);\n",
- c,
- *printable,
- LabelToInt(on_equal));
- assembler_->CheckCharacter(c, on_equal);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckAtStart(Label* on_at_start) {
- PrintF(" CheckAtStart(label[%08x]);\n", LabelToInt(on_at_start));
- assembler_->CheckAtStart(on_at_start);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckNotAtStart(Label* on_not_at_start) {
- PrintF(" CheckNotAtStart(label[%08x]);\n", LabelToInt(on_not_at_start));
- assembler_->CheckNotAtStart(on_not_at_start);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckNotCharacter(unsigned c,
- Label* on_not_equal) {
- PrintablePrinter printable(c);
- PrintF(" CheckNotCharacter(c=0x%04x%s, label[%08x]);\n",
- c,
- *printable,
- LabelToInt(on_not_equal));
- assembler_->CheckNotCharacter(c, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckCharacterAfterAnd(
- unsigned c,
- unsigned mask,
- Label* on_equal) {
- PrintablePrinter printable(c);
- PrintF(" CheckCharacterAfterAnd(c=0x%04x%s, mask=0x%04x, label[%08x]);\n",
- c,
- *printable,
- mask,
- LabelToInt(on_equal));
- assembler_->CheckCharacterAfterAnd(c, mask, on_equal);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckNotCharacterAfterAnd(
- unsigned c,
- unsigned mask,
- Label* on_not_equal) {
- PrintablePrinter printable(c);
- PrintF(" CheckNotCharacterAfterAnd(c=0x%04x%s, mask=0x%04x, label[%08x]);\n",
- c,
- *printable,
- mask,
- LabelToInt(on_not_equal));
- assembler_->CheckNotCharacterAfterAnd(c, mask, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- PrintF(" CheckNotCharacterAfterMinusAnd(c=0x%04x, minus=%04x, mask=0x%04x, "
- "label[%08x]);\n",
- c,
- minus,
- mask,
- LabelToInt(on_not_equal));
- assembler_->CheckNotCharacterAfterMinusAnd(c, minus, mask, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- PrintablePrinter printable_from(from);
- PrintablePrinter printable_to(to);
- PrintF(" CheckCharacterInRange(from=0x%04x%s, to=0x%04x%s, label[%08x]);\n",
- from,
- *printable_from,
- to,
- *printable_to,
- LabelToInt(on_not_in_range));
- assembler_->CheckCharacterInRange(from, to, on_not_in_range);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- PrintablePrinter printable_from(from);
- PrintablePrinter printable_to(to);
- PrintF(
- " CheckCharacterNotInRange(from=0x%04x%s," " to=%04x%s, label[%08x]);\n",
- from,
- *printable_from,
- to,
- *printable_to,
- LabelToInt(on_in_range));
- assembler_->CheckCharacterNotInRange(from, to, on_in_range);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckBitInTable(
- Handle<ByteArray> table, Label* on_bit_set) {
- PrintF(" CheckBitInTable(label[%08x] ", LabelToInt(on_bit_set));
- for (int i = 0; i < kTableSize; i++) {
- PrintF("%c", table->get(i) != 0 ? 'X' : '.');
- if (i % 32 == 31 && i != kTableMask) {
- PrintF("\n ");
- }
- }
- PrintF(");\n");
- assembler_->CheckBitInTable(table, on_bit_set);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckNotBackReference(int start_reg,
- Label* on_no_match) {
- PrintF(" CheckNotBackReference(register=%d, label[%08x]);\n", start_reg,
- LabelToInt(on_no_match));
- assembler_->CheckNotBackReference(start_reg, on_no_match);
-}
-
-
-void RegExpMacroAssemblerTracer::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_no_match) {
- PrintF(" CheckNotBackReferenceIgnoreCase(register=%d, label[%08x]);\n",
- start_reg, LabelToInt(on_no_match));
- assembler_->CheckNotBackReferenceIgnoreCase(start_reg, on_no_match);
-}
-
-
-bool RegExpMacroAssemblerTracer::CheckSpecialCharacterClass(
- uc16 type,
- Label* on_no_match) {
- bool supported = assembler_->CheckSpecialCharacterClass(type,
- on_no_match);
- PrintF(" CheckSpecialCharacterClass(type='%c', label[%08x]): %s;\n",
- type,
- LabelToInt(on_no_match),
- supported ? "true" : "false");
- return supported;
-}
-
-
-void RegExpMacroAssemblerTracer::IfRegisterLT(int register_index,
- int comparand, Label* if_lt) {
- PrintF(" IfRegisterLT(register=%d, number=%d, label[%08x]);\n",
- register_index, comparand, LabelToInt(if_lt));
- assembler_->IfRegisterLT(register_index, comparand, if_lt);
-}
-
-
-void RegExpMacroAssemblerTracer::IfRegisterEqPos(int register_index,
- Label* if_eq) {
- PrintF(" IfRegisterEqPos(register=%d, label[%08x]);\n",
- register_index, LabelToInt(if_eq));
- assembler_->IfRegisterEqPos(register_index, if_eq);
-}
-
-
-void RegExpMacroAssemblerTracer::IfRegisterGE(int register_index,
- int comparand, Label* if_ge) {
- PrintF(" IfRegisterGE(register=%d, number=%d, label[%08x]);\n",
- register_index, comparand, LabelToInt(if_ge));
- assembler_->IfRegisterGE(register_index, comparand, if_ge);
-}
-
-
-RegExpMacroAssembler::IrregexpImplementation
- RegExpMacroAssemblerTracer::Implementation() {
- return assembler_->Implementation();
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerTracer::GetCode(Handle<String> source) {
- PrintF(" GetCode(%s);\n", source->ToCString().get());
- return assembler_->GetCode(source);
-}
-
-} // namespace internal
-} // namespace v8
+++ /dev/null
-// Copyright 2008 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_REGEXP_MACRO_ASSEMBLER_TRACER_H_
-#define V8_REGEXP_MACRO_ASSEMBLER_TRACER_H_
-
-namespace v8 {
-namespace internal {
-
-// Decorator on a RegExpMacroAssembler that write all calls.
-class RegExpMacroAssemblerTracer: public RegExpMacroAssembler {
- public:
- RegExpMacroAssemblerTracer(Isolate* isolate, RegExpMacroAssembler* assembler);
- virtual ~RegExpMacroAssemblerTracer();
- virtual void AbortedCodeGeneration();
- virtual int stack_limit_slack() { return assembler_->stack_limit_slack(); }
- virtual bool CanReadUnaligned() { return assembler_->CanReadUnaligned(); }
- virtual void AdvanceCurrentPosition(int by); // Signed cp change.
- virtual void AdvanceRegister(int reg, int by); // r[reg] += by.
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(unsigned c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(unsigned c,
- unsigned and_with,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(unsigned c,
- unsigned and_with,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 and_with,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
- virtual bool CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
-
- private:
- RegExpMacroAssembler* assembler_;
-};
-
-}} // namespace v8::internal
-
-#endif // V8_REGEXP_MACRO_ASSEMBLER_TRACER_H_
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#include "src/assembler.h"
-#include "src/ast.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/simulator.h"
-
-namespace v8 {
-namespace internal {
-
-RegExpMacroAssembler::RegExpMacroAssembler(Isolate* isolate, Zone* zone)
- : slow_safe_compiler_(false),
- global_mode_(NOT_GLOBAL),
- isolate_(isolate),
- zone_(zone) {}
-
-
-RegExpMacroAssembler::~RegExpMacroAssembler() {
-}
-
-
-#ifndef V8_INTERPRETED_REGEXP // Avoid unused code, e.g., on ARM.
-
-NativeRegExpMacroAssembler::NativeRegExpMacroAssembler(Isolate* isolate,
- Zone* zone)
- : RegExpMacroAssembler(isolate, zone) {}
-
-
-NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() {
-}
-
-
-bool NativeRegExpMacroAssembler::CanReadUnaligned() {
- return FLAG_enable_unaligned_accesses && !slow_safe();
-}
-
-const byte* NativeRegExpMacroAssembler::StringCharacterPosition(
- String* subject,
- int start_index) {
- if (subject->IsConsString()) {
- subject = ConsString::cast(subject)->first();
- } else if (subject->IsSlicedString()) {
- start_index += SlicedString::cast(subject)->offset();
- subject = SlicedString::cast(subject)->parent();
- }
- DCHECK(start_index >= 0);
- DCHECK(start_index <= subject->length());
- if (subject->IsSeqOneByteString()) {
- return reinterpret_cast<const byte*>(
- SeqOneByteString::cast(subject)->GetChars() + start_index);
- } else if (subject->IsSeqTwoByteString()) {
- return reinterpret_cast<const byte*>(
- SeqTwoByteString::cast(subject)->GetChars() + start_index);
- } else if (subject->IsExternalOneByteString()) {
- return reinterpret_cast<const byte*>(
- ExternalOneByteString::cast(subject)->GetChars() + start_index);
- } else {
- return reinterpret_cast<const byte*>(
- ExternalTwoByteString::cast(subject)->GetChars() + start_index);
- }
-}
-
-
-int NativeRegExpMacroAssembler::CheckStackGuardState(
- Isolate* isolate, int start_index, bool is_direct_call,
- Address* return_address, Code* re_code, String** subject,
- const byte** input_start, const byte** input_end) {
- DCHECK(re_code->instruction_start() <= *return_address);
- DCHECK(*return_address <= re_code->instruction_end());
- int return_value = 0;
- // Prepare for possible GC.
- HandleScope handles(isolate);
- Handle<Code> code_handle(re_code);
- Handle<String> subject_handle(*subject);
- bool is_one_byte = subject_handle->IsOneByteRepresentationUnderneath();
-
- StackLimitCheck check(isolate);
- if (check.JsHasOverflowed()) {
- isolate->StackOverflow();
- return_value = EXCEPTION;
- } else if (is_direct_call) {
- // If not real stack overflow the stack guard was used to interrupt
- // execution for another purpose. If this is a direct call from JavaScript
- // retry the RegExp forcing the call through the runtime system.
- // Currently the direct call cannot handle a GC.
- return_value = RETRY;
- } else {
- Object* result = isolate->stack_guard()->HandleInterrupts();
- if (result->IsException()) return_value = EXCEPTION;
- }
-
- DisallowHeapAllocation no_gc;
-
- if (*code_handle != re_code) { // Return address no longer valid
- intptr_t delta = code_handle->address() - re_code->address();
- // Overwrite the return address on the stack.
- *return_address += delta;
- }
-
- // If we continue, we need to update the subject string addresses.
- if (return_value == 0) {
- // String encoding might have changed.
- if (subject_handle->IsOneByteRepresentationUnderneath() != is_one_byte) {
- // If we changed between an LATIN1 and an UC16 string, the specialized
- // code cannot be used, and we need to restart regexp matching from
- // scratch (including, potentially, compiling a new version of the code).
- return_value = RETRY;
- } else {
- *subject = *subject_handle;
- intptr_t byte_length = *input_end - *input_start;
- *input_start = StringCharacterPosition(*subject, start_index);
- *input_end = *input_start + byte_length;
- }
- }
- return return_value;
-}
-
-
-NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Match(
- Handle<Code> regexp_code,
- Handle<String> subject,
- int* offsets_vector,
- int offsets_vector_length,
- int previous_index,
- Isolate* isolate) {
-
- DCHECK(subject->IsFlat());
- DCHECK(previous_index >= 0);
- DCHECK(previous_index <= subject->length());
-
- // No allocations before calling the regexp, but we can't use
- // DisallowHeapAllocation, since regexps might be preempted, and another
- // thread might do allocation anyway.
-
- String* subject_ptr = *subject;
- // Character offsets into string.
- int start_offset = previous_index;
- int char_length = subject_ptr->length() - start_offset;
- int slice_offset = 0;
-
- // The string has been flattened, so if it is a cons string it contains the
- // full string in the first part.
- if (StringShape(subject_ptr).IsCons()) {
- DCHECK_EQ(0, ConsString::cast(subject_ptr)->second()->length());
- subject_ptr = ConsString::cast(subject_ptr)->first();
- } else if (StringShape(subject_ptr).IsSliced()) {
- SlicedString* slice = SlicedString::cast(subject_ptr);
- subject_ptr = slice->parent();
- slice_offset = slice->offset();
- }
- // Ensure that an underlying string has the same representation.
- bool is_one_byte = subject_ptr->IsOneByteRepresentation();
- DCHECK(subject_ptr->IsExternalString() || subject_ptr->IsSeqString());
- // String is now either Sequential or External
- int char_size_shift = is_one_byte ? 0 : 1;
-
- const byte* input_start =
- StringCharacterPosition(subject_ptr, start_offset + slice_offset);
- int byte_length = char_length << char_size_shift;
- const byte* input_end = input_start + byte_length;
- Result res = Execute(*regexp_code,
- *subject,
- start_offset,
- input_start,
- input_end,
- offsets_vector,
- offsets_vector_length,
- isolate);
- return res;
-}
-
-
-NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Execute(
- Code* code,
- String* input, // This needs to be the unpacked (sliced, cons) string.
- int start_offset,
- const byte* input_start,
- const byte* input_end,
- int* output,
- int output_size,
- Isolate* isolate) {
- // Ensure that the minimum stack has been allocated.
- RegExpStackScope stack_scope(isolate);
- Address stack_base = stack_scope.stack()->stack_base();
-
- int direct_call = 0;
- int result = CALL_GENERATED_REGEXP_CODE(code->entry(),
- input,
- start_offset,
- input_start,
- input_end,
- output,
- output_size,
- stack_base,
- direct_call,
- isolate);
- DCHECK(result >= RETRY);
-
- if (result == EXCEPTION && !isolate->has_pending_exception()) {
- // We detected a stack overflow (on the backtrack stack) in RegExp code,
- // but haven't created the exception yet.
- isolate->StackOverflow();
- }
- return static_cast<Result>(result);
-}
-
-
-const byte NativeRegExpMacroAssembler::word_character_map[] = {
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
-
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // '0' - '7'
- 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // '8' - '9'
-
- 0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'A' - 'G'
- 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'H' - 'O'
- 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'P' - 'W'
- 0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0xffu, // 'X' - 'Z', '_'
-
- 0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'a' - 'g'
- 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'h' - 'o'
- 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'p' - 'w'
- 0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // 'x' - 'z'
- // Latin-1 range
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
-
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
-
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
-
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
- 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
-};
-
-
-int NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16(
- Address byte_offset1,
- Address byte_offset2,
- size_t byte_length,
- Isolate* isolate) {
- unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
- isolate->regexp_macro_assembler_canonicalize();
- // This function is not allowed to cause a garbage collection.
- // A GC might move the calling generated code and invalidate the
- // return address on the stack.
- DCHECK(byte_length % 2 == 0);
- uc16* substring1 = reinterpret_cast<uc16*>(byte_offset1);
- uc16* substring2 = reinterpret_cast<uc16*>(byte_offset2);
- size_t length = byte_length >> 1;
-
- for (size_t i = 0; i < length; i++) {
- unibrow::uchar c1 = substring1[i];
- unibrow::uchar c2 = substring2[i];
- if (c1 != c2) {
- unibrow::uchar s1[1] = { c1 };
- canonicalize->get(c1, '\0', s1);
- if (s1[0] != c2) {
- unibrow::uchar s2[1] = { c2 };
- canonicalize->get(c2, '\0', s2);
- if (s1[0] != s2[0]) {
- return 0;
- }
- }
- }
- }
- return 1;
-}
-
-
-Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer,
- Address* stack_base,
- Isolate* isolate) {
- RegExpStack* regexp_stack = isolate->regexp_stack();
- size_t size = regexp_stack->stack_capacity();
- Address old_stack_base = regexp_stack->stack_base();
- DCHECK(old_stack_base == *stack_base);
- DCHECK(stack_pointer <= old_stack_base);
- DCHECK(static_cast<size_t>(old_stack_base - stack_pointer) <= size);
- Address new_stack_base = regexp_stack->EnsureCapacity(size * 2);
- if (new_stack_base == NULL) {
- return NULL;
- }
- *stack_base = new_stack_base;
- intptr_t stack_content_size = old_stack_base - stack_pointer;
- return new_stack_base - stack_content_size;
-}
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_REGEXP_MACRO_ASSEMBLER_H_
-#define V8_REGEXP_MACRO_ASSEMBLER_H_
-
-#include "src/ast.h"
-
-namespace v8 {
-namespace internal {
-
-struct DisjunctDecisionRow {
- RegExpCharacterClass cc;
- Label* on_match;
-};
-
-
-class RegExpMacroAssembler {
- public:
- // The implementation must be able to handle at least:
- static const int kMaxRegister = (1 << 16) - 1;
- static const int kMaxCPOffset = (1 << 15) - 1;
- static const int kMinCPOffset = -(1 << 15);
-
- static const int kTableSizeBits = 7;
- static const int kTableSize = 1 << kTableSizeBits;
- static const int kTableMask = kTableSize - 1;
-
- enum IrregexpImplementation {
- kIA32Implementation,
- kARMImplementation,
- kARM64Implementation,
- kMIPSImplementation,
- kPPCImplementation,
- kX64Implementation,
- kX87Implementation,
- kBytecodeImplementation
- };
-
- enum StackCheckFlag {
- kNoStackLimitCheck = false,
- kCheckStackLimit = true
- };
-
- RegExpMacroAssembler(Isolate* isolate, Zone* zone);
- virtual ~RegExpMacroAssembler();
- // This function is called when code generation is aborted, so that
- // the assembler could clean up internal data structures.
- virtual void AbortedCodeGeneration() {}
- // The maximal number of pushes between stack checks. Users must supply
- // kCheckStackLimit flag to push operations (instead of kNoStackLimitCheck)
- // at least once for every stack_limit() pushes that are executed.
- virtual int stack_limit_slack() = 0;
- virtual bool CanReadUnaligned() = 0;
- virtual void AdvanceCurrentPosition(int by) = 0; // Signed cp change.
- virtual void AdvanceRegister(int reg, int by) = 0; // r[reg] += by.
- // Continues execution from the position pushed on the top of the backtrack
- // stack by an earlier PushBacktrack(Label*).
- virtual void Backtrack() = 0;
- virtual void Bind(Label* label) = 0;
- virtual void CheckAtStart(Label* on_at_start) = 0;
- // Dispatch after looking the current character up in a 2-bits-per-entry
- // map. The destinations vector has up to 4 labels.
- virtual void CheckCharacter(unsigned c, Label* on_equal) = 0;
- // Bitwise and the current character with the given constant and then
- // check for a match with c.
- virtual void CheckCharacterAfterAnd(unsigned c,
- unsigned and_with,
- Label* on_equal) = 0;
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater) = 0;
- virtual void CheckCharacterLT(uc16 limit, Label* on_less) = 0;
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position) = 0;
- virtual void CheckNotAtStart(Label* on_not_at_start) = 0;
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match) = 0;
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match) = 0;
- // Check the current character for a match with a literal character. If we
- // fail to match then goto the on_failure label. End of input always
- // matches. If the label is NULL then we should pop a backtrack address off
- // the stack and go to that.
- virtual void CheckNotCharacter(unsigned c, Label* on_not_equal) = 0;
- virtual void CheckNotCharacterAfterAnd(unsigned c,
- unsigned and_with,
- Label* on_not_equal) = 0;
- // Subtract a constant from the current character, then and with the given
- // constant and then check for a match with c.
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 and_with,
- Label* on_not_equal) = 0;
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to, // Both inclusive.
- Label* on_in_range) = 0;
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to, // Both inclusive.
- Label* on_not_in_range) = 0;
-
- // The current character (modulus the kTableSize) is looked up in the byte
- // array, and if the found byte is non-zero, we jump to the on_bit_set label.
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set) = 0;
-
- // Checks whether the given offset from the current position is before
- // the end of the string. May overwrite the current character.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input) {
- LoadCurrentCharacter(cp_offset, on_outside_input, true);
- }
- // Check whether a standard/default character class matches the current
- // character. Returns false if the type of special character class does
- // not have custom support.
- // May clobber the current loaded character.
- virtual bool CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- return false;
- }
- virtual void Fail() = 0;
- virtual Handle<HeapObject> GetCode(Handle<String> source) = 0;
- virtual void GoTo(Label* label) = 0;
- // Check whether a register is >= a given constant and go to a label if it
- // is. Backtracks instead if the label is NULL.
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge) = 0;
- // Check whether a register is < a given constant and go to a label if it is.
- // Backtracks instead if the label is NULL.
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt) = 0;
- // Check whether a register is == to the current position and go to a
- // label if it is.
- virtual void IfRegisterEqPos(int reg, Label* if_eq) = 0;
- virtual IrregexpImplementation Implementation() = 0;
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1) = 0;
- virtual void PopCurrentPosition() = 0;
- virtual void PopRegister(int register_index) = 0;
- // Pushes the label on the backtrack stack, so that a following Backtrack
- // will go to this label. Always checks the backtrack stack limit.
- virtual void PushBacktrack(Label* label) = 0;
- virtual void PushCurrentPosition() = 0;
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit) = 0;
- virtual void ReadCurrentPositionFromRegister(int reg) = 0;
- virtual void ReadStackPointerFromRegister(int reg) = 0;
- virtual void SetCurrentPositionFromEnd(int by) = 0;
- virtual void SetRegister(int register_index, int to) = 0;
- // Return whether the matching (with a global regexp) will be restarted.
- virtual bool Succeed() = 0;
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset) = 0;
- virtual void ClearRegisters(int reg_from, int reg_to) = 0;
- virtual void WriteStackPointerToRegister(int reg) = 0;
-
- // Controls the generation of large inlined constants in the code.
- void set_slow_safe(bool ssc) { slow_safe_compiler_ = ssc; }
- bool slow_safe() { return slow_safe_compiler_; }
-
- enum GlobalMode { NOT_GLOBAL, GLOBAL, GLOBAL_NO_ZERO_LENGTH_CHECK };
- // Set whether the regular expression has the global flag. Exiting due to
- // a failure in a global regexp may still mean success overall.
- inline void set_global_mode(GlobalMode mode) { global_mode_ = mode; }
- inline bool global() { return global_mode_ != NOT_GLOBAL; }
- inline bool global_with_zero_length_check() {
- return global_mode_ == GLOBAL;
- }
-
- Isolate* isolate() const { return isolate_; }
- Zone* zone() const { return zone_; }
-
- private:
- bool slow_safe_compiler_;
- bool global_mode_;
- Isolate* isolate_;
- Zone* zone_;
-};
-
-
-#ifndef V8_INTERPRETED_REGEXP // Avoid compiling unused code.
-
-class NativeRegExpMacroAssembler: public RegExpMacroAssembler {
- public:
- // Type of input string to generate code for.
- enum Mode { LATIN1 = 1, UC16 = 2 };
-
- // Result of calling generated native RegExp code.
- // RETRY: Something significant changed during execution, and the matching
- // should be retried from scratch.
- // EXCEPTION: Something failed during execution. If no exception has been
- // thrown, it's an internal out-of-memory, and the caller should
- // throw the exception.
- // FAILURE: Matching failed.
- // SUCCESS: Matching succeeded, and the output array has been filled with
- // capture positions.
- enum Result { RETRY = -2, EXCEPTION = -1, FAILURE = 0, SUCCESS = 1 };
-
- NativeRegExpMacroAssembler(Isolate* isolate, Zone* zone);
- virtual ~NativeRegExpMacroAssembler();
- virtual bool CanReadUnaligned();
-
- static Result Match(Handle<Code> regexp,
- Handle<String> subject,
- int* offsets_vector,
- int offsets_vector_length,
- int previous_index,
- Isolate* isolate);
-
- // Compares two-byte strings case insensitively.
- // Called from generated RegExp code.
- static int CaseInsensitiveCompareUC16(Address byte_offset1,
- Address byte_offset2,
- size_t byte_length,
- Isolate* isolate);
-
- // Called from RegExp if the backtrack stack limit is hit.
- // Tries to expand the stack. Returns the new stack-pointer if
- // successful, and updates the stack_top address, or returns 0 if unable
- // to grow the stack.
- // This function must not trigger a garbage collection.
- static Address GrowStack(Address stack_pointer, Address* stack_top,
- Isolate* isolate);
-
- static const byte* StringCharacterPosition(String* subject, int start_index);
-
- static int CheckStackGuardState(Isolate* isolate, int start_index,
- bool is_direct_call, Address* return_address,
- Code* re_code, String** subject,
- const byte** input_start,
- const byte** input_end);
-
- // Byte map of one byte characters with a 0xff if the character is a word
- // character (digit, letter or underscore) and 0x00 otherwise.
- // Used by generated RegExp code.
- static const byte word_character_map[256];
-
- static Address word_character_map_address() {
- return const_cast<Address>(&word_character_map[0]);
- }
-
- static Result Execute(Code* code,
- String* input,
- int start_offset,
- const byte* input_start,
- const byte* input_end,
- int* output,
- int output_size,
- Isolate* isolate);
-};
-
-#endif // V8_INTERPRETED_REGEXP
-
-} } // namespace v8::internal
-
-#endif // V8_REGEXP_MACRO_ASSEMBLER_H_
+++ /dev/null
-// Copyright 2009 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#include "src/regexp-stack.h"
-
-namespace v8 {
-namespace internal {
-
-RegExpStackScope::RegExpStackScope(Isolate* isolate)
- : regexp_stack_(isolate->regexp_stack()) {
- // Initialize, if not already initialized.
- regexp_stack_->EnsureCapacity(0);
-}
-
-
-RegExpStackScope::~RegExpStackScope() {
- // Reset the buffer if it has grown.
- regexp_stack_->Reset();
-}
-
-
-RegExpStack::RegExpStack()
- : isolate_(NULL) {
-}
-
-
-RegExpStack::~RegExpStack() {
- thread_local_.Free();
-}
-
-
-char* RegExpStack::ArchiveStack(char* to) {
- size_t size = sizeof(thread_local_);
- MemCopy(reinterpret_cast<void*>(to), &thread_local_, size);
- thread_local_ = ThreadLocal();
- return to + size;
-}
-
-
-char* RegExpStack::RestoreStack(char* from) {
- size_t size = sizeof(thread_local_);
- MemCopy(&thread_local_, reinterpret_cast<void*>(from), size);
- return from + size;
-}
-
-
-void RegExpStack::Reset() {
- if (thread_local_.memory_size_ > kMinimumStackSize) {
- DeleteArray(thread_local_.memory_);
- thread_local_ = ThreadLocal();
- }
-}
-
-
-void RegExpStack::ThreadLocal::Free() {
- if (memory_size_ > 0) {
- DeleteArray(memory_);
- Clear();
- }
-}
-
-
-Address RegExpStack::EnsureCapacity(size_t size) {
- if (size > kMaximumStackSize) return NULL;
- if (size < kMinimumStackSize) size = kMinimumStackSize;
- if (thread_local_.memory_size_ < size) {
- Address new_memory = NewArray<byte>(static_cast<int>(size));
- if (thread_local_.memory_size_ > 0) {
- // Copy original memory into top of new memory.
- MemCopy(reinterpret_cast<void*>(new_memory + size -
- thread_local_.memory_size_),
- reinterpret_cast<void*>(thread_local_.memory_),
- thread_local_.memory_size_);
- DeleteArray(thread_local_.memory_);
- }
- thread_local_.memory_ = new_memory;
- thread_local_.memory_size_ = size;
- thread_local_.limit_ = new_memory + kStackLimitSlack * kPointerSize;
- }
- return thread_local_.memory_ + thread_local_.memory_size_;
-}
-
-
-} // namespace internal
-} // namespace v8
+++ /dev/null
-// Copyright 2009 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_REGEXP_STACK_H_
-#define V8_REGEXP_STACK_H_
-
-namespace v8 {
-namespace internal {
-
-class RegExpStack;
-
-// Maintains a per-v8thread stack area that can be used by irregexp
-// implementation for its backtracking stack.
-// Since there is only one stack area, the Irregexp implementation is not
-// re-entrant. I.e., no regular expressions may be executed in the same thread
-// during a preempted Irregexp execution.
-class RegExpStackScope {
- public:
- // Create and delete an instance to control the life-time of a growing stack.
-
- // Initializes the stack memory area if necessary.
- explicit RegExpStackScope(Isolate* isolate);
- ~RegExpStackScope(); // Releases the stack if it has grown.
-
- RegExpStack* stack() const { return regexp_stack_; }
-
- private:
- RegExpStack* regexp_stack_;
-
- DISALLOW_COPY_AND_ASSIGN(RegExpStackScope);
-};
-
-
-class RegExpStack {
- public:
- // Number of allocated locations on the stack below the limit.
- // No sequence of pushes must be longer that this without doing a stack-limit
- // check.
- static const int kStackLimitSlack = 32;
-
- // Gives the top of the memory used as stack.
- Address stack_base() {
- DCHECK(thread_local_.memory_size_ != 0);
- return thread_local_.memory_ + thread_local_.memory_size_;
- }
-
- // The total size of the memory allocated for the stack.
- size_t stack_capacity() { return thread_local_.memory_size_; }
-
- // If the stack pointer gets below the limit, we should react and
- // either grow the stack or report an out-of-stack exception.
- // There is only a limited number of locations below the stack limit,
- // so users of the stack should check the stack limit during any
- // sequence of pushes longer that this.
- Address* limit_address() { return &(thread_local_.limit_); }
-
- // Ensures that there is a memory area with at least the specified size.
- // If passing zero, the default/minimum size buffer is allocated.
- Address EnsureCapacity(size_t size);
-
- // Thread local archiving.
- static int ArchiveSpacePerThread() {
- return static_cast<int>(sizeof(ThreadLocal));
- }
- char* ArchiveStack(char* to);
- char* RestoreStack(char* from);
- void FreeThreadResources() { thread_local_.Free(); }
-
- private:
- RegExpStack();
- ~RegExpStack();
-
- // Artificial limit used when no memory has been allocated.
- static const uintptr_t kMemoryTop = static_cast<uintptr_t>(-1);
-
- // Minimal size of allocated stack area.
- static const size_t kMinimumStackSize = 1 * KB;
-
- // Maximal size of allocated stack area.
- static const size_t kMaximumStackSize = 64 * MB;
-
- // Structure holding the allocated memory, size and limit.
- struct ThreadLocal {
- ThreadLocal() { Clear(); }
- // If memory_size_ > 0 then memory_ must be non-NULL.
- Address memory_;
- size_t memory_size_;
- Address limit_;
- void Clear() {
- memory_ = NULL;
- memory_size_ = 0;
- limit_ = reinterpret_cast<Address>(kMemoryTop);
- }
- void Free();
- };
-
- // Address of allocated memory.
- Address memory_address() {
- return reinterpret_cast<Address>(&thread_local_.memory_);
- }
-
- // Address of size of allocated memory.
- Address memory_size_address() {
- return reinterpret_cast<Address>(&thread_local_.memory_size_);
- }
-
- // Resets the buffer if it has grown beyond the default/minimum size.
- // After this, the buffer is either the default size, or it is empty, so
- // you have to call EnsureCapacity before using it again.
- void Reset();
-
- ThreadLocal thread_local_;
- Isolate* isolate_;
-
- friend class ExternalReference;
- friend class Isolate;
- friend class RegExpStackScope;
-
- DISALLOW_COPY_AND_ASSIGN(RegExpStack);
-};
-
-}} // namespace v8::internal
-
-#endif // V8_REGEXP_STACK_H_
--- /dev/null
+set noparent
+
+jochen@chromium.org
+marja@chromium.org
+ulan@chromium.org
+yangguo@chromium.org
--- /dev/null
+rmcilroy@chromium.org
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_ARM
+
+#include "src/regexp/arm/regexp-macro-assembler-arm.h"
+
+#include "src/code-stubs.h"
+#include "src/cpu-profiler.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - r4 : Temporarily stores the index of capture start after a matching pass
+ * for a global regexp.
+ * - r5 : Pointer to current code object (Code*) including heap object tag.
+ * - r6 : Current position in input, as negative offset from end of string.
+ * Please notice that this is the byte offset, not the character offset!
+ * - r7 : Currently loaded character. Must be loaded using
+ * LoadCurrentCharacter before using any of the dispatch methods.
+ * - r8 : Points to tip of backtrack stack
+ * - r9 : Unused, might be used by C code and expected unchanged.
+ * - r10 : End of input (points to byte after last character in input).
+ * - r11 : Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - r12 : IP register, used by assembler. Very volatile.
+ * - r13/sp : Points to tip of C stack.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * The stack will have the following structure:
+ * - fp[56] Isolate* isolate (address of the current isolate)
+ * - fp[52] direct_call (if 1, direct call from JavaScript code,
+ * if 0, call through the runtime system).
+ * - fp[48] stack_area_base (high end of the memory area to use as
+ * backtracking stack).
+ * - fp[44] capture array size (may fit multiple sets of matches)
+ * - fp[40] int* capture_array (int[num_saved_registers_], for output).
+ * - fp[36] secondary link/return address used by native call.
+ * --- sp when called ---
+ * - fp[32] return address (lr).
+ * - fp[28] old frame pointer (r11).
+ * - fp[0..24] backup of registers r4..r10.
+ * --- frame pointer ----
+ * - fp[-4] end of input (address of end of string).
+ * - fp[-8] start of input (address of first character in string).
+ * - fp[-12] start index (character index of start).
+ * - fp[-16] void* input_string (location of a handle containing the string).
+ * - fp[-20] success counter (only for global regexps to count matches).
+ * - fp[-24] Offset of location before start of input (effectively character
+ * position -1). Used to initialize capture registers to a
+ * non-position.
+ * - fp[-28] At start (if 1, we are starting at the start of the
+ * string, otherwise 0)
+ * - fp[-32] register 0 (Only positions must be stored in the first
+ * - register 1 num_saved_registers_ registers)
+ * - ...
+ * - register num_registers-1
+ * --- sp ---
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ * int start_index,
+ * Address start,
+ * Address end,
+ * Address secondary_return_address, // Only used by native call.
+ * int* capture_output_array,
+ * byte* stack_area_base,
+ * bool direct_call = false)
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in arm/simulator-arm.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the LR register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone,
+ Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_() {
+ DCHECK_EQ(0, registers_to_save % 2);
+ __ jmp(&entry_label_); // We'll write the entry code later.
+ __ bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() {
+ delete masm_;
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerARM::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ add(current_input_offset(),
+ current_input_offset(), Operand(by * char_size()));
+ }
+}
+
+
+void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) {
+ DCHECK(reg >= 0);
+ DCHECK(reg < num_registers_);
+ if (by != 0) {
+ __ ldr(r0, register_location(reg));
+ __ add(r0, r0, Operand(by));
+ __ str(r0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerARM::Backtrack() {
+ CheckPreemption();
+ // Pop Code* offset from backtrack stack, add Code* and jump to location.
+ Pop(r0);
+ __ add(pc, r0, Operand(code_pointer()));
+}
+
+
+void RegExpMacroAssemblerARM::Bind(Label* label) {
+ __ bind(label);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
+ __ cmp(current_character(), Operand(c));
+ BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
+ __ cmp(current_character(), Operand(limit));
+ BranchOrBacktrack(gt, on_greater);
+}
+
+
+void RegExpMacroAssemblerARM::CheckAtStart(Label* on_at_start) {
+ Label not_at_start;
+ // Did we start the match at the start of the string at all?
+ __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
+ __ cmp(r0, Operand::Zero());
+ BranchOrBacktrack(ne, ¬_at_start);
+
+ // If we did, are we still at the start of the input?
+ __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
+ __ add(r0, end_of_input_address(), Operand(current_input_offset()));
+ __ cmp(r0, r1);
+ BranchOrBacktrack(eq, on_at_start);
+ __ bind(¬_at_start);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotAtStart(Label* on_not_at_start) {
+ // Did we start the match at the start of the string at all?
+ __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
+ __ cmp(r0, Operand::Zero());
+ BranchOrBacktrack(ne, on_not_at_start);
+ // If we did, are we still at the start of the input?
+ __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
+ __ add(r0, end_of_input_address(), Operand(current_input_offset()));
+ __ cmp(r0, r1);
+ BranchOrBacktrack(ne, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
+ __ cmp(current_character(), Operand(limit));
+ BranchOrBacktrack(lt, on_less);
+}
+
+
+void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
+ __ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
+ __ cmp(current_input_offset(), r0);
+ __ add(backtrack_stackpointer(),
+ backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq);
+ BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ __ ldr(r0, register_location(start_reg)); // Index of start of capture
+ __ ldr(r1, register_location(start_reg + 1)); // Index of end of capture
+ __ sub(r1, r1, r0, SetCC); // Length of capture.
+
+ // If length is zero, either the capture is empty or it is not participating.
+ // In either case succeed immediately.
+ __ b(eq, &fallthrough);
+
+ // Check that there are enough characters left in the input.
+ __ cmn(r1, Operand(current_input_offset()));
+ BranchOrBacktrack(gt, on_no_match);
+
+ if (mode_ == LATIN1) {
+ Label success;
+ Label fail;
+ Label loop_check;
+
+ // r0 - offset of start of capture
+ // r1 - length of capture
+ __ add(r0, r0, Operand(end_of_input_address()));
+ __ add(r2, end_of_input_address(), Operand(current_input_offset()));
+ __ add(r1, r0, Operand(r1));
+
+ // r0 - Address of start of capture.
+ // r1 - Address of end of capture
+ // r2 - Address of current input position.
+
+ Label loop;
+ __ bind(&loop);
+ __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
+ __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
+ __ cmp(r4, r3);
+ __ b(eq, &loop_check);
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ __ orr(r3, r3, Operand(0x20)); // Convert capture character to lower-case.
+ __ orr(r4, r4, Operand(0x20)); // Also convert input character.
+ __ cmp(r4, r3);
+ __ b(ne, &fail);
+ __ sub(r3, r3, Operand('a'));
+ __ cmp(r3, Operand('z' - 'a')); // Is r3 a lowercase letter?
+ __ b(ls, &loop_check); // In range 'a'-'z'.
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ sub(r3, r3, Operand(224 - 'a'));
+ __ cmp(r3, Operand(254 - 224));
+ __ b(hi, &fail); // Weren't Latin-1 letters.
+ __ cmp(r3, Operand(247 - 224)); // Check for 247.
+ __ b(eq, &fail);
+
+ __ bind(&loop_check);
+ __ cmp(r0, r1);
+ __ b(lt, &loop);
+ __ jmp(&success);
+
+ __ bind(&fail);
+ BranchOrBacktrack(al, on_no_match);
+
+ __ bind(&success);
+ // Compute new value of character position after the matched part.
+ __ sub(current_input_offset(), r2, end_of_input_address());
+ } else {
+ DCHECK(mode_ == UC16);
+ int argument_count = 4;
+ __ PrepareCallCFunction(argument_count, r2);
+
+ // r0 - offset of start of capture
+ // r1 - length of capture
+
+ // Put arguments into arguments registers.
+ // Parameters are
+ // r0: Address byte_offset1 - Address captured substring's start.
+ // r1: Address byte_offset2 - Address of current character position.
+ // r2: size_t byte_length - length of capture in bytes(!)
+ // r3: Isolate* isolate
+
+ // Address of start of capture.
+ __ add(r0, r0, Operand(end_of_input_address()));
+ // Length of capture.
+ __ mov(r2, Operand(r1));
+ // Save length in callee-save register for use on return.
+ __ mov(r4, Operand(r1));
+ // Address of current input position.
+ __ add(r1, current_input_offset(), Operand(end_of_input_address()));
+ // Isolate.
+ __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+
+ {
+ AllowExternalCallThatCantCauseGC scope(masm_);
+ ExternalReference function =
+ ExternalReference::re_case_insensitive_compare_uc16(isolate());
+ __ CallCFunction(function, argument_count);
+ }
+
+ // Check if function returned non-zero for success or zero for failure.
+ __ cmp(r0, Operand::Zero());
+ BranchOrBacktrack(eq, on_no_match);
+ // On success, increment position by length of capture.
+ __ add(current_input_offset(), current_input_offset(), Operand(r4));
+ }
+
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotBackReference(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ Label success;
+
+ // Find length of back-referenced capture.
+ __ ldr(r0, register_location(start_reg));
+ __ ldr(r1, register_location(start_reg + 1));
+ __ sub(r1, r1, r0, SetCC); // Length to check.
+ // Succeed on empty capture (including no capture).
+ __ b(eq, &fallthrough);
+
+ // Check that there are enough characters left in the input.
+ __ cmn(r1, Operand(current_input_offset()));
+ BranchOrBacktrack(gt, on_no_match);
+
+ // Compute pointers to match string and capture string
+ __ add(r0, r0, Operand(end_of_input_address()));
+ __ add(r2, end_of_input_address(), Operand(current_input_offset()));
+ __ add(r1, r1, Operand(r0));
+
+ Label loop;
+ __ bind(&loop);
+ if (mode_ == LATIN1) {
+ __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
+ __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ ldrh(r3, MemOperand(r0, char_size(), PostIndex));
+ __ ldrh(r4, MemOperand(r2, char_size(), PostIndex));
+ }
+ __ cmp(r3, r4);
+ BranchOrBacktrack(ne, on_no_match);
+ __ cmp(r0, r1);
+ __ b(lt, &loop);
+
+ // Move current character position to position after match.
+ __ sub(current_input_offset(), r2, end_of_input_address());
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c,
+ Label* on_not_equal) {
+ __ cmp(current_character(), Operand(c));
+ BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ if (c == 0) {
+ __ tst(current_character(), Operand(mask));
+ } else {
+ __ and_(r0, current_character(), Operand(mask));
+ __ cmp(r0, Operand(c));
+ }
+ BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_not_equal) {
+ if (c == 0) {
+ __ tst(current_character(), Operand(mask));
+ } else {
+ __ and_(r0, current_character(), Operand(mask));
+ __ cmp(r0, Operand(c));
+ }
+ BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ sub(r0, current_character(), Operand(minus));
+ __ and_(r0, r0, Operand(mask));
+ __ cmp(r0, Operand(c));
+ BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ __ sub(r0, current_character(), Operand(from));
+ __ cmp(r0, Operand(to - from));
+ BranchOrBacktrack(ls, on_in_range); // Unsigned lower-or-same condition.
+}
+
+
+void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ __ sub(r0, current_character(), Operand(from));
+ __ cmp(r0, Operand(to - from));
+ BranchOrBacktrack(hi, on_not_in_range); // Unsigned higher condition.
+}
+
+
+void RegExpMacroAssemblerARM::CheckBitInTable(
+ Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ mov(r0, Operand(table));
+ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+ __ and_(r1, current_character(), Operand(kTableSize - 1));
+ __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
+ } else {
+ __ add(r1,
+ current_character(),
+ Operand(ByteArray::kHeaderSize - kHeapObjectTag));
+ }
+ __ ldrb(r0, MemOperand(r0, r1));
+ __ cmp(r0, Operand::Zero());
+ BranchOrBacktrack(ne, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check
+ switch (type) {
+ case 's':
+ // Match space-characters
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ __ cmp(current_character(), Operand(' '));
+ __ b(eq, &success);
+ // Check range 0x09..0x0d
+ __ sub(r0, current_character(), Operand('\t'));
+ __ cmp(r0, Operand('\r' - '\t'));
+ __ b(ls, &success);
+ // \u00a0 (NBSP).
+ __ cmp(r0, Operand(0x00a0 - '\t'));
+ BranchOrBacktrack(ne, on_no_match);
+ __ bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match ASCII digits ('0'..'9')
+ __ sub(r0, current_character(), Operand('0'));
+ __ cmp(r0, Operand('9' - '0'));
+ BranchOrBacktrack(hi, on_no_match);
+ return true;
+ case 'D':
+ // Match non ASCII-digits
+ __ sub(r0, current_character(), Operand('0'));
+ __ cmp(r0, Operand('9' - '0'));
+ BranchOrBacktrack(ls, on_no_match);
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ eor(r0, current_character(), Operand(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ sub(r0, r0, Operand(0x0b));
+ __ cmp(r0, Operand(0x0c - 0x0b));
+ BranchOrBacktrack(ls, on_no_match);
+ if (mode_ == UC16) {
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ sub(r0, r0, Operand(0x2028 - 0x0b));
+ __ cmp(r0, Operand(1));
+ BranchOrBacktrack(ls, on_no_match);
+ }
+ return true;
+ }
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ eor(r0, current_character(), Operand(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ sub(r0, r0, Operand(0x0b));
+ __ cmp(r0, Operand(0x0c - 0x0b));
+ if (mode_ == LATIN1) {
+ BranchOrBacktrack(hi, on_no_match);
+ } else {
+ Label done;
+ __ b(ls, &done);
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ sub(r0, r0, Operand(0x2028 - 0x0b));
+ __ cmp(r0, Operand(1));
+ BranchOrBacktrack(hi, on_no_match);
+ __ bind(&done);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmp(current_character(), Operand('z'));
+ BranchOrBacktrack(hi, on_no_match);
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ mov(r0, Operand(map));
+ __ ldrb(r0, MemOperand(r0, current_character()));
+ __ cmp(r0, Operand::Zero());
+ BranchOrBacktrack(eq, on_no_match);
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmp(current_character(), Operand('z'));
+ __ b(hi, &done);
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ mov(r0, Operand(map));
+ __ ldrb(r0, MemOperand(r0, current_character()));
+ __ cmp(r0, Operand::Zero());
+ BranchOrBacktrack(ne, on_no_match);
+ if (mode_ != LATIN1) {
+ __ bind(&done);
+ }
+ return true;
+ }
+ case '*':
+ // Match any character.
+ return true;
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerARM::Fail() {
+ __ mov(r0, Operand(FAILURE));
+ __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
+ Label return_r0;
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+
+ // Entry code:
+ __ bind(&entry_label_);
+
+ // Tell the system that we have a stack frame. Because the type is MANUAL, no
+ // is generated.
+ FrameScope scope(masm_, StackFrame::MANUAL);
+
+ // Actually emit code to start a new stack frame.
+ // Push arguments
+ // Save callee-save registers.
+ // Start new stack frame.
+ // Store link register in existing stack-cell.
+ // Order here should correspond to order of offset constants in header file.
+ RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() |
+ r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit();
+ RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit();
+ __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit());
+ // Set frame pointer in space for it if this is not a direct call
+ // from generated code.
+ __ add(frame_pointer(), sp, Operand(4 * kPointerSize));
+ __ mov(r0, Operand::Zero());
+ __ push(r0); // Make room for success counter and initialize it to 0.
+ __ push(r0); // Make room for "position - 1" constant (value is irrelevant).
+ // Check if we have space on the stack for registers.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ mov(r0, Operand(stack_limit));
+ __ ldr(r0, MemOperand(r0));
+ __ sub(r0, sp, r0, SetCC);
+ // Handle it if the stack pointer is already below the stack limit.
+ __ b(ls, &stack_limit_hit);
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ cmp(r0, Operand(num_registers_ * kPointerSize));
+ __ b(hs, &stack_ok);
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ mov(r0, Operand(EXCEPTION));
+ __ jmp(&return_r0);
+
+ __ bind(&stack_limit_hit);
+ CallCheckStackGuardState(r0);
+ __ cmp(r0, Operand::Zero());
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ b(ne, &return_r0);
+
+ __ bind(&stack_ok);
+
+ // Allocate space on stack for registers.
+ __ sub(sp, sp, Operand(num_registers_ * kPointerSize));
+ // Load string end.
+ __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ // Load input start.
+ __ ldr(r0, MemOperand(frame_pointer(), kInputStart));
+ // Find negative length (offset of start relative to end).
+ __ sub(current_input_offset(), r0, end_of_input_address());
+ // Set r0 to address of char before start of the input string
+ // (effectively string position -1).
+ __ ldr(r1, MemOperand(frame_pointer(), kStartIndex));
+ __ sub(r0, current_input_offset(), Operand(char_size()));
+ __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0));
+ // Store this value in a local variable, for use when clearing
+ // position registers.
+ __ str(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
+
+ // Initialize code pointer register
+ __ mov(code_pointer(), Operand(masm_->CodeObject()));
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ cmp(r1, Operand::Zero());
+ __ b(ne, &load_char_start_regexp);
+ __ mov(current_character(), Operand('\n'), LeaveCC, eq);
+ __ jmp(&start_regexp);
+
+ // Global regexp restarts matching here.
+ __ bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&start_regexp);
+
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
+ // Fill saved registers with initial value = start offset - 1
+ if (num_saved_registers_ > 8) {
+ // Address of register 0.
+ __ add(r1, frame_pointer(), Operand(kRegisterZero));
+ __ mov(r2, Operand(num_saved_registers_));
+ Label init_loop;
+ __ bind(&init_loop);
+ __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex));
+ __ sub(r2, r2, Operand(1), SetCC);
+ __ b(ne, &init_loop);
+ } else {
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ str(r0, register_location(i));
+ }
+ }
+ }
+
+ // Initialize backtrack stack pointer.
+ __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
+
+ __ jmp(&start_label_);
+
+ // Exit code:
+ if (success_label_.is_linked()) {
+ // Save captures when successful.
+ __ bind(&success_label_);
+ if (num_saved_registers_ > 0) {
+ // copy captures to output
+ __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
+ __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput));
+ __ ldr(r2, MemOperand(frame_pointer(), kStartIndex));
+ __ sub(r1, end_of_input_address(), r1);
+ // r1 is length of input in bytes.
+ if (mode_ == UC16) {
+ __ mov(r1, Operand(r1, LSR, 1));
+ }
+ // r1 is length of input in characters.
+ __ add(r1, r1, Operand(r2));
+ // r1 is length of string in characters.
+
+ DCHECK_EQ(0, num_saved_registers_ % 2);
+ // Always an even number of capture registers. This allows us to
+ // unroll the loop once to add an operation between a load of a register
+ // and the following use of that register.
+ for (int i = 0; i < num_saved_registers_; i += 2) {
+ __ ldr(r2, register_location(i));
+ __ ldr(r3, register_location(i + 1));
+ if (i == 0 && global_with_zero_length_check()) {
+ // Keep capture start in r4 for the zero-length check later.
+ __ mov(r4, r2);
+ }
+ if (mode_ == UC16) {
+ __ add(r2, r1, Operand(r2, ASR, 1));
+ __ add(r3, r1, Operand(r3, ASR, 1));
+ } else {
+ __ add(r2, r1, Operand(r2));
+ __ add(r3, r1, Operand(r3));
+ }
+ __ str(r2, MemOperand(r0, kPointerSize, PostIndex));
+ __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
+ }
+ }
+
+ if (global()) {
+ // Restart matching if the regular expression is flagged as global.
+ __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
+ __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput));
+ // Increment success counter.
+ __ add(r0, r0, Operand(1));
+ __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ sub(r1, r1, Operand(num_saved_registers_));
+ // Check whether we have enough room for another set of capture results.
+ __ cmp(r1, Operand(num_saved_registers_));
+ __ b(lt, &return_r0);
+
+ __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
+ // Advance the location for output.
+ __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize));
+ __ str(r2, MemOperand(frame_pointer(), kRegisterOutput));
+
+ // Prepare r0 to initialize registers with its value in the next run.
+ __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ // r4: capture start index
+ __ cmp(current_input_offset(), r4);
+ // Not a zero-length match, restart.
+ __ b(ne, &load_char_start_regexp);
+ // Offset from the end is zero if we already reached the end.
+ __ cmp(current_input_offset(), Operand::Zero());
+ __ b(eq, &exit_label_);
+ // Advance current position after a zero-length match.
+ __ add(current_input_offset(),
+ current_input_offset(),
+ Operand((mode_ == UC16) ? 2 : 1));
+ }
+
+ __ b(&load_char_start_regexp);
+ } else {
+ __ mov(r0, Operand(SUCCESS));
+ }
+ }
+
+ // Exit and return r0
+ __ bind(&exit_label_);
+ if (global()) {
+ __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ }
+
+ __ bind(&return_r0);
+ // Skip sp past regexp registers and local variables..
+ __ mov(sp, frame_pointer());
+ // Restore registers r4..r11 and return (restoring lr to pc).
+ __ ldm(ia_w, sp, registers_to_retain | pc.bit());
+
+ // Backtrack code (branch target for conditional backtracks).
+ if (backtrack_label_.is_linked()) {
+ __ bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ Label exit_with_exception;
+
+ // Preempt-code
+ if (check_preempt_label_.is_linked()) {
+ SafeCallTarget(&check_preempt_label_);
+
+ CallCheckStackGuardState(r0);
+ __ cmp(r0, Operand::Zero());
+ // If returning non-zero, we should end execution with the given
+ // result as return value.
+ __ b(ne, &return_r0);
+
+ // String might have moved: Reload end of string from frame.
+ __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ SafeReturn();
+ }
+
+ // Backtrack stack overflow code.
+ if (stack_overflow_label_.is_linked()) {
+ SafeCallTarget(&stack_overflow_label_);
+ // Reached if the backtrack-stack limit has been hit.
+ Label grow_failed;
+
+ // Call GrowStack(backtrack_stackpointer(), &stack_base)
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, r0);
+ __ mov(r0, backtrack_stackpointer());
+ __ add(r1, frame_pointer(), Operand(kStackHighEnd));
+ __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(isolate());
+ __ CallCFunction(grow_stack, num_arguments);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ __ cmp(r0, Operand::Zero());
+ __ b(eq, &exit_with_exception);
+ // Otherwise use return value as new stack pointer.
+ __ mov(backtrack_stackpointer(), r0);
+ // Restore saved registers and continue.
+ SafeReturn();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ // If any of the code above needed to exit with an exception.
+ __ bind(&exit_with_exception);
+ // Exit with Result EXCEPTION(-1) to signal thrown exception.
+ __ mov(r0, Operand(EXCEPTION));
+ __ jmp(&return_r0);
+ }
+
+ CodeDesc code_desc;
+ masm_->GetCode(&code_desc);
+ Handle<Code> code = isolate()->factory()->NewCode(
+ code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+ PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerARM::GoTo(Label* to) {
+ BranchOrBacktrack(al, to);
+}
+
+
+void RegExpMacroAssemblerARM::IfRegisterGE(int reg,
+ int comparand,
+ Label* if_ge) {
+ __ ldr(r0, register_location(reg));
+ __ cmp(r0, Operand(comparand));
+ BranchOrBacktrack(ge, if_ge);
+}
+
+
+void RegExpMacroAssemblerARM::IfRegisterLT(int reg,
+ int comparand,
+ Label* if_lt) {
+ __ ldr(r0, register_location(reg));
+ __ cmp(r0, Operand(comparand));
+ BranchOrBacktrack(lt, if_lt);
+}
+
+
+void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg,
+ Label* if_eq) {
+ __ ldr(r0, register_location(reg));
+ __ cmp(r0, Operand(current_input_offset()));
+ BranchOrBacktrack(eq, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerARM::Implementation() {
+ return kARMImplementation;
+}
+
+
+void RegExpMacroAssemblerARM::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
+ DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
+ if (check_bounds) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerARM::PopCurrentPosition() {
+ Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerARM::PopRegister(int register_index) {
+ Pop(r0);
+ __ str(r0, register_location(register_index));
+}
+
+
+void RegExpMacroAssemblerARM::PushBacktrack(Label* label) {
+ __ mov_label_offset(r0, label);
+ Push(r0);
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerARM::PushCurrentPosition() {
+ Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerARM::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ __ ldr(r0, register_location(register_index));
+ Push(r0);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) {
+ __ ldr(current_input_offset(), register_location(reg));
+}
+
+
+void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) {
+ __ ldr(backtrack_stackpointer(), register_location(reg));
+ __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd));
+ __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0));
+}
+
+
+void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ cmp(current_input_offset(), Operand(-by * char_size()));
+ __ b(ge, &after_position);
+ __ mov(current_input_offset(), Operand(-by * char_size()));
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ __ mov(r0, Operand(to));
+ __ str(r0, register_location(register_index));
+}
+
+
+bool RegExpMacroAssemblerARM::Succeed() {
+ __ jmp(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ if (cp_offset == 0) {
+ __ str(current_input_offset(), register_location(reg));
+ } else {
+ __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
+ __ str(r0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ __ str(r0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) {
+ __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd));
+ __ sub(r0, backtrack_stackpointer(), r1);
+ __ str(r0, register_location(reg));
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerARM::CallCheckStackGuardState(Register scratch) {
+ __ PrepareCallCFunction(3, scratch);
+
+ // RegExp code frame pointer.
+ __ mov(r2, frame_pointer());
+ // Code* of self.
+ __ mov(r1, Operand(masm_->CodeObject()));
+
+ // We need to make room for the return address on the stack.
+ int stack_alignment = base::OS::ActivationFrameAlignment();
+ DCHECK(IsAligned(stack_alignment, kPointerSize));
+ __ sub(sp, sp, Operand(stack_alignment));
+
+ // r0 will point to the return address, placed by DirectCEntry.
+ __ mov(r0, sp);
+
+ ExternalReference stack_guard_check =
+ ExternalReference::re_check_stack_guard_state(isolate());
+ __ mov(ip, Operand(stack_guard_check));
+ DirectCEntryStub stub(isolate());
+ stub.GenerateCall(masm_, ip);
+
+ // Drop the return address from the stack.
+ __ add(sp, sp, Operand(stack_alignment));
+
+ DCHECK(stack_alignment != 0);
+ __ ldr(sp, MemOperand(sp, 0));
+
+ __ mov(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate),
+ frame_entry<int>(re_frame, kStartIndex),
+ frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+ frame_entry_address<String*>(re_frame, kInputString),
+ frame_entry_address<const byte*>(re_frame, kInputStart),
+ frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+MemOperand RegExpMacroAssemblerARM::register_location(int register_index) {
+ DCHECK(register_index < (1<<30));
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ return MemOperand(frame_pointer(),
+ kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerARM::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ __ cmp(current_input_offset(), Operand(-cp_offset * char_size()));
+ BranchOrBacktrack(ge, on_outside_input);
+}
+
+
+void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition,
+ Label* to) {
+ if (condition == al) { // Unconditional.
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+ }
+ if (to == NULL) {
+ __ b(condition, &backtrack_label_);
+ return;
+ }
+ __ b(condition, to);
+}
+
+
+void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) {
+ __ bl(to, cond);
+}
+
+
+void RegExpMacroAssemblerARM::SafeReturn() {
+ __ pop(lr);
+ __ add(pc, lr, Operand(masm_->CodeObject()));
+}
+
+
+void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) {
+ __ bind(name);
+ __ sub(lr, lr, Operand(masm_->CodeObject()));
+ __ push(lr);
+}
+
+
+void RegExpMacroAssemblerARM::Push(Register source) {
+ DCHECK(!source.is(backtrack_stackpointer()));
+ __ str(source,
+ MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex));
+}
+
+
+void RegExpMacroAssemblerARM::Pop(Register target) {
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ ldr(target,
+ MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex));
+}
+
+
+void RegExpMacroAssemblerARM::CheckPreemption() {
+ // Check for preemption.
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ mov(r0, Operand(stack_limit));
+ __ ldr(r0, MemOperand(r0));
+ __ cmp(sp, r0);
+ SafeCall(&check_preempt_label_, ls);
+}
+
+
+void RegExpMacroAssemblerARM::CheckStackLimit() {
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(isolate());
+ __ mov(r0, Operand(stack_limit));
+ __ ldr(r0, MemOperand(r0));
+ __ cmp(backtrack_stackpointer(), Operand(r0));
+ SafeCall(&stack_overflow_label_, ls);
+}
+
+
+bool RegExpMacroAssemblerARM::CanReadUnaligned() {
+ return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
+}
+
+
+void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ Register offset = current_input_offset();
+ if (cp_offset != 0) {
+ // r4 is not being used to store the capture start index at this point.
+ __ add(r4, current_input_offset(), Operand(cp_offset * char_size()));
+ offset = r4;
+ }
+ // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
+ // and the operating system running on the target allow it.
+ // If unaligned load/stores are not supported then this function must only
+ // be used to load a single character at a time.
+ if (!CanReadUnaligned()) {
+ DCHECK(characters == 1);
+ }
+
+ if (mode_ == LATIN1) {
+ if (characters == 4) {
+ __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
+ } else if (characters == 2) {
+ __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
+ } else {
+ DCHECK(characters == 1);
+ __ ldrb(current_character(), MemOperand(end_of_input_address(), offset));
+ }
+ } else {
+ DCHECK(mode_ == UC16);
+ if (characters == 2) {
+ __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
+ } else {
+ DCHECK(characters == 1);
+ __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
+ }
+ }
+}
+
+
+#undef __
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_ARM
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
+#define V8_REGEXP_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
+
+#include "src/arm/assembler-arm.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerARM: public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerARM(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerARM();
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(unsigned c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+ virtual bool CanReadUnaligned();
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame);
+
+ private:
+ // Offsets from frame_pointer() of function parameters and stored registers.
+ static const int kFramePointer = 0;
+
+ // Above the frame pointer - Stored registers and stack passed parameters.
+ // Register 4..11.
+ static const int kStoredRegisters = kFramePointer;
+ // Return address (stored from link register, read into pc on return).
+ static const int kReturnAddress = kStoredRegisters + 8 * kPointerSize;
+ static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+ // Stack parameters placed by caller.
+ static const int kRegisterOutput = kSecondaryReturnAddress + kPointerSize;
+ static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+ static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+ static const int kDirectCall = kStackHighEnd + kPointerSize;
+ static const int kIsolate = kDirectCall + kPointerSize;
+
+ // Below the frame pointer.
+ // Register parameters stored by setup code.
+ static const int kInputEnd = kFramePointer - kPointerSize;
+ static const int kInputStart = kInputEnd - kPointerSize;
+ static const int kStartIndex = kInputStart - kPointerSize;
+ static const int kInputString = kStartIndex - kPointerSize;
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kSuccessfulCaptures = kInputString - kPointerSize;
+ static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ static const int kBacktrackConstantPoolSize = 4;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState(Register scratch);
+
+ // The ebp-relative location of a regexp register.
+ MemOperand register_location(int register_index);
+
+ // Register holding the current input position as negative offset from
+ // the end of the string.
+ inline Register current_input_offset() { return r6; }
+
+ // The register containing the current character after LoadCurrentCharacter.
+ inline Register current_character() { return r7; }
+
+ // Register holding address of the end of the input string.
+ inline Register end_of_input_address() { return r10; }
+
+ // Register holding the frame address. Local variables, parameters and
+ // regexp registers are addressed relative to this.
+ inline Register frame_pointer() { return fp; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ inline Register backtrack_stackpointer() { return r8; }
+
+ // Register holding pointer to the current code object.
+ inline Register code_pointer() { return r5; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument)
+ inline int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Condition condition, Label* to);
+
+ // Call and return internally in the generated code in a way that
+ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+ inline void SafeCall(Label* to, Condition cond = al);
+ inline void SafeReturn();
+ inline void SafeCallTarget(Label* name);
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // and increments it by a word size.
+ inline void Pop(Register target);
+
+ Isolate* isolate() const { return masm_->isolate(); }
+
+ MacroAssembler* masm_;
+
+ // Which mode to generate code for (Latin1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1)
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+};
+
+#endif // V8_INTERPRETED_REGEXP
+
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
--- /dev/null
+rmcilroy@chromium.org
--- /dev/null
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_ARM64
+
+#include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
+
+#include "src/code-stubs.h"
+#include "src/cpu-profiler.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention:
+ * - w19 : Used to temporarely store a value before a call to C code.
+ * See CheckNotBackReferenceIgnoreCase.
+ * - x20 : Pointer to the current code object (Code*),
+ * it includes the heap object tag.
+ * - w21 : Current position in input, as negative offset from
+ * the end of the string. Please notice that this is
+ * the byte offset, not the character offset!
+ * - w22 : Currently loaded character. Must be loaded using
+ * LoadCurrentCharacter before using any of the dispatch methods.
+ * - x23 : Points to tip of backtrack stack.
+ * - w24 : Position of the first character minus one: non_position_value.
+ * Used to initialize capture registers.
+ * - x25 : Address at the end of the input string: input_end.
+ * Points to byte after last character in input.
+ * - x26 : Address at the start of the input string: input_start.
+ * - w27 : Where to start in the input string.
+ * - x28 : Output array pointer.
+ * - x29/fp : Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - x16/x17 : IP registers, used by assembler. Very volatile.
+ * - csp : Points to tip of C stack.
+ *
+ * - x0-x7 : Used as a cache to store 32 bit capture registers. These
+ * registers need to be retained every time a call to C code
+ * is done.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * The stack will have the following structure:
+ *
+ * Location Name Description
+ * (as referred to in
+ * the code)
+ *
+ * - fp[104] isolate Address of the current isolate.
+ * - fp[96] return_address Secondary link/return address
+ * used by an exit frame if this is a
+ * native call.
+ * ^^^ csp when called ^^^
+ * - fp[88] lr Return from the RegExp code.
+ * - fp[80] r29 Old frame pointer (CalleeSaved).
+ * - fp[0..72] r19-r28 Backup of CalleeSaved registers.
+ * - fp[-8] direct_call 1 => Direct call from JavaScript code.
+ * 0 => Call through the runtime system.
+ * - fp[-16] stack_base High end of the memory area to use as
+ * the backtracking stack.
+ * - fp[-24] output_size Output may fit multiple sets of matches.
+ * - fp[-32] input Handle containing the input string.
+ * - fp[-40] success_counter
+ * ^^^^^^^^^^^^^ From here and downwards we store 32 bit values ^^^^^^^^^^^^^
+ * - fp[-44] register N Capture registers initialized with
+ * - fp[-48] register N + 1 non_position_value.
+ * ... The first kNumCachedRegisters (N) registers
+ * ... are cached in x0 to x7.
+ * ... Only positions must be stored in the first
+ * - ... num_saved_registers_ registers.
+ * - ...
+ * - register N + num_registers - 1
+ * ^^^^^^^^^ csp ^^^^^^^^^
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input,
+ * int start_offset,
+ * Address input_start,
+ * Address input_end,
+ * int* output,
+ * int output_size,
+ * Address stack_base,
+ * bool direct_call = false,
+ * Address secondary_return_address, // Only used by native call.
+ * Isolate* isolate)
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in arm64/simulator-arm64.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the LR register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerARM64::RegExpMacroAssemblerARM64(Isolate* isolate,
+ Zone* zone, Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_() {
+ __ SetStackPointer(csp);
+ DCHECK_EQ(0, registers_to_save % 2);
+ // We can cache at most 16 W registers in x0-x7.
+ STATIC_ASSERT(kNumCachedRegisters <= 16);
+ STATIC_ASSERT((kNumCachedRegisters % 2) == 0);
+ __ B(&entry_label_); // We'll write the entry code later.
+ __ Bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerARM64::~RegExpMacroAssemblerARM64() {
+ delete masm_;
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+}
+
+int RegExpMacroAssemblerARM64::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerARM64::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ Add(current_input_offset(),
+ current_input_offset(), by * char_size());
+ }
+}
+
+
+void RegExpMacroAssemblerARM64::AdvanceRegister(int reg, int by) {
+ DCHECK((reg >= 0) && (reg < num_registers_));
+ if (by != 0) {
+ Register to_advance;
+ RegisterState register_state = GetRegisterState(reg);
+ switch (register_state) {
+ case STACKED:
+ __ Ldr(w10, register_location(reg));
+ __ Add(w10, w10, by);
+ __ Str(w10, register_location(reg));
+ break;
+ case CACHED_LSW:
+ to_advance = GetCachedRegister(reg);
+ __ Add(to_advance, to_advance, by);
+ break;
+ case CACHED_MSW:
+ to_advance = GetCachedRegister(reg);
+ __ Add(to_advance, to_advance,
+ static_cast<int64_t>(by) << kWRegSizeInBits);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void RegExpMacroAssemblerARM64::Backtrack() {
+ CheckPreemption();
+ Pop(w10);
+ __ Add(x10, code_pointer(), Operand(w10, UXTW));
+ __ Br(x10);
+}
+
+
+void RegExpMacroAssemblerARM64::Bind(Label* label) {
+ __ Bind(label);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacter(uint32_t c, Label* on_equal) {
+ CompareAndBranchOrBacktrack(current_character(), c, eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterGT(uc16 limit,
+ Label* on_greater) {
+ CompareAndBranchOrBacktrack(current_character(), limit, hi, on_greater);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckAtStart(Label* on_at_start) {
+ Label not_at_start;
+ // Did we start the match at the start of the input string?
+ CompareAndBranchOrBacktrack(start_offset(), 0, ne, ¬_at_start);
+ // If we did, are we still at the start of the input string?
+ __ Add(x10, input_end(), Operand(current_input_offset(), SXTW));
+ __ Cmp(x10, input_start());
+ BranchOrBacktrack(eq, on_at_start);
+ __ Bind(¬_at_start);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotAtStart(Label* on_not_at_start) {
+ // Did we start the match at the start of the input string?
+ CompareAndBranchOrBacktrack(start_offset(), 0, ne, on_not_at_start);
+ // If we did, are we still at the start of the input string?
+ __ Add(x10, input_end(), Operand(current_input_offset(), SXTW));
+ __ Cmp(x10, input_start());
+ BranchOrBacktrack(ne, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterLT(uc16 limit, Label* on_less) {
+ CompareAndBranchOrBacktrack(current_character(), limit, lo, on_less);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacters(Vector<const uc16> str,
+ int cp_offset,
+ Label* on_failure,
+ bool check_end_of_string) {
+ // This method is only ever called from the cctests.
+
+ if (check_end_of_string) {
+ // Is last character of required match inside string.
+ CheckPosition(cp_offset + str.length() - 1, on_failure);
+ }
+
+ Register characters_address = x11;
+
+ __ Add(characters_address,
+ input_end(),
+ Operand(current_input_offset(), SXTW));
+ if (cp_offset != 0) {
+ __ Add(characters_address, characters_address, cp_offset * char_size());
+ }
+
+ for (int i = 0; i < str.length(); i++) {
+ if (mode_ == LATIN1) {
+ __ Ldrb(w10, MemOperand(characters_address, 1, PostIndex));
+ DCHECK(str[i] <= String::kMaxOneByteCharCode);
+ } else {
+ __ Ldrh(w10, MemOperand(characters_address, 2, PostIndex));
+ }
+ CompareAndBranchOrBacktrack(w10, str[i], ne, on_failure);
+ }
+}
+
+
+void RegExpMacroAssemblerARM64::CheckGreedyLoop(Label* on_equal) {
+ __ Ldr(w10, MemOperand(backtrack_stackpointer()));
+ __ Cmp(current_input_offset(), w10);
+ __ Cset(x11, eq);
+ __ Add(backtrack_stackpointer(),
+ backtrack_stackpointer(), Operand(x11, LSL, kWRegSizeLog2));
+ BranchOrBacktrack(eq, on_equal);
+}
+
+void RegExpMacroAssemblerARM64::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+
+ Register capture_start_offset = w10;
+ // Save the capture length in a callee-saved register so it will
+ // be preserved if we call a C helper.
+ Register capture_length = w19;
+ DCHECK(kCalleeSaved.IncludesAliasOf(capture_length));
+
+ // Find length of back-referenced capture.
+ DCHECK((start_reg % 2) == 0);
+ if (start_reg < kNumCachedRegisters) {
+ __ Mov(capture_start_offset.X(), GetCachedRegister(start_reg));
+ __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits);
+ } else {
+ __ Ldp(w11, capture_start_offset, capture_location(start_reg, x10));
+ }
+ __ Sub(capture_length, w11, capture_start_offset); // Length to check.
+ // Succeed on empty capture (including no capture).
+ __ Cbz(capture_length, &fallthrough);
+
+ // Check that there are enough characters left in the input.
+ __ Cmn(capture_length, current_input_offset());
+ BranchOrBacktrack(gt, on_no_match);
+
+ if (mode_ == LATIN1) {
+ Label success;
+ Label fail;
+ Label loop_check;
+
+ Register capture_start_address = x12;
+ Register capture_end_addresss = x13;
+ Register current_position_address = x14;
+
+ __ Add(capture_start_address,
+ input_end(),
+ Operand(capture_start_offset, SXTW));
+ __ Add(capture_end_addresss,
+ capture_start_address,
+ Operand(capture_length, SXTW));
+ __ Add(current_position_address,
+ input_end(),
+ Operand(current_input_offset(), SXTW));
+
+ Label loop;
+ __ Bind(&loop);
+ __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex));
+ __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex));
+ __ Cmp(w10, w11);
+ __ B(eq, &loop_check);
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ __ Orr(w10, w10, 0x20); // Convert capture character to lower-case.
+ __ Orr(w11, w11, 0x20); // Also convert input character.
+ __ Cmp(w11, w10);
+ __ B(ne, &fail);
+ __ Sub(w10, w10, 'a');
+ __ Cmp(w10, 'z' - 'a'); // Is w10 a lowercase letter?
+ __ B(ls, &loop_check); // In range 'a'-'z'.
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ Sub(w10, w10, 224 - 'a');
+ __ Cmp(w10, 254 - 224);
+ __ Ccmp(w10, 247 - 224, ZFlag, ls); // Check for 247.
+ __ B(eq, &fail); // Weren't Latin-1 letters.
+
+ __ Bind(&loop_check);
+ __ Cmp(capture_start_address, capture_end_addresss);
+ __ B(lt, &loop);
+ __ B(&success);
+
+ __ Bind(&fail);
+ BranchOrBacktrack(al, on_no_match);
+
+ __ Bind(&success);
+ // Compute new value of character position after the matched part.
+ __ Sub(current_input_offset().X(), current_position_address, input_end());
+ if (masm_->emit_debug_code()) {
+ __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW));
+ __ Ccmp(current_input_offset(), 0, NoFlag, eq);
+ // The current input offset should be <= 0, and fit in a W register.
+ __ Check(le, kOffsetOutOfRange);
+ }
+ } else {
+ DCHECK(mode_ == UC16);
+ int argument_count = 4;
+
+ // The cached registers need to be retained.
+ CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7);
+ DCHECK((cached_registers.Count() * 2) == kNumCachedRegisters);
+ __ PushCPURegList(cached_registers);
+
+ // Put arguments into arguments registers.
+ // Parameters are
+ // x0: Address byte_offset1 - Address captured substring's start.
+ // x1: Address byte_offset2 - Address of current character position.
+ // w2: size_t byte_length - length of capture in bytes(!)
+ // x3: Isolate* isolate
+
+ // Address of start of capture.
+ __ Add(x0, input_end(), Operand(capture_start_offset, SXTW));
+ // Length of capture.
+ __ Mov(w2, capture_length);
+ // Address of current input position.
+ __ Add(x1, input_end(), Operand(current_input_offset(), SXTW));
+ // Isolate.
+ __ Mov(x3, ExternalReference::isolate_address(isolate()));
+
+ {
+ AllowExternalCallThatCantCauseGC scope(masm_);
+ ExternalReference function =
+ ExternalReference::re_case_insensitive_compare_uc16(isolate());
+ __ CallCFunction(function, argument_count);
+ }
+
+ // Check if function returned non-zero for success or zero for failure.
+ // x0 is one of the registers used as a cache so it must be tested before
+ // the cache is restored.
+ __ Cmp(x0, 0);
+ __ PopCPURegList(cached_registers);
+ BranchOrBacktrack(eq, on_no_match);
+
+ // On success, increment position by length of capture.
+ __ Add(current_input_offset(), current_input_offset(), capture_length);
+ }
+
+ __ Bind(&fallthrough);
+}
+
+void RegExpMacroAssemblerARM64::CheckNotBackReference(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+
+ Register capture_start_address = x12;
+ Register capture_end_address = x13;
+ Register current_position_address = x14;
+ Register capture_length = w15;
+
+ // Find length of back-referenced capture.
+ DCHECK((start_reg % 2) == 0);
+ if (start_reg < kNumCachedRegisters) {
+ __ Mov(x10, GetCachedRegister(start_reg));
+ __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits);
+ } else {
+ __ Ldp(w11, w10, capture_location(start_reg, x10));
+ }
+ __ Sub(capture_length, w11, w10); // Length to check.
+ // Succeed on empty capture (including no capture).
+ __ Cbz(capture_length, &fallthrough);
+
+ // Check that there are enough characters left in the input.
+ __ Cmn(capture_length, current_input_offset());
+ BranchOrBacktrack(gt, on_no_match);
+
+ // Compute pointers to match string and capture string
+ __ Add(capture_start_address, input_end(), Operand(w10, SXTW));
+ __ Add(capture_end_address,
+ capture_start_address,
+ Operand(capture_length, SXTW));
+ __ Add(current_position_address,
+ input_end(),
+ Operand(current_input_offset(), SXTW));
+
+ Label loop;
+ __ Bind(&loop);
+ if (mode_ == LATIN1) {
+ __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex));
+ __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ Ldrh(w10, MemOperand(capture_start_address, 2, PostIndex));
+ __ Ldrh(w11, MemOperand(current_position_address, 2, PostIndex));
+ }
+ __ Cmp(w10, w11);
+ BranchOrBacktrack(ne, on_no_match);
+ __ Cmp(capture_start_address, capture_end_address);
+ __ B(lt, &loop);
+
+ // Move current character position to position after match.
+ __ Sub(current_input_offset().X(), current_position_address, input_end());
+ if (masm_->emit_debug_code()) {
+ __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW));
+ __ Ccmp(current_input_offset(), 0, NoFlag, eq);
+ // The current input offset should be <= 0, and fit in a W register.
+ __ Check(le, kOffsetOutOfRange);
+ }
+ __ Bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotCharacter(unsigned c,
+ Label* on_not_equal) {
+ CompareAndBranchOrBacktrack(current_character(), c, ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ __ And(w10, current_character(), mask);
+ CompareAndBranchOrBacktrack(w10, c, eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_not_equal) {
+ __ And(w10, current_character(), mask);
+ CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ Sub(w10, current_character(), minus);
+ __ And(w10, w10, mask);
+ CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ __ Sub(w10, current_character(), from);
+ // Unsigned lower-or-same condition.
+ CompareAndBranchOrBacktrack(w10, to - from, ls, on_in_range);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ __ Sub(w10, current_character(), from);
+ // Unsigned higher condition.
+ CompareAndBranchOrBacktrack(w10, to - from, hi, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckBitInTable(
+ Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ Mov(x11, Operand(table));
+ if ((mode_ != LATIN1) || (kTableMask != String::kMaxOneByteCharCode)) {
+ __ And(w10, current_character(), kTableMask);
+ __ Add(w10, w10, ByteArray::kHeaderSize - kHeapObjectTag);
+ } else {
+ __ Add(w10, current_character(), ByteArray::kHeaderSize - kHeapObjectTag);
+ }
+ __ Ldrb(w11, MemOperand(x11, w10, UXTW));
+ CompareAndBranchOrBacktrack(w11, 0, ne, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerARM64::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check
+ switch (type) {
+ case 's':
+ // Match space-characters
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ // Check for ' ' or 0x00a0.
+ __ Cmp(current_character(), ' ');
+ __ Ccmp(current_character(), 0x00a0, ZFlag, ne);
+ __ B(eq, &success);
+ // Check range 0x09..0x0d.
+ __ Sub(w10, current_character(), '\t');
+ CompareAndBranchOrBacktrack(w10, '\r' - '\t', hi, on_no_match);
+ __ Bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match ASCII digits ('0'..'9').
+ __ Sub(w10, current_character(), '0');
+ CompareAndBranchOrBacktrack(w10, '9' - '0', hi, on_no_match);
+ return true;
+ case 'D':
+ // Match ASCII non-digits.
+ __ Sub(w10, current_character(), '0');
+ CompareAndBranchOrBacktrack(w10, '9' - '0', ls, on_no_match);
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ // Here we emit the conditional branch only once at the end to make branch
+ // prediction more efficient, even though we could branch out of here
+ // as soon as a character matches.
+ __ Cmp(current_character(), 0x0a);
+ __ Ccmp(current_character(), 0x0d, ZFlag, ne);
+ if (mode_ == UC16) {
+ __ Sub(w10, current_character(), 0x2028);
+ // If the Z flag was set we clear the flags to force a branch.
+ __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne);
+ // ls -> !((C==1) && (Z==0))
+ BranchOrBacktrack(ls, on_no_match);
+ } else {
+ BranchOrBacktrack(eq, on_no_match);
+ }
+ return true;
+ }
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ // We have to check all 4 newline characters before emitting
+ // the conditional branch.
+ __ Cmp(current_character(), 0x0a);
+ __ Ccmp(current_character(), 0x0d, ZFlag, ne);
+ if (mode_ == UC16) {
+ __ Sub(w10, current_character(), 0x2028);
+ // If the Z flag was set we clear the flags to force a fall-through.
+ __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne);
+ // hi -> (C==1) && (Z==0)
+ BranchOrBacktrack(hi, on_no_match);
+ } else {
+ BranchOrBacktrack(ne, on_no_match);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ CompareAndBranchOrBacktrack(current_character(), 'z', hi, on_no_match);
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ Mov(x10, map);
+ __ Ldrb(w10, MemOperand(x10, current_character(), UXTW));
+ CompareAndBranchOrBacktrack(w10, 0, eq, on_no_match);
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ Cmp(current_character(), 'z');
+ __ B(hi, &done);
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ Mov(x10, map);
+ __ Ldrb(w10, MemOperand(x10, current_character(), UXTW));
+ CompareAndBranchOrBacktrack(w10, 0, ne, on_no_match);
+ __ Bind(&done);
+ return true;
+ }
+ case '*':
+ // Match any character.
+ return true;
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerARM64::Fail() {
+ __ Mov(w0, FAILURE);
+ __ B(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerARM64::GetCode(Handle<String> source) {
+ Label return_w0;
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+
+ // Entry code:
+ __ Bind(&entry_label_);
+
+ // Arguments on entry:
+ // x0: String* input
+ // x1: int start_offset
+ // x2: byte* input_start
+ // x3: byte* input_end
+ // x4: int* output array
+ // x5: int output array size
+ // x6: Address stack_base
+ // x7: int direct_call
+
+ // The stack pointer should be csp on entry.
+ // csp[8]: address of the current isolate
+ // csp[0]: secondary link/return address used by native call
+
+ // Tell the system that we have a stack frame. Because the type is MANUAL, no
+ // code is generated.
+ FrameScope scope(masm_, StackFrame::MANUAL);
+
+ // Push registers on the stack, only push the argument registers that we need.
+ CPURegList argument_registers(x0, x5, x6, x7);
+
+ CPURegList registers_to_retain = kCalleeSaved;
+ DCHECK(kCalleeSaved.Count() == 11);
+ registers_to_retain.Combine(lr);
+
+ DCHECK(csp.Is(__ StackPointer()));
+ __ PushCPURegList(registers_to_retain);
+ __ PushCPURegList(argument_registers);
+
+ // Set frame pointer in place.
+ __ Add(frame_pointer(), csp, argument_registers.Count() * kPointerSize);
+
+ // Initialize callee-saved registers.
+ __ Mov(start_offset(), w1);
+ __ Mov(input_start(), x2);
+ __ Mov(input_end(), x3);
+ __ Mov(output_array(), x4);
+
+ // Set the number of registers we will need to allocate, that is:
+ // - success_counter (X register)
+ // - (num_registers_ - kNumCachedRegisters) (W registers)
+ int num_wreg_to_allocate = num_registers_ - kNumCachedRegisters;
+ // Do not allocate registers on the stack if they can all be cached.
+ if (num_wreg_to_allocate < 0) { num_wreg_to_allocate = 0; }
+ // Make room for the success_counter.
+ num_wreg_to_allocate += 2;
+
+ // Make sure the stack alignment will be respected.
+ int alignment = masm_->ActivationFrameAlignment();
+ DCHECK_EQ(alignment % 16, 0);
+ int align_mask = (alignment / kWRegSize) - 1;
+ num_wreg_to_allocate = (num_wreg_to_allocate + align_mask) & ~align_mask;
+
+ // Check if we have space on the stack.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ Mov(x10, stack_limit);
+ __ Ldr(x10, MemOperand(x10));
+ __ Subs(x10, csp, x10);
+
+ // Handle it if the stack pointer is already below the stack limit.
+ __ B(ls, &stack_limit_hit);
+
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ Cmp(x10, num_wreg_to_allocate * kWRegSize);
+ __ B(hs, &stack_ok);
+
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ Mov(w0, EXCEPTION);
+ __ B(&return_w0);
+
+ __ Bind(&stack_limit_hit);
+ CallCheckStackGuardState(x10);
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ Cbnz(w0, &return_w0);
+
+ __ Bind(&stack_ok);
+
+ // Allocate space on stack.
+ __ Claim(num_wreg_to_allocate, kWRegSize);
+
+ // Initialize success_counter with 0.
+ __ Str(wzr, MemOperand(frame_pointer(), kSuccessCounter));
+
+ // Find negative length (offset of start relative to end).
+ __ Sub(x10, input_start(), input_end());
+ if (masm_->emit_debug_code()) {
+ // Check that the input string length is < 2^30.
+ __ Neg(x11, x10);
+ __ Cmp(x11, (1<<30) - 1);
+ __ Check(ls, kInputStringTooLong);
+ }
+ __ Mov(current_input_offset(), w10);
+
+ // The non-position value is used as a clearing value for the
+ // capture registers, it corresponds to the position of the first character
+ // minus one.
+ __ Sub(non_position_value(), current_input_offset(), char_size());
+ __ Sub(non_position_value(), non_position_value(),
+ Operand(start_offset(), LSL, (mode_ == UC16) ? 1 : 0));
+ // We can store this value twice in an X register for initializing
+ // on-stack registers later.
+ __ Orr(twice_non_position_value(),
+ non_position_value().X(),
+ Operand(non_position_value().X(), LSL, kWRegSizeInBits));
+
+ // Initialize code pointer register.
+ __ Mov(code_pointer(), Operand(masm_->CodeObject()));
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ Cbnz(start_offset(), &load_char_start_regexp);
+ __ Mov(current_character(), '\n');
+ __ B(&start_regexp);
+
+ // Global regexp restarts matching here.
+ __ Bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ Bind(&start_regexp);
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) {
+ ClearRegisters(0, num_saved_registers_ - 1);
+ }
+
+ // Initialize backtrack stack pointer.
+ __ Ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackBase));
+
+ // Execute
+ __ B(&start_label_);
+
+ if (backtrack_label_.is_linked()) {
+ __ Bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ if (success_label_.is_linked()) {
+ Register first_capture_start = w15;
+
+ // Save captures when successful.
+ __ Bind(&success_label_);
+
+ if (num_saved_registers_ > 0) {
+ // V8 expects the output to be an int32_t array.
+ Register capture_start = w12;
+ Register capture_end = w13;
+ Register input_length = w14;
+
+ // Copy captures to output.
+
+ // Get string length.
+ __ Sub(x10, input_end(), input_start());
+ if (masm_->emit_debug_code()) {
+ // Check that the input string length is < 2^30.
+ __ Cmp(x10, (1<<30) - 1);
+ __ Check(ls, kInputStringTooLong);
+ }
+ // input_start has a start_offset offset on entry. We need to include
+ // it when computing the length of the whole string.
+ if (mode_ == UC16) {
+ __ Add(input_length, start_offset(), Operand(w10, LSR, 1));
+ } else {
+ __ Add(input_length, start_offset(), w10);
+ }
+
+ // Copy the results to the output array from the cached registers first.
+ for (int i = 0;
+ (i < num_saved_registers_) && (i < kNumCachedRegisters);
+ i += 2) {
+ __ Mov(capture_start.X(), GetCachedRegister(i));
+ __ Lsr(capture_end.X(), capture_start.X(), kWRegSizeInBits);
+ if ((i == 0) && global_with_zero_length_check()) {
+ // Keep capture start for the zero-length check later.
+ __ Mov(first_capture_start, capture_start);
+ }
+ // Offsets need to be relative to the start of the string.
+ if (mode_ == UC16) {
+ __ Add(capture_start, input_length, Operand(capture_start, ASR, 1));
+ __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
+ } else {
+ __ Add(capture_start, input_length, capture_start);
+ __ Add(capture_end, input_length, capture_end);
+ }
+ // The output pointer advances for a possible global match.
+ __ Stp(capture_start,
+ capture_end,
+ MemOperand(output_array(), kPointerSize, PostIndex));
+ }
+
+ // Only carry on if there are more than kNumCachedRegisters capture
+ // registers.
+ int num_registers_left_on_stack =
+ num_saved_registers_ - kNumCachedRegisters;
+ if (num_registers_left_on_stack > 0) {
+ Register base = x10;
+ // There are always an even number of capture registers. A couple of
+ // registers determine one match with two offsets.
+ DCHECK_EQ(0, num_registers_left_on_stack % 2);
+ __ Add(base, frame_pointer(), kFirstCaptureOnStack);
+
+ // We can unroll the loop here, we should not unroll for less than 2
+ // registers.
+ STATIC_ASSERT(kNumRegistersToUnroll > 2);
+ if (num_registers_left_on_stack <= kNumRegistersToUnroll) {
+ for (int i = 0; i < num_registers_left_on_stack / 2; i++) {
+ __ Ldp(capture_end,
+ capture_start,
+ MemOperand(base, -kPointerSize, PostIndex));
+ if ((i == 0) && global_with_zero_length_check()) {
+ // Keep capture start for the zero-length check later.
+ __ Mov(first_capture_start, capture_start);
+ }
+ // Offsets need to be relative to the start of the string.
+ if (mode_ == UC16) {
+ __ Add(capture_start,
+ input_length,
+ Operand(capture_start, ASR, 1));
+ __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
+ } else {
+ __ Add(capture_start, input_length, capture_start);
+ __ Add(capture_end, input_length, capture_end);
+ }
+ // The output pointer advances for a possible global match.
+ __ Stp(capture_start,
+ capture_end,
+ MemOperand(output_array(), kPointerSize, PostIndex));
+ }
+ } else {
+ Label loop, start;
+ __ Mov(x11, num_registers_left_on_stack);
+
+ __ Ldp(capture_end,
+ capture_start,
+ MemOperand(base, -kPointerSize, PostIndex));
+ if (global_with_zero_length_check()) {
+ __ Mov(first_capture_start, capture_start);
+ }
+ __ B(&start);
+
+ __ Bind(&loop);
+ __ Ldp(capture_end,
+ capture_start,
+ MemOperand(base, -kPointerSize, PostIndex));
+ __ Bind(&start);
+ if (mode_ == UC16) {
+ __ Add(capture_start, input_length, Operand(capture_start, ASR, 1));
+ __ Add(capture_end, input_length, Operand(capture_end, ASR, 1));
+ } else {
+ __ Add(capture_start, input_length, capture_start);
+ __ Add(capture_end, input_length, capture_end);
+ }
+ // The output pointer advances for a possible global match.
+ __ Stp(capture_start,
+ capture_end,
+ MemOperand(output_array(), kPointerSize, PostIndex));
+ __ Sub(x11, x11, 2);
+ __ Cbnz(x11, &loop);
+ }
+ }
+ }
+
+ if (global()) {
+ Register success_counter = w0;
+ Register output_size = x10;
+ // Restart matching if the regular expression is flagged as global.
+
+ // Increment success counter.
+ __ Ldr(success_counter, MemOperand(frame_pointer(), kSuccessCounter));
+ __ Add(success_counter, success_counter, 1);
+ __ Str(success_counter, MemOperand(frame_pointer(), kSuccessCounter));
+
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ Ldr(output_size, MemOperand(frame_pointer(), kOutputSize));
+ __ Sub(output_size, output_size, num_saved_registers_);
+ // Check whether we have enough room for another set of capture results.
+ __ Cmp(output_size, num_saved_registers_);
+ __ B(lt, &return_w0);
+
+ // The output pointer is already set to the next field in the output
+ // array.
+ // Update output size on the frame before we restart matching.
+ __ Str(output_size, MemOperand(frame_pointer(), kOutputSize));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ __ Cmp(current_input_offset(), first_capture_start);
+ // Not a zero-length match, restart.
+ __ B(ne, &load_char_start_regexp);
+ // Offset from the end is zero if we already reached the end.
+ __ Cbz(current_input_offset(), &return_w0);
+ // Advance current position after a zero-length match.
+ __ Add(current_input_offset(),
+ current_input_offset(),
+ Operand((mode_ == UC16) ? 2 : 1));
+ }
+
+ __ B(&load_char_start_regexp);
+ } else {
+ __ Mov(w0, SUCCESS);
+ }
+ }
+
+ if (exit_label_.is_linked()) {
+ // Exit and return w0
+ __ Bind(&exit_label_);
+ if (global()) {
+ __ Ldr(w0, MemOperand(frame_pointer(), kSuccessCounter));
+ }
+ }
+
+ __ Bind(&return_w0);
+
+ // Set stack pointer back to first register to retain
+ DCHECK(csp.Is(__ StackPointer()));
+ __ Mov(csp, fp);
+ __ AssertStackConsistency();
+
+ // Restore registers.
+ __ PopCPURegList(registers_to_retain);
+
+ __ Ret();
+
+ Label exit_with_exception;
+ // Registers x0 to x7 are used to store the first captures, they need to be
+ // retained over calls to C++ code.
+ CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7);
+ DCHECK((cached_registers.Count() * 2) == kNumCachedRegisters);
+
+ if (check_preempt_label_.is_linked()) {
+ __ Bind(&check_preempt_label_);
+ SaveLinkRegister();
+ // The cached registers need to be retained.
+ __ PushCPURegList(cached_registers);
+ CallCheckStackGuardState(x10);
+ // Returning from the regexp code restores the stack (csp <- fp)
+ // so we don't need to drop the link register from it before exiting.
+ __ Cbnz(w0, &return_w0);
+ // Reset the cached registers.
+ __ PopCPURegList(cached_registers);
+ RestoreLinkRegister();
+ __ Ret();
+ }
+
+ if (stack_overflow_label_.is_linked()) {
+ __ Bind(&stack_overflow_label_);
+ SaveLinkRegister();
+ // The cached registers need to be retained.
+ __ PushCPURegList(cached_registers);
+ // Call GrowStack(backtrack_stackpointer(), &stack_base)
+ __ Mov(x2, ExternalReference::isolate_address(isolate()));
+ __ Add(x1, frame_pointer(), kStackBase);
+ __ Mov(x0, backtrack_stackpointer());
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(isolate());
+ __ CallCFunction(grow_stack, 3);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ // Returning from the regexp code restores the stack (csp <- fp)
+ // so we don't need to drop the link register from it before exiting.
+ __ Cbz(w0, &exit_with_exception);
+ // Otherwise use return value as new stack pointer.
+ __ Mov(backtrack_stackpointer(), x0);
+ // Reset the cached registers.
+ __ PopCPURegList(cached_registers);
+ RestoreLinkRegister();
+ __ Ret();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ __ Bind(&exit_with_exception);
+ __ Mov(w0, EXCEPTION);
+ __ B(&return_w0);
+ }
+
+ CodeDesc code_desc;
+ masm_->GetCode(&code_desc);
+ Handle<Code> code = isolate()->factory()->NewCode(
+ code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+ PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerARM64::GoTo(Label* to) {
+ BranchOrBacktrack(al, to);
+}
+
+void RegExpMacroAssemblerARM64::IfRegisterGE(int reg, int comparand,
+ Label* if_ge) {
+ Register to_compare = GetRegister(reg, w10);
+ CompareAndBranchOrBacktrack(to_compare, comparand, ge, if_ge);
+}
+
+
+void RegExpMacroAssemblerARM64::IfRegisterLT(int reg, int comparand,
+ Label* if_lt) {
+ Register to_compare = GetRegister(reg, w10);
+ CompareAndBranchOrBacktrack(to_compare, comparand, lt, if_lt);
+}
+
+
+void RegExpMacroAssemblerARM64::IfRegisterEqPos(int reg, Label* if_eq) {
+ Register to_compare = GetRegister(reg, w10);
+ __ Cmp(to_compare, current_input_offset());
+ BranchOrBacktrack(eq, if_eq);
+}
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerARM64::Implementation() {
+ return kARM64Implementation;
+}
+
+
+void RegExpMacroAssemblerARM64::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ // TODO(pielan): Make sure long strings are caught before this, and not
+ // just asserted in debug mode.
+ DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
+ // Be sane! (And ensure that an int32_t can be used to index the string)
+ DCHECK(cp_offset < (1<<30));
+ if (check_bounds) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerARM64::PopCurrentPosition() {
+ Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerARM64::PopRegister(int register_index) {
+ Pop(w10);
+ StoreRegister(register_index, w10);
+}
+
+
+void RegExpMacroAssemblerARM64::PushBacktrack(Label* label) {
+ if (label->is_bound()) {
+ int target = label->pos();
+ __ Mov(w10, target + Code::kHeaderSize - kHeapObjectTag);
+ } else {
+ __ Adr(x10, label, MacroAssembler::kAdrFar);
+ __ Sub(x10, x10, code_pointer());
+ if (masm_->emit_debug_code()) {
+ __ Cmp(x10, kWRegMask);
+ // The code offset has to fit in a W register.
+ __ Check(ls, kOffsetOutOfRange);
+ }
+ }
+ Push(w10);
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerARM64::PushCurrentPosition() {
+ Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerARM64::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ Register to_push = GetRegister(register_index, w10);
+ Push(to_push);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerARM64::ReadCurrentPositionFromRegister(int reg) {
+ Register cached_register;
+ RegisterState register_state = GetRegisterState(reg);
+ switch (register_state) {
+ case STACKED:
+ __ Ldr(current_input_offset(), register_location(reg));
+ break;
+ case CACHED_LSW:
+ cached_register = GetCachedRegister(reg);
+ __ Mov(current_input_offset(), cached_register.W());
+ break;
+ case CACHED_MSW:
+ cached_register = GetCachedRegister(reg);
+ __ Lsr(current_input_offset().X(), cached_register, kWRegSizeInBits);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void RegExpMacroAssemblerARM64::ReadStackPointerFromRegister(int reg) {
+ Register read_from = GetRegister(reg, w10);
+ __ Ldr(x11, MemOperand(frame_pointer(), kStackBase));
+ __ Add(backtrack_stackpointer(), x11, Operand(read_from, SXTW));
+}
+
+
+void RegExpMacroAssemblerARM64::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ Cmp(current_input_offset(), -by * char_size());
+ __ B(ge, &after_position);
+ __ Mov(current_input_offset(), -by * char_size());
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ Bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerARM64::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ Register set_to = wzr;
+ if (to != 0) {
+ set_to = w10;
+ __ Mov(set_to, to);
+ }
+ StoreRegister(register_index, set_to);
+}
+
+
+bool RegExpMacroAssemblerARM64::Succeed() {
+ __ B(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerARM64::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ Register position = current_input_offset();
+ if (cp_offset != 0) {
+ position = w10;
+ __ Add(position, current_input_offset(), cp_offset * char_size());
+ }
+ StoreRegister(reg, position);
+}
+
+
+void RegExpMacroAssemblerARM64::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ int num_registers = reg_to - reg_from + 1;
+
+ // If the first capture register is cached in a hardware register but not
+ // aligned on a 64-bit one, we need to clear the first one specifically.
+ if ((reg_from < kNumCachedRegisters) && ((reg_from % 2) != 0)) {
+ StoreRegister(reg_from, non_position_value());
+ num_registers--;
+ reg_from++;
+ }
+
+ // Clear cached registers in pairs as far as possible.
+ while ((num_registers >= 2) && (reg_from < kNumCachedRegisters)) {
+ DCHECK(GetRegisterState(reg_from) == CACHED_LSW);
+ __ Mov(GetCachedRegister(reg_from), twice_non_position_value());
+ reg_from += 2;
+ num_registers -= 2;
+ }
+
+ if ((num_registers % 2) == 1) {
+ StoreRegister(reg_from, non_position_value());
+ num_registers--;
+ reg_from++;
+ }
+
+ if (num_registers > 0) {
+ // If there are some remaining registers, they are stored on the stack.
+ DCHECK(reg_from >= kNumCachedRegisters);
+
+ // Move down the indexes of the registers on stack to get the correct offset
+ // in memory.
+ reg_from -= kNumCachedRegisters;
+ reg_to -= kNumCachedRegisters;
+ // We should not unroll the loop for less than 2 registers.
+ STATIC_ASSERT(kNumRegistersToUnroll > 2);
+ // We position the base pointer to (reg_from + 1).
+ int base_offset = kFirstRegisterOnStack -
+ kWRegSize - (kWRegSize * reg_from);
+ if (num_registers > kNumRegistersToUnroll) {
+ Register base = x10;
+ __ Add(base, frame_pointer(), base_offset);
+
+ Label loop;
+ __ Mov(x11, num_registers);
+ __ Bind(&loop);
+ __ Str(twice_non_position_value(),
+ MemOperand(base, -kPointerSize, PostIndex));
+ __ Sub(x11, x11, 2);
+ __ Cbnz(x11, &loop);
+ } else {
+ for (int i = reg_from; i <= reg_to; i += 2) {
+ __ Str(twice_non_position_value(),
+ MemOperand(frame_pointer(), base_offset));
+ base_offset -= kWRegSize * 2;
+ }
+ }
+ }
+}
+
+
+void RegExpMacroAssemblerARM64::WriteStackPointerToRegister(int reg) {
+ __ Ldr(x10, MemOperand(frame_pointer(), kStackBase));
+ __ Sub(x10, backtrack_stackpointer(), x10);
+ if (masm_->emit_debug_code()) {
+ __ Cmp(x10, Operand(w10, SXTW));
+ // The stack offset needs to fit in a W register.
+ __ Check(eq, kOffsetOutOfRange);
+ }
+ StoreRegister(reg, w10);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return *reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerARM64::CheckStackGuardState(
+ Address* return_address, Code* re_code, Address re_frame, int start_index,
+ const byte** input_start, const byte** input_end) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate), start_index,
+ frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+ frame_entry_address<String*>(re_frame, kInput), input_start, input_end);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ CompareAndBranchOrBacktrack(current_input_offset(),
+ -cp_offset * char_size(),
+ ge,
+ on_outside_input);
+}
+
+
+bool RegExpMacroAssemblerARM64::CanReadUnaligned() {
+ // TODO(pielan): See whether or not we should disable unaligned accesses.
+ return !slow_safe();
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerARM64::CallCheckStackGuardState(Register scratch) {
+ // Allocate space on the stack to store the return address. The
+ // CheckStackGuardState C++ function will override it if the code
+ // moved. Allocate extra space for 2 arguments passed by pointers.
+ // AAPCS64 requires the stack to be 16 byte aligned.
+ int alignment = masm_->ActivationFrameAlignment();
+ DCHECK_EQ(alignment % 16, 0);
+ int align_mask = (alignment / kXRegSize) - 1;
+ int xreg_to_claim = (3 + align_mask) & ~align_mask;
+
+ DCHECK(csp.Is(__ StackPointer()));
+ __ Claim(xreg_to_claim);
+
+ // CheckStackGuardState needs the end and start addresses of the input string.
+ __ Poke(input_end(), 2 * kPointerSize);
+ __ Add(x5, csp, 2 * kPointerSize);
+ __ Poke(input_start(), kPointerSize);
+ __ Add(x4, csp, kPointerSize);
+
+ __ Mov(w3, start_offset());
+ // RegExp code frame pointer.
+ __ Mov(x2, frame_pointer());
+ // Code* of self.
+ __ Mov(x1, Operand(masm_->CodeObject()));
+
+ // We need to pass a pointer to the return address as first argument.
+ // The DirectCEntry stub will place the return address on the stack before
+ // calling so the stack pointer will point to it.
+ __ Mov(x0, csp);
+
+ ExternalReference check_stack_guard_state =
+ ExternalReference::re_check_stack_guard_state(isolate());
+ __ Mov(scratch, check_stack_guard_state);
+ DirectCEntryStub stub(isolate());
+ stub.GenerateCall(masm_, scratch);
+
+ // The input string may have been moved in memory, we need to reload it.
+ __ Peek(input_start(), kPointerSize);
+ __ Peek(input_end(), 2 * kPointerSize);
+
+ DCHECK(csp.Is(__ StackPointer()));
+ __ Drop(xreg_to_claim);
+
+ // Reload the Code pointer.
+ __ Mov(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+void RegExpMacroAssemblerARM64::BranchOrBacktrack(Condition condition,
+ Label* to) {
+ if (condition == al) { // Unconditional.
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ B(to);
+ return;
+ }
+ if (to == NULL) {
+ to = &backtrack_label_;
+ }
+ __ B(condition, to);
+}
+
+void RegExpMacroAssemblerARM64::CompareAndBranchOrBacktrack(Register reg,
+ int immediate,
+ Condition condition,
+ Label* to) {
+ if ((immediate == 0) && ((condition == eq) || (condition == ne))) {
+ if (to == NULL) {
+ to = &backtrack_label_;
+ }
+ if (condition == eq) {
+ __ Cbz(reg, to);
+ } else {
+ __ Cbnz(reg, to);
+ }
+ } else {
+ __ Cmp(reg, immediate);
+ BranchOrBacktrack(condition, to);
+ }
+}
+
+
+void RegExpMacroAssemblerARM64::CheckPreemption() {
+ // Check for preemption.
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ Mov(x10, stack_limit);
+ __ Ldr(x10, MemOperand(x10));
+ DCHECK(csp.Is(__ StackPointer()));
+ __ Cmp(csp, x10);
+ CallIf(&check_preempt_label_, ls);
+}
+
+
+void RegExpMacroAssemblerARM64::CheckStackLimit() {
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(isolate());
+ __ Mov(x10, stack_limit);
+ __ Ldr(x10, MemOperand(x10));
+ __ Cmp(backtrack_stackpointer(), x10);
+ CallIf(&stack_overflow_label_, ls);
+}
+
+
+void RegExpMacroAssemblerARM64::Push(Register source) {
+ DCHECK(source.Is32Bits());
+ DCHECK(!source.is(backtrack_stackpointer()));
+ __ Str(source,
+ MemOperand(backtrack_stackpointer(),
+ -static_cast<int>(kWRegSize),
+ PreIndex));
+}
+
+
+void RegExpMacroAssemblerARM64::Pop(Register target) {
+ DCHECK(target.Is32Bits());
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ Ldr(target,
+ MemOperand(backtrack_stackpointer(), kWRegSize, PostIndex));
+}
+
+
+Register RegExpMacroAssemblerARM64::GetCachedRegister(int register_index) {
+ DCHECK(register_index < kNumCachedRegisters);
+ return Register::Create(register_index / 2, kXRegSizeInBits);
+}
+
+
+Register RegExpMacroAssemblerARM64::GetRegister(int register_index,
+ Register maybe_result) {
+ DCHECK(maybe_result.Is32Bits());
+ DCHECK(register_index >= 0);
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ Register result;
+ RegisterState register_state = GetRegisterState(register_index);
+ switch (register_state) {
+ case STACKED:
+ __ Ldr(maybe_result, register_location(register_index));
+ result = maybe_result;
+ break;
+ case CACHED_LSW:
+ result = GetCachedRegister(register_index).W();
+ break;
+ case CACHED_MSW:
+ __ Lsr(maybe_result.X(), GetCachedRegister(register_index),
+ kWRegSizeInBits);
+ result = maybe_result;
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ DCHECK(result.Is32Bits());
+ return result;
+}
+
+
+void RegExpMacroAssemblerARM64::StoreRegister(int register_index,
+ Register source) {
+ DCHECK(source.Is32Bits());
+ DCHECK(register_index >= 0);
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+
+ Register cached_register;
+ RegisterState register_state = GetRegisterState(register_index);
+ switch (register_state) {
+ case STACKED:
+ __ Str(source, register_location(register_index));
+ break;
+ case CACHED_LSW:
+ cached_register = GetCachedRegister(register_index);
+ if (!source.Is(cached_register.W())) {
+ __ Bfi(cached_register, source.X(), 0, kWRegSizeInBits);
+ }
+ break;
+ case CACHED_MSW:
+ cached_register = GetCachedRegister(register_index);
+ __ Bfi(cached_register, source.X(), kWRegSizeInBits, kWRegSizeInBits);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void RegExpMacroAssemblerARM64::CallIf(Label* to, Condition condition) {
+ Label skip_call;
+ if (condition != al) __ B(&skip_call, NegateCondition(condition));
+ __ Bl(to);
+ __ Bind(&skip_call);
+}
+
+
+void RegExpMacroAssemblerARM64::RestoreLinkRegister() {
+ DCHECK(csp.Is(__ StackPointer()));
+ __ Pop(lr, xzr);
+ __ Add(lr, lr, Operand(masm_->CodeObject()));
+}
+
+
+void RegExpMacroAssemblerARM64::SaveLinkRegister() {
+ DCHECK(csp.Is(__ StackPointer()));
+ __ Sub(lr, lr, Operand(masm_->CodeObject()));
+ __ Push(xzr, lr);
+}
+
+
+MemOperand RegExpMacroAssemblerARM64::register_location(int register_index) {
+ DCHECK(register_index < (1<<30));
+ DCHECK(register_index >= kNumCachedRegisters);
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ register_index -= kNumCachedRegisters;
+ int offset = kFirstRegisterOnStack - register_index * kWRegSize;
+ return MemOperand(frame_pointer(), offset);
+}
+
+MemOperand RegExpMacroAssemblerARM64::capture_location(int register_index,
+ Register scratch) {
+ DCHECK(register_index < (1<<30));
+ DCHECK(register_index < num_saved_registers_);
+ DCHECK(register_index >= kNumCachedRegisters);
+ DCHECK_EQ(register_index % 2, 0);
+ register_index -= kNumCachedRegisters;
+ int offset = kFirstCaptureOnStack - register_index * kWRegSize;
+ // capture_location is used with Stp instructions to load/store 2 registers.
+ // The immediate field in the encoding is limited to 7 bits (signed).
+ if (is_int7(offset)) {
+ return MemOperand(frame_pointer(), offset);
+ } else {
+ __ Add(scratch, frame_pointer(), offset);
+ return MemOperand(scratch);
+ }
+}
+
+void RegExpMacroAssemblerARM64::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ Register offset = current_input_offset();
+
+ // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
+ // and the operating system running on the target allow it.
+ // If unaligned load/stores are not supported then this function must only
+ // be used to load a single character at a time.
+
+ // ARMv8 supports unaligned accesses but V8 or the kernel can decide to
+ // disable it.
+ // TODO(pielan): See whether or not we should disable unaligned accesses.
+ if (!CanReadUnaligned()) {
+ DCHECK(characters == 1);
+ }
+
+ if (cp_offset != 0) {
+ if (masm_->emit_debug_code()) {
+ __ Mov(x10, cp_offset * char_size());
+ __ Add(x10, x10, Operand(current_input_offset(), SXTW));
+ __ Cmp(x10, Operand(w10, SXTW));
+ // The offset needs to fit in a W register.
+ __ Check(eq, kOffsetOutOfRange);
+ } else {
+ __ Add(w10, current_input_offset(), cp_offset * char_size());
+ }
+ offset = w10;
+ }
+
+ if (mode_ == LATIN1) {
+ if (characters == 4) {
+ __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW));
+ } else if (characters == 2) {
+ __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW));
+ } else {
+ DCHECK(characters == 1);
+ __ Ldrb(current_character(), MemOperand(input_end(), offset, SXTW));
+ }
+ } else {
+ DCHECK(mode_ == UC16);
+ if (characters == 2) {
+ __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW));
+ } else {
+ DCHECK(characters == 1);
+ __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW));
+ }
+ }
+}
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_ARM64
--- /dev/null
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
+#define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
+
+#include "src/arm64/assembler-arm64.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerARM64();
+ virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(unsigned c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ virtual void CheckCharacters(Vector<const uc16> str,
+ int cp_offset,
+ Label* on_failure,
+ bool check_end_of_string);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+ virtual bool CanReadUnaligned();
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame,
+ int start_offset,
+ const byte** input_start,
+ const byte** input_end);
+
+ private:
+ // Above the frame pointer - Stored registers and stack passed parameters.
+ // Callee-saved registers x19-x29, where x29 is the old frame pointer.
+ static const int kCalleeSavedRegisters = 0;
+ // Return address.
+ // It is placed above the 11 callee-saved registers.
+ static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
+ static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+ // Stack parameter placed by caller.
+ static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
+
+ // Below the frame pointer.
+ // Register parameters stored by setup code.
+ static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
+ static const int kStackBase = kDirectCall - kPointerSize;
+ static const int kOutputSize = kStackBase - kPointerSize;
+ static const int kInput = kOutputSize - kPointerSize;
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kSuccessCounter = kInput - kPointerSize;
+ // First position register address on the stack. Following positions are
+ // below it. A position is a 32 bit value.
+ static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
+ // A capture is a 64 bit value holding two position.
+ static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ // When initializing registers to a non-position value we can unroll
+ // the loop. Set the limit of registers to unroll.
+ static const int kNumRegistersToUnroll = 16;
+
+ // We are using x0 to x7 as a register cache. Each hardware register must
+ // contain one capture, that is two 32 bit registers. We can cache at most
+ // 16 registers.
+ static const int kNumCachedRegisters = 16;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState(Register scratch);
+
+ // Location of a 32 bit position register.
+ MemOperand register_location(int register_index);
+
+ // Location of a 64 bit capture, combining two position registers.
+ MemOperand capture_location(int register_index, Register scratch);
+
+ // Register holding the current input position as negative offset from
+ // the end of the string.
+ Register current_input_offset() { return w21; }
+
+ // The register containing the current character after LoadCurrentCharacter.
+ Register current_character() { return w22; }
+
+ // Register holding address of the end of the input string.
+ Register input_end() { return x25; }
+
+ // Register holding address of the start of the input string.
+ Register input_start() { return x26; }
+
+ // Register holding the offset from the start of the string where we should
+ // start matching.
+ Register start_offset() { return w27; }
+
+ // Pointer to the output array's first element.
+ Register output_array() { return x28; }
+
+ // Register holding the frame address. Local variables, parameters and
+ // regexp registers are addressed relative to this.
+ Register frame_pointer() { return fp; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ Register backtrack_stackpointer() { return x23; }
+
+ // Register holding pointer to the current code object.
+ Register code_pointer() { return x20; }
+
+ // Register holding the value used for clearing capture registers.
+ Register non_position_value() { return w24; }
+ // The top 32 bit of this register is used to store this value
+ // twice. This is used for clearing more than one register at a time.
+ Register twice_non_position_value() { return x24; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument)
+ int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Condition condition, Label* to);
+
+ // Compares reg against immmediate before calling BranchOrBacktrack.
+ // It makes use of the Cbz and Cbnz instructions.
+ void CompareAndBranchOrBacktrack(Register reg,
+ int immediate,
+ Condition condition,
+ Label* to);
+
+ inline void CallIf(Label* to, Condition condition);
+
+ // Save and restore the link register on the stack in a way that
+ // is GC-safe.
+ inline void SaveLinkRegister();
+ inline void RestoreLinkRegister();
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // and increments it by a word size.
+ inline void Pop(Register target);
+
+ // This state indicates where the register actually is.
+ enum RegisterState {
+ STACKED, // Resides in memory.
+ CACHED_LSW, // Least Significant Word of a 64 bit hardware register.
+ CACHED_MSW // Most Significant Word of a 64 bit hardware register.
+ };
+
+ RegisterState GetRegisterState(int register_index) {
+ DCHECK(register_index >= 0);
+ if (register_index >= kNumCachedRegisters) {
+ return STACKED;
+ } else {
+ if ((register_index % 2) == 0) {
+ return CACHED_LSW;
+ } else {
+ return CACHED_MSW;
+ }
+ }
+ }
+
+ // Store helper that takes the state of the register into account.
+ inline void StoreRegister(int register_index, Register source);
+
+ // Returns a hardware W register that holds the value of the capture
+ // register.
+ //
+ // This function will try to use an existing cache register (w0-w7) for the
+ // result. Otherwise, it will load the value into maybe_result.
+ //
+ // If the returned register is anything other than maybe_result, calling code
+ // must not write to it.
+ inline Register GetRegister(int register_index, Register maybe_result);
+
+ // Returns the harware register (x0-x7) holding the value of the capture
+ // register.
+ // This assumes that the state of the register is not STACKED.
+ inline Register GetCachedRegister(int register_index);
+
+ Isolate* isolate() const { return masm_->isolate(); }
+
+ MacroAssembler* masm_;
+
+ // Which mode to generate code for (LATIN1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1)
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+};
+
+#endif // V8_INTERPRETED_REGEXP
+
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
--- /dev/null
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+
+#ifndef V8_REGEXP_BYTECODES_IRREGEXP_H_
+#define V8_REGEXP_BYTECODES_IRREGEXP_H_
+
+namespace v8 {
+namespace internal {
+
+
+const int BYTECODE_MASK = 0xff;
+// The first argument is packed in with the byte code in one word, but so it
+// has 24 bits, but it can be positive and negative so only use 23 bits for
+// positive values.
+const unsigned int MAX_FIRST_ARG = 0x7fffffu;
+const int BYTECODE_SHIFT = 8;
+
+#define BYTECODE_ITERATOR(V) \
+V(BREAK, 0, 4) /* bc8 */ \
+V(PUSH_CP, 1, 4) /* bc8 pad24 */ \
+V(PUSH_BT, 2, 8) /* bc8 pad24 offset32 */ \
+V(PUSH_REGISTER, 3, 4) /* bc8 reg_idx24 */ \
+V(SET_REGISTER_TO_CP, 4, 8) /* bc8 reg_idx24 offset32 */ \
+V(SET_CP_TO_REGISTER, 5, 4) /* bc8 reg_idx24 */ \
+V(SET_REGISTER_TO_SP, 6, 4) /* bc8 reg_idx24 */ \
+V(SET_SP_TO_REGISTER, 7, 4) /* bc8 reg_idx24 */ \
+V(SET_REGISTER, 8, 8) /* bc8 reg_idx24 value32 */ \
+V(ADVANCE_REGISTER, 9, 8) /* bc8 reg_idx24 value32 */ \
+V(POP_CP, 10, 4) /* bc8 pad24 */ \
+V(POP_BT, 11, 4) /* bc8 pad24 */ \
+V(POP_REGISTER, 12, 4) /* bc8 reg_idx24 */ \
+V(FAIL, 13, 4) /* bc8 pad24 */ \
+V(SUCCEED, 14, 4) /* bc8 pad24 */ \
+V(ADVANCE_CP, 15, 4) /* bc8 offset24 */ \
+V(GOTO, 16, 8) /* bc8 pad24 addr32 */ \
+V(LOAD_CURRENT_CHAR, 17, 8) /* bc8 offset24 addr32 */ \
+V(LOAD_CURRENT_CHAR_UNCHECKED, 18, 4) /* bc8 offset24 */ \
+V(LOAD_2_CURRENT_CHARS, 19, 8) /* bc8 offset24 addr32 */ \
+V(LOAD_2_CURRENT_CHARS_UNCHECKED, 20, 4) /* bc8 offset24 */ \
+V(LOAD_4_CURRENT_CHARS, 21, 8) /* bc8 offset24 addr32 */ \
+V(LOAD_4_CURRENT_CHARS_UNCHECKED, 22, 4) /* bc8 offset24 */ \
+V(CHECK_4_CHARS, 23, 12) /* bc8 pad24 uint32 addr32 */ \
+V(CHECK_CHAR, 24, 8) /* bc8 pad8 uint16 addr32 */ \
+V(CHECK_NOT_4_CHARS, 25, 12) /* bc8 pad24 uint32 addr32 */ \
+V(CHECK_NOT_CHAR, 26, 8) /* bc8 pad8 uint16 addr32 */ \
+V(AND_CHECK_4_CHARS, 27, 16) /* bc8 pad24 uint32 uint32 addr32 */ \
+V(AND_CHECK_CHAR, 28, 12) /* bc8 pad8 uint16 uint32 addr32 */ \
+V(AND_CHECK_NOT_4_CHARS, 29, 16) /* bc8 pad24 uint32 uint32 addr32 */ \
+V(AND_CHECK_NOT_CHAR, 30, 12) /* bc8 pad8 uint16 uint32 addr32 */ \
+V(MINUS_AND_CHECK_NOT_CHAR, 31, 12) /* bc8 pad8 uc16 uc16 uc16 addr32 */ \
+V(CHECK_CHAR_IN_RANGE, 32, 12) /* bc8 pad24 uc16 uc16 addr32 */ \
+V(CHECK_CHAR_NOT_IN_RANGE, 33, 12) /* bc8 pad24 uc16 uc16 addr32 */ \
+V(CHECK_BIT_IN_TABLE, 34, 24) /* bc8 pad24 addr32 bits128 */ \
+V(CHECK_LT, 35, 8) /* bc8 pad8 uc16 addr32 */ \
+V(CHECK_GT, 36, 8) /* bc8 pad8 uc16 addr32 */ \
+V(CHECK_NOT_BACK_REF, 37, 8) /* bc8 reg_idx24 addr32 */ \
+V(CHECK_NOT_BACK_REF_NO_CASE, 38, 8) /* bc8 reg_idx24 addr32 */ \
+V(CHECK_NOT_REGS_EQUAL, 39, 12) /* bc8 regidx24 reg_idx32 addr32 */ \
+V(CHECK_REGISTER_LT, 40, 12) /* bc8 reg_idx24 value32 addr32 */ \
+V(CHECK_REGISTER_GE, 41, 12) /* bc8 reg_idx24 value32 addr32 */ \
+V(CHECK_REGISTER_EQ_POS, 42, 8) /* bc8 reg_idx24 addr32 */ \
+V(CHECK_AT_START, 43, 8) /* bc8 pad24 addr32 */ \
+V(CHECK_NOT_AT_START, 44, 8) /* bc8 pad24 addr32 */ \
+V(CHECK_GREEDY, 45, 8) /* bc8 pad24 addr32 */ \
+V(ADVANCE_CP_AND_GOTO, 46, 8) /* bc8 offset24 addr32 */ \
+V(SET_CURRENT_POSITION_FROM_END, 47, 4) /* bc8 idx24 */
+
+#define DECLARE_BYTECODES(name, code, length) \
+ static const int BC_##name = code;
+BYTECODE_ITERATOR(DECLARE_BYTECODES)
+#undef DECLARE_BYTECODES
+
+#define DECLARE_BYTECODE_LENGTH(name, code, length) \
+ static const int BC_##name##_LENGTH = length;
+BYTECODE_ITERATOR(DECLARE_BYTECODE_LENGTH)
+#undef DECLARE_BYTECODE_LENGTH
+} }
+
+#endif // V8_REGEXP_BYTECODES_IRREGEXP_H_
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_IA32
+
+#include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
+
+#include "src/cpu-profiler.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - edx : Current character. Must be loaded using LoadCurrentCharacter
+ * before using any of the dispatch methods. Temporarily stores the
+ * index of capture start after a matching pass for a global regexp.
+ * - edi : Current position in input, as negative offset from end of string.
+ * Please notice that this is the byte offset, not the character offset!
+ * - esi : end of input (points to byte after last character in input).
+ * - ebp : Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - esp : Points to tip of C stack.
+ * - ecx : Points to tip of backtrack stack
+ *
+ * The registers eax and ebx are free to use for computations.
+ *
+ * Each call to a public method should retain this convention.
+ * The stack will have the following structure:
+ * - Isolate* isolate (address of the current isolate)
+ * - direct_call (if 1, direct call from JavaScript code, if 0
+ * call through the runtime system)
+ * - stack_area_base (high end of the memory area to use as
+ * backtracking stack)
+ * - capture array size (may fit multiple sets of matches)
+ * - int* capture_array (int[num_saved_registers_], for output).
+ * - end of input (address of end of string)
+ * - start of input (address of first character in string)
+ * - start index (character index of start)
+ * - String* input_string (location of a handle containing the string)
+ * --- frame alignment (if applicable) ---
+ * - return address
+ * ebp-> - old ebp
+ * - backup of caller esi
+ * - backup of caller edi
+ * - backup of caller ebx
+ * - success counter (only for global regexps to count matches).
+ * - Offset of location before start of input (effectively character
+ * position -1). Used to initialize capture registers to a non-position.
+ * - register 0 ebp[-4] (only positions must be stored in the first
+ * - register 1 ebp[-8] num_saved_registers_ registers)
+ * - ...
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers starts out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code, by calling the code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ * int start_index,
+ * Address start,
+ * Address end,
+ * int* capture_output_array,
+ * bool at_start,
+ * byte* stack_area_base,
+ * bool direct_call)
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerIA32::RegExpMacroAssemblerIA32(Isolate* isolate, Zone* zone,
+ Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_() {
+ DCHECK_EQ(0, registers_to_save % 2);
+ __ jmp(&entry_label_); // We'll write the entry code later.
+ __ bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerIA32::~RegExpMacroAssemblerIA32() {
+ delete masm_;
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerIA32::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerIA32::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ add(edi, Immediate(by * char_size()));
+ }
+}
+
+
+void RegExpMacroAssemblerIA32::AdvanceRegister(int reg, int by) {
+ DCHECK(reg >= 0);
+ DCHECK(reg < num_registers_);
+ if (by != 0) {
+ __ add(register_location(reg), Immediate(by));
+ }
+}
+
+
+void RegExpMacroAssemblerIA32::Backtrack() {
+ CheckPreemption();
+ // Pop Code* offset from backtrack stack, add Code* and jump to location.
+ Pop(ebx);
+ __ add(ebx, Immediate(masm_->CodeObject()));
+ __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerIA32::Bind(Label* label) {
+ __ bind(label);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacter(uint32_t c, Label* on_equal) {
+ __ cmp(current_character(), c);
+ BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterGT(uc16 limit, Label* on_greater) {
+ __ cmp(current_character(), limit);
+ BranchOrBacktrack(greater, on_greater);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckAtStart(Label* on_at_start) {
+ Label not_at_start;
+ // Did we start the match at the start of the string at all?
+ __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+ BranchOrBacktrack(not_equal, ¬_at_start);
+ // If we did, are we still at the start of the input?
+ __ lea(eax, Operand(esi, edi, times_1, 0));
+ __ cmp(eax, Operand(ebp, kInputStart));
+ BranchOrBacktrack(equal, on_at_start);
+ __ bind(¬_at_start);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotAtStart(Label* on_not_at_start) {
+ // Did we start the match at the start of the string at all?
+ __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+ BranchOrBacktrack(not_equal, on_not_at_start);
+ // If we did, are we still at the start of the input?
+ __ lea(eax, Operand(esi, edi, times_1, 0));
+ __ cmp(eax, Operand(ebp, kInputStart));
+ BranchOrBacktrack(not_equal, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterLT(uc16 limit, Label* on_less) {
+ __ cmp(current_character(), limit);
+ BranchOrBacktrack(less, on_less);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckGreedyLoop(Label* on_equal) {
+ Label fallthrough;
+ __ cmp(edi, Operand(backtrack_stackpointer(), 0));
+ __ j(not_equal, &fallthrough);
+ __ add(backtrack_stackpointer(), Immediate(kPointerSize)); // Pop.
+ BranchOrBacktrack(no_condition, on_equal);
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ __ mov(edx, register_location(start_reg)); // Index of start of capture
+ __ mov(ebx, register_location(start_reg + 1)); // Index of end of capture
+ __ sub(ebx, edx); // Length of capture.
+
+ // The length of a capture should not be negative. This can only happen
+ // if the end of the capture is unrecorded, or at a point earlier than
+ // the start of the capture.
+ BranchOrBacktrack(less, on_no_match);
+
+ // If length is zero, either the capture is empty or it is completely
+ // uncaptured. In either case succeed immediately.
+ __ j(equal, &fallthrough);
+
+ // Check that there are sufficient characters left in the input.
+ __ mov(eax, edi);
+ __ add(eax, ebx);
+ BranchOrBacktrack(greater, on_no_match);
+
+ if (mode_ == LATIN1) {
+ Label success;
+ Label fail;
+ Label loop_increment;
+ // Save register contents to make the registers available below.
+ __ push(edi);
+ __ push(backtrack_stackpointer());
+ // After this, the eax, ecx, and edi registers are available.
+
+ __ add(edx, esi); // Start of capture
+ __ add(edi, esi); // Start of text to match against capture.
+ __ add(ebx, edi); // End of text to match against capture.
+
+ Label loop;
+ __ bind(&loop);
+ __ movzx_b(eax, Operand(edi, 0));
+ __ cmpb_al(Operand(edx, 0));
+ __ j(equal, &loop_increment);
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ __ or_(eax, 0x20); // Convert match character to lower-case.
+ __ lea(ecx, Operand(eax, -'a'));
+ __ cmp(ecx, static_cast<int32_t>('z' - 'a')); // Is eax a lowercase letter?
+ Label convert_capture;
+ __ j(below_equal, &convert_capture); // In range 'a'-'z'.
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ sub(ecx, Immediate(224 - 'a'));
+ __ cmp(ecx, Immediate(254 - 224));
+ __ j(above, &fail); // Weren't Latin-1 letters.
+ __ cmp(ecx, Immediate(247 - 224)); // Check for 247.
+ __ j(equal, &fail);
+ __ bind(&convert_capture);
+ // Also convert capture character.
+ __ movzx_b(ecx, Operand(edx, 0));
+ __ or_(ecx, 0x20);
+
+ __ cmp(eax, ecx);
+ __ j(not_equal, &fail);
+
+ __ bind(&loop_increment);
+ // Increment pointers into match and capture strings.
+ __ add(edx, Immediate(1));
+ __ add(edi, Immediate(1));
+ // Compare to end of match, and loop if not done.
+ __ cmp(edi, ebx);
+ __ j(below, &loop);
+ __ jmp(&success);
+
+ __ bind(&fail);
+ // Restore original values before failing.
+ __ pop(backtrack_stackpointer());
+ __ pop(edi);
+ BranchOrBacktrack(no_condition, on_no_match);
+
+ __ bind(&success);
+ // Restore original value before continuing.
+ __ pop(backtrack_stackpointer());
+ // Drop original value of character position.
+ __ add(esp, Immediate(kPointerSize));
+ // Compute new value of character position after the matched part.
+ __ sub(edi, esi);
+ } else {
+ DCHECK(mode_ == UC16);
+ // Save registers before calling C function.
+ __ push(esi);
+ __ push(edi);
+ __ push(backtrack_stackpointer());
+ __ push(ebx);
+
+ static const int argument_count = 4;
+ __ PrepareCallCFunction(argument_count, ecx);
+ // Put arguments into allocated stack area, last argument highest on stack.
+ // Parameters are
+ // Address byte_offset1 - Address captured substring's start.
+ // Address byte_offset2 - Address of current character position.
+ // size_t byte_length - length of capture in bytes(!)
+ // Isolate* isolate
+
+ // Set isolate.
+ __ mov(Operand(esp, 3 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ // Set byte_length.
+ __ mov(Operand(esp, 2 * kPointerSize), ebx);
+ // Set byte_offset2.
+ // Found by adding negative string-end offset of current position (edi)
+ // to end of string.
+ __ add(edi, esi);
+ __ mov(Operand(esp, 1 * kPointerSize), edi);
+ // Set byte_offset1.
+ // Start of capture, where edx already holds string-end negative offset.
+ __ add(edx, esi);
+ __ mov(Operand(esp, 0 * kPointerSize), edx);
+
+ {
+ AllowExternalCallThatCantCauseGC scope(masm_);
+ ExternalReference compare =
+ ExternalReference::re_case_insensitive_compare_uc16(isolate());
+ __ CallCFunction(compare, argument_count);
+ }
+ // Pop original values before reacting on result value.
+ __ pop(ebx);
+ __ pop(backtrack_stackpointer());
+ __ pop(edi);
+ __ pop(esi);
+
+ // Check if function returned non-zero for success or zero for failure.
+ __ or_(eax, eax);
+ BranchOrBacktrack(zero, on_no_match);
+ // On success, increment position by length of capture.
+ __ add(edi, ebx);
+ }
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotBackReference(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ Label success;
+ Label fail;
+
+ // Find length of back-referenced capture.
+ __ mov(edx, register_location(start_reg));
+ __ mov(eax, register_location(start_reg + 1));
+ __ sub(eax, edx); // Length to check.
+ // Fail on partial or illegal capture (start of capture after end of capture).
+ BranchOrBacktrack(less, on_no_match);
+ // Succeed on empty capture (including no capture)
+ __ j(equal, &fallthrough);
+
+ // Check that there are sufficient characters left in the input.
+ __ mov(ebx, edi);
+ __ add(ebx, eax);
+ BranchOrBacktrack(greater, on_no_match);
+
+ // Save register to make it available below.
+ __ push(backtrack_stackpointer());
+
+ // Compute pointers to match string and capture string
+ __ lea(ebx, Operand(esi, edi, times_1, 0)); // Start of match.
+ __ add(edx, esi); // Start of capture.
+ __ lea(ecx, Operand(eax, ebx, times_1, 0)); // End of match
+
+ Label loop;
+ __ bind(&loop);
+ if (mode_ == LATIN1) {
+ __ movzx_b(eax, Operand(edx, 0));
+ __ cmpb_al(Operand(ebx, 0));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ movzx_w(eax, Operand(edx, 0));
+ __ cmpw_ax(Operand(ebx, 0));
+ }
+ __ j(not_equal, &fail);
+ // Increment pointers into capture and match string.
+ __ add(edx, Immediate(char_size()));
+ __ add(ebx, Immediate(char_size()));
+ // Check if we have reached end of match area.
+ __ cmp(ebx, ecx);
+ __ j(below, &loop);
+ __ jmp(&success);
+
+ __ bind(&fail);
+ // Restore backtrack stackpointer.
+ __ pop(backtrack_stackpointer());
+ BranchOrBacktrack(no_condition, on_no_match);
+
+ __ bind(&success);
+ // Move current character position to position after match.
+ __ mov(edi, ecx);
+ __ sub(edi, esi);
+ // Restore backtrack stackpointer.
+ __ pop(backtrack_stackpointer());
+
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotCharacter(uint32_t c,
+ Label* on_not_equal) {
+ __ cmp(current_character(), c);
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ if (c == 0) {
+ __ test(current_character(), Immediate(mask));
+ } else {
+ __ mov(eax, mask);
+ __ and_(eax, current_character());
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal) {
+ if (c == 0) {
+ __ test(current_character(), Immediate(mask));
+ } else {
+ __ mov(eax, mask);
+ __ and_(eax, current_character());
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ lea(eax, Operand(current_character(), -minus));
+ if (c == 0) {
+ __ test(eax, Immediate(mask));
+ } else {
+ __ and_(eax, mask);
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ __ lea(eax, Operand(current_character(), -from));
+ __ cmp(eax, to - from);
+ BranchOrBacktrack(below_equal, on_in_range);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ __ lea(eax, Operand(current_character(), -from));
+ __ cmp(eax, to - from);
+ BranchOrBacktrack(above, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckBitInTable(
+ Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ mov(eax, Immediate(table));
+ Register index = current_character();
+ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+ __ mov(ebx, kTableSize - 1);
+ __ and_(ebx, current_character());
+ index = ebx;
+ }
+ __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize), 0);
+ BranchOrBacktrack(not_equal, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerIA32::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check
+ switch (type) {
+ case 's':
+ // Match space-characters
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ __ cmp(current_character(), ' ');
+ __ j(equal, &success, Label::kNear);
+ // Check range 0x09..0x0d
+ __ lea(eax, Operand(current_character(), -'\t'));
+ __ cmp(eax, '\r' - '\t');
+ __ j(below_equal, &success, Label::kNear);
+ // \u00a0 (NBSP).
+ __ cmp(eax, 0x00a0 - '\t');
+ BranchOrBacktrack(not_equal, on_no_match);
+ __ bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match ASCII digits ('0'..'9')
+ __ lea(eax, Operand(current_character(), -'0'));
+ __ cmp(eax, '9' - '0');
+ BranchOrBacktrack(above, on_no_match);
+ return true;
+ case 'D':
+ // Match non ASCII-digits
+ __ lea(eax, Operand(current_character(), -'0'));
+ __ cmp(eax, '9' - '0');
+ BranchOrBacktrack(below_equal, on_no_match);
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ mov(eax, current_character());
+ __ xor_(eax, Immediate(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ sub(eax, Immediate(0x0b));
+ __ cmp(eax, 0x0c - 0x0b);
+ BranchOrBacktrack(below_equal, on_no_match);
+ if (mode_ == UC16) {
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ sub(eax, Immediate(0x2028 - 0x0b));
+ __ cmp(eax, 0x2029 - 0x2028);
+ BranchOrBacktrack(below_equal, on_no_match);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmp(current_character(), Immediate('z'));
+ BranchOrBacktrack(above, on_no_match);
+ }
+ DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
+ ExternalReference word_map = ExternalReference::re_word_character_map();
+ __ test_b(current_character(),
+ Operand::StaticArray(current_character(), times_1, word_map));
+ BranchOrBacktrack(zero, on_no_match);
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmp(current_character(), Immediate('z'));
+ __ j(above, &done);
+ }
+ DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
+ ExternalReference word_map = ExternalReference::re_word_character_map();
+ __ test_b(current_character(),
+ Operand::StaticArray(current_character(), times_1, word_map));
+ BranchOrBacktrack(not_zero, on_no_match);
+ if (mode_ != LATIN1) {
+ __ bind(&done);
+ }
+ return true;
+ }
+ // Non-standard classes (with no syntactic shorthand) used internally.
+ case '*':
+ // Match any character.
+ return true;
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
+ // The opposite of '.'.
+ __ mov(eax, current_character());
+ __ xor_(eax, Immediate(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ sub(eax, Immediate(0x0b));
+ __ cmp(eax, 0x0c - 0x0b);
+ if (mode_ == LATIN1) {
+ BranchOrBacktrack(above, on_no_match);
+ } else {
+ Label done;
+ BranchOrBacktrack(below_equal, &done);
+ DCHECK_EQ(UC16, mode_);
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ sub(eax, Immediate(0x2028 - 0x0b));
+ __ cmp(eax, 1);
+ BranchOrBacktrack(above, on_no_match);
+ __ bind(&done);
+ }
+ return true;
+ }
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerIA32::Fail() {
+ STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
+ if (!global()) {
+ __ Move(eax, Immediate(FAILURE));
+ }
+ __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerIA32::GetCode(Handle<String> source) {
+ Label return_eax;
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+
+ // Entry code:
+ __ bind(&entry_label_);
+
+ // Tell the system that we have a stack frame. Because the type is MANUAL, no
+ // code is generated.
+ FrameScope scope(masm_, StackFrame::MANUAL);
+
+ // Actually emit code to start a new stack frame.
+ __ push(ebp);
+ __ mov(ebp, esp);
+ // Save callee-save registers. Order here should correspond to order of
+ // kBackup_ebx etc.
+ __ push(esi);
+ __ push(edi);
+ __ push(ebx); // Callee-save on MacOS.
+ __ push(Immediate(0)); // Number of successful matches in a global regexp.
+ __ push(Immediate(0)); // Make room for "input start - 1" constant.
+
+ // Check if we have space on the stack for registers.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ mov(ecx, esp);
+ __ sub(ecx, Operand::StaticVariable(stack_limit));
+ // Handle it if the stack pointer is already below the stack limit.
+ __ j(below_equal, &stack_limit_hit);
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ cmp(ecx, num_registers_ * kPointerSize);
+ __ j(above_equal, &stack_ok);
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ mov(eax, EXCEPTION);
+ __ jmp(&return_eax);
+
+ __ bind(&stack_limit_hit);
+ CallCheckStackGuardState(ebx);
+ __ or_(eax, eax);
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ j(not_zero, &return_eax);
+
+ __ bind(&stack_ok);
+ // Load start index for later use.
+ __ mov(ebx, Operand(ebp, kStartIndex));
+
+ // Allocate space on stack for registers.
+ __ sub(esp, Immediate(num_registers_ * kPointerSize));
+ // Load string length.
+ __ mov(esi, Operand(ebp, kInputEnd));
+ // Load input position.
+ __ mov(edi, Operand(ebp, kInputStart));
+ // Set up edi to be negative offset from string end.
+ __ sub(edi, esi);
+
+ // Set eax to address of char before start of the string.
+ // (effectively string position -1).
+ __ neg(ebx);
+ if (mode_ == UC16) {
+ __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
+ } else {
+ __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
+ }
+ // Store this value in a local variable, for use when clearing
+ // position registers.
+ __ mov(Operand(ebp, kInputStartMinusOne), eax);
+
+#if V8_OS_WIN
+ // Ensure that we write to each stack page, in order. Skipping a page
+ // on Windows can cause segmentation faults. Assuming page size is 4k.
+ const int kPageSize = 4096;
+ const int kRegistersPerPage = kPageSize / kPointerSize;
+ for (int i = num_saved_registers_ + kRegistersPerPage - 1;
+ i < num_registers_;
+ i += kRegistersPerPage) {
+ __ mov(register_location(i), eax); // One write every page.
+ }
+#endif // V8_OS_WIN
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+ __ j(not_equal, &load_char_start_regexp, Label::kNear);
+ __ mov(current_character(), '\n');
+ __ jmp(&start_regexp, Label::kNear);
+
+ // Global regexp restarts matching here.
+ __ bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&start_regexp);
+
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
+ // Fill saved registers with initial value = start offset - 1
+ // Fill in stack push order, to avoid accessing across an unwritten
+ // page (a problem on Windows).
+ if (num_saved_registers_ > 8) {
+ __ mov(ecx, kRegisterZero);
+ Label init_loop;
+ __ bind(&init_loop);
+ __ mov(Operand(ebp, ecx, times_1, 0), eax);
+ __ sub(ecx, Immediate(kPointerSize));
+ __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
+ __ j(greater, &init_loop);
+ } else { // Unroll the loop.
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ mov(register_location(i), eax);
+ }
+ }
+ }
+
+ // Initialize backtrack stack pointer.
+ __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+
+ __ jmp(&start_label_);
+
+ // Exit code:
+ if (success_label_.is_linked()) {
+ // Save captures when successful.
+ __ bind(&success_label_);
+ if (num_saved_registers_ > 0) {
+ // copy captures to output
+ __ mov(ebx, Operand(ebp, kRegisterOutput));
+ __ mov(ecx, Operand(ebp, kInputEnd));
+ __ mov(edx, Operand(ebp, kStartIndex));
+ __ sub(ecx, Operand(ebp, kInputStart));
+ if (mode_ == UC16) {
+ __ lea(ecx, Operand(ecx, edx, times_2, 0));
+ } else {
+ __ add(ecx, edx);
+ }
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ mov(eax, register_location(i));
+ if (i == 0 && global_with_zero_length_check()) {
+ // Keep capture start in edx for the zero-length check later.
+ __ mov(edx, eax);
+ }
+ // Convert to index from start of string, not end.
+ __ add(eax, ecx);
+ if (mode_ == UC16) {
+ __ sar(eax, 1); // Convert byte index to character index.
+ }
+ __ mov(Operand(ebx, i * kPointerSize), eax);
+ }
+ }
+
+ if (global()) {
+ // Restart matching if the regular expression is flagged as global.
+ // Increment success counter.
+ __ inc(Operand(ebp, kSuccessfulCaptures));
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ mov(ecx, Operand(ebp, kNumOutputRegisters));
+ __ sub(ecx, Immediate(num_saved_registers_));
+ // Check whether we have enough room for another set of capture results.
+ __ cmp(ecx, Immediate(num_saved_registers_));
+ __ j(less, &exit_label_);
+
+ __ mov(Operand(ebp, kNumOutputRegisters), ecx);
+ // Advance the location for output.
+ __ add(Operand(ebp, kRegisterOutput),
+ Immediate(num_saved_registers_ * kPointerSize));
+
+ // Prepare eax to initialize registers with its value in the next run.
+ __ mov(eax, Operand(ebp, kInputStartMinusOne));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ // edx: capture start index
+ __ cmp(edi, edx);
+ // Not a zero-length match, restart.
+ __ j(not_equal, &load_char_start_regexp);
+ // edi (offset from the end) is zero if we already reached the end.
+ __ test(edi, edi);
+ __ j(zero, &exit_label_, Label::kNear);
+ // Advance current position after a zero-length match.
+ if (mode_ == UC16) {
+ __ add(edi, Immediate(2));
+ } else {
+ __ inc(edi);
+ }
+ }
+
+ __ jmp(&load_char_start_regexp);
+ } else {
+ __ mov(eax, Immediate(SUCCESS));
+ }
+ }
+
+ __ bind(&exit_label_);
+ if (global()) {
+ // Return the number of successful captures.
+ __ mov(eax, Operand(ebp, kSuccessfulCaptures));
+ }
+
+ __ bind(&return_eax);
+ // Skip esp past regexp registers.
+ __ lea(esp, Operand(ebp, kBackup_ebx));
+ // Restore callee-save registers.
+ __ pop(ebx);
+ __ pop(edi);
+ __ pop(esi);
+ // Exit function frame, restore previous one.
+ __ pop(ebp);
+ __ ret(0);
+
+ // Backtrack code (branch target for conditional backtracks).
+ if (backtrack_label_.is_linked()) {
+ __ bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ Label exit_with_exception;
+
+ // Preempt-code
+ if (check_preempt_label_.is_linked()) {
+ SafeCallTarget(&check_preempt_label_);
+
+ __ push(backtrack_stackpointer());
+ __ push(edi);
+
+ CallCheckStackGuardState(ebx);
+ __ or_(eax, eax);
+ // If returning non-zero, we should end execution with the given
+ // result as return value.
+ __ j(not_zero, &return_eax);
+
+ __ pop(edi);
+ __ pop(backtrack_stackpointer());
+ // String might have moved: Reload esi from frame.
+ __ mov(esi, Operand(ebp, kInputEnd));
+ SafeReturn();
+ }
+
+ // Backtrack stack overflow code.
+ if (stack_overflow_label_.is_linked()) {
+ SafeCallTarget(&stack_overflow_label_);
+ // Reached if the backtrack-stack limit has been hit.
+
+ Label grow_failed;
+ // Save registers before calling C function
+ __ push(esi);
+ __ push(edi);
+
+ // Call GrowStack(backtrack_stackpointer())
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, ebx);
+ __ mov(Operand(esp, 2 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ __ lea(eax, Operand(ebp, kStackHighEnd));
+ __ mov(Operand(esp, 1 * kPointerSize), eax);
+ __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(isolate());
+ __ CallCFunction(grow_stack, num_arguments);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ __ or_(eax, eax);
+ __ j(equal, &exit_with_exception);
+ // Otherwise use return value as new stack pointer.
+ __ mov(backtrack_stackpointer(), eax);
+ // Restore saved registers and continue.
+ __ pop(edi);
+ __ pop(esi);
+ SafeReturn();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ // If any of the code above needed to exit with an exception.
+ __ bind(&exit_with_exception);
+ // Exit with Result EXCEPTION(-1) to signal thrown exception.
+ __ mov(eax, EXCEPTION);
+ __ jmp(&return_eax);
+ }
+
+ CodeDesc code_desc;
+ masm_->GetCode(&code_desc);
+ Handle<Code> code =
+ isolate()->factory()->NewCode(code_desc,
+ Code::ComputeFlags(Code::REGEXP),
+ masm_->CodeObject());
+ PROFILE(isolate(), RegExpCodeCreateEvent(*code, *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerIA32::GoTo(Label* to) {
+ BranchOrBacktrack(no_condition, to);
+}
+
+
+void RegExpMacroAssemblerIA32::IfRegisterGE(int reg,
+ int comparand,
+ Label* if_ge) {
+ __ cmp(register_location(reg), Immediate(comparand));
+ BranchOrBacktrack(greater_equal, if_ge);
+}
+
+
+void RegExpMacroAssemblerIA32::IfRegisterLT(int reg,
+ int comparand,
+ Label* if_lt) {
+ __ cmp(register_location(reg), Immediate(comparand));
+ BranchOrBacktrack(less, if_lt);
+}
+
+
+void RegExpMacroAssemblerIA32::IfRegisterEqPos(int reg,
+ Label* if_eq) {
+ __ cmp(edi, register_location(reg));
+ BranchOrBacktrack(equal, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerIA32::Implementation() {
+ return kIA32Implementation;
+}
+
+
+void RegExpMacroAssemblerIA32::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
+ DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
+ if (check_bounds) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerIA32::PopCurrentPosition() {
+ Pop(edi);
+}
+
+
+void RegExpMacroAssemblerIA32::PopRegister(int register_index) {
+ Pop(eax);
+ __ mov(register_location(register_index), eax);
+}
+
+
+void RegExpMacroAssemblerIA32::PushBacktrack(Label* label) {
+ Push(Immediate::CodeRelativeOffset(label));
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerIA32::PushCurrentPosition() {
+ Push(edi);
+}
+
+
+void RegExpMacroAssemblerIA32::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ __ mov(eax, register_location(register_index));
+ Push(eax);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerIA32::ReadCurrentPositionFromRegister(int reg) {
+ __ mov(edi, register_location(reg));
+}
+
+
+void RegExpMacroAssemblerIA32::ReadStackPointerFromRegister(int reg) {
+ __ mov(backtrack_stackpointer(), register_location(reg));
+ __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+}
+
+void RegExpMacroAssemblerIA32::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ cmp(edi, -by * char_size());
+ __ j(greater_equal, &after_position, Label::kNear);
+ __ mov(edi, -by * char_size());
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerIA32::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ __ mov(register_location(register_index), Immediate(to));
+}
+
+
+bool RegExpMacroAssemblerIA32::Succeed() {
+ __ jmp(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerIA32::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ if (cp_offset == 0) {
+ __ mov(register_location(reg), edi);
+ } else {
+ __ lea(eax, Operand(edi, cp_offset * char_size()));
+ __ mov(register_location(reg), eax);
+ }
+}
+
+
+void RegExpMacroAssemblerIA32::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ __ mov(eax, Operand(ebp, kInputStartMinusOne));
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ __ mov(register_location(reg), eax);
+ }
+}
+
+
+void RegExpMacroAssemblerIA32::WriteStackPointerToRegister(int reg) {
+ __ mov(eax, backtrack_stackpointer());
+ __ sub(eax, Operand(ebp, kStackHighEnd));
+ __ mov(register_location(reg), eax);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerIA32::CallCheckStackGuardState(Register scratch) {
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, scratch);
+ // RegExp code frame pointer.
+ __ mov(Operand(esp, 2 * kPointerSize), ebp);
+ // Code* of self.
+ __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
+ // Next address on the stack (will be address of return address).
+ __ lea(eax, Operand(esp, -kPointerSize));
+ __ mov(Operand(esp, 0 * kPointerSize), eax);
+ ExternalReference check_stack_guard =
+ ExternalReference::re_check_stack_guard_state(isolate());
+ __ CallCFunction(check_stack_guard, num_arguments);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate),
+ frame_entry<int>(re_frame, kStartIndex),
+ frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+ frame_entry_address<String*>(re_frame, kInputString),
+ frame_entry_address<const byte*>(re_frame, kInputStart),
+ frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+Operand RegExpMacroAssemblerIA32::register_location(int register_index) {
+ DCHECK(register_index < (1<<30));
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ return Operand(ebp, kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ __ cmp(edi, -cp_offset * char_size());
+ BranchOrBacktrack(greater_equal, on_outside_input);
+}
+
+
+void RegExpMacroAssemblerIA32::BranchOrBacktrack(Condition condition,
+ Label* to) {
+ if (condition < 0) { // No condition
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+ }
+ if (to == NULL) {
+ __ j(condition, &backtrack_label_);
+ return;
+ }
+ __ j(condition, to);
+}
+
+
+void RegExpMacroAssemblerIA32::SafeCall(Label* to) {
+ Label return_to;
+ __ push(Immediate::CodeRelativeOffset(&return_to));
+ __ jmp(to);
+ __ bind(&return_to);
+}
+
+
+void RegExpMacroAssemblerIA32::SafeReturn() {
+ __ pop(ebx);
+ __ add(ebx, Immediate(masm_->CodeObject()));
+ __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerIA32::SafeCallTarget(Label* name) {
+ __ bind(name);
+}
+
+
+void RegExpMacroAssemblerIA32::Push(Register source) {
+ DCHECK(!source.is(backtrack_stackpointer()));
+ // Notice: This updates flags, unlike normal Push.
+ __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+ __ mov(Operand(backtrack_stackpointer(), 0), source);
+}
+
+
+void RegExpMacroAssemblerIA32::Push(Immediate value) {
+ // Notice: This updates flags, unlike normal Push.
+ __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+ __ mov(Operand(backtrack_stackpointer(), 0), value);
+}
+
+
+void RegExpMacroAssemblerIA32::Pop(Register target) {
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ mov(target, Operand(backtrack_stackpointer(), 0));
+ // Notice: This updates flags, unlike normal Pop.
+ __ add(backtrack_stackpointer(), Immediate(kPointerSize));
+}
+
+
+void RegExpMacroAssemblerIA32::CheckPreemption() {
+ // Check for preemption.
+ Label no_preempt;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(above, &no_preempt);
+
+ SafeCall(&check_preempt_label_);
+
+ __ bind(&no_preempt);
+}
+
+
+void RegExpMacroAssemblerIA32::CheckStackLimit() {
+ Label no_stack_overflow;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(isolate());
+ __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
+ __ j(above, &no_stack_overflow);
+
+ SafeCall(&stack_overflow_label_);
+
+ __ bind(&no_stack_overflow);
+}
+
+
+void RegExpMacroAssemblerIA32::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ if (mode_ == LATIN1) {
+ if (characters == 4) {
+ __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
+ } else if (characters == 2) {
+ __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
+ } else {
+ DCHECK(characters == 1);
+ __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
+ }
+ } else {
+ DCHECK(mode_ == UC16);
+ if (characters == 2) {
+ __ mov(current_character(),
+ Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+ } else {
+ DCHECK(characters == 1);
+ __ movzx_w(current_character(),
+ Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+ }
+ }
+}
+
+
+#undef __
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_IA32
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
+#define V8_REGEXP_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
+
+#include "src/ia32/assembler-ia32.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerIA32: public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerIA32(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerIA32();
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(uint32_t c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame);
+
+ private:
+ // Offsets from ebp of function parameters and stored registers.
+ static const int kFramePointer = 0;
+ // Above the frame pointer - function parameters and return address.
+ static const int kReturn_eip = kFramePointer + kPointerSize;
+ static const int kFrameAlign = kReturn_eip + kPointerSize;
+ // Parameters.
+ static const int kInputString = kFrameAlign;
+ static const int kStartIndex = kInputString + kPointerSize;
+ static const int kInputStart = kStartIndex + kPointerSize;
+ static const int kInputEnd = kInputStart + kPointerSize;
+ static const int kRegisterOutput = kInputEnd + kPointerSize;
+ // For the case of global regular expression, we have room to store at least
+ // one set of capture results. For the case of non-global regexp, we ignore
+ // this value.
+ static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+ static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+ static const int kDirectCall = kStackHighEnd + kPointerSize;
+ static const int kIsolate = kDirectCall + kPointerSize;
+ // Below the frame pointer - local stack variables.
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kBackup_esi = kFramePointer - kPointerSize;
+ static const int kBackup_edi = kBackup_esi - kPointerSize;
+ static const int kBackup_ebx = kBackup_edi - kPointerSize;
+ static const int kSuccessfulCaptures = kBackup_ebx - kPointerSize;
+ static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState(Register scratch);
+
+ // The ebp-relative location of a regexp register.
+ Operand register_location(int register_index);
+
+ // The register containing the current character after LoadCurrentCharacter.
+ inline Register current_character() { return edx; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ inline Register backtrack_stackpointer() { return ecx; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument)
+ inline int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Condition condition, Label* to);
+
+ // Call and return internally in the generated code in a way that
+ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+ inline void SafeCall(Label* to);
+ inline void SafeReturn();
+ inline void SafeCallTarget(Label* name);
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer (ecx) by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pushes a value on the backtrack stack. Decrements the stack pointer (ecx)
+ // by a word size and stores the value there.
+ inline void Push(Immediate value);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // (ecx) and increments it by a word size.
+ inline void Pop(Register target);
+
+ Isolate* isolate() const { return masm_->isolate(); }
+
+ MacroAssembler* masm_;
+
+ // Which mode to generate code for (LATIN1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1)
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+};
+#endif // V8_INTERPRETED_REGEXP
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
--- /dev/null
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// A simple interpreter for the Irregexp byte code.
+
+
+#include "src/v8.h"
+
+#include "src/ast.h"
+#include "src/regexp/bytecodes-irregexp.h"
+#include "src/regexp/interpreter-irregexp.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/unicode.h"
+#include "src/utils.h"
+
+namespace v8 {
+namespace internal {
+
+
+typedef unibrow::Mapping<unibrow::Ecma262Canonicalize> Canonicalize;
+
+static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize,
+ int from,
+ int current,
+ int len,
+ Vector<const uc16> subject) {
+ for (int i = 0; i < len; i++) {
+ unibrow::uchar old_char = subject[from++];
+ unibrow::uchar new_char = subject[current++];
+ if (old_char == new_char) continue;
+ unibrow::uchar old_string[1] = { old_char };
+ unibrow::uchar new_string[1] = { new_char };
+ interp_canonicalize->get(old_char, '\0', old_string);
+ interp_canonicalize->get(new_char, '\0', new_string);
+ if (old_string[0] != new_string[0]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize,
+ int from,
+ int current,
+ int len,
+ Vector<const uint8_t> subject) {
+ for (int i = 0; i < len; i++) {
+ unsigned int old_char = subject[from++];
+ unsigned int new_char = subject[current++];
+ if (old_char == new_char) continue;
+ // Convert both characters to lower case.
+ old_char |= 0x20;
+ new_char |= 0x20;
+ if (old_char != new_char) return false;
+ // Not letters in the ASCII range and Latin-1 range.
+ if (!(old_char - 'a' <= 'z' - 'a') &&
+ !(old_char - 224 <= 254 - 224 && old_char != 247)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+#ifdef DEBUG
+static void TraceInterpreter(const byte* code_base,
+ const byte* pc,
+ int stack_depth,
+ int current_position,
+ uint32_t current_char,
+ int bytecode_length,
+ const char* bytecode_name) {
+ if (FLAG_trace_regexp_bytecodes) {
+ bool printable = (current_char < 127 && current_char >= 32);
+ const char* format =
+ printable ?
+ "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" :
+ "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s";
+ PrintF(format,
+ pc - code_base,
+ stack_depth,
+ current_position,
+ current_char,
+ printable ? current_char : '.',
+ bytecode_name);
+ for (int i = 0; i < bytecode_length; i++) {
+ printf(", %02x", pc[i]);
+ }
+ printf(" ");
+ for (int i = 1; i < bytecode_length; i++) {
+ unsigned char b = pc[i];
+ if (b < 127 && b >= 32) {
+ printf("%c", b);
+ } else {
+ printf(".");
+ }
+ }
+ printf("\n");
+ }
+}
+
+
+#define BYTECODE(name) \
+ case BC_##name: \
+ TraceInterpreter(code_base, \
+ pc, \
+ static_cast<int>(backtrack_sp - backtrack_stack_base), \
+ current, \
+ current_char, \
+ BC_##name##_LENGTH, \
+ #name);
+#else
+#define BYTECODE(name) \
+ case BC_##name:
+#endif
+
+
+static int32_t Load32Aligned(const byte* pc) {
+ DCHECK((reinterpret_cast<intptr_t>(pc) & 3) == 0);
+ return *reinterpret_cast<const int32_t *>(pc);
+}
+
+
+static int32_t Load16Aligned(const byte* pc) {
+ DCHECK((reinterpret_cast<intptr_t>(pc) & 1) == 0);
+ return *reinterpret_cast<const uint16_t *>(pc);
+}
+
+
+// A simple abstraction over the backtracking stack used by the interpreter.
+// This backtracking stack does not grow automatically, but it ensures that the
+// the memory held by the stack is released or remembered in a cache if the
+// matching terminates.
+class BacktrackStack {
+ public:
+ BacktrackStack() { data_ = NewArray<int>(kBacktrackStackSize); }
+
+ ~BacktrackStack() {
+ DeleteArray(data_);
+ }
+
+ int* data() const { return data_; }
+
+ int max_size() const { return kBacktrackStackSize; }
+
+ private:
+ static const int kBacktrackStackSize = 10000;
+
+ int* data_;
+
+ DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
+};
+
+
+template <typename Char>
+static RegExpImpl::IrregexpResult RawMatch(Isolate* isolate,
+ const byte* code_base,
+ Vector<const Char> subject,
+ int* registers,
+ int current,
+ uint32_t current_char) {
+ const byte* pc = code_base;
+ // BacktrackStack ensures that the memory allocated for the backtracking stack
+ // is returned to the system or cached if there is no stack being cached at
+ // the moment.
+ BacktrackStack backtrack_stack;
+ int* backtrack_stack_base = backtrack_stack.data();
+ int* backtrack_sp = backtrack_stack_base;
+ int backtrack_stack_space = backtrack_stack.max_size();
+#ifdef DEBUG
+ if (FLAG_trace_regexp_bytecodes) {
+ PrintF("\n\nStart bytecode interpreter\n\n");
+ }
+#endif
+ while (true) {
+ int32_t insn = Load32Aligned(pc);
+ switch (insn & BYTECODE_MASK) {
+ BYTECODE(BREAK)
+ UNREACHABLE();
+ return RegExpImpl::RE_FAILURE;
+ BYTECODE(PUSH_CP)
+ if (--backtrack_stack_space < 0) {
+ return RegExpImpl::RE_EXCEPTION;
+ }
+ *backtrack_sp++ = current;
+ pc += BC_PUSH_CP_LENGTH;
+ break;
+ BYTECODE(PUSH_BT)
+ if (--backtrack_stack_space < 0) {
+ return RegExpImpl::RE_EXCEPTION;
+ }
+ *backtrack_sp++ = Load32Aligned(pc + 4);
+ pc += BC_PUSH_BT_LENGTH;
+ break;
+ BYTECODE(PUSH_REGISTER)
+ if (--backtrack_stack_space < 0) {
+ return RegExpImpl::RE_EXCEPTION;
+ }
+ *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT];
+ pc += BC_PUSH_REGISTER_LENGTH;
+ break;
+ BYTECODE(SET_REGISTER)
+ registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
+ pc += BC_SET_REGISTER_LENGTH;
+ break;
+ BYTECODE(ADVANCE_REGISTER)
+ registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
+ pc += BC_ADVANCE_REGISTER_LENGTH;
+ break;
+ BYTECODE(SET_REGISTER_TO_CP)
+ registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
+ pc += BC_SET_REGISTER_TO_CP_LENGTH;
+ break;
+ BYTECODE(SET_CP_TO_REGISTER)
+ current = registers[insn >> BYTECODE_SHIFT];
+ pc += BC_SET_CP_TO_REGISTER_LENGTH;
+ break;
+ BYTECODE(SET_REGISTER_TO_SP)
+ registers[insn >> BYTECODE_SHIFT] =
+ static_cast<int>(backtrack_sp - backtrack_stack_base);
+ pc += BC_SET_REGISTER_TO_SP_LENGTH;
+ break;
+ BYTECODE(SET_SP_TO_REGISTER)
+ backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT];
+ backtrack_stack_space = backtrack_stack.max_size() -
+ static_cast<int>(backtrack_sp - backtrack_stack_base);
+ pc += BC_SET_SP_TO_REGISTER_LENGTH;
+ break;
+ BYTECODE(POP_CP)
+ backtrack_stack_space++;
+ --backtrack_sp;
+ current = *backtrack_sp;
+ pc += BC_POP_CP_LENGTH;
+ break;
+ BYTECODE(POP_BT)
+ backtrack_stack_space++;
+ --backtrack_sp;
+ pc = code_base + *backtrack_sp;
+ break;
+ BYTECODE(POP_REGISTER)
+ backtrack_stack_space++;
+ --backtrack_sp;
+ registers[insn >> BYTECODE_SHIFT] = *backtrack_sp;
+ pc += BC_POP_REGISTER_LENGTH;
+ break;
+ BYTECODE(FAIL)
+ return RegExpImpl::RE_FAILURE;
+ BYTECODE(SUCCEED)
+ return RegExpImpl::RE_SUCCESS;
+ BYTECODE(ADVANCE_CP)
+ current += insn >> BYTECODE_SHIFT;
+ pc += BC_ADVANCE_CP_LENGTH;
+ break;
+ BYTECODE(GOTO)
+ pc = code_base + Load32Aligned(pc + 4);
+ break;
+ BYTECODE(ADVANCE_CP_AND_GOTO)
+ current += insn >> BYTECODE_SHIFT;
+ pc = code_base + Load32Aligned(pc + 4);
+ break;
+ BYTECODE(CHECK_GREEDY)
+ if (current == backtrack_sp[-1]) {
+ backtrack_sp--;
+ backtrack_stack_space++;
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ pc += BC_CHECK_GREEDY_LENGTH;
+ }
+ break;
+ BYTECODE(LOAD_CURRENT_CHAR) {
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ if (pos >= subject.length()) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ current_char = subject[pos];
+ pc += BC_LOAD_CURRENT_CHAR_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ current_char = subject[pos];
+ pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
+ break;
+ }
+ BYTECODE(LOAD_2_CURRENT_CHARS) {
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ if (pos + 2 > subject.length()) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ Char next = subject[pos + 1];
+ current_char =
+ (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
+ pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ Char next = subject[pos + 1];
+ current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
+ pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
+ break;
+ }
+ BYTECODE(LOAD_4_CURRENT_CHARS) {
+ DCHECK(sizeof(Char) == 1);
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ if (pos + 4 > subject.length()) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ Char next1 = subject[pos + 1];
+ Char next2 = subject[pos + 2];
+ Char next3 = subject[pos + 3];
+ current_char = (subject[pos] |
+ (next1 << 8) |
+ (next2 << 16) |
+ (next3 << 24));
+ pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
+ DCHECK(sizeof(Char) == 1);
+ int pos = current + (insn >> BYTECODE_SHIFT);
+ Char next1 = subject[pos + 1];
+ Char next2 = subject[pos + 2];
+ Char next3 = subject[pos + 3];
+ current_char = (subject[pos] |
+ (next1 << 8) |
+ (next2 << 16) |
+ (next3 << 24));
+ pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
+ break;
+ }
+ BYTECODE(CHECK_4_CHARS) {
+ uint32_t c = Load32Aligned(pc + 4);
+ if (c == current_char) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_CHECK_4_CHARS_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ if (c == current_char) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ pc += BC_CHECK_CHAR_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_NOT_4_CHARS) {
+ uint32_t c = Load32Aligned(pc + 4);
+ if (c != current_char) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_CHECK_NOT_4_CHARS_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_NOT_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ if (c != current_char) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ pc += BC_CHECK_NOT_CHAR_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(AND_CHECK_4_CHARS) {
+ uint32_t c = Load32Aligned(pc + 4);
+ if (c == (current_char & Load32Aligned(pc + 8))) {
+ pc = code_base + Load32Aligned(pc + 12);
+ } else {
+ pc += BC_AND_CHECK_4_CHARS_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(AND_CHECK_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ if (c == (current_char & Load32Aligned(pc + 4))) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_AND_CHECK_CHAR_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(AND_CHECK_NOT_4_CHARS) {
+ uint32_t c = Load32Aligned(pc + 4);
+ if (c != (current_char & Load32Aligned(pc + 8))) {
+ pc = code_base + Load32Aligned(pc + 12);
+ } else {
+ pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(AND_CHECK_NOT_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ if (c != (current_char & Load32Aligned(pc + 4))) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
+ uint32_t c = (insn >> BYTECODE_SHIFT);
+ uint32_t minus = Load16Aligned(pc + 4);
+ uint32_t mask = Load16Aligned(pc + 6);
+ if (c != ((current_char - minus) & mask)) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_CHAR_IN_RANGE) {
+ uint32_t from = Load16Aligned(pc + 4);
+ uint32_t to = Load16Aligned(pc + 6);
+ if (from <= current_char && current_char <= to) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
+ uint32_t from = Load16Aligned(pc + 4);
+ uint32_t to = Load16Aligned(pc + 6);
+ if (from > current_char || current_char > to) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_BIT_IN_TABLE) {
+ int mask = RegExpMacroAssembler::kTableMask;
+ byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
+ int bit = (current_char & (kBitsPerByte - 1));
+ if ((b & (1 << bit)) != 0) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_LT) {
+ uint32_t limit = (insn >> BYTECODE_SHIFT);
+ if (current_char < limit) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ pc += BC_CHECK_LT_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_GT) {
+ uint32_t limit = (insn >> BYTECODE_SHIFT);
+ if (current_char > limit) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ pc += BC_CHECK_GT_LENGTH;
+ }
+ break;
+ }
+ BYTECODE(CHECK_REGISTER_LT)
+ if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_CHECK_REGISTER_LT_LENGTH;
+ }
+ break;
+ BYTECODE(CHECK_REGISTER_GE)
+ if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
+ pc = code_base + Load32Aligned(pc + 8);
+ } else {
+ pc += BC_CHECK_REGISTER_GE_LENGTH;
+ }
+ break;
+ BYTECODE(CHECK_REGISTER_EQ_POS)
+ if (registers[insn >> BYTECODE_SHIFT] == current) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
+ }
+ break;
+ BYTECODE(CHECK_NOT_REGS_EQUAL)
+ if (registers[insn >> BYTECODE_SHIFT] ==
+ registers[Load32Aligned(pc + 4)]) {
+ pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
+ } else {
+ pc = code_base + Load32Aligned(pc + 8);
+ }
+ break;
+ BYTECODE(CHECK_NOT_BACK_REF) {
+ int from = registers[insn >> BYTECODE_SHIFT];
+ int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+ if (from < 0 || len <= 0) {
+ pc += BC_CHECK_NOT_BACK_REF_LENGTH;
+ break;
+ }
+ if (current + len > subject.length()) {
+ pc = code_base + Load32Aligned(pc + 4);
+ break;
+ } else {
+ int i;
+ for (i = 0; i < len; i++) {
+ if (subject[from + i] != subject[current + i]) {
+ pc = code_base + Load32Aligned(pc + 4);
+ break;
+ }
+ }
+ if (i < len) break;
+ current += len;
+ }
+ pc += BC_CHECK_NOT_BACK_REF_LENGTH;
+ break;
+ }
+ BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
+ int from = registers[insn >> BYTECODE_SHIFT];
+ int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
+ if (from < 0 || len <= 0) {
+ pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
+ break;
+ }
+ if (current + len > subject.length()) {
+ pc = code_base + Load32Aligned(pc + 4);
+ break;
+ } else {
+ if (BackRefMatchesNoCase(isolate->interp_canonicalize_mapping(),
+ from, current, len, subject)) {
+ current += len;
+ pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
+ } else {
+ pc = code_base + Load32Aligned(pc + 4);
+ }
+ }
+ break;
+ }
+ BYTECODE(CHECK_AT_START)
+ if (current == 0) {
+ pc = code_base + Load32Aligned(pc + 4);
+ } else {
+ pc += BC_CHECK_AT_START_LENGTH;
+ }
+ break;
+ BYTECODE(CHECK_NOT_AT_START)
+ if (current == 0) {
+ pc += BC_CHECK_NOT_AT_START_LENGTH;
+ } else {
+ pc = code_base + Load32Aligned(pc + 4);
+ }
+ break;
+ BYTECODE(SET_CURRENT_POSITION_FROM_END) {
+ int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
+ if (subject.length() - current > by) {
+ current = subject.length() - by;
+ current_char = subject[current - 1];
+ }
+ pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+RegExpImpl::IrregexpResult IrregexpInterpreter::Match(
+ Isolate* isolate,
+ Handle<ByteArray> code_array,
+ Handle<String> subject,
+ int* registers,
+ int start_position) {
+ DCHECK(subject->IsFlat());
+
+ DisallowHeapAllocation no_gc;
+ const byte* code_base = code_array->GetDataStartAddress();
+ uc16 previous_char = '\n';
+ String::FlatContent subject_content = subject->GetFlatContent();
+ if (subject_content.IsOneByte()) {
+ Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
+ if (start_position != 0) previous_char = subject_vector[start_position - 1];
+ return RawMatch(isolate,
+ code_base,
+ subject_vector,
+ registers,
+ start_position,
+ previous_char);
+ } else {
+ DCHECK(subject_content.IsTwoByte());
+ Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
+ if (start_position != 0) previous_char = subject_vector[start_position - 1];
+ return RawMatch(isolate,
+ code_base,
+ subject_vector,
+ registers,
+ start_position,
+ previous_char);
+ }
+}
+
+} // namespace internal
+} // namespace v8
--- /dev/null
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// A simple interpreter for the Irregexp byte code.
+
+#ifndef V8_REGEXP_INTERPRETER_IRREGEXP_H_
+#define V8_REGEXP_INTERPRETER_IRREGEXP_H_
+
+namespace v8 {
+namespace internal {
+
+
+class IrregexpInterpreter {
+ public:
+ static RegExpImpl::IrregexpResult Match(Isolate* isolate,
+ Handle<ByteArray> code,
+ Handle<String> subject,
+ int* captures,
+ int start_position);
+};
+
+
+} } // namespace v8::internal
+
+#endif // V8_REGEXP_INTERPRETER_IRREGEXP_H_
--- /dev/null
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+
+#ifndef V8_REGEXP_JSREGEXP_INL_H_
+#define V8_REGEXP_JSREGEXP_INL_H_
+
+#include "src/allocation.h"
+#include "src/handles.h"
+#include "src/heap/heap.h"
+#include "src/objects.h"
+#include "src/regexp/jsregexp.h"
+
+namespace v8 {
+namespace internal {
+
+
+RegExpImpl::GlobalCache::~GlobalCache() {
+ // Deallocate the register array if we allocated it in the constructor
+ // (as opposed to using the existing jsregexp_static_offsets_vector).
+ if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
+ DeleteArray(register_array_);
+ }
+}
+
+
+int32_t* RegExpImpl::GlobalCache::FetchNext() {
+ current_match_index_++;
+ if (current_match_index_ >= num_matches_) {
+ // Current batch of results exhausted.
+ // Fail if last batch was not even fully filled.
+ if (num_matches_ < max_matches_) {
+ num_matches_ = 0; // Signal failed match.
+ return NULL;
+ }
+
+ int32_t* last_match =
+ ®ister_array_[(current_match_index_ - 1) * registers_per_match_];
+ int last_end_index = last_match[1];
+
+ if (regexp_->TypeTag() == JSRegExp::ATOM) {
+ num_matches_ = RegExpImpl::AtomExecRaw(regexp_,
+ subject_,
+ last_end_index,
+ register_array_,
+ register_array_size_);
+ } else {
+ int last_start_index = last_match[0];
+ if (last_start_index == last_end_index) last_end_index++;
+ if (last_end_index > subject_->length()) {
+ num_matches_ = 0; // Signal failed match.
+ return NULL;
+ }
+ num_matches_ = RegExpImpl::IrregexpExecRaw(regexp_,
+ subject_,
+ last_end_index,
+ register_array_,
+ register_array_size_);
+ }
+
+ if (num_matches_ <= 0) return NULL;
+ current_match_index_ = 0;
+ return register_array_;
+ } else {
+ return ®ister_array_[current_match_index_ * registers_per_match_];
+ }
+}
+
+
+int32_t* RegExpImpl::GlobalCache::LastSuccessfulMatch() {
+ int index = current_match_index_ * registers_per_match_;
+ if (num_matches_ == 0) {
+ // After a failed match we shift back by one result.
+ index -= registers_per_match_;
+ }
+ return ®ister_array_[index];
+}
+
+
+} } // namespace v8::internal
+
+#endif // V8_REGEXP_JSREGEXP_INL_H_
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/regexp/jsregexp.h"
+
+#include "src/ast.h"
+#include "src/base/platform/platform.h"
+#include "src/compilation-cache.h"
+#include "src/compiler.h"
+#include "src/execution.h"
+#include "src/factory.h"
+#include "src/messages.h"
+#include "src/ostreams.h"
+#include "src/parser.h"
+#include "src/regexp/interpreter-irregexp.h"
+#include "src/regexp/jsregexp-inl.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler-irregexp.h"
+#include "src/regexp/regexp-macro-assembler-tracer.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/runtime/runtime.h"
+#include "src/splay-tree-inl.h"
+#include "src/string-search.h"
+#include "src/unicode-decoder.h"
+
+#ifndef V8_INTERPRETED_REGEXP
+#if V8_TARGET_ARCH_IA32
+#include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
+#elif V8_TARGET_ARCH_X64
+#include "src/regexp/x64/regexp-macro-assembler-x64.h"
+#elif V8_TARGET_ARCH_ARM64
+#include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
+#elif V8_TARGET_ARCH_ARM
+#include "src/regexp/arm/regexp-macro-assembler-arm.h"
+#elif V8_TARGET_ARCH_PPC
+#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
+#elif V8_TARGET_ARCH_MIPS
+#include "src/regexp/mips/regexp-macro-assembler-mips.h"
+#elif V8_TARGET_ARCH_MIPS64
+#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
+#elif V8_TARGET_ARCH_X87
+#include "src/regexp/x87/regexp-macro-assembler-x87.h"
+#else
+#error Unsupported target architecture.
+#endif
+#endif
+
+
+namespace v8 {
+namespace internal {
+
+MaybeHandle<Object> RegExpImpl::CreateRegExpLiteral(
+ Handle<JSFunction> constructor,
+ Handle<String> pattern,
+ Handle<String> flags) {
+ // Call the construct code with 2 arguments.
+ Handle<Object> argv[] = { pattern, flags };
+ return Execution::New(constructor, arraysize(argv), argv);
+}
+
+
+MUST_USE_RESULT
+static inline MaybeHandle<Object> ThrowRegExpException(
+ Handle<JSRegExp> re, Handle<String> pattern, Handle<String> error_text) {
+ Isolate* isolate = re->GetIsolate();
+ THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp,
+ pattern, error_text),
+ Object);
+}
+
+
+inline void ThrowRegExpException(Handle<JSRegExp> re,
+ Handle<String> error_text) {
+ USE(ThrowRegExpException(re, Handle<String>(re->Pattern()), error_text));
+}
+
+
+ContainedInLattice AddRange(ContainedInLattice containment,
+ const int* ranges,
+ int ranges_length,
+ Interval new_range) {
+ DCHECK((ranges_length & 1) == 1);
+ DCHECK(ranges[ranges_length - 1] == String::kMaxUtf16CodeUnit + 1);
+ if (containment == kLatticeUnknown) return containment;
+ bool inside = false;
+ int last = 0;
+ for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) {
+ // Consider the range from last to ranges[i].
+ // We haven't got to the new range yet.
+ if (ranges[i] <= new_range.from()) continue;
+ // New range is wholly inside last-ranges[i]. Note that new_range.to() is
+ // inclusive, but the values in ranges are not.
+ if (last <= new_range.from() && new_range.to() < ranges[i]) {
+ return Combine(containment, inside ? kLatticeIn : kLatticeOut);
+ }
+ return kLatticeUnknown;
+ }
+ return containment;
+}
+
+
+// More makes code generation slower, less makes V8 benchmark score lower.
+const int kMaxLookaheadForBoyerMoore = 8;
+// In a 3-character pattern you can maximally step forwards 3 characters
+// at a time, which is not always enough to pay for the extra logic.
+const int kPatternTooShortForBoyerMoore = 2;
+
+
+// Identifies the sort of regexps where the regexp engine is faster
+// than the code used for atom matches.
+static bool HasFewDifferentCharacters(Handle<String> pattern) {
+ int length = Min(kMaxLookaheadForBoyerMoore, pattern->length());
+ if (length <= kPatternTooShortForBoyerMoore) return false;
+ const int kMod = 128;
+ bool character_found[kMod];
+ int different = 0;
+ memset(&character_found[0], 0, sizeof(character_found));
+ for (int i = 0; i < length; i++) {
+ int ch = (pattern->Get(i) & (kMod - 1));
+ if (!character_found[ch]) {
+ character_found[ch] = true;
+ different++;
+ // We declare a regexp low-alphabet if it has at least 3 times as many
+ // characters as it has different characters.
+ if (different * 3 > length) return false;
+ }
+ }
+ return true;
+}
+
+
+// Generic RegExp methods. Dispatches to implementation specific methods.
+
+
+MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags) {
+ Isolate* isolate = re->GetIsolate();
+ Zone zone;
+ CompilationCache* compilation_cache = isolate->compilation_cache();
+ MaybeHandle<FixedArray> maybe_cached =
+ compilation_cache->LookupRegExp(pattern, flags);
+ Handle<FixedArray> cached;
+ bool in_cache = maybe_cached.ToHandle(&cached);
+ LOG(isolate, RegExpCompileEvent(re, in_cache));
+
+ Handle<Object> result;
+ if (in_cache) {
+ re->set_data(*cached);
+ return re;
+ }
+ pattern = String::Flatten(pattern);
+ PostponeInterruptsScope postpone(isolate);
+ RegExpCompileData parse_result;
+ FlatStringReader reader(isolate, pattern);
+ if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader,
+ flags.is_multiline(), flags.is_unicode(),
+ &parse_result)) {
+ // Throw an exception if we fail to parse the pattern.
+ return ThrowRegExpException(re, pattern, parse_result.error);
+ }
+
+ bool has_been_compiled = false;
+
+ if (parse_result.simple &&
+ !flags.is_ignore_case() &&
+ !flags.is_sticky() &&
+ !HasFewDifferentCharacters(pattern)) {
+ // Parse-tree is a single atom that is equal to the pattern.
+ AtomCompile(re, pattern, flags, pattern);
+ has_been_compiled = true;
+ } else if (parse_result.tree->IsAtom() &&
+ !flags.is_ignore_case() &&
+ !flags.is_sticky() &&
+ parse_result.capture_count == 0) {
+ RegExpAtom* atom = parse_result.tree->AsAtom();
+ Vector<const uc16> atom_pattern = atom->data();
+ Handle<String> atom_string;
+ ASSIGN_RETURN_ON_EXCEPTION(
+ isolate, atom_string,
+ isolate->factory()->NewStringFromTwoByte(atom_pattern),
+ Object);
+ if (!HasFewDifferentCharacters(atom_string)) {
+ AtomCompile(re, pattern, flags, atom_string);
+ has_been_compiled = true;
+ }
+ }
+ if (!has_been_compiled) {
+ IrregexpInitialize(re, pattern, flags, parse_result.capture_count);
+ }
+ DCHECK(re->data()->IsFixedArray());
+ // Compilation succeeded so the data is set on the regexp
+ // and we can store it in the cache.
+ Handle<FixedArray> data(FixedArray::cast(re->data()));
+ compilation_cache->PutRegExp(pattern, flags, data);
+
+ return re;
+}
+
+
+MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> last_match_info) {
+ switch (regexp->TypeTag()) {
+ case JSRegExp::ATOM:
+ return AtomExec(regexp, subject, index, last_match_info);
+ case JSRegExp::IRREGEXP: {
+ return IrregexpExec(regexp, subject, index, last_match_info);
+ }
+ default:
+ UNREACHABLE();
+ return MaybeHandle<Object>();
+ }
+}
+
+
+// RegExp Atom implementation: Simple string search using indexOf.
+
+
+void RegExpImpl::AtomCompile(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags,
+ Handle<String> match_pattern) {
+ re->GetIsolate()->factory()->SetRegExpAtomData(re,
+ JSRegExp::ATOM,
+ pattern,
+ flags,
+ match_pattern);
+}
+
+
+static void SetAtomLastCapture(FixedArray* array,
+ String* subject,
+ int from,
+ int to) {
+ SealHandleScope shs(array->GetIsolate());
+ RegExpImpl::SetLastCaptureCount(array, 2);
+ RegExpImpl::SetLastSubject(array, subject);
+ RegExpImpl::SetLastInput(array, subject);
+ RegExpImpl::SetCapture(array, 0, from);
+ RegExpImpl::SetCapture(array, 1, to);
+}
+
+
+int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ int32_t* output,
+ int output_size) {
+ Isolate* isolate = regexp->GetIsolate();
+
+ DCHECK(0 <= index);
+ DCHECK(index <= subject->length());
+
+ subject = String::Flatten(subject);
+ DisallowHeapAllocation no_gc; // ensure vectors stay valid
+
+ String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex));
+ int needle_len = needle->length();
+ DCHECK(needle->IsFlat());
+ DCHECK_LT(0, needle_len);
+
+ if (index + needle_len > subject->length()) {
+ return RegExpImpl::RE_FAILURE;
+ }
+
+ for (int i = 0; i < output_size; i += 2) {
+ String::FlatContent needle_content = needle->GetFlatContent();
+ String::FlatContent subject_content = subject->GetFlatContent();
+ DCHECK(needle_content.IsFlat());
+ DCHECK(subject_content.IsFlat());
+ // dispatch on type of strings
+ index =
+ (needle_content.IsOneByte()
+ ? (subject_content.IsOneByte()
+ ? SearchString(isolate, subject_content.ToOneByteVector(),
+ needle_content.ToOneByteVector(), index)
+ : SearchString(isolate, subject_content.ToUC16Vector(),
+ needle_content.ToOneByteVector(), index))
+ : (subject_content.IsOneByte()
+ ? SearchString(isolate, subject_content.ToOneByteVector(),
+ needle_content.ToUC16Vector(), index)
+ : SearchString(isolate, subject_content.ToUC16Vector(),
+ needle_content.ToUC16Vector(), index)));
+ if (index == -1) {
+ return i / 2; // Return number of matches.
+ } else {
+ output[i] = index;
+ output[i+1] = index + needle_len;
+ index += needle_len;
+ }
+ }
+ return output_size / 2;
+}
+
+
+Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> last_match_info) {
+ Isolate* isolate = re->GetIsolate();
+
+ static const int kNumRegisters = 2;
+ STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize);
+ int32_t* output_registers = isolate->jsregexp_static_offsets_vector();
+
+ int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters);
+
+ if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value();
+
+ DCHECK_EQ(res, RegExpImpl::RE_SUCCESS);
+ SealHandleScope shs(isolate);
+ FixedArray* array = FixedArray::cast(last_match_info->elements());
+ SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]);
+ return last_match_info;
+}
+
+
+// Irregexp implementation.
+
+// Ensures that the regexp object contains a compiled version of the
+// source for either one-byte or two-byte subject strings.
+// If the compiled version doesn't already exist, it is compiled
+// from the source pattern.
+// If compilation fails, an exception is thrown and this function
+// returns false.
+bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re,
+ Handle<String> sample_subject,
+ bool is_one_byte) {
+ Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte));
+#ifdef V8_INTERPRETED_REGEXP
+ if (compiled_code->IsByteArray()) return true;
+#else // V8_INTERPRETED_REGEXP (RegExp native code)
+ if (compiled_code->IsCode()) return true;
+#endif
+ // We could potentially have marked this as flushable, but have kept
+ // a saved version if we did not flush it yet.
+ Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
+ if (saved_code->IsCode()) {
+ // Reinstate the code in the original place.
+ re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code);
+ DCHECK(compiled_code->IsSmi());
+ return true;
+ }
+ return CompileIrregexp(re, sample_subject, is_one_byte);
+}
+
+
+bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re,
+ Handle<String> sample_subject,
+ bool is_one_byte) {
+ // Compile the RegExp.
+ Isolate* isolate = re->GetIsolate();
+ Zone zone;
+ PostponeInterruptsScope postpone(isolate);
+ // If we had a compilation error the last time this is saved at the
+ // saved code index.
+ Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte));
+ // When arriving here entry can only be a smi, either representing an
+ // uncompiled regexp, a previous compilation error, or code that has
+ // been flushed.
+ DCHECK(entry->IsSmi());
+ int entry_value = Smi::cast(entry)->value();
+ DCHECK(entry_value == JSRegExp::kUninitializedValue ||
+ entry_value == JSRegExp::kCompilationErrorValue ||
+ (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0));
+
+ if (entry_value == JSRegExp::kCompilationErrorValue) {
+ // A previous compilation failed and threw an error which we store in
+ // the saved code index (we store the error message, not the actual
+ // error). Recreate the error object and throw it.
+ Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte));
+ DCHECK(error_string->IsString());
+ Handle<String> error_message(String::cast(error_string));
+ ThrowRegExpException(re, error_message);
+ return false;
+ }
+
+ JSRegExp::Flags flags = re->GetFlags();
+
+ Handle<String> pattern(re->Pattern());
+ pattern = String::Flatten(pattern);
+ RegExpCompileData compile_data;
+ FlatStringReader reader(isolate, pattern);
+ if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags.is_multiline(),
+ flags.is_unicode(), &compile_data)) {
+ // Throw an exception if we fail to parse the pattern.
+ // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
+ USE(ThrowRegExpException(re, pattern, compile_data.error));
+ return false;
+ }
+ RegExpEngine::CompilationResult result = RegExpEngine::Compile(
+ isolate, &zone, &compile_data, flags.is_ignore_case(), flags.is_global(),
+ flags.is_multiline(), flags.is_sticky(), pattern, sample_subject,
+ is_one_byte);
+ if (result.error_message != NULL) {
+ // Unable to compile regexp.
+ Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
+ CStrVector(result.error_message)).ToHandleChecked();
+ ThrowRegExpException(re, error_message);
+ return false;
+ }
+
+ Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data()));
+ data->set(JSRegExp::code_index(is_one_byte), result.code);
+ int register_max = IrregexpMaxRegisterCount(*data);
+ if (result.num_registers > register_max) {
+ SetIrregexpMaxRegisterCount(*data, result.num_registers);
+ }
+
+ return true;
+}
+
+
+int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) {
+ return Smi::cast(
+ re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
+}
+
+
+void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) {
+ re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value));
+}
+
+
+int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) {
+ return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value();
+}
+
+
+int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) {
+ return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value();
+}
+
+
+ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) {
+ return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte)));
+}
+
+
+Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) {
+ return Code::cast(re->get(JSRegExp::code_index(is_one_byte)));
+}
+
+
+void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags,
+ int capture_count) {
+ // Initialize compiled code entries to null.
+ re->GetIsolate()->factory()->SetRegExpIrregexpData(re,
+ JSRegExp::IRREGEXP,
+ pattern,
+ flags,
+ capture_count);
+}
+
+
+int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp,
+ Handle<String> subject) {
+ subject = String::Flatten(subject);
+
+ // Check representation of the underlying storage.
+ bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
+ if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1;
+
+#ifdef V8_INTERPRETED_REGEXP
+ // Byte-code regexp needs space allocated for all its registers.
+ // The result captures are copied to the start of the registers array
+ // if the match succeeds. This way those registers are not clobbered
+ // when we set the last match info from last successful match.
+ return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) +
+ (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
+#else // V8_INTERPRETED_REGEXP
+ // Native regexp only needs room to output captures. Registers are handled
+ // internally.
+ return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2;
+#endif // V8_INTERPRETED_REGEXP
+}
+
+
+int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ int32_t* output,
+ int output_size) {
+ Isolate* isolate = regexp->GetIsolate();
+
+ Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate);
+
+ DCHECK(index >= 0);
+ DCHECK(index <= subject->length());
+ DCHECK(subject->IsFlat());
+
+ bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
+
+#ifndef V8_INTERPRETED_REGEXP
+ DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2);
+ do {
+ EnsureCompiledIrregexp(regexp, subject, is_one_byte);
+ Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate);
+ // The stack is used to allocate registers for the compiled regexp code.
+ // This means that in case of failure, the output registers array is left
+ // untouched and contains the capture results from the previous successful
+ // match. We can use that to set the last match info lazily.
+ NativeRegExpMacroAssembler::Result res =
+ NativeRegExpMacroAssembler::Match(code,
+ subject,
+ output,
+ output_size,
+ index,
+ isolate);
+ if (res != NativeRegExpMacroAssembler::RETRY) {
+ DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION ||
+ isolate->has_pending_exception());
+ STATIC_ASSERT(
+ static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS);
+ STATIC_ASSERT(
+ static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE);
+ STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION)
+ == RE_EXCEPTION);
+ return static_cast<IrregexpResult>(res);
+ }
+ // If result is RETRY, the string has changed representation, and we
+ // must restart from scratch.
+ // In this case, it means we must make sure we are prepared to handle
+ // the, potentially, different subject (the string can switch between
+ // being internal and external, and even between being Latin1 and UC16,
+ // but the characters are always the same).
+ IrregexpPrepare(regexp, subject);
+ is_one_byte = subject->IsOneByteRepresentationUnderneath();
+ } while (true);
+ UNREACHABLE();
+ return RE_EXCEPTION;
+#else // V8_INTERPRETED_REGEXP
+
+ DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp));
+ // We must have done EnsureCompiledIrregexp, so we can get the number of
+ // registers.
+ int number_of_capture_registers =
+ (IrregexpNumberOfCaptures(*irregexp) + 1) * 2;
+ int32_t* raw_output = &output[number_of_capture_registers];
+ // We do not touch the actual capture result registers until we know there
+ // has been a match so that we can use those capture results to set the
+ // last match info.
+ for (int i = number_of_capture_registers - 1; i >= 0; i--) {
+ raw_output[i] = -1;
+ }
+ Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte),
+ isolate);
+
+ IrregexpResult result = IrregexpInterpreter::Match(isolate,
+ byte_codes,
+ subject,
+ raw_output,
+ index);
+ if (result == RE_SUCCESS) {
+ // Copy capture results to the start of the registers array.
+ MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t));
+ }
+ if (result == RE_EXCEPTION) {
+ DCHECK(!isolate->has_pending_exception());
+ isolate->StackOverflow();
+ }
+ return result;
+#endif // V8_INTERPRETED_REGEXP
+}
+
+
+MaybeHandle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int previous_index,
+ Handle<JSArray> last_match_info) {
+ Isolate* isolate = regexp->GetIsolate();
+ DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
+
+ // Prepare space for the return values.
+#if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG)
+ if (FLAG_trace_regexp_bytecodes) {
+ String* pattern = regexp->Pattern();
+ PrintF("\n\nRegexp match: /%s/\n\n", pattern->ToCString().get());
+ PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get());
+ }
+#endif
+ int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
+ if (required_registers < 0) {
+ // Compiling failed with an exception.
+ DCHECK(isolate->has_pending_exception());
+ return MaybeHandle<Object>();
+ }
+
+ int32_t* output_registers = NULL;
+ if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) {
+ output_registers = NewArray<int32_t>(required_registers);
+ }
+ base::SmartArrayPointer<int32_t> auto_release(output_registers);
+ if (output_registers == NULL) {
+ output_registers = isolate->jsregexp_static_offsets_vector();
+ }
+
+ int res = RegExpImpl::IrregexpExecRaw(
+ regexp, subject, previous_index, output_registers, required_registers);
+ if (res == RE_SUCCESS) {
+ int capture_count =
+ IrregexpNumberOfCaptures(FixedArray::cast(regexp->data()));
+ return SetLastMatchInfo(
+ last_match_info, subject, capture_count, output_registers);
+ }
+ if (res == RE_EXCEPTION) {
+ DCHECK(isolate->has_pending_exception());
+ return MaybeHandle<Object>();
+ }
+ DCHECK(res == RE_FAILURE);
+ return isolate->factory()->null_value();
+}
+
+
+static void EnsureSize(Handle<JSArray> array, uint32_t minimum_size) {
+ if (static_cast<uint32_t>(array->elements()->length()) < minimum_size) {
+ JSArray::SetLength(array, minimum_size);
+ }
+}
+
+
+Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info,
+ Handle<String> subject,
+ int capture_count,
+ int32_t* match) {
+ DCHECK(last_match_info->HasFastObjectElements());
+ int capture_register_count = (capture_count + 1) * 2;
+ EnsureSize(last_match_info, capture_register_count + kLastMatchOverhead);
+ DisallowHeapAllocation no_allocation;
+ FixedArray* array = FixedArray::cast(last_match_info->elements());
+ if (match != NULL) {
+ for (int i = 0; i < capture_register_count; i += 2) {
+ SetCapture(array, i, match[i]);
+ SetCapture(array, i + 1, match[i + 1]);
+ }
+ }
+ SetLastCaptureCount(array, capture_register_count);
+ SetLastSubject(array, *subject);
+ SetLastInput(array, *subject);
+ return last_match_info;
+}
+
+
+RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ bool is_global,
+ Isolate* isolate)
+ : register_array_(NULL),
+ register_array_size_(0),
+ regexp_(regexp),
+ subject_(subject) {
+#ifdef V8_INTERPRETED_REGEXP
+ bool interpreted = true;
+#else
+ bool interpreted = false;
+#endif // V8_INTERPRETED_REGEXP
+
+ if (regexp_->TypeTag() == JSRegExp::ATOM) {
+ static const int kAtomRegistersPerMatch = 2;
+ registers_per_match_ = kAtomRegistersPerMatch;
+ // There is no distinction between interpreted and native for atom regexps.
+ interpreted = false;
+ } else {
+ registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_);
+ if (registers_per_match_ < 0) {
+ num_matches_ = -1; // Signal exception.
+ return;
+ }
+ }
+
+ if (is_global && !interpreted) {
+ register_array_size_ =
+ Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize);
+ max_matches_ = register_array_size_ / registers_per_match_;
+ } else {
+ // Global loop in interpreted regexp is not implemented. We choose
+ // the size of the offsets vector so that it can only store one match.
+ register_array_size_ = registers_per_match_;
+ max_matches_ = 1;
+ }
+
+ if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) {
+ register_array_ = NewArray<int32_t>(register_array_size_);
+ } else {
+ register_array_ = isolate->jsregexp_static_offsets_vector();
+ }
+
+ // Set state so that fetching the results the first time triggers a call
+ // to the compiled regexp.
+ current_match_index_ = max_matches_ - 1;
+ num_matches_ = max_matches_;
+ DCHECK(registers_per_match_ >= 2); // Each match has at least one capture.
+ DCHECK_GE(register_array_size_, registers_per_match_);
+ int32_t* last_match =
+ ®ister_array_[current_match_index_ * registers_per_match_];
+ last_match[0] = -1;
+ last_match[1] = 0;
+}
+
+
+// -------------------------------------------------------------------
+// Implementation of the Irregexp regular expression engine.
+//
+// The Irregexp regular expression engine is intended to be a complete
+// implementation of ECMAScript regular expressions. It generates either
+// bytecodes or native code.
+
+// The Irregexp regexp engine is structured in three steps.
+// 1) The parser generates an abstract syntax tree. See ast.cc.
+// 2) From the AST a node network is created. The nodes are all
+// subclasses of RegExpNode. The nodes represent states when
+// executing a regular expression. Several optimizations are
+// performed on the node network.
+// 3) From the nodes we generate either byte codes or native code
+// that can actually execute the regular expression (perform
+// the search). The code generation step is described in more
+// detail below.
+
+// Code generation.
+//
+// The nodes are divided into four main categories.
+// * Choice nodes
+// These represent places where the regular expression can
+// match in more than one way. For example on entry to an
+// alternation (foo|bar) or a repetition (*, +, ? or {}).
+// * Action nodes
+// These represent places where some action should be
+// performed. Examples include recording the current position
+// in the input string to a register (in order to implement
+// captures) or other actions on register for example in order
+// to implement the counters needed for {} repetitions.
+// * Matching nodes
+// These attempt to match some element part of the input string.
+// Examples of elements include character classes, plain strings
+// or back references.
+// * End nodes
+// These are used to implement the actions required on finding
+// a successful match or failing to find a match.
+//
+// The code generated (whether as byte codes or native code) maintains
+// some state as it runs. This consists of the following elements:
+//
+// * The capture registers. Used for string captures.
+// * Other registers. Used for counters etc.
+// * The current position.
+// * The stack of backtracking information. Used when a matching node
+// fails to find a match and needs to try an alternative.
+//
+// Conceptual regular expression execution model:
+//
+// There is a simple conceptual model of regular expression execution
+// which will be presented first. The actual code generated is a more
+// efficient simulation of the simple conceptual model:
+//
+// * Choice nodes are implemented as follows:
+// For each choice except the last {
+// push current position
+// push backtrack code location
+// <generate code to test for choice>
+// backtrack code location:
+// pop current position
+// }
+// <generate code to test for last choice>
+//
+// * Actions nodes are generated as follows
+// <push affected registers on backtrack stack>
+// <generate code to perform action>
+// push backtrack code location
+// <generate code to test for following nodes>
+// backtrack code location:
+// <pop affected registers to restore their state>
+// <pop backtrack location from stack and go to it>
+//
+// * Matching nodes are generated as follows:
+// if input string matches at current position
+// update current position
+// <generate code to test for following nodes>
+// else
+// <pop backtrack location from stack and go to it>
+//
+// Thus it can be seen that the current position is saved and restored
+// by the choice nodes, whereas the registers are saved and restored by
+// by the action nodes that manipulate them.
+//
+// The other interesting aspect of this model is that nodes are generated
+// at the point where they are needed by a recursive call to Emit(). If
+// the node has already been code generated then the Emit() call will
+// generate a jump to the previously generated code instead. In order to
+// limit recursion it is possible for the Emit() function to put the node
+// on a work list for later generation and instead generate a jump. The
+// destination of the jump is resolved later when the code is generated.
+//
+// Actual regular expression code generation.
+//
+// Code generation is actually more complicated than the above. In order
+// to improve the efficiency of the generated code some optimizations are
+// performed
+//
+// * Choice nodes have 1-character lookahead.
+// A choice node looks at the following character and eliminates some of
+// the choices immediately based on that character. This is not yet
+// implemented.
+// * Simple greedy loops store reduced backtracking information.
+// A quantifier like /.*foo/m will greedily match the whole input. It will
+// then need to backtrack to a point where it can match "foo". The naive
+// implementation of this would push each character position onto the
+// backtracking stack, then pop them off one by one. This would use space
+// proportional to the length of the input string. However since the "."
+// can only match in one way and always has a constant length (in this case
+// of 1) it suffices to store the current position on the top of the stack
+// once. Matching now becomes merely incrementing the current position and
+// backtracking becomes decrementing the current position and checking the
+// result against the stored current position. This is faster and saves
+// space.
+// * The current state is virtualized.
+// This is used to defer expensive operations until it is clear that they
+// are needed and to generate code for a node more than once, allowing
+// specialized an efficient versions of the code to be created. This is
+// explained in the section below.
+//
+// Execution state virtualization.
+//
+// Instead of emitting code, nodes that manipulate the state can record their
+// manipulation in an object called the Trace. The Trace object can record a
+// current position offset, an optional backtrack code location on the top of
+// the virtualized backtrack stack and some register changes. When a node is
+// to be emitted it can flush the Trace or update it. Flushing the Trace
+// will emit code to bring the actual state into line with the virtual state.
+// Avoiding flushing the state can postpone some work (e.g. updates of capture
+// registers). Postponing work can save time when executing the regular
+// expression since it may be found that the work never has to be done as a
+// failure to match can occur. In addition it is much faster to jump to a
+// known backtrack code location than it is to pop an unknown backtrack
+// location from the stack and jump there.
+//
+// The virtual state found in the Trace affects code generation. For example
+// the virtual state contains the difference between the actual current
+// position and the virtual current position, and matching code needs to use
+// this offset to attempt a match in the correct location of the input
+// string. Therefore code generated for a non-trivial trace is specialized
+// to that trace. The code generator therefore has the ability to generate
+// code for each node several times. In order to limit the size of the
+// generated code there is an arbitrary limit on how many specialized sets of
+// code may be generated for a given node. If the limit is reached, the
+// trace is flushed and a generic version of the code for a node is emitted.
+// This is subsequently used for that node. The code emitted for non-generic
+// trace is not recorded in the node and so it cannot currently be reused in
+// the event that code generation is requested for an identical trace.
+
+
+void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
+ UNREACHABLE();
+}
+
+
+void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
+ text->AddElement(TextElement::Atom(this), zone);
+}
+
+
+void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
+ text->AddElement(TextElement::CharClass(this), zone);
+}
+
+
+void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
+ for (int i = 0; i < elements()->length(); i++)
+ text->AddElement(elements()->at(i), zone);
+}
+
+
+TextElement TextElement::Atom(RegExpAtom* atom) {
+ return TextElement(ATOM, atom);
+}
+
+
+TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
+ return TextElement(CHAR_CLASS, char_class);
+}
+
+
+int TextElement::length() const {
+ switch (text_type()) {
+ case ATOM:
+ return atom()->length();
+
+ case CHAR_CLASS:
+ return 1;
+ }
+ UNREACHABLE();
+ return 0;
+}
+
+
+DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
+ if (table_ == NULL) {
+ table_ = new(zone()) DispatchTable(zone());
+ DispatchTableConstructor cons(table_, ignore_case, zone());
+ cons.BuildTable(this);
+ }
+ return table_;
+}
+
+
+class FrequencyCollator {
+ public:
+ FrequencyCollator() : total_samples_(0) {
+ for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
+ frequencies_[i] = CharacterFrequency(i);
+ }
+ }
+
+ void CountCharacter(int character) {
+ int index = (character & RegExpMacroAssembler::kTableMask);
+ frequencies_[index].Increment();
+ total_samples_++;
+ }
+
+ // Does not measure in percent, but rather per-128 (the table size from the
+ // regexp macro assembler).
+ int Frequency(int in_character) {
+ DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
+ if (total_samples_ < 1) return 1; // Division by zero.
+ int freq_in_per128 =
+ (frequencies_[in_character].counter() * 128) / total_samples_;
+ return freq_in_per128;
+ }
+
+ private:
+ class CharacterFrequency {
+ public:
+ CharacterFrequency() : counter_(0), character_(-1) { }
+ explicit CharacterFrequency(int character)
+ : counter_(0), character_(character) { }
+
+ void Increment() { counter_++; }
+ int counter() { return counter_; }
+ int character() { return character_; }
+
+ private:
+ int counter_;
+ int character_;
+ };
+
+
+ private:
+ CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
+ int total_samples_;
+};
+
+
+class RegExpCompiler {
+ public:
+ RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
+ bool ignore_case, bool is_one_byte);
+
+ int AllocateRegister() {
+ if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
+ reg_exp_too_big_ = true;
+ return next_register_;
+ }
+ return next_register_++;
+ }
+
+ RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
+ RegExpNode* start,
+ int capture_count,
+ Handle<String> pattern);
+
+ inline void AddWork(RegExpNode* node) {
+ if (!node->on_work_list() && !node->label()->is_bound()) {
+ node->set_on_work_list(true);
+ work_list_->Add(node);
+ }
+ }
+
+ static const int kImplementationOffset = 0;
+ static const int kNumberOfRegistersOffset = 0;
+ static const int kCodeOffset = 1;
+
+ RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
+ EndNode* accept() { return accept_; }
+
+ static const int kMaxRecursion = 100;
+ inline int recursion_depth() { return recursion_depth_; }
+ inline void IncrementRecursionDepth() { recursion_depth_++; }
+ inline void DecrementRecursionDepth() { recursion_depth_--; }
+
+ void SetRegExpTooBig() { reg_exp_too_big_ = true; }
+
+ inline bool ignore_case() { return ignore_case_; }
+ inline bool one_byte() { return one_byte_; }
+ inline bool optimize() { return optimize_; }
+ inline void set_optimize(bool value) { optimize_ = value; }
+ inline bool limiting_recursion() { return limiting_recursion_; }
+ inline void set_limiting_recursion(bool value) {
+ limiting_recursion_ = value;
+ }
+ FrequencyCollator* frequency_collator() { return &frequency_collator_; }
+
+ int current_expansion_factor() { return current_expansion_factor_; }
+ void set_current_expansion_factor(int value) {
+ current_expansion_factor_ = value;
+ }
+
+ Isolate* isolate() const { return isolate_; }
+ Zone* zone() const { return zone_; }
+
+ static const int kNoRegister = -1;
+
+ private:
+ EndNode* accept_;
+ int next_register_;
+ List<RegExpNode*>* work_list_;
+ int recursion_depth_;
+ RegExpMacroAssembler* macro_assembler_;
+ bool ignore_case_;
+ bool one_byte_;
+ bool reg_exp_too_big_;
+ bool limiting_recursion_;
+ bool optimize_;
+ int current_expansion_factor_;
+ FrequencyCollator frequency_collator_;
+ Isolate* isolate_;
+ Zone* zone_;
+};
+
+
+class RecursionCheck {
+ public:
+ explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
+ compiler->IncrementRecursionDepth();
+ }
+ ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
+ private:
+ RegExpCompiler* compiler_;
+};
+
+
+static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
+ return RegExpEngine::CompilationResult(isolate, "RegExp too big");
+}
+
+
+// Attempts to compile the regexp using an Irregexp code generator. Returns
+// a fixed array or a null handle depending on whether it succeeded.
+RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
+ bool ignore_case, bool one_byte)
+ : next_register_(2 * (capture_count + 1)),
+ work_list_(NULL),
+ recursion_depth_(0),
+ ignore_case_(ignore_case),
+ one_byte_(one_byte),
+ reg_exp_too_big_(false),
+ limiting_recursion_(false),
+ optimize_(FLAG_regexp_optimization),
+ current_expansion_factor_(1),
+ frequency_collator_(),
+ isolate_(isolate),
+ zone_(zone) {
+ accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
+ DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
+}
+
+
+RegExpEngine::CompilationResult RegExpCompiler::Assemble(
+ RegExpMacroAssembler* macro_assembler,
+ RegExpNode* start,
+ int capture_count,
+ Handle<String> pattern) {
+ Heap* heap = pattern->GetHeap();
+
+#ifdef DEBUG
+ if (FLAG_trace_regexp_assembler)
+ macro_assembler_ =
+ new RegExpMacroAssemblerTracer(isolate(), macro_assembler);
+ else
+#endif
+ macro_assembler_ = macro_assembler;
+
+ List <RegExpNode*> work_list(0);
+ work_list_ = &work_list;
+ Label fail;
+ macro_assembler_->PushBacktrack(&fail);
+ Trace new_trace;
+ start->Emit(this, &new_trace);
+ macro_assembler_->Bind(&fail);
+ macro_assembler_->Fail();
+ while (!work_list.is_empty()) {
+ RegExpNode* node = work_list.RemoveLast();
+ node->set_on_work_list(false);
+ if (!node->label()->is_bound()) node->Emit(this, &new_trace);
+ }
+ if (reg_exp_too_big_) {
+ macro_assembler_->AbortedCodeGeneration();
+ return IrregexpRegExpTooBig(isolate_);
+ }
+
+ Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
+ heap->IncreaseTotalRegexpCodeGenerated(code->Size());
+ work_list_ = NULL;
+#ifdef ENABLE_DISASSEMBLER
+ if (FLAG_print_code) {
+ CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
+ OFStream os(trace_scope.file());
+ Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
+ }
+#endif
+#ifdef DEBUG
+ if (FLAG_trace_regexp_assembler) {
+ delete macro_assembler_;
+ }
+#endif
+ return RegExpEngine::CompilationResult(*code, next_register_);
+}
+
+
+bool Trace::DeferredAction::Mentions(int that) {
+ if (action_type() == ActionNode::CLEAR_CAPTURES) {
+ Interval range = static_cast<DeferredClearCaptures*>(this)->range();
+ return range.Contains(that);
+ } else {
+ return reg() == that;
+ }
+}
+
+
+bool Trace::mentions_reg(int reg) {
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg))
+ return true;
+ }
+ return false;
+}
+
+
+bool Trace::GetStoredPosition(int reg, int* cp_offset) {
+ DCHECK_EQ(0, *cp_offset);
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg)) {
+ if (action->action_type() == ActionNode::STORE_POSITION) {
+ *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
+ return true;
+ } else {
+ return false;
+ }
+ }
+ }
+ return false;
+}
+
+
+int Trace::FindAffectedRegisters(OutSet* affected_registers,
+ Zone* zone) {
+ int max_register = RegExpCompiler::kNoRegister;
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
+ Interval range = static_cast<DeferredClearCaptures*>(action)->range();
+ for (int i = range.from(); i <= range.to(); i++)
+ affected_registers->Set(i, zone);
+ if (range.to() > max_register) max_register = range.to();
+ } else {
+ affected_registers->Set(action->reg(), zone);
+ if (action->reg() > max_register) max_register = action->reg();
+ }
+ }
+ return max_register;
+}
+
+
+void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
+ int max_register,
+ const OutSet& registers_to_pop,
+ const OutSet& registers_to_clear) {
+ for (int reg = max_register; reg >= 0; reg--) {
+ if (registers_to_pop.Get(reg)) {
+ assembler->PopRegister(reg);
+ } else if (registers_to_clear.Get(reg)) {
+ int clear_to = reg;
+ while (reg > 0 && registers_to_clear.Get(reg - 1)) {
+ reg--;
+ }
+ assembler->ClearRegisters(reg, clear_to);
+ }
+ }
+}
+
+
+void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
+ int max_register,
+ const OutSet& affected_registers,
+ OutSet* registers_to_pop,
+ OutSet* registers_to_clear,
+ Zone* zone) {
+ // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
+ const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
+
+ // Count pushes performed to force a stack limit check occasionally.
+ int pushes = 0;
+
+ for (int reg = 0; reg <= max_register; reg++) {
+ if (!affected_registers.Get(reg)) {
+ continue;
+ }
+
+ // The chronologically first deferred action in the trace
+ // is used to infer the action needed to restore a register
+ // to its previous state (or not, if it's safe to ignore it).
+ enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
+ DeferredActionUndoType undo_action = IGNORE;
+
+ int value = 0;
+ bool absolute = false;
+ bool clear = false;
+ int store_position = -1;
+ // This is a little tricky because we are scanning the actions in reverse
+ // historical order (newest first).
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg)) {
+ switch (action->action_type()) {
+ case ActionNode::SET_REGISTER: {
+ Trace::DeferredSetRegister* psr =
+ static_cast<Trace::DeferredSetRegister*>(action);
+ if (!absolute) {
+ value += psr->value();
+ absolute = true;
+ }
+ // SET_REGISTER is currently only used for newly introduced loop
+ // counters. They can have a significant previous value if they
+ // occour in a loop. TODO(lrn): Propagate this information, so
+ // we can set undo_action to IGNORE if we know there is no value to
+ // restore.
+ undo_action = RESTORE;
+ DCHECK_EQ(store_position, -1);
+ DCHECK(!clear);
+ break;
+ }
+ case ActionNode::INCREMENT_REGISTER:
+ if (!absolute) {
+ value++;
+ }
+ DCHECK_EQ(store_position, -1);
+ DCHECK(!clear);
+ undo_action = RESTORE;
+ break;
+ case ActionNode::STORE_POSITION: {
+ Trace::DeferredCapture* pc =
+ static_cast<Trace::DeferredCapture*>(action);
+ if (!clear && store_position == -1) {
+ store_position = pc->cp_offset();
+ }
+
+ // For captures we know that stores and clears alternate.
+ // Other register, are never cleared, and if the occur
+ // inside a loop, they might be assigned more than once.
+ if (reg <= 1) {
+ // Registers zero and one, aka "capture zero", is
+ // always set correctly if we succeed. There is no
+ // need to undo a setting on backtrack, because we
+ // will set it again or fail.
+ undo_action = IGNORE;
+ } else {
+ undo_action = pc->is_capture() ? CLEAR : RESTORE;
+ }
+ DCHECK(!absolute);
+ DCHECK_EQ(value, 0);
+ break;
+ }
+ case ActionNode::CLEAR_CAPTURES: {
+ // Since we're scanning in reverse order, if we've already
+ // set the position we have to ignore historically earlier
+ // clearing operations.
+ if (store_position == -1) {
+ clear = true;
+ }
+ undo_action = RESTORE;
+ DCHECK(!absolute);
+ DCHECK_EQ(value, 0);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+ // Prepare for the undo-action (e.g., push if it's going to be popped).
+ if (undo_action == RESTORE) {
+ pushes++;
+ RegExpMacroAssembler::StackCheckFlag stack_check =
+ RegExpMacroAssembler::kNoStackLimitCheck;
+ if (pushes == push_limit) {
+ stack_check = RegExpMacroAssembler::kCheckStackLimit;
+ pushes = 0;
+ }
+
+ assembler->PushRegister(reg, stack_check);
+ registers_to_pop->Set(reg, zone);
+ } else if (undo_action == CLEAR) {
+ registers_to_clear->Set(reg, zone);
+ }
+ // Perform the chronologically last action (or accumulated increment)
+ // for the register.
+ if (store_position != -1) {
+ assembler->WriteCurrentPositionToRegister(reg, store_position);
+ } else if (clear) {
+ assembler->ClearRegisters(reg, reg);
+ } else if (absolute) {
+ assembler->SetRegister(reg, value);
+ } else if (value != 0) {
+ assembler->AdvanceRegister(reg, value);
+ }
+ }
+}
+
+
+// This is called as we come into a loop choice node and some other tricky
+// nodes. It normalizes the state of the code generator to ensure we can
+// generate generic code.
+void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ DCHECK(!is_trivial());
+
+ if (actions_ == NULL && backtrack() == NULL) {
+ // Here we just have some deferred cp advances to fix and we are back to
+ // a normal situation. We may also have to forget some information gained
+ // through a quick check that was already performed.
+ if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
+ // Create a new trivial state and generate the node with that.
+ Trace new_state;
+ successor->Emit(compiler, &new_state);
+ return;
+ }
+
+ // Generate deferred actions here along with code to undo them again.
+ OutSet affected_registers;
+
+ if (backtrack() != NULL) {
+ // Here we have a concrete backtrack location. These are set up by choice
+ // nodes and so they indicate that we have a deferred save of the current
+ // position which we may need to emit here.
+ assembler->PushCurrentPosition();
+ }
+
+ int max_register = FindAffectedRegisters(&affected_registers,
+ compiler->zone());
+ OutSet registers_to_pop;
+ OutSet registers_to_clear;
+ PerformDeferredActions(assembler,
+ max_register,
+ affected_registers,
+ ®isters_to_pop,
+ ®isters_to_clear,
+ compiler->zone());
+ if (cp_offset_ != 0) {
+ assembler->AdvanceCurrentPosition(cp_offset_);
+ }
+
+ // Create a new trivial state and generate the node with that.
+ Label undo;
+ assembler->PushBacktrack(&undo);
+ if (successor->KeepRecursing(compiler)) {
+ Trace new_state;
+ successor->Emit(compiler, &new_state);
+ } else {
+ compiler->AddWork(successor);
+ assembler->GoTo(successor->label());
+ }
+
+ // On backtrack we need to restore state.
+ assembler->Bind(&undo);
+ RestoreAffectedRegisters(assembler,
+ max_register,
+ registers_to_pop,
+ registers_to_clear);
+ if (backtrack() == NULL) {
+ assembler->Backtrack();
+ } else {
+ assembler->PopCurrentPosition();
+ assembler->GoTo(backtrack());
+ }
+}
+
+
+void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ // Omit flushing the trace. We discard the entire stack frame anyway.
+
+ if (!label()->is_bound()) {
+ // We are completely independent of the trace, since we ignore it,
+ // so this code can be used as the generic version.
+ assembler->Bind(label());
+ }
+
+ // Throw away everything on the backtrack stack since the start
+ // of the negative submatch and restore the character position.
+ assembler->ReadCurrentPositionFromRegister(current_position_register_);
+ assembler->ReadStackPointerFromRegister(stack_pointer_register_);
+ if (clear_capture_count_ > 0) {
+ // Clear any captures that might have been performed during the success
+ // of the body of the negative look-ahead.
+ int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
+ assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
+ }
+ // Now that we have unwound the stack we find at the top of the stack the
+ // backtrack that the BeginSubmatch node got.
+ assembler->Backtrack();
+}
+
+
+void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ if (!label()->is_bound()) {
+ assembler->Bind(label());
+ }
+ switch (action_) {
+ case ACCEPT:
+ assembler->Succeed();
+ return;
+ case BACKTRACK:
+ assembler->GoTo(trace->backtrack());
+ return;
+ case NEGATIVE_SUBMATCH_SUCCESS:
+ // This case is handled in a different virtual method.
+ UNREACHABLE();
+ }
+ UNIMPLEMENTED();
+}
+
+
+void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
+ if (guards_ == NULL)
+ guards_ = new(zone) ZoneList<Guard*>(1, zone);
+ guards_->Add(guard, zone);
+}
+
+
+ActionNode* ActionNode::SetRegister(int reg,
+ int val,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
+ result->data_.u_store_register.reg = reg;
+ result->data_.u_store_register.value = val;
+ return result;
+}
+
+
+ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
+ result->data_.u_increment_register.reg = reg;
+ return result;
+}
+
+
+ActionNode* ActionNode::StorePosition(int reg,
+ bool is_capture,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
+ result->data_.u_position_register.reg = reg;
+ result->data_.u_position_register.is_capture = is_capture;
+ return result;
+}
+
+
+ActionNode* ActionNode::ClearCaptures(Interval range,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
+ result->data_.u_clear_captures.range_from = range.from();
+ result->data_.u_clear_captures.range_to = range.to();
+ return result;
+}
+
+
+ActionNode* ActionNode::BeginSubmatch(int stack_reg,
+ int position_reg,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
+ result->data_.u_submatch.stack_pointer_register = stack_reg;
+ result->data_.u_submatch.current_position_register = position_reg;
+ return result;
+}
+
+
+ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
+ int position_reg,
+ int clear_register_count,
+ int clear_register_from,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
+ result->data_.u_submatch.stack_pointer_register = stack_reg;
+ result->data_.u_submatch.current_position_register = position_reg;
+ result->data_.u_submatch.clear_register_count = clear_register_count;
+ result->data_.u_submatch.clear_register_from = clear_register_from;
+ return result;
+}
+
+
+ActionNode* ActionNode::EmptyMatchCheck(int start_register,
+ int repetition_register,
+ int repetition_limit,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
+ result->data_.u_empty_match_check.start_register = start_register;
+ result->data_.u_empty_match_check.repetition_register = repetition_register;
+ result->data_.u_empty_match_check.repetition_limit = repetition_limit;
+ return result;
+}
+
+
+#define DEFINE_ACCEPT(Type) \
+ void Type##Node::Accept(NodeVisitor* visitor) { \
+ visitor->Visit##Type(this); \
+ }
+FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
+#undef DEFINE_ACCEPT
+
+
+void LoopChoiceNode::Accept(NodeVisitor* visitor) {
+ visitor->VisitLoopChoice(this);
+}
+
+
+// -------------------------------------------------------------------
+// Emit code.
+
+
+void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
+ Guard* guard,
+ Trace* trace) {
+ switch (guard->op()) {
+ case Guard::LT:
+ DCHECK(!trace->mentions_reg(guard->reg()));
+ macro_assembler->IfRegisterGE(guard->reg(),
+ guard->value(),
+ trace->backtrack());
+ break;
+ case Guard::GEQ:
+ DCHECK(!trace->mentions_reg(guard->reg()));
+ macro_assembler->IfRegisterLT(guard->reg(),
+ guard->value(),
+ trace->backtrack());
+ break;
+ }
+}
+
+
+// Returns the number of characters in the equivalence class, omitting those
+// that cannot occur in the source string because it is Latin1.
+static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
+ bool one_byte_subject,
+ unibrow::uchar* letters) {
+ int length =
+ isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
+ // Unibrow returns 0 or 1 for characters where case independence is
+ // trivial.
+ if (length == 0) {
+ letters[0] = character;
+ length = 1;
+ }
+
+ if (one_byte_subject) {
+ int new_length = 0;
+ for (int i = 0; i < length; i++) {
+ if (letters[i] <= String::kMaxOneByteCharCode) {
+ letters[new_length++] = letters[i];
+ }
+ }
+ length = new_length;
+ }
+
+ return length;
+}
+
+
+static inline bool EmitSimpleCharacter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ bool bound_checked = false;
+ if (!preloaded) {
+ assembler->LoadCurrentCharacter(
+ cp_offset,
+ on_failure,
+ check);
+ bound_checked = true;
+ }
+ assembler->CheckNotCharacter(c, on_failure);
+ return bound_checked;
+}
+
+
+// Only emits non-letters (things that don't have case). Only used for case
+// independent matches.
+static inline bool EmitAtomNonLetter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ bool one_byte = compiler->one_byte();
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
+ if (length < 1) {
+ // This can't match. Must be an one-byte subject and a non-one-byte
+ // character. We do not need to do anything since the one-byte pass
+ // already handled this.
+ return false; // Bounds not checked.
+ }
+ bool checked = false;
+ // We handle the length > 1 case in a later pass.
+ if (length == 1) {
+ if (one_byte && c > String::kMaxOneByteCharCodeU) {
+ // Can't match - see above.
+ return false; // Bounds not checked.
+ }
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+ checked = check;
+ }
+ macro_assembler->CheckNotCharacter(c, on_failure);
+ }
+ return checked;
+}
+
+
+static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
+ bool one_byte, uc16 c1, uc16 c2,
+ Label* on_failure) {
+ uc16 char_mask;
+ if (one_byte) {
+ char_mask = String::kMaxOneByteCharCode;
+ } else {
+ char_mask = String::kMaxUtf16CodeUnit;
+ }
+ uc16 exor = c1 ^ c2;
+ // Check whether exor has only one bit set.
+ if (((exor - 1) & exor) == 0) {
+ // If c1 and c2 differ only by one bit.
+ // Ecma262UnCanonicalize always gives the highest number last.
+ DCHECK(c2 > c1);
+ uc16 mask = char_mask ^ exor;
+ macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
+ return true;
+ }
+ DCHECK(c2 > c1);
+ uc16 diff = c2 - c1;
+ if (((diff - 1) & diff) == 0 && c1 >= diff) {
+ // If the characters differ by 2^n but don't differ by one bit then
+ // subtract the difference from the found character, then do the or
+ // trick. We avoid the theoretical case where negative numbers are
+ // involved in order to simplify code generation.
+ uc16 mask = char_mask ^ diff;
+ macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
+ diff,
+ mask,
+ on_failure);
+ return true;
+ }
+ return false;
+}
+
+
+typedef bool EmitCharacterFunction(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded);
+
+// Only emits letters (things that have case). Only used for case independent
+// matches.
+static inline bool EmitAtomLetter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ bool one_byte = compiler->one_byte();
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
+ if (length <= 1) return false;
+ // We may not need to check against the end of the input string
+ // if this character lies before a character that matched.
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+ }
+ Label ok;
+ DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
+ switch (length) {
+ case 2: {
+ if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
+ chars[1], on_failure)) {
+ } else {
+ macro_assembler->CheckCharacter(chars[0], &ok);
+ macro_assembler->CheckNotCharacter(chars[1], on_failure);
+ macro_assembler->Bind(&ok);
+ }
+ break;
+ }
+ case 4:
+ macro_assembler->CheckCharacter(chars[3], &ok);
+ // Fall through!
+ case 3:
+ macro_assembler->CheckCharacter(chars[0], &ok);
+ macro_assembler->CheckCharacter(chars[1], &ok);
+ macro_assembler->CheckNotCharacter(chars[2], on_failure);
+ macro_assembler->Bind(&ok);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ return true;
+}
+
+
+static void EmitBoundaryTest(RegExpMacroAssembler* masm,
+ int border,
+ Label* fall_through,
+ Label* above_or_equal,
+ Label* below) {
+ if (below != fall_through) {
+ masm->CheckCharacterLT(border, below);
+ if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
+ } else {
+ masm->CheckCharacterGT(border - 1, above_or_equal);
+ }
+}
+
+
+static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
+ int first,
+ int last,
+ Label* fall_through,
+ Label* in_range,
+ Label* out_of_range) {
+ if (in_range == fall_through) {
+ if (first == last) {
+ masm->CheckNotCharacter(first, out_of_range);
+ } else {
+ masm->CheckCharacterNotInRange(first, last, out_of_range);
+ }
+ } else {
+ if (first == last) {
+ masm->CheckCharacter(first, in_range);
+ } else {
+ masm->CheckCharacterInRange(first, last, in_range);
+ }
+ if (out_of_range != fall_through) masm->GoTo(out_of_range);
+ }
+}
+
+
+// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
+// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
+static void EmitUseLookupTable(
+ RegExpMacroAssembler* masm,
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int min_char,
+ Label* fall_through,
+ Label* even_label,
+ Label* odd_label) {
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ static const int kMask = RegExpMacroAssembler::kTableMask;
+
+ int base = (min_char & ~kMask);
+ USE(base);
+
+ // Assert that everything is on one kTableSize page.
+ for (int i = start_index; i <= end_index; i++) {
+ DCHECK_EQ(ranges->at(i) & ~kMask, base);
+ }
+ DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
+
+ char templ[kSize];
+ Label* on_bit_set;
+ Label* on_bit_clear;
+ int bit;
+ if (even_label == fall_through) {
+ on_bit_set = odd_label;
+ on_bit_clear = even_label;
+ bit = 1;
+ } else {
+ on_bit_set = even_label;
+ on_bit_clear = odd_label;
+ bit = 0;
+ }
+ for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
+ templ[i] = bit;
+ }
+ int j = 0;
+ bit ^= 1;
+ for (int i = start_index; i < end_index; i++) {
+ for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
+ templ[j] = bit;
+ }
+ bit ^= 1;
+ }
+ for (int i = j; i < kSize; i++) {
+ templ[i] = bit;
+ }
+ Factory* factory = masm->isolate()->factory();
+ // TODO(erikcorry): Cache these.
+ Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
+ for (int i = 0; i < kSize; i++) {
+ ba->set(i, templ[i]);
+ }
+ masm->CheckBitInTable(ba, on_bit_set);
+ if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
+}
+
+
+static void CutOutRange(RegExpMacroAssembler* masm,
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int cut_index,
+ Label* even_label,
+ Label* odd_label) {
+ bool odd = (((cut_index - start_index) & 1) == 1);
+ Label* in_range_label = odd ? odd_label : even_label;
+ Label dummy;
+ EmitDoubleBoundaryTest(masm,
+ ranges->at(cut_index),
+ ranges->at(cut_index + 1) - 1,
+ &dummy,
+ in_range_label,
+ &dummy);
+ DCHECK(!dummy.is_linked());
+ // Cut out the single range by rewriting the array. This creates a new
+ // range that is a merger of the two ranges on either side of the one we
+ // are cutting out. The oddity of the labels is preserved.
+ for (int j = cut_index; j > start_index; j--) {
+ ranges->at(j) = ranges->at(j - 1);
+ }
+ for (int j = cut_index + 1; j < end_index; j++) {
+ ranges->at(j) = ranges->at(j + 1);
+ }
+}
+
+
+// Unicode case. Split the search space into kSize spaces that are handled
+// with recursion.
+static void SplitSearchSpace(ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int* new_start_index,
+ int* new_end_index,
+ int* border) {
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ static const int kMask = RegExpMacroAssembler::kTableMask;
+
+ int first = ranges->at(start_index);
+ int last = ranges->at(end_index) - 1;
+
+ *new_start_index = start_index;
+ *border = (ranges->at(start_index) & ~kMask) + kSize;
+ while (*new_start_index < end_index) {
+ if (ranges->at(*new_start_index) > *border) break;
+ (*new_start_index)++;
+ }
+ // new_start_index is the index of the first edge that is beyond the
+ // current kSize space.
+
+ // For very large search spaces we do a binary chop search of the non-Latin1
+ // space instead of just going to the end of the current kSize space. The
+ // heuristics are complicated a little by the fact that any 128-character
+ // encoding space can be quickly tested with a table lookup, so we don't
+ // wish to do binary chop search at a smaller granularity than that. A
+ // 128-character space can take up a lot of space in the ranges array if,
+ // for example, we only want to match every second character (eg. the lower
+ // case characters on some Unicode pages).
+ int binary_chop_index = (end_index + start_index) / 2;
+ // The first test ensures that we get to the code that handles the Latin1
+ // range with a single not-taken branch, speeding up this important
+ // character range (even non-Latin1 charset-based text has spaces and
+ // punctuation).
+ if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case.
+ end_index - start_index > (*new_start_index - start_index) * 2 &&
+ last - first > kSize * 2 && binary_chop_index > *new_start_index &&
+ ranges->at(binary_chop_index) >= first + 2 * kSize) {
+ int scan_forward_for_section_border = binary_chop_index;;
+ int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
+
+ while (scan_forward_for_section_border < end_index) {
+ if (ranges->at(scan_forward_for_section_border) > new_border) {
+ *new_start_index = scan_forward_for_section_border;
+ *border = new_border;
+ break;
+ }
+ scan_forward_for_section_border++;
+ }
+ }
+
+ DCHECK(*new_start_index > start_index);
+ *new_end_index = *new_start_index - 1;
+ if (ranges->at(*new_end_index) == *border) {
+ (*new_end_index)--;
+ }
+ if (*border >= ranges->at(end_index)) {
+ *border = ranges->at(end_index);
+ *new_start_index = end_index; // Won't be used.
+ *new_end_index = end_index - 1;
+ }
+}
+
+
+// Gets a series of segment boundaries representing a character class. If the
+// character is in the range between an even and an odd boundary (counting from
+// start_index) then go to even_label, otherwise go to odd_label. We already
+// know that the character is in the range of min_char to max_char inclusive.
+// Either label can be NULL indicating backtracking. Either label can also be
+// equal to the fall_through label.
+static void GenerateBranches(RegExpMacroAssembler* masm,
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ uc16 min_char,
+ uc16 max_char,
+ Label* fall_through,
+ Label* even_label,
+ Label* odd_label) {
+ int first = ranges->at(start_index);
+ int last = ranges->at(end_index) - 1;
+
+ DCHECK_LT(min_char, first);
+
+ // Just need to test if the character is before or on-or-after
+ // a particular character.
+ if (start_index == end_index) {
+ EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
+ return;
+ }
+
+ // Another almost trivial case: There is one interval in the middle that is
+ // different from the end intervals.
+ if (start_index + 1 == end_index) {
+ EmitDoubleBoundaryTest(
+ masm, first, last, fall_through, even_label, odd_label);
+ return;
+ }
+
+ // It's not worth using table lookup if there are very few intervals in the
+ // character class.
+ if (end_index - start_index <= 6) {
+ // It is faster to test for individual characters, so we look for those
+ // first, then try arbitrary ranges in the second round.
+ static int kNoCutIndex = -1;
+ int cut = kNoCutIndex;
+ for (int i = start_index; i < end_index; i++) {
+ if (ranges->at(i) == ranges->at(i + 1) - 1) {
+ cut = i;
+ break;
+ }
+ }
+ if (cut == kNoCutIndex) cut = start_index;
+ CutOutRange(
+ masm, ranges, start_index, end_index, cut, even_label, odd_label);
+ DCHECK_GE(end_index - start_index, 2);
+ GenerateBranches(masm,
+ ranges,
+ start_index + 1,
+ end_index - 1,
+ min_char,
+ max_char,
+ fall_through,
+ even_label,
+ odd_label);
+ return;
+ }
+
+ // If there are a lot of intervals in the regexp, then we will use tables to
+ // determine whether the character is inside or outside the character class.
+ static const int kBits = RegExpMacroAssembler::kTableSizeBits;
+
+ if ((max_char >> kBits) == (min_char >> kBits)) {
+ EmitUseLookupTable(masm,
+ ranges,
+ start_index,
+ end_index,
+ min_char,
+ fall_through,
+ even_label,
+ odd_label);
+ return;
+ }
+
+ if ((min_char >> kBits) != (first >> kBits)) {
+ masm->CheckCharacterLT(first, odd_label);
+ GenerateBranches(masm,
+ ranges,
+ start_index + 1,
+ end_index,
+ first,
+ max_char,
+ fall_through,
+ odd_label,
+ even_label);
+ return;
+ }
+
+ int new_start_index = 0;
+ int new_end_index = 0;
+ int border = 0;
+
+ SplitSearchSpace(ranges,
+ start_index,
+ end_index,
+ &new_start_index,
+ &new_end_index,
+ &border);
+
+ Label handle_rest;
+ Label* above = &handle_rest;
+ if (border == last + 1) {
+ // We didn't find any section that started after the limit, so everything
+ // above the border is one of the terminal labels.
+ above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
+ DCHECK(new_end_index == end_index - 1);
+ }
+
+ DCHECK_LE(start_index, new_end_index);
+ DCHECK_LE(new_start_index, end_index);
+ DCHECK_LT(start_index, new_start_index);
+ DCHECK_LT(new_end_index, end_index);
+ DCHECK(new_end_index + 1 == new_start_index ||
+ (new_end_index + 2 == new_start_index &&
+ border == ranges->at(new_end_index + 1)));
+ DCHECK_LT(min_char, border - 1);
+ DCHECK_LT(border, max_char);
+ DCHECK_LT(ranges->at(new_end_index), border);
+ DCHECK(border < ranges->at(new_start_index) ||
+ (border == ranges->at(new_start_index) &&
+ new_start_index == end_index &&
+ new_end_index == end_index - 1 &&
+ border == last + 1));
+ DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
+
+ masm->CheckCharacterGT(border - 1, above);
+ Label dummy;
+ GenerateBranches(masm,
+ ranges,
+ start_index,
+ new_end_index,
+ min_char,
+ border - 1,
+ &dummy,
+ even_label,
+ odd_label);
+ if (handle_rest.is_linked()) {
+ masm->Bind(&handle_rest);
+ bool flip = (new_start_index & 1) != (start_index & 1);
+ GenerateBranches(masm,
+ ranges,
+ new_start_index,
+ end_index,
+ border,
+ max_char,
+ &dummy,
+ flip ? odd_label : even_label,
+ flip ? even_label : odd_label);
+ }
+}
+
+
+static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
+ RegExpCharacterClass* cc, bool one_byte,
+ Label* on_failure, int cp_offset, bool check_offset,
+ bool preloaded, Zone* zone) {
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone);
+ if (!CharacterRange::IsCanonical(ranges)) {
+ CharacterRange::Canonicalize(ranges);
+ }
+
+ int max_char;
+ if (one_byte) {
+ max_char = String::kMaxOneByteCharCode;
+ } else {
+ max_char = String::kMaxUtf16CodeUnit;
+ }
+
+ int range_count = ranges->length();
+
+ int last_valid_range = range_count - 1;
+ while (last_valid_range >= 0) {
+ CharacterRange& range = ranges->at(last_valid_range);
+ if (range.from() <= max_char) {
+ break;
+ }
+ last_valid_range--;
+ }
+
+ if (last_valid_range < 0) {
+ if (!cc->is_negated()) {
+ macro_assembler->GoTo(on_failure);
+ }
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ return;
+ }
+
+ if (last_valid_range == 0 &&
+ ranges->at(0).IsEverything(max_char)) {
+ if (cc->is_negated()) {
+ macro_assembler->GoTo(on_failure);
+ } else {
+ // This is a common case hit by non-anchored expressions.
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ }
+ return;
+ }
+ if (last_valid_range == 0 &&
+ !cc->is_negated() &&
+ ranges->at(0).IsEverything(max_char)) {
+ // This is a common case hit by non-anchored expressions.
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ return;
+ }
+
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
+ }
+
+ if (cc->is_standard(zone) &&
+ macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
+ on_failure)) {
+ return;
+ }
+
+
+ // A new list with ascending entries. Each entry is a code unit
+ // where there is a boundary between code units that are part of
+ // the class and code units that are not. Normally we insert an
+ // entry at zero which goes to the failure label, but if there
+ // was already one there we fall through for success on that entry.
+ // Subsequent entries have alternating meaning (success/failure).
+ ZoneList<int>* range_boundaries =
+ new(zone) ZoneList<int>(last_valid_range, zone);
+
+ bool zeroth_entry_is_failure = !cc->is_negated();
+
+ for (int i = 0; i <= last_valid_range; i++) {
+ CharacterRange& range = ranges->at(i);
+ if (range.from() == 0) {
+ DCHECK_EQ(i, 0);
+ zeroth_entry_is_failure = !zeroth_entry_is_failure;
+ } else {
+ range_boundaries->Add(range.from(), zone);
+ }
+ range_boundaries->Add(range.to() + 1, zone);
+ }
+ int end_index = range_boundaries->length() - 1;
+ if (range_boundaries->at(end_index) > max_char) {
+ end_index--;
+ }
+
+ Label fall_through;
+ GenerateBranches(macro_assembler,
+ range_boundaries,
+ 0, // start_index.
+ end_index,
+ 0, // min_char.
+ max_char,
+ &fall_through,
+ zeroth_entry_is_failure ? &fall_through : on_failure,
+ zeroth_entry_is_failure ? on_failure : &fall_through);
+ macro_assembler->Bind(&fall_through);
+}
+
+
+RegExpNode::~RegExpNode() {
+}
+
+
+RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
+ Trace* trace) {
+ // If we are generating a greedy loop then don't stop and don't reuse code.
+ if (trace->stop_node() != NULL) {
+ return CONTINUE;
+ }
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ if (trace->is_trivial()) {
+ if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) {
+ // If a generic version is already scheduled to be generated or we have
+ // recursed too deeply then just generate a jump to that code.
+ macro_assembler->GoTo(&label_);
+ // This will queue it up for generation of a generic version if it hasn't
+ // already been queued.
+ compiler->AddWork(this);
+ return DONE;
+ }
+ // Generate generic version of the node and bind the label for later use.
+ macro_assembler->Bind(&label_);
+ return CONTINUE;
+ }
+
+ // We are being asked to make a non-generic version. Keep track of how many
+ // non-generic versions we generate so as not to overdo it.
+ trace_count_++;
+ if (KeepRecursing(compiler) && compiler->optimize() &&
+ trace_count_ < kMaxCopiesCodeGenerated) {
+ return CONTINUE;
+ }
+
+ // If we get here code has been generated for this node too many times or
+ // recursion is too deep. Time to switch to a generic version. The code for
+ // generic versions above can handle deep recursion properly.
+ bool was_limiting = compiler->limiting_recursion();
+ compiler->set_limiting_recursion(true);
+ trace->Flush(compiler, this);
+ compiler->set_limiting_recursion(was_limiting);
+ return DONE;
+}
+
+
+bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) {
+ return !compiler->limiting_recursion() &&
+ compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion;
+}
+
+
+int ActionNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
+ return on_success()->EatsAtLeast(still_to_find,
+ budget - 1,
+ not_at_start);
+}
+
+
+void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ if (action_type_ == BEGIN_SUBMATCH) {
+ bm->SetRest(offset);
+ } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
+ on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
+ }
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+int AssertionNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ // If we know we are not at the start and we are asked "how many characters
+ // will you match if you succeed?" then we can answer anything since false
+ // implies false. So lets just return the max answer (still_to_find) since
+ // that won't prevent us from preloading a lot of characters for the other
+ // branches in the node graph.
+ if (assertion_type() == AT_START && not_at_start) return still_to_find;
+ return on_success()->EatsAtLeast(still_to_find,
+ budget - 1,
+ not_at_start);
+}
+
+
+void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ // Match the behaviour of EatsAtLeast on this node.
+ if (assertion_type() == AT_START && not_at_start) return;
+ on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+int BackReferenceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ return on_success()->EatsAtLeast(still_to_find,
+ budget - 1,
+ not_at_start);
+}
+
+
+int TextNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ int answer = Length();
+ if (answer >= still_to_find) return answer;
+ if (budget <= 0) return answer;
+ // We are not at start after this node so we set the last argument to 'true'.
+ return answer + on_success()->EatsAtLeast(still_to_find - answer,
+ budget - 1,
+ true);
+}
+
+
+int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ // Alternative 0 is the negative lookahead, alternative 1 is what comes
+ // afterwards.
+ RegExpNode* node = alternatives_->at(1).node();
+ return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
+}
+
+
+void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
+ QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start) {
+ // Alternative 0 is the negative lookahead, alternative 1 is what comes
+ // afterwards.
+ RegExpNode* node = alternatives_->at(1).node();
+ return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
+}
+
+
+int ChoiceNode::EatsAtLeastHelper(int still_to_find,
+ int budget,
+ RegExpNode* ignore_this_node,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ int min = 100;
+ int choice_count = alternatives_->length();
+ budget = (budget - 1) / choice_count;
+ for (int i = 0; i < choice_count; i++) {
+ RegExpNode* node = alternatives_->at(i).node();
+ if (node == ignore_this_node) continue;
+ int node_eats_at_least =
+ node->EatsAtLeast(still_to_find, budget, not_at_start);
+ if (node_eats_at_least < min) min = node_eats_at_least;
+ if (min == 0) return 0;
+ }
+ return min;
+}
+
+
+int LoopChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ return EatsAtLeastHelper(still_to_find,
+ budget - 1,
+ loop_node_,
+ not_at_start);
+}
+
+
+int ChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ return EatsAtLeastHelper(still_to_find,
+ budget,
+ NULL,
+ not_at_start);
+}
+
+
+// Takes the left-most 1-bit and smears it out, setting all bits to its right.
+static inline uint32_t SmearBitsRight(uint32_t v) {
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return v;
+}
+
+
+bool QuickCheckDetails::Rationalize(bool asc) {
+ bool found_useful_op = false;
+ uint32_t char_mask;
+ if (asc) {
+ char_mask = String::kMaxOneByteCharCode;
+ } else {
+ char_mask = String::kMaxUtf16CodeUnit;
+ }
+ mask_ = 0;
+ value_ = 0;
+ int char_shift = 0;
+ for (int i = 0; i < characters_; i++) {
+ Position* pos = &positions_[i];
+ if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
+ found_useful_op = true;
+ }
+ mask_ |= (pos->mask & char_mask) << char_shift;
+ value_ |= (pos->value & char_mask) << char_shift;
+ char_shift += asc ? 8 : 16;
+ }
+ return found_useful_op;
+}
+
+
+bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
+ Trace* bounds_check_trace,
+ Trace* trace,
+ bool preload_has_checked_bounds,
+ Label* on_possible_success,
+ QuickCheckDetails* details,
+ bool fall_through_on_failure) {
+ if (details->characters() == 0) return false;
+ GetQuickCheckDetails(
+ details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
+ if (details->cannot_match()) return false;
+ if (!details->Rationalize(compiler->one_byte())) return false;
+ DCHECK(details->characters() == 1 ||
+ compiler->macro_assembler()->CanReadUnaligned());
+ uint32_t mask = details->mask();
+ uint32_t value = details->value();
+
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ if (trace->characters_preloaded() != details->characters()) {
+ DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
+ // We are attempting to preload the minimum number of characters
+ // any choice would eat, so if the bounds check fails, then none of the
+ // choices can succeed, so we can just immediately backtrack, rather
+ // than go to the next choice.
+ assembler->LoadCurrentCharacter(trace->cp_offset(),
+ bounds_check_trace->backtrack(),
+ !preload_has_checked_bounds,
+ details->characters());
+ }
+
+
+ bool need_mask = true;
+
+ if (details->characters() == 1) {
+ // If number of characters preloaded is 1 then we used a byte or 16 bit
+ // load so the value is already masked down.
+ uint32_t char_mask;
+ if (compiler->one_byte()) {
+ char_mask = String::kMaxOneByteCharCode;
+ } else {
+ char_mask = String::kMaxUtf16CodeUnit;
+ }
+ if ((mask & char_mask) == char_mask) need_mask = false;
+ mask &= char_mask;
+ } else {
+ // For 2-character preloads in one-byte mode or 1-character preloads in
+ // two-byte mode we also use a 16 bit load with zero extend.
+ if (details->characters() == 2 && compiler->one_byte()) {
+ if ((mask & 0xffff) == 0xffff) need_mask = false;
+ } else if (details->characters() == 1 && !compiler->one_byte()) {
+ if ((mask & 0xffff) == 0xffff) need_mask = false;
+ } else {
+ if (mask == 0xffffffff) need_mask = false;
+ }
+ }
+
+ if (fall_through_on_failure) {
+ if (need_mask) {
+ assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
+ } else {
+ assembler->CheckCharacter(value, on_possible_success);
+ }
+ } else {
+ if (need_mask) {
+ assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
+ } else {
+ assembler->CheckNotCharacter(value, trace->backtrack());
+ }
+ }
+ return true;
+}
+
+
+// Here is the meat of GetQuickCheckDetails (see also the comment on the
+// super-class in the .h file).
+//
+// We iterate along the text object, building up for each character a
+// mask and value that can be used to test for a quick failure to match.
+// The masks and values for the positions will be combined into a single
+// machine word for the current character width in order to be used in
+// generating a quick check.
+void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ Isolate* isolate = compiler->macro_assembler()->isolate();
+ DCHECK(characters_filled_in < details->characters());
+ int characters = details->characters();
+ int char_mask;
+ if (compiler->one_byte()) {
+ char_mask = String::kMaxOneByteCharCode;
+ } else {
+ char_mask = String::kMaxUtf16CodeUnit;
+ }
+ for (int k = 0; k < elms_->length(); k++) {
+ TextElement elm = elms_->at(k);
+ if (elm.text_type() == TextElement::ATOM) {
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int i = 0; i < characters && i < quarks.length(); i++) {
+ QuickCheckDetails::Position* pos =
+ details->positions(characters_filled_in);
+ uc16 c = quarks[i];
+ if (compiler->ignore_case()) {
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c,
+ compiler->one_byte(), chars);
+ if (length == 0) {
+ // This can happen because all case variants are non-Latin1, but we
+ // know the input is Latin1.
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ if (length == 1) {
+ // This letter has no case equivalents, so it's nice and simple
+ // and the mask-compare will determine definitely whether we have
+ // a match at this character position.
+ pos->mask = char_mask;
+ pos->value = c;
+ pos->determines_perfectly = true;
+ } else {
+ uint32_t common_bits = char_mask;
+ uint32_t bits = chars[0];
+ for (int j = 1; j < length; j++) {
+ uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
+ common_bits ^= differing_bits;
+ bits &= common_bits;
+ }
+ // If length is 2 and common bits has only one zero in it then
+ // our mask and compare instruction will determine definitely
+ // whether we have a match at this character position. Otherwise
+ // it can only be an approximate check.
+ uint32_t one_zero = (common_bits | ~char_mask);
+ if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
+ pos->determines_perfectly = true;
+ }
+ pos->mask = common_bits;
+ pos->value = bits;
+ }
+ } else {
+ // Don't ignore case. Nice simple case where the mask-compare will
+ // determine definitely whether we have a match at this character
+ // position.
+ if (c > char_mask) {
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ pos->mask = char_mask;
+ pos->value = c;
+ pos->determines_perfectly = true;
+ }
+ characters_filled_in++;
+ DCHECK(characters_filled_in <= details->characters());
+ if (characters_filled_in == details->characters()) {
+ return;
+ }
+ }
+ } else {
+ QuickCheckDetails::Position* pos =
+ details->positions(characters_filled_in);
+ RegExpCharacterClass* tree = elm.char_class();
+ ZoneList<CharacterRange>* ranges = tree->ranges(zone());
+ if (tree->is_negated()) {
+ // A quick check uses multi-character mask and compare. There is no
+ // useful way to incorporate a negative char class into this scheme
+ // so we just conservatively create a mask and value that will always
+ // succeed.
+ pos->mask = 0;
+ pos->value = 0;
+ } else {
+ int first_range = 0;
+ while (ranges->at(first_range).from() > char_mask) {
+ first_range++;
+ if (first_range == ranges->length()) {
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ }
+ CharacterRange range = ranges->at(first_range);
+ uc16 from = range.from();
+ uc16 to = range.to();
+ if (to > char_mask) {
+ to = char_mask;
+ }
+ uint32_t differing_bits = (from ^ to);
+ // A mask and compare is only perfect if the differing bits form a
+ // number like 00011111 with one single block of trailing 1s.
+ if ((differing_bits & (differing_bits + 1)) == 0 &&
+ from + differing_bits == to) {
+ pos->determines_perfectly = true;
+ }
+ uint32_t common_bits = ~SmearBitsRight(differing_bits);
+ uint32_t bits = (from & common_bits);
+ for (int i = first_range + 1; i < ranges->length(); i++) {
+ CharacterRange range = ranges->at(i);
+ uc16 from = range.from();
+ uc16 to = range.to();
+ if (from > char_mask) continue;
+ if (to > char_mask) to = char_mask;
+ // Here we are combining more ranges into the mask and compare
+ // value. With each new range the mask becomes more sparse and
+ // so the chances of a false positive rise. A character class
+ // with multiple ranges is assumed never to be equivalent to a
+ // mask and compare operation.
+ pos->determines_perfectly = false;
+ uint32_t new_common_bits = (from ^ to);
+ new_common_bits = ~SmearBitsRight(new_common_bits);
+ common_bits &= new_common_bits;
+ bits &= new_common_bits;
+ uint32_t differing_bits = (from & common_bits) ^ bits;
+ common_bits ^= differing_bits;
+ bits &= common_bits;
+ }
+ pos->mask = common_bits;
+ pos->value = bits;
+ }
+ characters_filled_in++;
+ DCHECK(characters_filled_in <= details->characters());
+ if (characters_filled_in == details->characters()) {
+ return;
+ }
+ }
+ }
+ DCHECK(characters_filled_in != details->characters());
+ if (!details->cannot_match()) {
+ on_success()-> GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ true);
+ }
+}
+
+
+void QuickCheckDetails::Clear() {
+ for (int i = 0; i < characters_; i++) {
+ positions_[i].mask = 0;
+ positions_[i].value = 0;
+ positions_[i].determines_perfectly = false;
+ }
+ characters_ = 0;
+}
+
+
+void QuickCheckDetails::Advance(int by, bool one_byte) {
+ DCHECK(by >= 0);
+ if (by >= characters_) {
+ Clear();
+ return;
+ }
+ for (int i = 0; i < characters_ - by; i++) {
+ positions_[i] = positions_[by + i];
+ }
+ for (int i = characters_ - by; i < characters_; i++) {
+ positions_[i].mask = 0;
+ positions_[i].value = 0;
+ positions_[i].determines_perfectly = false;
+ }
+ characters_ -= by;
+ // We could change mask_ and value_ here but we would never advance unless
+ // they had already been used in a check and they won't be used again because
+ // it would gain us nothing. So there's no point.
+}
+
+
+void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
+ DCHECK(characters_ == other->characters_);
+ if (other->cannot_match_) {
+ return;
+ }
+ if (cannot_match_) {
+ *this = *other;
+ return;
+ }
+ for (int i = from_index; i < characters_; i++) {
+ QuickCheckDetails::Position* pos = positions(i);
+ QuickCheckDetails::Position* other_pos = other->positions(i);
+ if (pos->mask != other_pos->mask ||
+ pos->value != other_pos->value ||
+ !other_pos->determines_perfectly) {
+ // Our mask-compare operation will be approximate unless we have the
+ // exact same operation on both sides of the alternation.
+ pos->determines_perfectly = false;
+ }
+ pos->mask &= other_pos->mask;
+ pos->value &= pos->mask;
+ other_pos->value &= pos->mask;
+ uc16 differing_bits = (pos->value ^ other_pos->value);
+ pos->mask &= ~differing_bits;
+ pos->value &= pos->mask;
+ }
+}
+
+
+class VisitMarker {
+ public:
+ explicit VisitMarker(NodeInfo* info) : info_(info) {
+ DCHECK(!info->visited);
+ info->visited = true;
+ }
+ ~VisitMarker() {
+ info_->visited = false;
+ }
+ private:
+ NodeInfo* info_;
+};
+
+
+RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ DCHECK(!info()->visited);
+ VisitMarker marker(info());
+ return FilterSuccessor(depth - 1, ignore_case);
+}
+
+
+RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
+ RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
+ if (next == NULL) return set_replacement(NULL);
+ on_success_ = next;
+ return set_replacement(this);
+}
+
+
+// We need to check for the following characters: 0x39c 0x3bc 0x178.
+static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
+ // TODO(dcarney): this could be a lot more efficient.
+ return range.Contains(0x39c) ||
+ range.Contains(0x3bc) || range.Contains(0x178);
+}
+
+
+static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
+ for (int i = 0; i < ranges->length(); i++) {
+ // TODO(dcarney): this could be a lot more efficient.
+ if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
+ }
+ return false;
+}
+
+
+RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ DCHECK(!info()->visited);
+ VisitMarker marker(info());
+ int element_count = elms_->length();
+ for (int i = 0; i < element_count; i++) {
+ TextElement elm = elms_->at(i);
+ if (elm.text_type() == TextElement::ATOM) {
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int j = 0; j < quarks.length(); j++) {
+ uint16_t c = quarks[j];
+ if (c <= String::kMaxOneByteCharCode) continue;
+ if (!ignore_case) return set_replacement(NULL);
+ // Here, we need to check for characters whose upper and lower cases
+ // are outside the Latin-1 range.
+ uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
+ // Character is outside Latin-1 completely
+ if (converted == 0) return set_replacement(NULL);
+ // Convert quark to Latin-1 in place.
+ uint16_t* copy = const_cast<uint16_t*>(quarks.start());
+ copy[j] = converted;
+ }
+ } else {
+ DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
+ RegExpCharacterClass* cc = elm.char_class();
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone());
+ if (!CharacterRange::IsCanonical(ranges)) {
+ CharacterRange::Canonicalize(ranges);
+ }
+ // Now they are in order so we only need to look at the first.
+ int range_count = ranges->length();
+ if (cc->is_negated()) {
+ if (range_count != 0 &&
+ ranges->at(0).from() == 0 &&
+ ranges->at(0).to() >= String::kMaxOneByteCharCode) {
+ // This will be handled in a later filter.
+ if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
+ return set_replacement(NULL);
+ }
+ } else {
+ if (range_count == 0 ||
+ ranges->at(0).from() > String::kMaxOneByteCharCode) {
+ // This will be handled in a later filter.
+ if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
+ return set_replacement(NULL);
+ }
+ }
+ }
+ }
+ return FilterSuccessor(depth - 1, ignore_case);
+}
+
+
+RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ if (info()->visited) return this;
+ {
+ VisitMarker marker(info());
+
+ RegExpNode* continue_replacement =
+ continue_node_->FilterOneByte(depth - 1, ignore_case);
+ // If we can't continue after the loop then there is no sense in doing the
+ // loop.
+ if (continue_replacement == NULL) return set_replacement(NULL);
+ }
+
+ return ChoiceNode::FilterOneByte(depth - 1, ignore_case);
+}
+
+
+RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ if (info()->visited) return this;
+ VisitMarker marker(info());
+ int choice_count = alternatives_->length();
+
+ for (int i = 0; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
+ set_replacement(this);
+ return this;
+ }
+ }
+
+ int surviving = 0;
+ RegExpNode* survivor = NULL;
+ for (int i = 0; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ RegExpNode* replacement =
+ alternative.node()->FilterOneByte(depth - 1, ignore_case);
+ DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK.
+ if (replacement != NULL) {
+ alternatives_->at(i).set_node(replacement);
+ surviving++;
+ survivor = replacement;
+ }
+ }
+ if (surviving < 2) return set_replacement(survivor);
+
+ set_replacement(this);
+ if (surviving == choice_count) {
+ return this;
+ }
+ // Only some of the nodes survived the filtering. We need to rebuild the
+ // alternatives list.
+ ZoneList<GuardedAlternative>* new_alternatives =
+ new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
+ for (int i = 0; i < choice_count; i++) {
+ RegExpNode* replacement =
+ alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
+ if (replacement != NULL) {
+ alternatives_->at(i).set_node(replacement);
+ new_alternatives->Add(alternatives_->at(i), zone());
+ }
+ }
+ alternatives_ = new_alternatives;
+ return this;
+}
+
+
+RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
+ bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ if (info()->visited) return this;
+ VisitMarker marker(info());
+ // Alternative 0 is the negative lookahead, alternative 1 is what comes
+ // afterwards.
+ RegExpNode* node = alternatives_->at(1).node();
+ RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
+ if (replacement == NULL) return set_replacement(NULL);
+ alternatives_->at(1).set_node(replacement);
+
+ RegExpNode* neg_node = alternatives_->at(0).node();
+ RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
+ // If the negative lookahead is always going to fail then
+ // we don't need to check it.
+ if (neg_replacement == NULL) return set_replacement(replacement);
+ alternatives_->at(0).set_node(neg_replacement);
+ return set_replacement(this);
+}
+
+
+void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ if (body_can_be_zero_length_ || info()->visited) return;
+ VisitMarker marker(info());
+ return ChoiceNode::GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ not_at_start);
+}
+
+
+void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ if (body_can_be_zero_length_ || budget <= 0) {
+ bm->SetRest(offset);
+ SaveBMInfo(bm, not_at_start, offset);
+ return;
+ }
+ ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ not_at_start = (not_at_start || not_at_start_);
+ int choice_count = alternatives_->length();
+ DCHECK(choice_count > 0);
+ alternatives_->at(0).node()->GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ not_at_start);
+ for (int i = 1; i < choice_count; i++) {
+ QuickCheckDetails new_details(details->characters());
+ RegExpNode* node = alternatives_->at(i).node();
+ node->GetQuickCheckDetails(&new_details, compiler,
+ characters_filled_in,
+ not_at_start);
+ // Here we merge the quick match details of the two branches.
+ details->Merge(&new_details, characters_filled_in);
+ }
+}
+
+
+// Check for [0-9A-Z_a-z].
+static void EmitWordCheck(RegExpMacroAssembler* assembler,
+ Label* word,
+ Label* non_word,
+ bool fall_through_on_word) {
+ if (assembler->CheckSpecialCharacterClass(
+ fall_through_on_word ? 'w' : 'W',
+ fall_through_on_word ? non_word : word)) {
+ // Optimized implementation available.
+ return;
+ }
+ assembler->CheckCharacterGT('z', non_word);
+ assembler->CheckCharacterLT('0', non_word);
+ assembler->CheckCharacterGT('a' - 1, word);
+ assembler->CheckCharacterLT('9' + 1, word);
+ assembler->CheckCharacterLT('A', non_word);
+ assembler->CheckCharacterLT('Z' + 1, word);
+ if (fall_through_on_word) {
+ assembler->CheckNotCharacter('_', non_word);
+ } else {
+ assembler->CheckCharacter('_', word);
+ }
+}
+
+
+// Emit the code to check for a ^ in multiline mode (1-character lookbehind
+// that matches newline or the start of input).
+static void EmitHat(RegExpCompiler* compiler,
+ RegExpNode* on_success,
+ Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ // We will be loading the previous character into the current character
+ // register.
+ Trace new_trace(*trace);
+ new_trace.InvalidateCurrentCharacter();
+
+ Label ok;
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a newline in this context, so skip to
+ // ok if we are at the start.
+ assembler->CheckAtStart(&ok);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
+ new_trace.backtrack(),
+ false);
+ if (!assembler->CheckSpecialCharacterClass('n',
+ new_trace.backtrack())) {
+ // Newline means \n, \r, 0x2028 or 0x2029.
+ if (!compiler->one_byte()) {
+ assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
+ }
+ assembler->CheckCharacter('\n', &ok);
+ assembler->CheckNotCharacter('\r', new_trace.backtrack());
+ }
+ assembler->Bind(&ok);
+ on_success->Emit(compiler, &new_trace);
+}
+
+
+// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
+void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Isolate* isolate = assembler->isolate();
+ Trace::TriBool next_is_word_character = Trace::UNKNOWN;
+ bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
+ BoyerMooreLookahead* lookahead = bm_info(not_at_start);
+ if (lookahead == NULL) {
+ int eats_at_least =
+ Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
+ kRecursionBudget,
+ not_at_start));
+ if (eats_at_least >= 1) {
+ BoyerMooreLookahead* bm =
+ new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
+ FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start);
+ if (bm->at(0)->is_non_word())
+ next_is_word_character = Trace::FALSE_VALUE;
+ if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
+ }
+ } else {
+ if (lookahead->at(0)->is_non_word())
+ next_is_word_character = Trace::FALSE_VALUE;
+ if (lookahead->at(0)->is_word())
+ next_is_word_character = Trace::TRUE_VALUE;
+ }
+ bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
+ if (next_is_word_character == Trace::UNKNOWN) {
+ Label before_non_word;
+ Label before_word;
+ if (trace->characters_preloaded() != 1) {
+ assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
+ }
+ // Fall through on non-word.
+ EmitWordCheck(assembler, &before_word, &before_non_word, false);
+ // Next character is not a word character.
+ assembler->Bind(&before_non_word);
+ Label ok;
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+ assembler->GoTo(&ok);
+
+ assembler->Bind(&before_word);
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
+ assembler->Bind(&ok);
+ } else if (next_is_word_character == Trace::TRUE_VALUE) {
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
+ } else {
+ DCHECK(next_is_word_character == Trace::FALSE_VALUE);
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+ }
+}
+
+
+void AssertionNode::BacktrackIfPrevious(
+ RegExpCompiler* compiler,
+ Trace* trace,
+ AssertionNode::IfPrevious backtrack_if_previous) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Trace new_trace(*trace);
+ new_trace.InvalidateCurrentCharacter();
+
+ Label fall_through, dummy;
+
+ Label* non_word = backtrack_if_previous == kIsNonWord ?
+ new_trace.backtrack() :
+ &fall_through;
+ Label* word = backtrack_if_previous == kIsNonWord ?
+ &fall_through :
+ new_trace.backtrack();
+
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a non-word character, so the question is
+ // decided if we are at the start.
+ assembler->CheckAtStart(non_word);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
+ EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
+
+ assembler->Bind(&fall_through);
+ on_success()->Emit(compiler, &new_trace);
+}
+
+
+void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start) {
+ if (assertion_type_ == AT_START && not_at_start) {
+ details->set_cannot_match();
+ return;
+ }
+ return on_success()->GetQuickCheckDetails(details,
+ compiler,
+ filled_in,
+ not_at_start);
+}
+
+
+void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ switch (assertion_type_) {
+ case AT_END: {
+ Label ok;
+ assembler->CheckPosition(trace->cp_offset(), &ok);
+ assembler->GoTo(trace->backtrack());
+ assembler->Bind(&ok);
+ break;
+ }
+ case AT_START: {
+ if (trace->at_start() == Trace::FALSE_VALUE) {
+ assembler->GoTo(trace->backtrack());
+ return;
+ }
+ if (trace->at_start() == Trace::UNKNOWN) {
+ assembler->CheckNotAtStart(trace->backtrack());
+ Trace at_start_trace = *trace;
+ at_start_trace.set_at_start(true);
+ on_success()->Emit(compiler, &at_start_trace);
+ return;
+ }
+ }
+ break;
+ case AFTER_NEWLINE:
+ EmitHat(compiler, on_success(), trace);
+ return;
+ case AT_BOUNDARY:
+ case AT_NON_BOUNDARY: {
+ EmitBoundaryCheck(compiler, trace);
+ return;
+ }
+ }
+ on_success()->Emit(compiler, trace);
+}
+
+
+static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
+ if (quick_check == NULL) return false;
+ if (offset >= quick_check->characters()) return false;
+ return quick_check->positions(offset)->determines_perfectly;
+}
+
+
+static void UpdateBoundsCheck(int index, int* checked_up_to) {
+ if (index > *checked_up_to) {
+ *checked_up_to = index;
+ }
+}
+
+
+// We call this repeatedly to generate code for each pass over the text node.
+// The passes are in increasing order of difficulty because we hope one
+// of the first passes will fail in which case we are saved the work of the
+// later passes. for example for the case independent regexp /%[asdfghjkl]a/
+// we will check the '%' in the first pass, the case independent 'a' in the
+// second pass and the character class in the last pass.
+//
+// The passes are done from right to left, so for example to test for /bar/
+// we will first test for an 'r' with offset 2, then an 'a' with offset 1
+// and then a 'b' with offset 0. This means we can avoid the end-of-input
+// bounds check most of the time. In the example we only need to check for
+// end-of-input when loading the putative 'r'.
+//
+// A slight complication involves the fact that the first character may already
+// be fetched into a register by the previous node. In this case we want to
+// do the test for that character first. We do this in separate passes. The
+// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
+// pass has been performed then subsequent passes will have true in
+// first_element_checked to indicate that that character does not need to be
+// checked again.
+//
+// In addition to all this we are passed a Trace, which can
+// contain an AlternativeGeneration object. In this AlternativeGeneration
+// object we can see details of any quick check that was already passed in
+// order to get to the code we are now generating. The quick check can involve
+// loading characters, which means we do not need to recheck the bounds
+// up to the limit the quick check already checked. In addition the quick
+// check can have involved a mask and compare operation which may simplify
+// or obviate the need for further checks at some character positions.
+void TextNode::TextEmitPass(RegExpCompiler* compiler,
+ TextEmitPassType pass,
+ bool preloaded,
+ Trace* trace,
+ bool first_element_checked,
+ int* checked_up_to) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Isolate* isolate = assembler->isolate();
+ bool one_byte = compiler->one_byte();
+ Label* backtrack = trace->backtrack();
+ QuickCheckDetails* quick_check = trace->quick_check_performed();
+ int element_count = elms_->length();
+ for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
+ TextElement elm = elms_->at(i);
+ int cp_offset = trace->cp_offset() + elm.cp_offset();
+ if (elm.text_type() == TextElement::ATOM) {
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
+ if (first_element_checked && i == 0 && j == 0) continue;
+ if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
+ EmitCharacterFunction* emit_function = NULL;
+ switch (pass) {
+ case NON_LATIN1_MATCH:
+ DCHECK(one_byte);
+ if (quarks[j] > String::kMaxOneByteCharCode) {
+ assembler->GoTo(backtrack);
+ return;
+ }
+ break;
+ case NON_LETTER_CHARACTER_MATCH:
+ emit_function = &EmitAtomNonLetter;
+ break;
+ case SIMPLE_CHARACTER_MATCH:
+ emit_function = &EmitSimpleCharacter;
+ break;
+ case CASE_CHARACTER_MATCH:
+ emit_function = &EmitAtomLetter;
+ break;
+ default:
+ break;
+ }
+ if (emit_function != NULL) {
+ bool bound_checked = emit_function(isolate,
+ compiler,
+ quarks[j],
+ backtrack,
+ cp_offset + j,
+ *checked_up_to < cp_offset + j,
+ preloaded);
+ if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
+ }
+ }
+ } else {
+ DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
+ if (pass == CHARACTER_CLASS_MATCH) {
+ if (first_element_checked && i == 0) continue;
+ if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
+ RegExpCharacterClass* cc = elm.char_class();
+ EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
+ *checked_up_to < cp_offset, preloaded, zone());
+ UpdateBoundsCheck(cp_offset, checked_up_to);
+ }
+ }
+ }
+}
+
+
+int TextNode::Length() {
+ TextElement elm = elms_->last();
+ DCHECK(elm.cp_offset() >= 0);
+ return elm.cp_offset() + elm.length();
+}
+
+
+bool TextNode::SkipPass(int int_pass, bool ignore_case) {
+ TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
+ if (ignore_case) {
+ return pass == SIMPLE_CHARACTER_MATCH;
+ } else {
+ return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
+ }
+}
+
+
+// This generates the code to match a text node. A text node can contain
+// straight character sequences (possibly to be matched in a case-independent
+// way) and character classes. For efficiency we do not do this in a single
+// pass from left to right. Instead we pass over the text node several times,
+// emitting code for some character positions every time. See the comment on
+// TextEmitPass for details.
+void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ DCHECK(limit_result == CONTINUE);
+
+ if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
+ compiler->SetRegExpTooBig();
+ return;
+ }
+
+ if (compiler->one_byte()) {
+ int dummy = 0;
+ TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
+ }
+
+ bool first_elt_done = false;
+ int bound_checked_to = trace->cp_offset() - 1;
+ bound_checked_to += trace->bound_checked_up_to();
+
+ // If a character is preloaded into the current character register then
+ // check that now.
+ if (trace->characters_preloaded() == 1) {
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ if (!SkipPass(pass, compiler->ignore_case())) {
+ TextEmitPass(compiler,
+ static_cast<TextEmitPassType>(pass),
+ true,
+ trace,
+ false,
+ &bound_checked_to);
+ }
+ }
+ first_elt_done = true;
+ }
+
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ if (!SkipPass(pass, compiler->ignore_case())) {
+ TextEmitPass(compiler,
+ static_cast<TextEmitPassType>(pass),
+ false,
+ trace,
+ first_elt_done,
+ &bound_checked_to);
+ }
+ }
+
+ Trace successor_trace(*trace);
+ successor_trace.set_at_start(false);
+ successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
+ RecursionCheck rc(compiler);
+ on_success()->Emit(compiler, &successor_trace);
+}
+
+
+void Trace::InvalidateCurrentCharacter() {
+ characters_preloaded_ = 0;
+}
+
+
+void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
+ DCHECK(by > 0);
+ // We don't have an instruction for shifting the current character register
+ // down or for using a shifted value for anything so lets just forget that
+ // we preloaded any characters into it.
+ characters_preloaded_ = 0;
+ // Adjust the offsets of the quick check performed information. This
+ // information is used to find out what we already determined about the
+ // characters by means of mask and compare.
+ quick_check_performed_.Advance(by, compiler->one_byte());
+ cp_offset_ += by;
+ if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
+ compiler->SetRegExpTooBig();
+ cp_offset_ = 0;
+ }
+ bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
+}
+
+
+void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) {
+ int element_count = elms_->length();
+ for (int i = 0; i < element_count; i++) {
+ TextElement elm = elms_->at(i);
+ if (elm.text_type() == TextElement::CHAR_CLASS) {
+ RegExpCharacterClass* cc = elm.char_class();
+ // None of the standard character classes is different in the case
+ // independent case and it slows us down if we don't know that.
+ if (cc->is_standard(zone())) continue;
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone());
+ int range_count = ranges->length();
+ for (int j = 0; j < range_count; j++) {
+ ranges->at(j).AddCaseEquivalents(isolate, zone(), ranges, is_one_byte);
+ }
+ }
+ }
+}
+
+
+int TextNode::GreedyLoopTextLength() {
+ TextElement elm = elms_->at(elms_->length() - 1);
+ return elm.cp_offset() + elm.length();
+}
+
+
+RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
+ RegExpCompiler* compiler) {
+ if (elms_->length() != 1) return NULL;
+ TextElement elm = elms_->at(0);
+ if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
+ RegExpCharacterClass* node = elm.char_class();
+ ZoneList<CharacterRange>* ranges = node->ranges(zone());
+ if (!CharacterRange::IsCanonical(ranges)) {
+ CharacterRange::Canonicalize(ranges);
+ }
+ if (node->is_negated()) {
+ return ranges->length() == 0 ? on_success() : NULL;
+ }
+ if (ranges->length() != 1) return NULL;
+ uint32_t max_char;
+ if (compiler->one_byte()) {
+ max_char = String::kMaxOneByteCharCode;
+ } else {
+ max_char = String::kMaxUtf16CodeUnit;
+ }
+ return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
+}
+
+
+// Finds the fixed match length of a sequence of nodes that goes from
+// this alternative and back to this choice node. If there are variable
+// length nodes or other complications in the way then return a sentinel
+// value indicating that a greedy loop cannot be constructed.
+int ChoiceNode::GreedyLoopTextLengthForAlternative(
+ GuardedAlternative* alternative) {
+ int length = 0;
+ RegExpNode* node = alternative->node();
+ // Later we will generate code for all these text nodes using recursion
+ // so we have to limit the max number.
+ int recursion_depth = 0;
+ while (node != this) {
+ if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
+ return kNodeIsTooComplexForGreedyLoops;
+ }
+ int node_length = node->GreedyLoopTextLength();
+ if (node_length == kNodeIsTooComplexForGreedyLoops) {
+ return kNodeIsTooComplexForGreedyLoops;
+ }
+ length += node_length;
+ SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
+ node = seq_node->on_success();
+ }
+ return length;
+}
+
+
+void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
+ DCHECK_NULL(loop_node_);
+ AddAlternative(alt);
+ loop_node_ = alt.node();
+}
+
+
+void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
+ DCHECK_NULL(continue_node_);
+ AddAlternative(alt);
+ continue_node_ = alt.node();
+}
+
+
+void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ if (trace->stop_node() == this) {
+ // Back edge of greedy optimized loop node graph.
+ int text_length =
+ GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
+ DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
+ // Update the counter-based backtracking info on the stack. This is an
+ // optimization for greedy loops (see below).
+ DCHECK(trace->cp_offset() == text_length);
+ macro_assembler->AdvanceCurrentPosition(text_length);
+ macro_assembler->GoTo(trace->loop_label());
+ return;
+ }
+ DCHECK_NULL(trace->stop_node());
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ ChoiceNode::Emit(compiler, trace);
+}
+
+
+int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
+ int eats_at_least) {
+ int preload_characters = Min(4, eats_at_least);
+ if (compiler->macro_assembler()->CanReadUnaligned()) {
+ bool one_byte = compiler->one_byte();
+ if (one_byte) {
+ if (preload_characters > 4) preload_characters = 4;
+ // We can't preload 3 characters because there is no machine instruction
+ // to do that. We can't just load 4 because we could be reading
+ // beyond the end of the string, which could cause a memory fault.
+ if (preload_characters == 3) preload_characters = 2;
+ } else {
+ if (preload_characters > 2) preload_characters = 2;
+ }
+ } else {
+ if (preload_characters > 1) preload_characters = 1;
+ }
+ return preload_characters;
+}
+
+
+// This class is used when generating the alternatives in a choice node. It
+// records the way the alternative is being code generated.
+class AlternativeGeneration: public Malloced {
+ public:
+ AlternativeGeneration()
+ : possible_success(),
+ expects_preload(false),
+ after(),
+ quick_check_details() { }
+ Label possible_success;
+ bool expects_preload;
+ Label after;
+ QuickCheckDetails quick_check_details;
+};
+
+
+// Creates a list of AlternativeGenerations. If the list has a reasonable
+// size then it is on the stack, otherwise the excess is on the heap.
+class AlternativeGenerationList {
+ public:
+ AlternativeGenerationList(int count, Zone* zone)
+ : alt_gens_(count, zone) {
+ for (int i = 0; i < count && i < kAFew; i++) {
+ alt_gens_.Add(a_few_alt_gens_ + i, zone);
+ }
+ for (int i = kAFew; i < count; i++) {
+ alt_gens_.Add(new AlternativeGeneration(), zone);
+ }
+ }
+ ~AlternativeGenerationList() {
+ for (int i = kAFew; i < alt_gens_.length(); i++) {
+ delete alt_gens_[i];
+ alt_gens_[i] = NULL;
+ }
+ }
+
+ AlternativeGeneration* at(int i) {
+ return alt_gens_[i];
+ }
+
+ private:
+ static const int kAFew = 10;
+ ZoneList<AlternativeGeneration*> alt_gens_;
+ AlternativeGeneration a_few_alt_gens_[kAFew];
+};
+
+
+// The '2' variant is has inclusive from and exclusive to.
+// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
+// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
+static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
+ 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
+ 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
+ 0xFEFF, 0xFF00, 0x10000 };
+static const int kSpaceRangeCount = arraysize(kSpaceRanges);
+
+static const int kWordRanges[] = {
+ '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
+static const int kWordRangeCount = arraysize(kWordRanges);
+static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
+static const int kDigitRangeCount = arraysize(kDigitRanges);
+static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
+static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
+static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
+ 0x2028, 0x202A, 0x10000 };
+static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
+
+
+void BoyerMoorePositionInfo::Set(int character) {
+ SetInterval(Interval(character, character));
+}
+
+
+void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
+ s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
+ w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
+ d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
+ surrogate_ =
+ AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
+ if (interval.to() - interval.from() >= kMapSize - 1) {
+ if (map_count_ != kMapSize) {
+ map_count_ = kMapSize;
+ for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
+ }
+ return;
+ }
+ for (int i = interval.from(); i <= interval.to(); i++) {
+ int mod_character = (i & kMask);
+ if (!map_->at(mod_character)) {
+ map_count_++;
+ map_->at(mod_character) = true;
+ }
+ if (map_count_ == kMapSize) return;
+ }
+}
+
+
+void BoyerMoorePositionInfo::SetAll() {
+ s_ = w_ = d_ = kLatticeUnknown;
+ if (map_count_ != kMapSize) {
+ map_count_ = kMapSize;
+ for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
+ }
+}
+
+
+BoyerMooreLookahead::BoyerMooreLookahead(
+ int length, RegExpCompiler* compiler, Zone* zone)
+ : length_(length),
+ compiler_(compiler) {
+ if (compiler->one_byte()) {
+ max_char_ = String::kMaxOneByteCharCode;
+ } else {
+ max_char_ = String::kMaxUtf16CodeUnit;
+ }
+ bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
+ for (int i = 0; i < length; i++) {
+ bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
+ }
+}
+
+
+// Find the longest range of lookahead that has the fewest number of different
+// characters that can occur at a given position. Since we are optimizing two
+// different parameters at once this is a tradeoff.
+bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
+ int biggest_points = 0;
+ // If more than 32 characters out of 128 can occur it is unlikely that we can
+ // be lucky enough to step forwards much of the time.
+ const int kMaxMax = 32;
+ for (int max_number_of_chars = 4;
+ max_number_of_chars < kMaxMax;
+ max_number_of_chars *= 2) {
+ biggest_points =
+ FindBestInterval(max_number_of_chars, biggest_points, from, to);
+ }
+ if (biggest_points == 0) return false;
+ return true;
+}
+
+
+// Find the highest-points range between 0 and length_ where the character
+// information is not too vague. 'Too vague' means that there are more than
+// max_number_of_chars that can occur at this position. Calculates the number
+// of points as the product of width-of-the-range and
+// probability-of-finding-one-of-the-characters, where the probability is
+// calculated using the frequency distribution of the sample subject string.
+int BoyerMooreLookahead::FindBestInterval(
+ int max_number_of_chars, int old_biggest_points, int* from, int* to) {
+ int biggest_points = old_biggest_points;
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ for (int i = 0; i < length_; ) {
+ while (i < length_ && Count(i) > max_number_of_chars) i++;
+ if (i == length_) break;
+ int remembered_from = i;
+ bool union_map[kSize];
+ for (int j = 0; j < kSize; j++) union_map[j] = false;
+ while (i < length_ && Count(i) <= max_number_of_chars) {
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
+ i++;
+ }
+ int frequency = 0;
+ for (int j = 0; j < kSize; j++) {
+ if (union_map[j]) {
+ // Add 1 to the frequency to give a small per-character boost for
+ // the cases where our sampling is not good enough and many
+ // characters have a frequency of zero. This means the frequency
+ // can theoretically be up to 2*kSize though we treat it mostly as
+ // a fraction of kSize.
+ frequency += compiler_->frequency_collator()->Frequency(j) + 1;
+ }
+ }
+ // We use the probability of skipping times the distance we are skipping to
+ // judge the effectiveness of this. Actually we have a cut-off: By
+ // dividing by 2 we switch off the skipping if the probability of skipping
+ // is less than 50%. This is because the multibyte mask-and-compare
+ // skipping in quickcheck is more likely to do well on this case.
+ bool in_quickcheck_range =
+ ((i - remembered_from < 4) ||
+ (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
+ // Called 'probability' but it is only a rough estimate and can actually
+ // be outside the 0-kSize range.
+ int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
+ int points = (i - remembered_from) * probability;
+ if (points > biggest_points) {
+ *from = remembered_from;
+ *to = i - 1;
+ biggest_points = points;
+ }
+ }
+ return biggest_points;
+}
+
+
+// Take all the characters that will not prevent a successful match if they
+// occur in the subject string in the range between min_lookahead and
+// max_lookahead (inclusive) measured from the current position. If the
+// character at max_lookahead offset is not one of these characters, then we
+// can safely skip forwards by the number of characters in the range.
+int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
+ int max_lookahead,
+ Handle<ByteArray> boolean_skip_table) {
+ const int kSize = RegExpMacroAssembler::kTableSize;
+
+ const int kSkipArrayEntry = 0;
+ const int kDontSkipArrayEntry = 1;
+
+ for (int i = 0; i < kSize; i++) {
+ boolean_skip_table->set(i, kSkipArrayEntry);
+ }
+ int skip = max_lookahead + 1 - min_lookahead;
+
+ for (int i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ for (int j = 0; j < kSize; j++) {
+ if (map->at(j)) {
+ boolean_skip_table->set(j, kDontSkipArrayEntry);
+ }
+ }
+ }
+
+ return skip;
+}
+
+
+// See comment above on the implementation of GetSkipTable.
+void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
+ const int kSize = RegExpMacroAssembler::kTableSize;
+
+ int min_lookahead = 0;
+ int max_lookahead = 0;
+
+ if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
+
+ bool found_single_character = false;
+ int single_character = 0;
+ for (int i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ if (map->map_count() > 1 ||
+ (found_single_character && map->map_count() != 0)) {
+ found_single_character = false;
+ break;
+ }
+ for (int j = 0; j < kSize; j++) {
+ if (map->at(j)) {
+ found_single_character = true;
+ single_character = j;
+ break;
+ }
+ }
+ }
+
+ int lookahead_width = max_lookahead + 1 - min_lookahead;
+
+ if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
+ // The mask-compare can probably handle this better.
+ return;
+ }
+
+ if (found_single_character) {
+ Label cont, again;
+ masm->Bind(&again);
+ masm->LoadCurrentCharacter(max_lookahead, &cont, true);
+ if (max_char_ > kSize) {
+ masm->CheckCharacterAfterAnd(single_character,
+ RegExpMacroAssembler::kTableMask,
+ &cont);
+ } else {
+ masm->CheckCharacter(single_character, &cont);
+ }
+ masm->AdvanceCurrentPosition(lookahead_width);
+ masm->GoTo(&again);
+ masm->Bind(&cont);
+ return;
+ }
+
+ Factory* factory = masm->isolate()->factory();
+ Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
+ int skip_distance = GetSkipTable(
+ min_lookahead, max_lookahead, boolean_skip_table);
+ DCHECK(skip_distance != 0);
+
+ Label cont, again;
+ masm->Bind(&again);
+ masm->LoadCurrentCharacter(max_lookahead, &cont, true);
+ masm->CheckBitInTable(boolean_skip_table, &cont);
+ masm->AdvanceCurrentPosition(skip_distance);
+ masm->GoTo(&again);
+ masm->Bind(&cont);
+}
+
+
+/* Code generation for choice nodes.
+ *
+ * We generate quick checks that do a mask and compare to eliminate a
+ * choice. If the quick check succeeds then it jumps to the continuation to
+ * do slow checks and check subsequent nodes. If it fails (the common case)
+ * it falls through to the next choice.
+ *
+ * Here is the desired flow graph. Nodes directly below each other imply
+ * fallthrough. Alternatives 1 and 2 have quick checks. Alternative
+ * 3 doesn't have a quick check so we have to call the slow check.
+ * Nodes are marked Qn for quick checks and Sn for slow checks. The entire
+ * regexp continuation is generated directly after the Sn node, up to the
+ * next GoTo if we decide to reuse some already generated code. Some
+ * nodes expect preload_characters to be preloaded into the current
+ * character register. R nodes do this preloading. Vertices are marked
+ * F for failures and S for success (possible success in the case of quick
+ * nodes). L, V, < and > are used as arrow heads.
+ *
+ * ----------> R
+ * |
+ * V
+ * Q1 -----> S1
+ * | S /
+ * F| /
+ * | F/
+ * | /
+ * | R
+ * | /
+ * V L
+ * Q2 -----> S2
+ * | S /
+ * F| /
+ * | F/
+ * | /
+ * | R
+ * | /
+ * V L
+ * S3
+ * |
+ * F|
+ * |
+ * R
+ * |
+ * backtrack V
+ * <----------Q4
+ * \ F |
+ * \ |S
+ * \ F V
+ * \-----S4
+ *
+ * For greedy loops we push the current position, then generate the code that
+ * eats the input specially in EmitGreedyLoop. The other choice (the
+ * continuation) is generated by the normal code in EmitChoices, and steps back
+ * in the input to the starting position when it fails to match. The loop code
+ * looks like this (U is the unwind code that steps back in the greedy loop).
+ *
+ * _____
+ * / \
+ * V |
+ * ----------> S1 |
+ * /| |
+ * / |S |
+ * F/ \_____/
+ * /
+ * |<-----
+ * | \
+ * V |S
+ * Q2 ---> U----->backtrack
+ * | F /
+ * S| /
+ * V F /
+ * S2--/
+ */
+
+GreedyLoopState::GreedyLoopState(bool not_at_start) {
+ counter_backtrack_trace_.set_backtrack(&label_);
+ if (not_at_start) counter_backtrack_trace_.set_at_start(false);
+}
+
+
+void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
+#ifdef DEBUG
+ int choice_count = alternatives_->length();
+ for (int i = 0; i < choice_count - 1; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ for (int j = 0; j < guard_count; j++) {
+ DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
+ }
+ }
+#endif
+}
+
+
+void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
+ Trace* current_trace,
+ PreloadState* state) {
+ if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
+ // Save some time by looking at most one machine word ahead.
+ state->eats_at_least_ =
+ EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
+ current_trace->at_start() == Trace::FALSE_VALUE);
+ }
+ state->preload_characters_ =
+ CalculatePreloadCharacters(compiler, state->eats_at_least_);
+
+ state->preload_is_current_ =
+ (current_trace->characters_preloaded() == state->preload_characters_);
+ state->preload_has_checked_bounds_ = state->preload_is_current_;
+}
+
+
+void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ int choice_count = alternatives_->length();
+
+ AssertGuardsMentionRegisters(trace);
+
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ DCHECK(limit_result == CONTINUE);
+
+ // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
+ // other choice nodes we only flush if we are out of code size budget.
+ if (trace->flush_budget() == 0 && trace->actions() != NULL) {
+ trace->Flush(compiler, this);
+ return;
+ }
+
+ RecursionCheck rc(compiler);
+
+ PreloadState preload;
+ preload.init();
+ GreedyLoopState greedy_loop_state(not_at_start());
+
+ int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
+ AlternativeGenerationList alt_gens(choice_count, zone());
+
+ if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
+ trace = EmitGreedyLoop(compiler,
+ trace,
+ &alt_gens,
+ &preload,
+ &greedy_loop_state,
+ text_length);
+ } else {
+ // TODO(erikcorry): Delete this. We don't need this label, but it makes us
+ // match the traces produced pre-cleanup.
+ Label second_choice;
+ compiler->macro_assembler()->Bind(&second_choice);
+
+ preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
+
+ EmitChoices(compiler,
+ &alt_gens,
+ 0,
+ trace,
+ &preload);
+ }
+
+ // At this point we need to generate slow checks for the alternatives where
+ // the quick check was inlined. We can recognize these because the associated
+ // label was bound.
+ int new_flush_budget = trace->flush_budget() / choice_count;
+ for (int i = 0; i < choice_count; i++) {
+ AlternativeGeneration* alt_gen = alt_gens.at(i);
+ Trace new_trace(*trace);
+ // If there are actions to be flushed we have to limit how many times
+ // they are flushed. Take the budget of the parent trace and distribute
+ // it fairly amongst the children.
+ if (new_trace.actions() != NULL) {
+ new_trace.set_flush_budget(new_flush_budget);
+ }
+ bool next_expects_preload =
+ i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
+ EmitOutOfLineContinuation(compiler,
+ &new_trace,
+ alternatives_->at(i),
+ alt_gen,
+ preload.preload_characters_,
+ next_expects_preload);
+ }
+}
+
+
+Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
+ Trace* trace,
+ AlternativeGenerationList* alt_gens,
+ PreloadState* preload,
+ GreedyLoopState* greedy_loop_state,
+ int text_length) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ // Here we have special handling for greedy loops containing only text nodes
+ // and other simple nodes. These are handled by pushing the current
+ // position on the stack and then incrementing the current position each
+ // time around the switch. On backtrack we decrement the current position
+ // and check it against the pushed value. This avoids pushing backtrack
+ // information for each iteration of the loop, which could take up a lot of
+ // space.
+ DCHECK(trace->stop_node() == NULL);
+ macro_assembler->PushCurrentPosition();
+ Label greedy_match_failed;
+ Trace greedy_match_trace;
+ if (not_at_start()) greedy_match_trace.set_at_start(false);
+ greedy_match_trace.set_backtrack(&greedy_match_failed);
+ Label loop_label;
+ macro_assembler->Bind(&loop_label);
+ greedy_match_trace.set_stop_node(this);
+ greedy_match_trace.set_loop_label(&loop_label);
+ alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
+ macro_assembler->Bind(&greedy_match_failed);
+
+ Label second_choice; // For use in greedy matches.
+ macro_assembler->Bind(&second_choice);
+
+ Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
+
+ EmitChoices(compiler,
+ alt_gens,
+ 1,
+ new_trace,
+ preload);
+
+ macro_assembler->Bind(greedy_loop_state->label());
+ // If we have unwound to the bottom then backtrack.
+ macro_assembler->CheckGreedyLoop(trace->backtrack());
+ // Otherwise try the second priority at an earlier position.
+ macro_assembler->AdvanceCurrentPosition(-text_length);
+ macro_assembler->GoTo(&second_choice);
+ return new_trace;
+}
+
+int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
+ Trace* trace) {
+ int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
+ if (alternatives_->length() != 2) return eats_at_least;
+
+ GuardedAlternative alt1 = alternatives_->at(1);
+ if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
+ return eats_at_least;
+ }
+ RegExpNode* eats_anything_node = alt1.node();
+ if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
+ return eats_at_least;
+ }
+
+ // Really we should be creating a new trace when we execute this function,
+ // but there is no need, because the code it generates cannot backtrack, and
+ // we always arrive here with a trivial trace (since it's the entry to a
+ // loop. That also implies that there are no preloaded characters, which is
+ // good, because it means we won't be violating any assumptions by
+ // overwriting those characters with new load instructions.
+ DCHECK(trace->is_trivial());
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ Isolate* isolate = macro_assembler->isolate();
+ // At this point we know that we are at a non-greedy loop that will eat
+ // any character one at a time. Any non-anchored regexp has such a
+ // loop prepended to it in order to find where it starts. We look for
+ // a pattern of the form ...abc... where we can look 6 characters ahead
+ // and step forwards 3 if the character is not one of abc. Abc need
+ // not be atoms, they can be any reasonably limited character class or
+ // small alternation.
+ BoyerMooreLookahead* bm = bm_info(false);
+ if (bm == NULL) {
+ eats_at_least = Min(kMaxLookaheadForBoyerMoore,
+ EatsAtLeast(kMaxLookaheadForBoyerMoore,
+ kRecursionBudget,
+ false));
+ if (eats_at_least >= 1) {
+ bm = new(zone()) BoyerMooreLookahead(eats_at_least,
+ compiler,
+ zone());
+ GuardedAlternative alt0 = alternatives_->at(0);
+ alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false);
+ }
+ }
+ if (bm != NULL) {
+ bm->EmitSkipInstructions(macro_assembler);
+ }
+ return eats_at_least;
+}
+
+
+void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
+ AlternativeGenerationList* alt_gens,
+ int first_choice,
+ Trace* trace,
+ PreloadState* preload) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ SetUpPreLoad(compiler, trace, preload);
+
+ // For now we just call all choices one after the other. The idea ultimately
+ // is to use the Dispatch table to try only the relevant ones.
+ int choice_count = alternatives_->length();
+
+ int new_flush_budget = trace->flush_budget() / choice_count;
+
+ for (int i = first_choice; i < choice_count; i++) {
+ bool is_last = i == choice_count - 1;
+ bool fall_through_on_failure = !is_last;
+ GuardedAlternative alternative = alternatives_->at(i);
+ AlternativeGeneration* alt_gen = alt_gens->at(i);
+ alt_gen->quick_check_details.set_characters(preload->preload_characters_);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ Trace new_trace(*trace);
+ new_trace.set_characters_preloaded(preload->preload_is_current_ ?
+ preload->preload_characters_ :
+ 0);
+ if (preload->preload_has_checked_bounds_) {
+ new_trace.set_bound_checked_up_to(preload->preload_characters_);
+ }
+ new_trace.quick_check_performed()->Clear();
+ if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
+ if (!is_last) {
+ new_trace.set_backtrack(&alt_gen->after);
+ }
+ alt_gen->expects_preload = preload->preload_is_current_;
+ bool generate_full_check_inline = false;
+ if (compiler->optimize() &&
+ try_to_emit_quick_check_for_alternative(i == 0) &&
+ alternative.node()->EmitQuickCheck(
+ compiler, trace, &new_trace, preload->preload_has_checked_bounds_,
+ &alt_gen->possible_success, &alt_gen->quick_check_details,
+ fall_through_on_failure)) {
+ // Quick check was generated for this choice.
+ preload->preload_is_current_ = true;
+ preload->preload_has_checked_bounds_ = true;
+ // If we generated the quick check to fall through on possible success,
+ // we now need to generate the full check inline.
+ if (!fall_through_on_failure) {
+ macro_assembler->Bind(&alt_gen->possible_success);
+ new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+ new_trace.set_characters_preloaded(preload->preload_characters_);
+ new_trace.set_bound_checked_up_to(preload->preload_characters_);
+ generate_full_check_inline = true;
+ }
+ } else if (alt_gen->quick_check_details.cannot_match()) {
+ if (!fall_through_on_failure) {
+ macro_assembler->GoTo(trace->backtrack());
+ }
+ continue;
+ } else {
+ // No quick check was generated. Put the full code here.
+ // If this is not the first choice then there could be slow checks from
+ // previous cases that go here when they fail. There's no reason to
+ // insist that they preload characters since the slow check we are about
+ // to generate probably can't use it.
+ if (i != first_choice) {
+ alt_gen->expects_preload = false;
+ new_trace.InvalidateCurrentCharacter();
+ }
+ generate_full_check_inline = true;
+ }
+ if (generate_full_check_inline) {
+ if (new_trace.actions() != NULL) {
+ new_trace.set_flush_budget(new_flush_budget);
+ }
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &new_trace);
+ }
+ alternative.node()->Emit(compiler, &new_trace);
+ preload->preload_is_current_ = false;
+ }
+ macro_assembler->Bind(&alt_gen->after);
+ }
+}
+
+
+void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
+ Trace* trace,
+ GuardedAlternative alternative,
+ AlternativeGeneration* alt_gen,
+ int preload_characters,
+ bool next_expects_preload) {
+ if (!alt_gen->possible_success.is_linked()) return;
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ macro_assembler->Bind(&alt_gen->possible_success);
+ Trace out_of_line_trace(*trace);
+ out_of_line_trace.set_characters_preloaded(preload_characters);
+ out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+ if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ if (next_expects_preload) {
+ Label reload_current_char;
+ out_of_line_trace.set_backtrack(&reload_current_char);
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+ }
+ alternative.node()->Emit(compiler, &out_of_line_trace);
+ macro_assembler->Bind(&reload_current_char);
+ // Reload the current character, since the next quick check expects that.
+ // We don't need to check bounds here because we only get into this
+ // code through a quick check which already did the checked load.
+ macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
+ NULL,
+ false,
+ preload_characters);
+ macro_assembler->GoTo(&(alt_gen->after));
+ } else {
+ out_of_line_trace.set_backtrack(&(alt_gen->after));
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+ }
+ alternative.node()->Emit(compiler, &out_of_line_trace);
+ }
+}
+
+
+void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ DCHECK(limit_result == CONTINUE);
+
+ RecursionCheck rc(compiler);
+
+ switch (action_type_) {
+ case STORE_POSITION: {
+ Trace::DeferredCapture
+ new_capture(data_.u_position_register.reg,
+ data_.u_position_register.is_capture,
+ trace);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_capture);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case INCREMENT_REGISTER: {
+ Trace::DeferredIncrementRegister
+ new_increment(data_.u_increment_register.reg);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_increment);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case SET_REGISTER: {
+ Trace::DeferredSetRegister
+ new_set(data_.u_store_register.reg, data_.u_store_register.value);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_set);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case CLEAR_CAPTURES: {
+ Trace::DeferredClearCaptures
+ new_capture(Interval(data_.u_clear_captures.range_from,
+ data_.u_clear_captures.range_to));
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_capture);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case BEGIN_SUBMATCH:
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ } else {
+ assembler->WriteCurrentPositionToRegister(
+ data_.u_submatch.current_position_register, 0);
+ assembler->WriteStackPointerToRegister(
+ data_.u_submatch.stack_pointer_register);
+ on_success()->Emit(compiler, trace);
+ }
+ break;
+ case EMPTY_MATCH_CHECK: {
+ int start_pos_reg = data_.u_empty_match_check.start_register;
+ int stored_pos = 0;
+ int rep_reg = data_.u_empty_match_check.repetition_register;
+ bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
+ bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
+ if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
+ // If we know we haven't advanced and there is no minimum we
+ // can just backtrack immediately.
+ assembler->GoTo(trace->backtrack());
+ } else if (know_dist && stored_pos < trace->cp_offset()) {
+ // If we know we've advanced we can generate the continuation
+ // immediately.
+ on_success()->Emit(compiler, trace);
+ } else if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ } else {
+ Label skip_empty_check;
+ // If we have a minimum number of repetitions we check the current
+ // number first and skip the empty check if it's not enough.
+ if (has_minimum) {
+ int limit = data_.u_empty_match_check.repetition_limit;
+ assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
+ }
+ // If the match is empty we bail out, otherwise we fall through
+ // to the on-success continuation.
+ assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
+ trace->backtrack());
+ assembler->Bind(&skip_empty_check);
+ on_success()->Emit(compiler, trace);
+ }
+ break;
+ }
+ case POSITIVE_SUBMATCH_SUCCESS: {
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ assembler->ReadCurrentPositionFromRegister(
+ data_.u_submatch.current_position_register);
+ assembler->ReadStackPointerFromRegister(
+ data_.u_submatch.stack_pointer_register);
+ int clear_register_count = data_.u_submatch.clear_register_count;
+ if (clear_register_count == 0) {
+ on_success()->Emit(compiler, trace);
+ return;
+ }
+ int clear_registers_from = data_.u_submatch.clear_register_from;
+ Label clear_registers_backtrack;
+ Trace new_trace = *trace;
+ new_trace.set_backtrack(&clear_registers_backtrack);
+ on_success()->Emit(compiler, &new_trace);
+
+ assembler->Bind(&clear_registers_backtrack);
+ int clear_registers_to = clear_registers_from + clear_register_count - 1;
+ assembler->ClearRegisters(clear_registers_from, clear_registers_to);
+
+ DCHECK(trace->backtrack() == NULL);
+ assembler->Backtrack();
+ return;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ DCHECK(limit_result == CONTINUE);
+
+ RecursionCheck rc(compiler);
+
+ DCHECK_EQ(start_reg_ + 1, end_reg_);
+ if (compiler->ignore_case()) {
+ assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
+ trace->backtrack());
+ } else {
+ assembler->CheckNotBackReference(start_reg_, trace->backtrack());
+ }
+ on_success()->Emit(compiler, trace);
+}
+
+
+// -------------------------------------------------------------------
+// Dot/dotty output
+
+
+#ifdef DEBUG
+
+
+class DotPrinter: public NodeVisitor {
+ public:
+ DotPrinter(std::ostream& os, bool ignore_case) // NOLINT
+ : os_(os),
+ ignore_case_(ignore_case) {}
+ void PrintNode(const char* label, RegExpNode* node);
+ void Visit(RegExpNode* node);
+ void PrintAttributes(RegExpNode* from);
+ void PrintOnFailure(RegExpNode* from, RegExpNode* to);
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+ private:
+ std::ostream& os_;
+ bool ignore_case_;
+};
+
+
+void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
+ os_ << "digraph G {\n graph [label=\"";
+ for (int i = 0; label[i]; i++) {
+ switch (label[i]) {
+ case '\\':
+ os_ << "\\\\";
+ break;
+ case '"':
+ os_ << "\"";
+ break;
+ default:
+ os_ << label[i];
+ break;
+ }
+ }
+ os_ << "\"];\n";
+ Visit(node);
+ os_ << "}" << std::endl;
+}
+
+
+void DotPrinter::Visit(RegExpNode* node) {
+ if (node->info()->visited) return;
+ node->info()->visited = true;
+ node->Accept(this);
+}
+
+
+void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
+ os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n";
+ Visit(on_failure);
+}
+
+
+class TableEntryBodyPrinter {
+ public:
+ TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice) // NOLINT
+ : os_(os),
+ choice_(choice) {}
+ void Call(uc16 from, DispatchTable::Entry entry) {
+ OutSet* out_set = entry.out_set();
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (out_set->Get(i)) {
+ os_ << " n" << choice() << ":s" << from << "o" << i << " -> n"
+ << choice()->alternatives()->at(i).node() << ";\n";
+ }
+ }
+ }
+ private:
+ ChoiceNode* choice() { return choice_; }
+ std::ostream& os_;
+ ChoiceNode* choice_;
+};
+
+
+class TableEntryHeaderPrinter {
+ public:
+ explicit TableEntryHeaderPrinter(std::ostream& os) // NOLINT
+ : first_(true),
+ os_(os) {}
+ void Call(uc16 from, DispatchTable::Entry entry) {
+ if (first_) {
+ first_ = false;
+ } else {
+ os_ << "|";
+ }
+ os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
+ OutSet* out_set = entry.out_set();
+ int priority = 0;
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (out_set->Get(i)) {
+ if (priority > 0) os_ << "|";
+ os_ << "<s" << from << "o" << i << "> " << priority;
+ priority++;
+ }
+ }
+ os_ << "}}";
+ }
+
+ private:
+ bool first_;
+ std::ostream& os_;
+};
+
+
+class AttributePrinter {
+ public:
+ explicit AttributePrinter(std::ostream& os) // NOLINT
+ : os_(os),
+ first_(true) {}
+ void PrintSeparator() {
+ if (first_) {
+ first_ = false;
+ } else {
+ os_ << "|";
+ }
+ }
+ void PrintBit(const char* name, bool value) {
+ if (!value) return;
+ PrintSeparator();
+ os_ << "{" << name << "}";
+ }
+ void PrintPositive(const char* name, int value) {
+ if (value < 0) return;
+ PrintSeparator();
+ os_ << "{" << name << "|" << value << "}";
+ }
+
+ private:
+ std::ostream& os_;
+ bool first_;
+};
+
+
+void DotPrinter::PrintAttributes(RegExpNode* that) {
+ os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
+ << "margin=0.1, fontsize=10, label=\"{";
+ AttributePrinter printer(os_);
+ NodeInfo* info = that->info();
+ printer.PrintBit("NI", info->follows_newline_interest);
+ printer.PrintBit("WI", info->follows_word_interest);
+ printer.PrintBit("SI", info->follows_start_interest);
+ Label* label = that->label();
+ if (label->is_bound())
+ printer.PrintPositive("@", label->pos());
+ os_ << "}\"];\n"
+ << " a" << that << " -> n" << that
+ << " [style=dashed, color=grey, arrowhead=none];\n";
+}
+
+
+static const bool kPrintDispatchTable = false;
+void DotPrinter::VisitChoice(ChoiceNode* that) {
+ if (kPrintDispatchTable) {
+ os_ << " n" << that << " [shape=Mrecord, label=\"";
+ TableEntryHeaderPrinter header_printer(os_);
+ that->GetTable(ignore_case_)->ForEach(&header_printer);
+ os_ << "\"]\n";
+ PrintAttributes(that);
+ TableEntryBodyPrinter body_printer(os_, that);
+ that->GetTable(ignore_case_)->ForEach(&body_printer);
+ } else {
+ os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n";
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->at(i);
+ os_ << " n" << that << " -> n" << alt.node();
+ }
+ }
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->at(i);
+ alt.node()->Accept(this);
+ }
+}
+
+
+void DotPrinter::VisitText(TextNode* that) {
+ Zone* zone = that->zone();
+ os_ << " n" << that << " [label=\"";
+ for (int i = 0; i < that->elements()->length(); i++) {
+ if (i > 0) os_ << " ";
+ TextElement elm = that->elements()->at(i);
+ switch (elm.text_type()) {
+ case TextElement::ATOM: {
+ Vector<const uc16> data = elm.atom()->data();
+ for (int i = 0; i < data.length(); i++) {
+ os_ << static_cast<char>(data[i]);
+ }
+ break;
+ }
+ case TextElement::CHAR_CLASS: {
+ RegExpCharacterClass* node = elm.char_class();
+ os_ << "[";
+ if (node->is_negated()) os_ << "^";
+ for (int j = 0; j < node->ranges(zone)->length(); j++) {
+ CharacterRange range = node->ranges(zone)->at(j);
+ os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
+ }
+ os_ << "]";
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ }
+ os_ << "\", shape=box, peripheries=2];\n";
+ PrintAttributes(that);
+ os_ << " n" << that << " -> n" << that->on_success() << ";\n";
+ Visit(that->on_success());
+}
+
+
+void DotPrinter::VisitBackReference(BackReferenceNode* that) {
+ os_ << " n" << that << " [label=\"$" << that->start_register() << "..$"
+ << that->end_register() << "\", shape=doubleoctagon];\n";
+ PrintAttributes(that);
+ os_ << " n" << that << " -> n" << that->on_success() << ";\n";
+ Visit(that->on_success());
+}
+
+
+void DotPrinter::VisitEnd(EndNode* that) {
+ os_ << " n" << that << " [style=bold, shape=point];\n";
+ PrintAttributes(that);
+}
+
+
+void DotPrinter::VisitAssertion(AssertionNode* that) {
+ os_ << " n" << that << " [";
+ switch (that->assertion_type()) {
+ case AssertionNode::AT_END:
+ os_ << "label=\"$\", shape=septagon";
+ break;
+ case AssertionNode::AT_START:
+ os_ << "label=\"^\", shape=septagon";
+ break;
+ case AssertionNode::AT_BOUNDARY:
+ os_ << "label=\"\\b\", shape=septagon";
+ break;
+ case AssertionNode::AT_NON_BOUNDARY:
+ os_ << "label=\"\\B\", shape=septagon";
+ break;
+ case AssertionNode::AFTER_NEWLINE:
+ os_ << "label=\"(?<=\\n)\", shape=septagon";
+ break;
+ }
+ os_ << "];\n";
+ PrintAttributes(that);
+ RegExpNode* successor = that->on_success();
+ os_ << " n" << that << " -> n" << successor << ";\n";
+ Visit(successor);
+}
+
+
+void DotPrinter::VisitAction(ActionNode* that) {
+ os_ << " n" << that << " [";
+ switch (that->action_type_) {
+ case ActionNode::SET_REGISTER:
+ os_ << "label=\"$" << that->data_.u_store_register.reg
+ << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
+ break;
+ case ActionNode::INCREMENT_REGISTER:
+ os_ << "label=\"$" << that->data_.u_increment_register.reg
+ << "++\", shape=octagon";
+ break;
+ case ActionNode::STORE_POSITION:
+ os_ << "label=\"$" << that->data_.u_position_register.reg
+ << ":=$pos\", shape=octagon";
+ break;
+ case ActionNode::BEGIN_SUBMATCH:
+ os_ << "label=\"$" << that->data_.u_submatch.current_position_register
+ << ":=$pos,begin\", shape=septagon";
+ break;
+ case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
+ os_ << "label=\"escape\", shape=septagon";
+ break;
+ case ActionNode::EMPTY_MATCH_CHECK:
+ os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
+ << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
+ << "<" << that->data_.u_empty_match_check.repetition_limit
+ << "?\", shape=septagon";
+ break;
+ case ActionNode::CLEAR_CAPTURES: {
+ os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
+ << " to $" << that->data_.u_clear_captures.range_to
+ << "\", shape=septagon";
+ break;
+ }
+ }
+ os_ << "];\n";
+ PrintAttributes(that);
+ RegExpNode* successor = that->on_success();
+ os_ << " n" << that << " -> n" << successor << ";\n";
+ Visit(successor);
+}
+
+
+class DispatchTableDumper {
+ public:
+ explicit DispatchTableDumper(std::ostream& os) : os_(os) {}
+ void Call(uc16 key, DispatchTable::Entry entry);
+ private:
+ std::ostream& os_;
+};
+
+
+void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
+ os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
+ OutSet* set = entry.out_set();
+ bool first = true;
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (set->Get(i)) {
+ if (first) {
+ first = false;
+ } else {
+ os_ << ", ";
+ }
+ os_ << i;
+ }
+ }
+ os_ << "}\n";
+}
+
+
+void DispatchTable::Dump() {
+ OFStream os(stderr);
+ DispatchTableDumper dumper(os);
+ tree()->ForEach(&dumper);
+}
+
+
+void RegExpEngine::DotPrint(const char* label,
+ RegExpNode* node,
+ bool ignore_case) {
+ OFStream os(stdout);
+ DotPrinter printer(os, ignore_case);
+ printer.PrintNode(label, node);
+}
+
+
+#endif // DEBUG
+
+
+// -------------------------------------------------------------------
+// Tree to graph conversion
+
+RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<TextElement>* elms =
+ new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
+ elms->Add(TextElement::Atom(this), compiler->zone());
+ return new(compiler->zone()) TextNode(elms, on_success);
+}
+
+
+RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new(compiler->zone()) TextNode(elements(), on_success);
+}
+
+
+static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
+ const int* special_class,
+ int length) {
+ length--; // Remove final 0x10000.
+ DCHECK(special_class[length] == 0x10000);
+ DCHECK(ranges->length() != 0);
+ DCHECK(length != 0);
+ DCHECK(special_class[0] != 0);
+ if (ranges->length() != (length >> 1) + 1) {
+ return false;
+ }
+ CharacterRange range = ranges->at(0);
+ if (range.from() != 0) {
+ return false;
+ }
+ for (int i = 0; i < length; i += 2) {
+ if (special_class[i] != (range.to() + 1)) {
+ return false;
+ }
+ range = ranges->at((i >> 1) + 1);
+ if (special_class[i+1] != range.from()) {
+ return false;
+ }
+ }
+ if (range.to() != 0xffff) {
+ return false;
+ }
+ return true;
+}
+
+
+static bool CompareRanges(ZoneList<CharacterRange>* ranges,
+ const int* special_class,
+ int length) {
+ length--; // Remove final 0x10000.
+ DCHECK(special_class[length] == 0x10000);
+ if (ranges->length() * 2 != length) {
+ return false;
+ }
+ for (int i = 0; i < length; i += 2) {
+ CharacterRange range = ranges->at(i >> 1);
+ if (range.from() != special_class[i] ||
+ range.to() != special_class[i + 1] - 1) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+bool RegExpCharacterClass::is_standard(Zone* zone) {
+ // TODO(lrn): Remove need for this function, by not throwing away information
+ // along the way.
+ if (is_negated_) {
+ return false;
+ }
+ if (set_.is_standard()) {
+ return true;
+ }
+ if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
+ set_.set_standard_set_type('s');
+ return true;
+ }
+ if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
+ set_.set_standard_set_type('S');
+ return true;
+ }
+ if (CompareInverseRanges(set_.ranges(zone),
+ kLineTerminatorRanges,
+ kLineTerminatorRangeCount)) {
+ set_.set_standard_set_type('.');
+ return true;
+ }
+ if (CompareRanges(set_.ranges(zone),
+ kLineTerminatorRanges,
+ kLineTerminatorRangeCount)) {
+ set_.set_standard_set_type('n');
+ return true;
+ }
+ if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
+ set_.set_standard_set_type('w');
+ return true;
+ }
+ if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
+ set_.set_standard_set_type('W');
+ return true;
+ }
+ return false;
+}
+
+
+RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new(compiler->zone()) TextNode(this, on_success);
+}
+
+
+int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
+ RegExpAtom* atom1 = (*a)->AsAtom();
+ RegExpAtom* atom2 = (*b)->AsAtom();
+ uc16 character1 = atom1->data().at(0);
+ uc16 character2 = atom2->data().at(0);
+ if (character1 < character2) return -1;
+ if (character1 > character2) return 1;
+ return 0;
+}
+
+
+static unibrow::uchar Canonical(
+ unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
+ unibrow::uchar c) {
+ unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth];
+ int length = canonicalize->get(c, '\0', chars);
+ DCHECK_LE(length, 1);
+ unibrow::uchar canonical = c;
+ if (length == 1) canonical = chars[0];
+ return canonical;
+}
+
+
+int CompareFirstCharCaseIndependent(
+ unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize,
+ RegExpTree* const* a, RegExpTree* const* b) {
+ RegExpAtom* atom1 = (*a)->AsAtom();
+ RegExpAtom* atom2 = (*b)->AsAtom();
+ unibrow::uchar character1 = atom1->data().at(0);
+ unibrow::uchar character2 = atom2->data().at(0);
+ if (character1 == character2) return 0;
+ if (character1 >= 'a' || character2 >= 'a') {
+ character1 = Canonical(canonicalize, character1);
+ character2 = Canonical(canonicalize, character2);
+ }
+ return static_cast<int>(character1) - static_cast<int>(character2);
+}
+
+
+// We can stable sort runs of atoms, since the order does not matter if they
+// start with different characters.
+// Returns true if any consecutive atoms were found.
+bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) {
+ ZoneList<RegExpTree*>* alternatives = this->alternatives();
+ int length = alternatives->length();
+ bool found_consecutive_atoms = false;
+ for (int i = 0; i < length; i++) {
+ while (i < length) {
+ RegExpTree* alternative = alternatives->at(i);
+ if (alternative->IsAtom()) break;
+ i++;
+ }
+ // i is length or it is the index of an atom.
+ if (i == length) break;
+ int first_atom = i;
+ i++;
+ while (i < length) {
+ RegExpTree* alternative = alternatives->at(i);
+ if (!alternative->IsAtom()) break;
+ i++;
+ }
+ // Sort atoms to get ones with common prefixes together.
+ // This step is more tricky if we are in a case-independent regexp,
+ // because it would change /is|I/ to /I|is/, and order matters when
+ // the regexp parts don't match only disjoint starting points. To fix
+ // this we have a version of CompareFirstChar that uses case-
+ // independent character classes for comparison.
+ DCHECK_LT(first_atom, alternatives->length());
+ DCHECK_LE(i, alternatives->length());
+ DCHECK_LE(first_atom, i);
+ if (compiler->ignore_case()) {
+ unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
+ compiler->isolate()->regexp_macro_assembler_canonicalize();
+ auto compare_closure =
+ [canonicalize](RegExpTree* const* a, RegExpTree* const* b) {
+ return CompareFirstCharCaseIndependent(canonicalize, a, b);
+ };
+ alternatives->StableSort(compare_closure, first_atom, i - first_atom);
+ } else {
+ alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom);
+ }
+ if (i - first_atom > 1) found_consecutive_atoms = true;
+ }
+ return found_consecutive_atoms;
+}
+
+
+// Optimizes ab|ac|az to a(?:b|c|d).
+void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) {
+ Zone* zone = compiler->zone();
+ ZoneList<RegExpTree*>* alternatives = this->alternatives();
+ int length = alternatives->length();
+
+ int write_posn = 0;
+ int i = 0;
+ while (i < length) {
+ RegExpTree* alternative = alternatives->at(i);
+ if (!alternative->IsAtom()) {
+ alternatives->at(write_posn++) = alternatives->at(i);
+ i++;
+ continue;
+ }
+ RegExpAtom* atom = alternative->AsAtom();
+ unibrow::uchar common_prefix = atom->data().at(0);
+ int first_with_prefix = i;
+ int prefix_length = atom->length();
+ i++;
+ while (i < length) {
+ alternative = alternatives->at(i);
+ if (!alternative->IsAtom()) break;
+ atom = alternative->AsAtom();
+ unibrow::uchar new_prefix = atom->data().at(0);
+ if (new_prefix != common_prefix) {
+ if (!compiler->ignore_case()) break;
+ unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
+ compiler->isolate()->regexp_macro_assembler_canonicalize();
+ new_prefix = Canonical(canonicalize, new_prefix);
+ common_prefix = Canonical(canonicalize, common_prefix);
+ if (new_prefix != common_prefix) break;
+ }
+ prefix_length = Min(prefix_length, atom->length());
+ i++;
+ }
+ if (i > first_with_prefix + 2) {
+ // Found worthwhile run of alternatives with common prefix of at least one
+ // character. The sorting function above did not sort on more than one
+ // character for reasons of correctness, but there may still be a longer
+ // common prefix if the terms were similar or presorted in the input.
+ // Find out how long the common prefix is.
+ int run_length = i - first_with_prefix;
+ atom = alternatives->at(first_with_prefix)->AsAtom();
+ for (int j = 1; j < run_length && prefix_length > 1; j++) {
+ RegExpAtom* old_atom =
+ alternatives->at(j + first_with_prefix)->AsAtom();
+ for (int k = 1; k < prefix_length; k++) {
+ if (atom->data().at(k) != old_atom->data().at(k)) {
+ prefix_length = k;
+ break;
+ }
+ }
+ }
+ RegExpAtom* prefix =
+ new (zone) RegExpAtom(atom->data().SubVector(0, prefix_length));
+ ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone);
+ pair->Add(prefix, zone);
+ ZoneList<RegExpTree*>* suffixes =
+ new (zone) ZoneList<RegExpTree*>(run_length, zone);
+ for (int j = 0; j < run_length; j++) {
+ RegExpAtom* old_atom =
+ alternatives->at(j + first_with_prefix)->AsAtom();
+ int len = old_atom->length();
+ if (len == prefix_length) {
+ suffixes->Add(new (zone) RegExpEmpty(), zone);
+ } else {
+ RegExpTree* suffix = new (zone) RegExpAtom(
+ old_atom->data().SubVector(prefix_length, old_atom->length()));
+ suffixes->Add(suffix, zone);
+ }
+ }
+ pair->Add(new (zone) RegExpDisjunction(suffixes), zone);
+ alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair);
+ } else {
+ // Just copy any non-worthwhile alternatives.
+ for (int j = first_with_prefix; j < i; j++) {
+ alternatives->at(write_posn++) = alternatives->at(j);
+ }
+ }
+ }
+ alternatives->Rewind(write_posn); // Trim end of array.
+}
+
+
+// Optimizes b|c|z to [bcz].
+void RegExpDisjunction::FixSingleCharacterDisjunctions(
+ RegExpCompiler* compiler) {
+ Zone* zone = compiler->zone();
+ ZoneList<RegExpTree*>* alternatives = this->alternatives();
+ int length = alternatives->length();
+
+ int write_posn = 0;
+ int i = 0;
+ while (i < length) {
+ RegExpTree* alternative = alternatives->at(i);
+ if (!alternative->IsAtom()) {
+ alternatives->at(write_posn++) = alternatives->at(i);
+ i++;
+ continue;
+ }
+ RegExpAtom* atom = alternative->AsAtom();
+ if (atom->length() != 1) {
+ alternatives->at(write_posn++) = alternatives->at(i);
+ i++;
+ continue;
+ }
+ int first_in_run = i;
+ i++;
+ while (i < length) {
+ alternative = alternatives->at(i);
+ if (!alternative->IsAtom()) break;
+ atom = alternative->AsAtom();
+ if (atom->length() != 1) break;
+ i++;
+ }
+ if (i > first_in_run + 1) {
+ // Found non-trivial run of single-character alternatives.
+ int run_length = i - first_in_run;
+ ZoneList<CharacterRange>* ranges =
+ new (zone) ZoneList<CharacterRange>(2, zone);
+ for (int j = 0; j < run_length; j++) {
+ RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom();
+ DCHECK_EQ(old_atom->length(), 1);
+ ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone);
+ }
+ alternatives->at(write_posn++) =
+ new (zone) RegExpCharacterClass(ranges, false);
+ } else {
+ // Just copy any trivial alternatives.
+ for (int j = first_in_run; j < i; j++) {
+ alternatives->at(write_posn++) = alternatives->at(j);
+ }
+ }
+ }
+ alternatives->Rewind(write_posn); // Trim end of array.
+}
+
+
+RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<RegExpTree*>* alternatives = this->alternatives();
+
+ if (alternatives->length() > 2) {
+ bool found_consecutive_atoms = SortConsecutiveAtoms(compiler);
+ if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler);
+ FixSingleCharacterDisjunctions(compiler);
+ if (alternatives->length() == 1) {
+ return alternatives->at(0)->ToNode(compiler, on_success);
+ }
+ }
+
+ int length = alternatives->length();
+
+ ChoiceNode* result =
+ new(compiler->zone()) ChoiceNode(length, compiler->zone());
+ for (int i = 0; i < length; i++) {
+ GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
+ on_success));
+ result->AddAlternative(alternative);
+ }
+ return result;
+}
+
+
+RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return ToNode(min(),
+ max(),
+ is_greedy(),
+ body(),
+ compiler,
+ on_success);
+}
+
+
+// Scoped object to keep track of how much we unroll quantifier loops in the
+// regexp graph generator.
+class RegExpExpansionLimiter {
+ public:
+ static const int kMaxExpansionFactor = 6;
+ RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
+ : compiler_(compiler),
+ saved_expansion_factor_(compiler->current_expansion_factor()),
+ ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
+ DCHECK(factor > 0);
+ if (ok_to_expand_) {
+ if (factor > kMaxExpansionFactor) {
+ // Avoid integer overflow of the current expansion factor.
+ ok_to_expand_ = false;
+ compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
+ } else {
+ int new_factor = saved_expansion_factor_ * factor;
+ ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
+ compiler->set_current_expansion_factor(new_factor);
+ }
+ }
+ }
+
+ ~RegExpExpansionLimiter() {
+ compiler_->set_current_expansion_factor(saved_expansion_factor_);
+ }
+
+ bool ok_to_expand() { return ok_to_expand_; }
+
+ private:
+ RegExpCompiler* compiler_;
+ int saved_expansion_factor_;
+ bool ok_to_expand_;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
+};
+
+
+RegExpNode* RegExpQuantifier::ToNode(int min,
+ int max,
+ bool is_greedy,
+ RegExpTree* body,
+ RegExpCompiler* compiler,
+ RegExpNode* on_success,
+ bool not_at_start) {
+ // x{f, t} becomes this:
+ //
+ // (r++)<-.
+ // | `
+ // | (x)
+ // v ^
+ // (r=0)-->(?)---/ [if r < t]
+ // |
+ // [if r >= f] \----> ...
+ //
+
+ // 15.10.2.5 RepeatMatcher algorithm.
+ // The parser has already eliminated the case where max is 0. In the case
+ // where max_match is zero the parser has removed the quantifier if min was
+ // > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
+
+ // If we know that we cannot match zero length then things are a little
+ // simpler since we don't need to make the special zero length match check
+ // from step 2.1. If the min and max are small we can unroll a little in
+ // this case.
+ static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
+ static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
+ if (max == 0) return on_success; // This can happen due to recursion.
+ bool body_can_be_empty = (body->min_match() == 0);
+ int body_start_reg = RegExpCompiler::kNoRegister;
+ Interval capture_registers = body->CaptureRegisters();
+ bool needs_capture_clearing = !capture_registers.is_empty();
+ Zone* zone = compiler->zone();
+
+ if (body_can_be_empty) {
+ body_start_reg = compiler->AllocateRegister();
+ } else if (compiler->optimize() && !needs_capture_clearing) {
+ // Only unroll if there are no captures and the body can't be
+ // empty.
+ {
+ RegExpExpansionLimiter limiter(
+ compiler, min + ((max != min) ? 1 : 0));
+ if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
+ int new_max = (max == kInfinity) ? max : max - min;
+ // Recurse once to get the loop or optional matches after the fixed
+ // ones.
+ RegExpNode* answer = ToNode(
+ 0, new_max, is_greedy, body, compiler, on_success, true);
+ // Unroll the forced matches from 0 to min. This can cause chains of
+ // TextNodes (which the parser does not generate). These should be
+ // combined if it turns out they hinder good code generation.
+ for (int i = 0; i < min; i++) {
+ answer = body->ToNode(compiler, answer);
+ }
+ return answer;
+ }
+ }
+ if (max <= kMaxUnrolledMaxMatches && min == 0) {
+ DCHECK(max > 0); // Due to the 'if' above.
+ RegExpExpansionLimiter limiter(compiler, max);
+ if (limiter.ok_to_expand()) {
+ // Unroll the optional matches up to max.
+ RegExpNode* answer = on_success;
+ for (int i = 0; i < max; i++) {
+ ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
+ if (is_greedy) {
+ alternation->AddAlternative(
+ GuardedAlternative(body->ToNode(compiler, answer)));
+ alternation->AddAlternative(GuardedAlternative(on_success));
+ } else {
+ alternation->AddAlternative(GuardedAlternative(on_success));
+ alternation->AddAlternative(
+ GuardedAlternative(body->ToNode(compiler, answer)));
+ }
+ answer = alternation;
+ if (not_at_start) alternation->set_not_at_start();
+ }
+ return answer;
+ }
+ }
+ }
+ bool has_min = min > 0;
+ bool has_max = max < RegExpTree::kInfinity;
+ bool needs_counter = has_min || has_max;
+ int reg_ctr = needs_counter
+ ? compiler->AllocateRegister()
+ : RegExpCompiler::kNoRegister;
+ LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0,
+ zone);
+ if (not_at_start) center->set_not_at_start();
+ RegExpNode* loop_return = needs_counter
+ ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
+ : static_cast<RegExpNode*>(center);
+ if (body_can_be_empty) {
+ // If the body can be empty we need to check if it was and then
+ // backtrack.
+ loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
+ reg_ctr,
+ min,
+ loop_return);
+ }
+ RegExpNode* body_node = body->ToNode(compiler, loop_return);
+ if (body_can_be_empty) {
+ // If the body can be empty we need to store the start position
+ // so we can bail out if it was empty.
+ body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
+ }
+ if (needs_capture_clearing) {
+ // Before entering the body of this loop we need to clear captures.
+ body_node = ActionNode::ClearCaptures(capture_registers, body_node);
+ }
+ GuardedAlternative body_alt(body_node);
+ if (has_max) {
+ Guard* body_guard =
+ new(zone) Guard(reg_ctr, Guard::LT, max);
+ body_alt.AddGuard(body_guard, zone);
+ }
+ GuardedAlternative rest_alt(on_success);
+ if (has_min) {
+ Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
+ rest_alt.AddGuard(rest_guard, zone);
+ }
+ if (is_greedy) {
+ center->AddLoopAlternative(body_alt);
+ center->AddContinueAlternative(rest_alt);
+ } else {
+ center->AddContinueAlternative(rest_alt);
+ center->AddLoopAlternative(body_alt);
+ }
+ if (needs_counter) {
+ return ActionNode::SetRegister(reg_ctr, 0, center);
+ } else {
+ return center;
+ }
+}
+
+
+RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ NodeInfo info;
+ Zone* zone = compiler->zone();
+
+ switch (assertion_type()) {
+ case START_OF_LINE:
+ return AssertionNode::AfterNewline(on_success);
+ case START_OF_INPUT:
+ return AssertionNode::AtStart(on_success);
+ case BOUNDARY:
+ return AssertionNode::AtBoundary(on_success);
+ case NON_BOUNDARY:
+ return AssertionNode::AtNonBoundary(on_success);
+ case END_OF_INPUT:
+ return AssertionNode::AtEnd(on_success);
+ case END_OF_LINE: {
+ // Compile $ in multiline regexps as an alternation with a positive
+ // lookahead in one side and an end-of-input on the other side.
+ // We need two registers for the lookahead.
+ int stack_pointer_register = compiler->AllocateRegister();
+ int position_register = compiler->AllocateRegister();
+ // The ChoiceNode to distinguish between a newline and end-of-input.
+ ChoiceNode* result = new(zone) ChoiceNode(2, zone);
+ // Create a newline atom.
+ ZoneList<CharacterRange>* newline_ranges =
+ new(zone) ZoneList<CharacterRange>(3, zone);
+ CharacterRange::AddClassEscape('n', newline_ranges, zone);
+ RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n');
+ TextNode* newline_matcher = new(zone) TextNode(
+ newline_atom,
+ ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
+ position_register,
+ 0, // No captures inside.
+ -1, // Ignored if no captures.
+ on_success));
+ // Create an end-of-input matcher.
+ RegExpNode* end_of_line = ActionNode::BeginSubmatch(
+ stack_pointer_register,
+ position_register,
+ newline_matcher);
+ // Add the two alternatives to the ChoiceNode.
+ GuardedAlternative eol_alternative(end_of_line);
+ result->AddAlternative(eol_alternative);
+ GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
+ result->AddAlternative(end_alternative);
+ return result;
+ }
+ default:
+ UNREACHABLE();
+ }
+ return on_success;
+}
+
+
+RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new(compiler->zone())
+ BackReferenceNode(RegExpCapture::StartRegister(index()),
+ RegExpCapture::EndRegister(index()),
+ on_success);
+}
+
+
+RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return on_success;
+}
+
+
+RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ int stack_pointer_register = compiler->AllocateRegister();
+ int position_register = compiler->AllocateRegister();
+
+ const int registers_per_capture = 2;
+ const int register_of_first_capture = 2;
+ int register_count = capture_count_ * registers_per_capture;
+ int register_start =
+ register_of_first_capture + capture_from_ * registers_per_capture;
+
+ RegExpNode* success;
+ if (is_positive()) {
+ RegExpNode* node = ActionNode::BeginSubmatch(
+ stack_pointer_register,
+ position_register,
+ body()->ToNode(
+ compiler,
+ ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
+ position_register,
+ register_count,
+ register_start,
+ on_success)));
+ return node;
+ } else {
+ // We use a ChoiceNode for a negative lookahead because it has most of
+ // the characteristics we need. It has the body of the lookahead as its
+ // first alternative and the expression after the lookahead of the second
+ // alternative. If the first alternative succeeds then the
+ // NegativeSubmatchSuccess will unwind the stack including everything the
+ // choice node set up and backtrack. If the first alternative fails then
+ // the second alternative is tried, which is exactly the desired result
+ // for a negative lookahead. The NegativeLookaheadChoiceNode is a special
+ // ChoiceNode that knows to ignore the first exit when calculating quick
+ // checks.
+ Zone* zone = compiler->zone();
+
+ GuardedAlternative body_alt(
+ body()->ToNode(
+ compiler,
+ success = new(zone) NegativeSubmatchSuccess(stack_pointer_register,
+ position_register,
+ register_count,
+ register_start,
+ zone)));
+ ChoiceNode* choice_node =
+ new(zone) NegativeLookaheadChoiceNode(body_alt,
+ GuardedAlternative(on_success),
+ zone);
+ return ActionNode::BeginSubmatch(stack_pointer_register,
+ position_register,
+ choice_node);
+ }
+}
+
+
+RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return ToNode(body(), index(), compiler, on_success);
+}
+
+
+RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
+ int index,
+ RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ int start_reg = RegExpCapture::StartRegister(index);
+ int end_reg = RegExpCapture::EndRegister(index);
+ RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
+ RegExpNode* body_node = body->ToNode(compiler, store_end);
+ return ActionNode::StorePosition(start_reg, true, body_node);
+}
+
+
+RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<RegExpTree*>* children = nodes();
+ RegExpNode* current = on_success;
+ for (int i = children->length() - 1; i >= 0; i--) {
+ current = children->at(i)->ToNode(compiler, current);
+ }
+ return current;
+}
+
+
+static void AddClass(const int* elmv,
+ int elmc,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
+ elmc--;
+ DCHECK(elmv[elmc] == 0x10000);
+ for (int i = 0; i < elmc; i += 2) {
+ DCHECK(elmv[i] < elmv[i + 1]);
+ ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
+ }
+}
+
+
+static void AddClassNegated(const int *elmv,
+ int elmc,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
+ elmc--;
+ DCHECK(elmv[elmc] == 0x10000);
+ DCHECK(elmv[0] != 0x0000);
+ DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
+ uc16 last = 0x0000;
+ for (int i = 0; i < elmc; i += 2) {
+ DCHECK(last <= elmv[i] - 1);
+ DCHECK(elmv[i] < elmv[i + 1]);
+ ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
+ last = elmv[i + 1];
+ }
+ ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
+}
+
+
+void CharacterRange::AddClassEscape(uc16 type,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
+ switch (type) {
+ case 's':
+ AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
+ break;
+ case 'S':
+ AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
+ break;
+ case 'w':
+ AddClass(kWordRanges, kWordRangeCount, ranges, zone);
+ break;
+ case 'W':
+ AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
+ break;
+ case 'd':
+ AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
+ break;
+ case 'D':
+ AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
+ break;
+ case '.':
+ AddClassNegated(kLineTerminatorRanges,
+ kLineTerminatorRangeCount,
+ ranges,
+ zone);
+ break;
+ // This is not a character range as defined by the spec but a
+ // convenient shorthand for a character class that matches any
+ // character.
+ case '*':
+ ranges->Add(CharacterRange::Everything(), zone);
+ break;
+ // This is the set of characters matched by the $ and ^ symbols
+ // in multiline mode.
+ case 'n':
+ AddClass(kLineTerminatorRanges,
+ kLineTerminatorRangeCount,
+ ranges,
+ zone);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+Vector<const int> CharacterRange::GetWordBounds() {
+ return Vector<const int>(kWordRanges, kWordRangeCount - 1);
+}
+
+
+class CharacterRangeSplitter {
+ public:
+ CharacterRangeSplitter(ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded,
+ Zone* zone)
+ : included_(included),
+ excluded_(excluded),
+ zone_(zone) { }
+ void Call(uc16 from, DispatchTable::Entry entry);
+
+ static const int kInBase = 0;
+ static const int kInOverlay = 1;
+
+ private:
+ ZoneList<CharacterRange>** included_;
+ ZoneList<CharacterRange>** excluded_;
+ Zone* zone_;
+};
+
+
+void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
+ if (!entry.out_set()->Get(kInBase)) return;
+ ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
+ ? included_
+ : excluded_;
+ if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
+ (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
+}
+
+
+void CharacterRange::Split(ZoneList<CharacterRange>* base,
+ Vector<const int> overlay,
+ ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded,
+ Zone* zone) {
+ DCHECK_NULL(*included);
+ DCHECK_NULL(*excluded);
+ DispatchTable table(zone);
+ for (int i = 0; i < base->length(); i++)
+ table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
+ for (int i = 0; i < overlay.length(); i += 2) {
+ table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
+ CharacterRangeSplitter::kInOverlay, zone);
+ }
+ CharacterRangeSplitter callback(included, excluded, zone);
+ table.ForEach(&callback);
+}
+
+
+void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
+ ZoneList<CharacterRange>* ranges,
+ bool is_one_byte) {
+ uc16 bottom = from();
+ uc16 top = to();
+ if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
+ if (bottom > String::kMaxOneByteCharCode) return;
+ if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
+ }
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ if (top == bottom) {
+ // If this is a singleton we just expand the one character.
+ int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
+ for (int i = 0; i < length; i++) {
+ uc32 chr = chars[i];
+ if (chr != bottom) {
+ ranges->Add(CharacterRange::Singleton(chars[i]), zone);
+ }
+ }
+ } else {
+ // If this is a range we expand the characters block by block,
+ // expanding contiguous subranges (blocks) one at a time.
+ // The approach is as follows. For a given start character we
+ // look up the remainder of the block that contains it (represented
+ // by the end point), for instance we find 'z' if the character
+ // is 'c'. A block is characterized by the property
+ // that all characters uncanonicalize in the same way, except that
+ // each entry in the result is incremented by the distance from the first
+ // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
+ // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
+ // Once we've found the end point we look up its uncanonicalization
+ // and produce a range for each element. For instance for [c-f]
+ // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
+ // add a range if it is not already contained in the input, so [c-f]
+ // will be skipped but [C-F] will be added. If this range is not
+ // completely contained in a block we do this for all the blocks
+ // covered by the range (handling characters that is not in a block
+ // as a "singleton block").
+ unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int pos = bottom;
+ while (pos <= top) {
+ int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
+ uc16 block_end;
+ if (length == 0) {
+ block_end = pos;
+ } else {
+ DCHECK_EQ(1, length);
+ block_end = range[0];
+ }
+ int end = (block_end > top) ? top : block_end;
+ length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
+ for (int i = 0; i < length; i++) {
+ uc32 c = range[i];
+ uc16 range_from = c - (block_end - pos);
+ uc16 range_to = c - (block_end - end);
+ if (!(bottom <= range_from && range_to <= top)) {
+ ranges->Add(CharacterRange(range_from, range_to), zone);
+ }
+ }
+ pos = end + 1;
+ }
+ }
+}
+
+
+bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
+ DCHECK_NOT_NULL(ranges);
+ int n = ranges->length();
+ if (n <= 1) return true;
+ int max = ranges->at(0).to();
+ for (int i = 1; i < n; i++) {
+ CharacterRange next_range = ranges->at(i);
+ if (next_range.from() <= max + 1) return false;
+ max = next_range.to();
+ }
+ return true;
+}
+
+
+ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
+ if (ranges_ == NULL) {
+ ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
+ CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
+ }
+ return ranges_;
+}
+
+
+// Move a number of elements in a zonelist to another position
+// in the same list. Handles overlapping source and target areas.
+static void MoveRanges(ZoneList<CharacterRange>* list,
+ int from,
+ int to,
+ int count) {
+ // Ranges are potentially overlapping.
+ if (from < to) {
+ for (int i = count - 1; i >= 0; i--) {
+ list->at(to + i) = list->at(from + i);
+ }
+ } else {
+ for (int i = 0; i < count; i++) {
+ list->at(to + i) = list->at(from + i);
+ }
+ }
+}
+
+
+static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
+ int count,
+ CharacterRange insert) {
+ // Inserts a range into list[0..count[, which must be sorted
+ // by from value and non-overlapping and non-adjacent, using at most
+ // list[0..count] for the result. Returns the number of resulting
+ // canonicalized ranges. Inserting a range may collapse existing ranges into
+ // fewer ranges, so the return value can be anything in the range 1..count+1.
+ uc16 from = insert.from();
+ uc16 to = insert.to();
+ int start_pos = 0;
+ int end_pos = count;
+ for (int i = count - 1; i >= 0; i--) {
+ CharacterRange current = list->at(i);
+ if (current.from() > to + 1) {
+ end_pos = i;
+ } else if (current.to() + 1 < from) {
+ start_pos = i + 1;
+ break;
+ }
+ }
+
+ // Inserted range overlaps, or is adjacent to, ranges at positions
+ // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
+ // not affected by the insertion.
+ // If start_pos == end_pos, the range must be inserted before start_pos.
+ // if start_pos < end_pos, the entire range from start_pos to end_pos
+ // must be merged with the insert range.
+
+ if (start_pos == end_pos) {
+ // Insert between existing ranges at position start_pos.
+ if (start_pos < count) {
+ MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
+ }
+ list->at(start_pos) = insert;
+ return count + 1;
+ }
+ if (start_pos + 1 == end_pos) {
+ // Replace single existing range at position start_pos.
+ CharacterRange to_replace = list->at(start_pos);
+ int new_from = Min(to_replace.from(), from);
+ int new_to = Max(to_replace.to(), to);
+ list->at(start_pos) = CharacterRange(new_from, new_to);
+ return count;
+ }
+ // Replace a number of existing ranges from start_pos to end_pos - 1.
+ // Move the remaining ranges down.
+
+ int new_from = Min(list->at(start_pos).from(), from);
+ int new_to = Max(list->at(end_pos - 1).to(), to);
+ if (end_pos < count) {
+ MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
+ }
+ list->at(start_pos) = CharacterRange(new_from, new_to);
+ return count - (end_pos - start_pos) + 1;
+}
+
+
+void CharacterSet::Canonicalize() {
+ // Special/default classes are always considered canonical. The result
+ // of calling ranges() will be sorted.
+ if (ranges_ == NULL) return;
+ CharacterRange::Canonicalize(ranges_);
+}
+
+
+void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
+ if (character_ranges->length() <= 1) return;
+ // Check whether ranges are already canonical (increasing, non-overlapping,
+ // non-adjacent).
+ int n = character_ranges->length();
+ int max = character_ranges->at(0).to();
+ int i = 1;
+ while (i < n) {
+ CharacterRange current = character_ranges->at(i);
+ if (current.from() <= max + 1) {
+ break;
+ }
+ max = current.to();
+ i++;
+ }
+ // Canonical until the i'th range. If that's all of them, we are done.
+ if (i == n) return;
+
+ // The ranges at index i and forward are not canonicalized. Make them so by
+ // doing the equivalent of insertion sort (inserting each into the previous
+ // list, in order).
+ // Notice that inserting a range can reduce the number of ranges in the
+ // result due to combining of adjacent and overlapping ranges.
+ int read = i; // Range to insert.
+ int num_canonical = i; // Length of canonicalized part of list.
+ do {
+ num_canonical = InsertRangeInCanonicalList(character_ranges,
+ num_canonical,
+ character_ranges->at(read));
+ read++;
+ } while (read < n);
+ character_ranges->Rewind(num_canonical);
+
+ DCHECK(CharacterRange::IsCanonical(character_ranges));
+}
+
+
+void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
+ ZoneList<CharacterRange>* negated_ranges,
+ Zone* zone) {
+ DCHECK(CharacterRange::IsCanonical(ranges));
+ DCHECK_EQ(0, negated_ranges->length());
+ int range_count = ranges->length();
+ uc16 from = 0;
+ int i = 0;
+ if (range_count > 0 && ranges->at(0).from() == 0) {
+ from = ranges->at(0).to();
+ i = 1;
+ }
+ while (i < range_count) {
+ CharacterRange range = ranges->at(i);
+ negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
+ from = range.to();
+ i++;
+ }
+ if (from < String::kMaxUtf16CodeUnit) {
+ negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
+ zone);
+ }
+}
+
+
+// -------------------------------------------------------------------
+// Splay tree
+
+
+OutSet* OutSet::Extend(unsigned value, Zone* zone) {
+ if (Get(value))
+ return this;
+ if (successors(zone) != NULL) {
+ for (int i = 0; i < successors(zone)->length(); i++) {
+ OutSet* successor = successors(zone)->at(i);
+ if (successor->Get(value))
+ return successor;
+ }
+ } else {
+ successors_ = new(zone) ZoneList<OutSet*>(2, zone);
+ }
+ OutSet* result = new(zone) OutSet(first_, remaining_);
+ result->Set(value, zone);
+ successors(zone)->Add(result, zone);
+ return result;
+}
+
+
+void OutSet::Set(unsigned value, Zone *zone) {
+ if (value < kFirstLimit) {
+ first_ |= (1 << value);
+ } else {
+ if (remaining_ == NULL)
+ remaining_ = new(zone) ZoneList<unsigned>(1, zone);
+ if (remaining_->is_empty() || !remaining_->Contains(value))
+ remaining_->Add(value, zone);
+ }
+}
+
+
+bool OutSet::Get(unsigned value) const {
+ if (value < kFirstLimit) {
+ return (first_ & (1 << value)) != 0;
+ } else if (remaining_ == NULL) {
+ return false;
+ } else {
+ return remaining_->Contains(value);
+ }
+}
+
+
+const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
+
+
+void DispatchTable::AddRange(CharacterRange full_range, int value,
+ Zone* zone) {
+ CharacterRange current = full_range;
+ if (tree()->is_empty()) {
+ // If this is the first range we just insert into the table.
+ ZoneSplayTree<Config>::Locator loc;
+ bool inserted = tree()->Insert(current.from(), &loc);
+ DCHECK(inserted);
+ USE(inserted);
+ loc.set_value(Entry(current.from(), current.to(),
+ empty()->Extend(value, zone)));
+ return;
+ }
+ // First see if there is a range to the left of this one that
+ // overlaps.
+ ZoneSplayTree<Config>::Locator loc;
+ if (tree()->FindGreatestLessThan(current.from(), &loc)) {
+ Entry* entry = &loc.value();
+ // If we've found a range that overlaps with this one, and it
+ // starts strictly to the left of this one, we have to fix it
+ // because the following code only handles ranges that start on
+ // or after the start point of the range we're adding.
+ if (entry->from() < current.from() && entry->to() >= current.from()) {
+ // Snap the overlapping range in half around the start point of
+ // the range we're adding.
+ CharacterRange left(entry->from(), current.from() - 1);
+ CharacterRange right(current.from(), entry->to());
+ // The left part of the overlapping range doesn't overlap.
+ // Truncate the whole entry to be just the left part.
+ entry->set_to(left.to());
+ // The right part is the one that overlaps. We add this part
+ // to the map and let the next step deal with merging it with
+ // the range we're adding.
+ ZoneSplayTree<Config>::Locator loc;
+ bool inserted = tree()->Insert(right.from(), &loc);
+ DCHECK(inserted);
+ USE(inserted);
+ loc.set_value(Entry(right.from(),
+ right.to(),
+ entry->out_set()));
+ }
+ }
+ while (current.is_valid()) {
+ if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
+ (loc.value().from() <= current.to()) &&
+ (loc.value().to() >= current.from())) {
+ Entry* entry = &loc.value();
+ // We have overlap. If there is space between the start point of
+ // the range we're adding and where the overlapping range starts
+ // then we have to add a range covering just that space.
+ if (current.from() < entry->from()) {
+ ZoneSplayTree<Config>::Locator ins;
+ bool inserted = tree()->Insert(current.from(), &ins);
+ DCHECK(inserted);
+ USE(inserted);
+ ins.set_value(Entry(current.from(),
+ entry->from() - 1,
+ empty()->Extend(value, zone)));
+ current.set_from(entry->from());
+ }
+ DCHECK_EQ(current.from(), entry->from());
+ // If the overlapping range extends beyond the one we want to add
+ // we have to snap the right part off and add it separately.
+ if (entry->to() > current.to()) {
+ ZoneSplayTree<Config>::Locator ins;
+ bool inserted = tree()->Insert(current.to() + 1, &ins);
+ DCHECK(inserted);
+ USE(inserted);
+ ins.set_value(Entry(current.to() + 1,
+ entry->to(),
+ entry->out_set()));
+ entry->set_to(current.to());
+ }
+ DCHECK(entry->to() <= current.to());
+ // The overlapping range is now completely contained by the range
+ // we're adding so we can just update it and move the start point
+ // of the range we're adding just past it.
+ entry->AddValue(value, zone);
+ // Bail out if the last interval ended at 0xFFFF since otherwise
+ // adding 1 will wrap around to 0.
+ if (entry->to() == String::kMaxUtf16CodeUnit)
+ break;
+ DCHECK(entry->to() + 1 > current.from());
+ current.set_from(entry->to() + 1);
+ } else {
+ // There is no overlap so we can just add the range
+ ZoneSplayTree<Config>::Locator ins;
+ bool inserted = tree()->Insert(current.from(), &ins);
+ DCHECK(inserted);
+ USE(inserted);
+ ins.set_value(Entry(current.from(),
+ current.to(),
+ empty()->Extend(value, zone)));
+ break;
+ }
+ }
+}
+
+
+OutSet* DispatchTable::Get(uc16 value) {
+ ZoneSplayTree<Config>::Locator loc;
+ if (!tree()->FindGreatestLessThan(value, &loc))
+ return empty();
+ Entry* entry = &loc.value();
+ if (value <= entry->to())
+ return entry->out_set();
+ else
+ return empty();
+}
+
+
+// -------------------------------------------------------------------
+// Analysis
+
+
+void Analysis::EnsureAnalyzed(RegExpNode* that) {
+ StackLimitCheck check(isolate());
+ if (check.HasOverflowed()) {
+ fail("Stack overflow");
+ return;
+ }
+ if (that->info()->been_analyzed || that->info()->being_analyzed)
+ return;
+ that->info()->being_analyzed = true;
+ that->Accept(this);
+ that->info()->being_analyzed = false;
+ that->info()->been_analyzed = true;
+}
+
+
+void Analysis::VisitEnd(EndNode* that) {
+ // nothing to do
+}
+
+
+void TextNode::CalculateOffsets() {
+ int element_count = elements()->length();
+ // Set up the offsets of the elements relative to the start. This is a fixed
+ // quantity since a TextNode can only contain fixed-width things.
+ int cp_offset = 0;
+ for (int i = 0; i < element_count; i++) {
+ TextElement& elm = elements()->at(i);
+ elm.set_cp_offset(cp_offset);
+ cp_offset += elm.length();
+ }
+}
+
+
+void Analysis::VisitText(TextNode* that) {
+ if (ignore_case_) {
+ that->MakeCaseIndependent(isolate(), is_one_byte_);
+ }
+ EnsureAnalyzed(that->on_success());
+ if (!has_failed()) {
+ that->CalculateOffsets();
+ }
+}
+
+
+void Analysis::VisitAction(ActionNode* that) {
+ RegExpNode* target = that->on_success();
+ EnsureAnalyzed(target);
+ if (!has_failed()) {
+ // If the next node is interested in what it follows then this node
+ // has to be interested too so it can pass the information on.
+ that->info()->AddFromFollowing(target->info());
+ }
+}
+
+
+void Analysis::VisitChoice(ChoiceNode* that) {
+ NodeInfo* info = that->info();
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = that->alternatives()->at(i).node();
+ EnsureAnalyzed(node);
+ if (has_failed()) return;
+ // Anything the following nodes need to know has to be known by
+ // this node also, so it can pass it on.
+ info->AddFromFollowing(node->info());
+ }
+}
+
+
+void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
+ NodeInfo* info = that->info();
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = that->alternatives()->at(i).node();
+ if (node != that->loop_node()) {
+ EnsureAnalyzed(node);
+ if (has_failed()) return;
+ info->AddFromFollowing(node->info());
+ }
+ }
+ // Check the loop last since it may need the value of this node
+ // to get a correct result.
+ EnsureAnalyzed(that->loop_node());
+ if (!has_failed()) {
+ info->AddFromFollowing(that->loop_node()->info());
+ }
+}
+
+
+void Analysis::VisitBackReference(BackReferenceNode* that) {
+ EnsureAnalyzed(that->on_success());
+}
+
+
+void Analysis::VisitAssertion(AssertionNode* that) {
+ EnsureAnalyzed(that->on_success());
+}
+
+
+void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ // Working out the set of characters that a backreference can match is too
+ // hard, so we just say that any character can match.
+ bm->SetRest(offset);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
+ RegExpMacroAssembler::kTableSize);
+
+
+void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ ZoneList<GuardedAlternative>* alts = alternatives();
+ budget = (budget - 1) / alts->length();
+ for (int i = 0; i < alts->length(); i++) {
+ GuardedAlternative& alt = alts->at(i);
+ if (alt.guards() != NULL && alt.guards()->length() != 0) {
+ bm->SetRest(offset); // Give up trying to fill in info.
+ SaveBMInfo(bm, not_at_start, offset);
+ return;
+ }
+ alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start);
+ }
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ if (initial_offset >= bm->length()) return;
+ int offset = initial_offset;
+ int max_char = bm->max_char();
+ for (int i = 0; i < elements()->length(); i++) {
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ TextElement text = elements()->at(i);
+ if (text.text_type() == TextElement::ATOM) {
+ RegExpAtom* atom = text.atom();
+ for (int j = 0; j < atom->length(); j++, offset++) {
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ uc16 character = atom->data()[j];
+ if (bm->compiler()->ignore_case()) {
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(
+ isolate, character, bm->max_char() == String::kMaxOneByteCharCode,
+ chars);
+ for (int j = 0; j < length; j++) {
+ bm->Set(offset, chars[j]);
+ }
+ } else {
+ if (character <= max_char) bm->Set(offset, character);
+ }
+ }
+ } else {
+ DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
+ RegExpCharacterClass* char_class = text.char_class();
+ ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
+ if (char_class->is_negated()) {
+ bm->SetAll(offset);
+ } else {
+ for (int k = 0; k < ranges->length(); k++) {
+ CharacterRange& range = ranges->at(k);
+ if (range.from() > max_char) continue;
+ int to = Min(max_char, static_cast<int>(range.to()));
+ bm->SetInterval(offset, Interval(range.from(), to));
+ }
+ }
+ offset++;
+ }
+ }
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ on_success()->FillInBMInfo(isolate, offset, budget - 1, bm,
+ true); // Not at start after a text node.
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+}
+
+
+// -------------------------------------------------------------------
+// Dispatch table construction
+
+
+void DispatchTableConstructor::VisitEnd(EndNode* that) {
+ AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
+ node->set_being_calculated(true);
+ ZoneList<GuardedAlternative>* alternatives = node->alternatives();
+ for (int i = 0; i < alternatives->length(); i++) {
+ set_choice_index(i);
+ alternatives->at(i).node()->Accept(this);
+ }
+ node->set_being_calculated(false);
+}
+
+
+class AddDispatchRange {
+ public:
+ explicit AddDispatchRange(DispatchTableConstructor* constructor)
+ : constructor_(constructor) { }
+ void Call(uc32 from, DispatchTable::Entry entry);
+ private:
+ DispatchTableConstructor* constructor_;
+};
+
+
+void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
+ CharacterRange range(from, entry.to());
+ constructor_->AddRange(range);
+}
+
+
+void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
+ if (node->being_calculated())
+ return;
+ DispatchTable* table = node->GetTable(ignore_case_);
+ AddDispatchRange adder(this);
+ table->ForEach(&adder);
+}
+
+
+void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
+ // TODO(160): Find the node that we refer back to and propagate its start
+ // set back to here. For now we just accept anything.
+ AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
+ RegExpNode* target = that->on_success();
+ target->Accept(this);
+}
+
+
+static int CompareRangeByFrom(const CharacterRange* a,
+ const CharacterRange* b) {
+ return Compare<uc16>(a->from(), b->from());
+}
+
+
+void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
+ ranges->Sort(CompareRangeByFrom);
+ uc16 last = 0;
+ for (int i = 0; i < ranges->length(); i++) {
+ CharacterRange range = ranges->at(i);
+ if (last < range.from())
+ AddRange(CharacterRange(last, range.from() - 1));
+ if (range.to() >= last) {
+ if (range.to() == String::kMaxUtf16CodeUnit) {
+ return;
+ } else {
+ last = range.to() + 1;
+ }
+ }
+ }
+ AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
+}
+
+
+void DispatchTableConstructor::VisitText(TextNode* that) {
+ TextElement elm = that->elements()->at(0);
+ switch (elm.text_type()) {
+ case TextElement::ATOM: {
+ uc16 c = elm.atom()->data()[0];
+ AddRange(CharacterRange(c, c));
+ break;
+ }
+ case TextElement::CHAR_CLASS: {
+ RegExpCharacterClass* tree = elm.char_class();
+ ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
+ if (tree->is_negated()) {
+ AddInverse(ranges);
+ } else {
+ for (int i = 0; i < ranges->length(); i++)
+ AddRange(ranges->at(i));
+ }
+ break;
+ }
+ default: {
+ UNIMPLEMENTED();
+ }
+ }
+}
+
+
+void DispatchTableConstructor::VisitAction(ActionNode* that) {
+ RegExpNode* target = that->on_success();
+ target->Accept(this);
+}
+
+
+RegExpEngine::CompilationResult RegExpEngine::Compile(
+ Isolate* isolate, Zone* zone, RegExpCompileData* data, bool ignore_case,
+ bool is_global, bool is_multiline, bool is_sticky, Handle<String> pattern,
+ Handle<String> sample_subject, bool is_one_byte) {
+ if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
+ return IrregexpRegExpTooBig(isolate);
+ }
+ RegExpCompiler compiler(isolate, zone, data->capture_count, ignore_case,
+ is_one_byte);
+
+ if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern));
+
+ // Sample some characters from the middle of the string.
+ static const int kSampleSize = 128;
+
+ sample_subject = String::Flatten(sample_subject);
+ int chars_sampled = 0;
+ int half_way = (sample_subject->length() - kSampleSize) / 2;
+ for (int i = Max(0, half_way);
+ i < sample_subject->length() && chars_sampled < kSampleSize;
+ i++, chars_sampled++) {
+ compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
+ }
+
+ // Wrap the body of the regexp in capture #0.
+ RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
+ 0,
+ &compiler,
+ compiler.accept());
+ RegExpNode* node = captured_body;
+ bool is_end_anchored = data->tree->IsAnchoredAtEnd();
+ bool is_start_anchored = data->tree->IsAnchoredAtStart();
+ int max_length = data->tree->max_match();
+ if (!is_start_anchored && !is_sticky) {
+ // Add a .*? at the beginning, outside the body capture, unless
+ // this expression is anchored at the beginning or sticky.
+ RegExpNode* loop_node =
+ RegExpQuantifier::ToNode(0,
+ RegExpTree::kInfinity,
+ false,
+ new(zone) RegExpCharacterClass('*'),
+ &compiler,
+ captured_body,
+ data->contains_anchor);
+
+ if (data->contains_anchor) {
+ // Unroll loop once, to take care of the case that might start
+ // at the start of input.
+ ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
+ first_step_node->AddAlternative(GuardedAlternative(captured_body));
+ first_step_node->AddAlternative(GuardedAlternative(
+ new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node)));
+ node = first_step_node;
+ } else {
+ node = loop_node;
+ }
+ }
+ if (is_one_byte) {
+ node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
+ // Do it again to propagate the new nodes to places where they were not
+ // put because they had not been calculated yet.
+ if (node != NULL) {
+ node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
+ }
+ }
+
+ if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
+ data->node = node;
+ Analysis analysis(isolate, ignore_case, is_one_byte);
+ analysis.EnsureAnalyzed(node);
+ if (analysis.has_failed()) {
+ const char* error_message = analysis.error_message();
+ return CompilationResult(isolate, error_message);
+ }
+
+ // Create the correct assembler for the architecture.
+#ifndef V8_INTERPRETED_REGEXP
+ // Native regexp implementation.
+
+ NativeRegExpMacroAssembler::Mode mode =
+ is_one_byte ? NativeRegExpMacroAssembler::LATIN1
+ : NativeRegExpMacroAssembler::UC16;
+
+#if V8_TARGET_ARCH_IA32
+ RegExpMacroAssemblerIA32 macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_X64
+ RegExpMacroAssemblerX64 macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_ARM
+ RegExpMacroAssemblerARM macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_ARM64
+ RegExpMacroAssemblerARM64 macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_PPC
+ RegExpMacroAssemblerPPC macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_MIPS
+ RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_MIPS64
+ RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
+#elif V8_TARGET_ARCH_X87
+ RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode,
+ (data->capture_count + 1) * 2);
+#else
+#error "Unsupported architecture"
+#endif
+
+#else // V8_INTERPRETED_REGEXP
+ // Interpreted regexp implementation.
+ EmbeddedVector<byte, 1024> codes;
+ RegExpMacroAssemblerIrregexp macro_assembler(isolate, codes, zone);
+#endif // V8_INTERPRETED_REGEXP
+
+ macro_assembler.set_slow_safe(TooMuchRegExpCode(pattern));
+
+ // Inserted here, instead of in Assembler, because it depends on information
+ // in the AST that isn't replicated in the Node structure.
+ static const int kMaxBacksearchLimit = 1024;
+ if (is_end_anchored &&
+ !is_start_anchored &&
+ max_length < kMaxBacksearchLimit) {
+ macro_assembler.SetCurrentPositionFromEnd(max_length);
+ }
+
+ if (is_global) {
+ macro_assembler.set_global_mode(
+ (data->tree->min_match() > 0)
+ ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
+ : RegExpMacroAssembler::GLOBAL);
+ }
+
+ return compiler.Assemble(¯o_assembler,
+ node,
+ data->capture_count,
+ pattern);
+}
+
+
+bool RegExpEngine::TooMuchRegExpCode(Handle<String> pattern) {
+ Heap* heap = pattern->GetHeap();
+ bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize;
+ if (heap->total_regexp_code_generated() > RegExpImpl::kRegExpCompiledLimit &&
+ heap->isolate()->memory_allocator()->SizeExecutable() >
+ RegExpImpl::kRegExpExecutableMemoryLimit) {
+ too_much = true;
+ }
+ return too_much;
+}
+} // namespace internal
+} // namespace v8
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_JSREGEXP_H_
+#define V8_REGEXP_JSREGEXP_H_
+
+#include "src/allocation.h"
+#include "src/assembler.h"
+
+namespace v8 {
+namespace internal {
+
+class NodeVisitor;
+class RegExpCompiler;
+class RegExpMacroAssembler;
+class RegExpNode;
+class RegExpTree;
+class BoyerMooreLookahead;
+
+class RegExpImpl {
+ public:
+ // Whether V8 is compiled with native regexp support or not.
+ static bool UsesNativeRegExp() {
+#ifdef V8_INTERPRETED_REGEXP
+ return false;
+#else
+ return true;
+#endif
+ }
+
+ // Creates a regular expression literal in the old space.
+ // This function calls the garbage collector if necessary.
+ MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral(
+ Handle<JSFunction> constructor,
+ Handle<String> pattern,
+ Handle<String> flags);
+
+ // Returns a string representation of a regular expression.
+ // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
+ // This function calls the garbage collector if necessary.
+ static Handle<String> ToString(Handle<Object> value);
+
+ // Parses the RegExp pattern and prepares the JSRegExp object with
+ // generic data and choice of implementation - as well as what
+ // the implementation wants to store in the data field.
+ // Returns false if compilation fails.
+ MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags);
+
+ // See ECMA-262 section 15.10.6.2.
+ // This function calls the garbage collector if necessary.
+ MUST_USE_RESULT static MaybeHandle<Object> Exec(
+ Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> lastMatchInfo);
+
+ // Prepares a JSRegExp object with Irregexp-specific data.
+ static void IrregexpInitialize(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags,
+ int capture_register_count);
+
+
+ static void AtomCompile(Handle<JSRegExp> re,
+ Handle<String> pattern,
+ JSRegExp::Flags flags,
+ Handle<String> match_pattern);
+
+
+ static int AtomExecRaw(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ int32_t* output,
+ int output_size);
+
+
+ static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> lastMatchInfo);
+
+ enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
+
+ // Prepare a RegExp for being executed one or more times (using
+ // IrregexpExecOnce) on the subject.
+ // This ensures that the regexp is compiled for the subject, and that
+ // the subject is flat.
+ // Returns the number of integer spaces required by IrregexpExecOnce
+ // as its "registers" argument. If the regexp cannot be compiled,
+ // an exception is set as pending, and this function returns negative.
+ static int IrregexpPrepare(Handle<JSRegExp> regexp,
+ Handle<String> subject);
+
+ // Execute a regular expression on the subject, starting from index.
+ // If matching succeeds, return the number of matches. This can be larger
+ // than one in the case of global regular expressions.
+ // The captures and subcaptures are stored into the registers vector.
+ // If matching fails, returns RE_FAILURE.
+ // If execution fails, sets a pending exception and returns RE_EXCEPTION.
+ static int IrregexpExecRaw(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ int32_t* output,
+ int output_size);
+
+ // Execute an Irregexp bytecode pattern.
+ // On a successful match, the result is a JSArray containing
+ // captured positions. On a failure, the result is the null value.
+ // Returns an empty handle in case of an exception.
+ MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
+ Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ int index,
+ Handle<JSArray> lastMatchInfo);
+
+ // Set last match info. If match is NULL, then setting captures is omitted.
+ static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
+ Handle<String> subject,
+ int capture_count,
+ int32_t* match);
+
+
+ class GlobalCache {
+ public:
+ GlobalCache(Handle<JSRegExp> regexp,
+ Handle<String> subject,
+ bool is_global,
+ Isolate* isolate);
+
+ INLINE(~GlobalCache());
+
+ // Fetch the next entry in the cache for global regexp match results.
+ // This does not set the last match info. Upon failure, NULL is returned.
+ // The cause can be checked with Result(). The previous
+ // result is still in available in memory when a failure happens.
+ INLINE(int32_t* FetchNext());
+
+ INLINE(int32_t* LastSuccessfulMatch());
+
+ INLINE(bool HasException()) { return num_matches_ < 0; }
+
+ private:
+ int num_matches_;
+ int max_matches_;
+ int current_match_index_;
+ int registers_per_match_;
+ // Pointer to the last set of captures.
+ int32_t* register_array_;
+ int register_array_size_;
+ Handle<JSRegExp> regexp_;
+ Handle<String> subject_;
+ };
+
+
+ // Array index in the lastMatchInfo array.
+ static const int kLastCaptureCount = 0;
+ static const int kLastSubject = 1;
+ static const int kLastInput = 2;
+ static const int kFirstCapture = 3;
+ static const int kLastMatchOverhead = 3;
+
+ // Direct offset into the lastMatchInfo array.
+ static const int kLastCaptureCountOffset =
+ FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
+ static const int kLastSubjectOffset =
+ FixedArray::kHeaderSize + kLastSubject * kPointerSize;
+ static const int kLastInputOffset =
+ FixedArray::kHeaderSize + kLastInput * kPointerSize;
+ static const int kFirstCaptureOffset =
+ FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
+
+ // Used to access the lastMatchInfo array.
+ static int GetCapture(FixedArray* array, int index) {
+ return Smi::cast(array->get(index + kFirstCapture))->value();
+ }
+
+ static void SetLastCaptureCount(FixedArray* array, int to) {
+ array->set(kLastCaptureCount, Smi::FromInt(to));
+ }
+
+ static void SetLastSubject(FixedArray* array, String* to) {
+ array->set(kLastSubject, to);
+ }
+
+ static void SetLastInput(FixedArray* array, String* to) {
+ array->set(kLastInput, to);
+ }
+
+ static void SetCapture(FixedArray* array, int index, int to) {
+ array->set(index + kFirstCapture, Smi::FromInt(to));
+ }
+
+ static int GetLastCaptureCount(FixedArray* array) {
+ return Smi::cast(array->get(kLastCaptureCount))->value();
+ }
+
+ // For acting on the JSRegExp data FixedArray.
+ static int IrregexpMaxRegisterCount(FixedArray* re);
+ static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
+ static int IrregexpNumberOfCaptures(FixedArray* re);
+ static int IrregexpNumberOfRegisters(FixedArray* re);
+ static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
+ static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
+
+ // Limit the space regexps take up on the heap. In order to limit this we
+ // would like to keep track of the amount of regexp code on the heap. This
+ // is not tracked, however. As a conservative approximation we track the
+ // total regexp code compiled including code that has subsequently been freed
+ // and the total executable memory at any point.
+ static const int kRegExpExecutableMemoryLimit = 16 * MB;
+ static const int kRegExpCompiledLimit = 1 * MB;
+ static const int kRegExpTooLargeToOptimize = 20 * KB;
+
+ private:
+ static bool CompileIrregexp(Handle<JSRegExp> re,
+ Handle<String> sample_subject, bool is_one_byte);
+ static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
+ Handle<String> sample_subject,
+ bool is_one_byte);
+};
+
+
+// Represents the location of one element relative to the intersection of
+// two sets. Corresponds to the four areas of a Venn diagram.
+enum ElementInSetsRelation {
+ kInsideNone = 0,
+ kInsideFirst = 1,
+ kInsideSecond = 2,
+ kInsideBoth = 3
+};
+
+
+// Represents code units in the range from from_ to to_, both ends are
+// inclusive.
+class CharacterRange {
+ public:
+ CharacterRange() : from_(0), to_(0) { }
+ // For compatibility with the CHECK_OK macro
+ CharacterRange(void* null) { DCHECK_NULL(null); } // NOLINT
+ CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
+ static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
+ Zone* zone);
+ static Vector<const int> GetWordBounds();
+ static inline CharacterRange Singleton(uc16 value) {
+ return CharacterRange(value, value);
+ }
+ static inline CharacterRange Range(uc16 from, uc16 to) {
+ DCHECK(from <= to);
+ return CharacterRange(from, to);
+ }
+ static inline CharacterRange Everything() {
+ return CharacterRange(0, 0xFFFF);
+ }
+ bool Contains(uc16 i) { return from_ <= i && i <= to_; }
+ uc16 from() const { return from_; }
+ void set_from(uc16 value) { from_ = value; }
+ uc16 to() const { return to_; }
+ void set_to(uc16 value) { to_ = value; }
+ bool is_valid() { return from_ <= to_; }
+ bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
+ bool IsSingleton() { return (from_ == to_); }
+ void AddCaseEquivalents(Isolate* isolate, Zone* zone,
+ ZoneList<CharacterRange>* ranges, bool is_one_byte);
+ static void Split(ZoneList<CharacterRange>* base,
+ Vector<const int> overlay,
+ ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded,
+ Zone* zone);
+ // Whether a range list is in canonical form: Ranges ordered by from value,
+ // and ranges non-overlapping and non-adjacent.
+ static bool IsCanonical(ZoneList<CharacterRange>* ranges);
+ // Convert range list to canonical form. The characters covered by the ranges
+ // will still be the same, but no character is in more than one range, and
+ // adjacent ranges are merged. The resulting list may be shorter than the
+ // original, but cannot be longer.
+ static void Canonicalize(ZoneList<CharacterRange>* ranges);
+ // Negate the contents of a character range in canonical form.
+ static void Negate(ZoneList<CharacterRange>* src,
+ ZoneList<CharacterRange>* dst,
+ Zone* zone);
+ static const int kStartMarker = (1 << 24);
+ static const int kPayloadMask = (1 << 24) - 1;
+
+ private:
+ uc16 from_;
+ uc16 to_;
+};
+
+
+// A set of unsigned integers that behaves especially well on small
+// integers (< 32). May do zone-allocation.
+class OutSet: public ZoneObject {
+ public:
+ OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
+ OutSet* Extend(unsigned value, Zone* zone);
+ bool Get(unsigned value) const;
+ static const unsigned kFirstLimit = 32;
+
+ private:
+ // Destructively set a value in this set. In most cases you want
+ // to use Extend instead to ensure that only one instance exists
+ // that contains the same values.
+ void Set(unsigned value, Zone* zone);
+
+ // The successors are a list of sets that contain the same values
+ // as this set and the one more value that is not present in this
+ // set.
+ ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
+
+ OutSet(uint32_t first, ZoneList<unsigned>* remaining)
+ : first_(first), remaining_(remaining), successors_(NULL) { }
+ uint32_t first_;
+ ZoneList<unsigned>* remaining_;
+ ZoneList<OutSet*>* successors_;
+ friend class Trace;
+};
+
+
+// A mapping from integers, specified as ranges, to a set of integers.
+// Used for mapping character ranges to choices.
+class DispatchTable : public ZoneObject {
+ public:
+ explicit DispatchTable(Zone* zone) : tree_(zone) { }
+
+ class Entry {
+ public:
+ Entry() : from_(0), to_(0), out_set_(NULL) { }
+ Entry(uc16 from, uc16 to, OutSet* out_set)
+ : from_(from), to_(to), out_set_(out_set) { }
+ uc16 from() { return from_; }
+ uc16 to() { return to_; }
+ void set_to(uc16 value) { to_ = value; }
+ void AddValue(int value, Zone* zone) {
+ out_set_ = out_set_->Extend(value, zone);
+ }
+ OutSet* out_set() { return out_set_; }
+ private:
+ uc16 from_;
+ uc16 to_;
+ OutSet* out_set_;
+ };
+
+ class Config {
+ public:
+ typedef uc16 Key;
+ typedef Entry Value;
+ static const uc16 kNoKey;
+ static const Entry NoValue() { return Value(); }
+ static inline int Compare(uc16 a, uc16 b) {
+ if (a == b)
+ return 0;
+ else if (a < b)
+ return -1;
+ else
+ return 1;
+ }
+ };
+
+ void AddRange(CharacterRange range, int value, Zone* zone);
+ OutSet* Get(uc16 value);
+ void Dump();
+
+ template <typename Callback>
+ void ForEach(Callback* callback) {
+ return tree()->ForEach(callback);
+ }
+
+ private:
+ // There can't be a static empty set since it allocates its
+ // successors in a zone and caches them.
+ OutSet* empty() { return &empty_; }
+ OutSet empty_;
+ ZoneSplayTree<Config>* tree() { return &tree_; }
+ ZoneSplayTree<Config> tree_;
+};
+
+
+#define FOR_EACH_NODE_TYPE(VISIT) \
+ VISIT(End) \
+ VISIT(Action) \
+ VISIT(Choice) \
+ VISIT(BackReference) \
+ VISIT(Assertion) \
+ VISIT(Text)
+
+
+#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
+ VISIT(Disjunction) \
+ VISIT(Alternative) \
+ VISIT(Assertion) \
+ VISIT(CharacterClass) \
+ VISIT(Atom) \
+ VISIT(Quantifier) \
+ VISIT(Capture) \
+ VISIT(Lookahead) \
+ VISIT(BackReference) \
+ VISIT(Empty) \
+ VISIT(Text)
+
+
+#define FORWARD_DECLARE(Name) class RegExp##Name;
+FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
+#undef FORWARD_DECLARE
+
+
+class TextElement final BASE_EMBEDDED {
+ public:
+ enum TextType {
+ ATOM,
+ CHAR_CLASS
+ };
+
+ static TextElement Atom(RegExpAtom* atom);
+ static TextElement CharClass(RegExpCharacterClass* char_class);
+
+ int cp_offset() const { return cp_offset_; }
+ void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
+ int length() const;
+
+ TextType text_type() const { return text_type_; }
+
+ RegExpTree* tree() const { return tree_; }
+
+ RegExpAtom* atom() const {
+ DCHECK(text_type() == ATOM);
+ return reinterpret_cast<RegExpAtom*>(tree());
+ }
+
+ RegExpCharacterClass* char_class() const {
+ DCHECK(text_type() == CHAR_CLASS);
+ return reinterpret_cast<RegExpCharacterClass*>(tree());
+ }
+
+ private:
+ TextElement(TextType text_type, RegExpTree* tree)
+ : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
+
+ int cp_offset_;
+ TextType text_type_;
+ RegExpTree* tree_;
+};
+
+
+class Trace;
+struct PreloadState;
+class GreedyLoopState;
+class AlternativeGenerationList;
+
+struct NodeInfo {
+ NodeInfo()
+ : being_analyzed(false),
+ been_analyzed(false),
+ follows_word_interest(false),
+ follows_newline_interest(false),
+ follows_start_interest(false),
+ at_end(false),
+ visited(false),
+ replacement_calculated(false) { }
+
+ // Returns true if the interests and assumptions of this node
+ // matches the given one.
+ bool Matches(NodeInfo* that) {
+ return (at_end == that->at_end) &&
+ (follows_word_interest == that->follows_word_interest) &&
+ (follows_newline_interest == that->follows_newline_interest) &&
+ (follows_start_interest == that->follows_start_interest);
+ }
+
+ // Updates the interests of this node given the interests of the
+ // node preceding it.
+ void AddFromPreceding(NodeInfo* that) {
+ at_end |= that->at_end;
+ follows_word_interest |= that->follows_word_interest;
+ follows_newline_interest |= that->follows_newline_interest;
+ follows_start_interest |= that->follows_start_interest;
+ }
+
+ bool HasLookbehind() {
+ return follows_word_interest ||
+ follows_newline_interest ||
+ follows_start_interest;
+ }
+
+ // Sets the interests of this node to include the interests of the
+ // following node.
+ void AddFromFollowing(NodeInfo* that) {
+ follows_word_interest |= that->follows_word_interest;
+ follows_newline_interest |= that->follows_newline_interest;
+ follows_start_interest |= that->follows_start_interest;
+ }
+
+ void ResetCompilationState() {
+ being_analyzed = false;
+ been_analyzed = false;
+ }
+
+ bool being_analyzed: 1;
+ bool been_analyzed: 1;
+
+ // These bits are set of this node has to know what the preceding
+ // character was.
+ bool follows_word_interest: 1;
+ bool follows_newline_interest: 1;
+ bool follows_start_interest: 1;
+
+ bool at_end: 1;
+ bool visited: 1;
+ bool replacement_calculated: 1;
+};
+
+
+// Details of a quick mask-compare check that can look ahead in the
+// input stream.
+class QuickCheckDetails {
+ public:
+ QuickCheckDetails()
+ : characters_(0),
+ mask_(0),
+ value_(0),
+ cannot_match_(false) { }
+ explicit QuickCheckDetails(int characters)
+ : characters_(characters),
+ mask_(0),
+ value_(0),
+ cannot_match_(false) { }
+ bool Rationalize(bool one_byte);
+ // Merge in the information from another branch of an alternation.
+ void Merge(QuickCheckDetails* other, int from_index);
+ // Advance the current position by some amount.
+ void Advance(int by, bool one_byte);
+ void Clear();
+ bool cannot_match() { return cannot_match_; }
+ void set_cannot_match() { cannot_match_ = true; }
+ struct Position {
+ Position() : mask(0), value(0), determines_perfectly(false) { }
+ uc16 mask;
+ uc16 value;
+ bool determines_perfectly;
+ };
+ int characters() { return characters_; }
+ void set_characters(int characters) { characters_ = characters; }
+ Position* positions(int index) {
+ DCHECK(index >= 0);
+ DCHECK(index < characters_);
+ return positions_ + index;
+ }
+ uint32_t mask() { return mask_; }
+ uint32_t value() { return value_; }
+
+ private:
+ // How many characters do we have quick check information from. This is
+ // the same for all branches of a choice node.
+ int characters_;
+ Position positions_[4];
+ // These values are the condensate of the above array after Rationalize().
+ uint32_t mask_;
+ uint32_t value_;
+ // If set to true, there is no way this quick check can match at all.
+ // E.g., if it requires to be at the start of the input, and isn't.
+ bool cannot_match_;
+};
+
+
+extern int kUninitializedRegExpNodePlaceHolder;
+
+
+class RegExpNode: public ZoneObject {
+ public:
+ explicit RegExpNode(Zone* zone)
+ : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
+ bm_info_[0] = bm_info_[1] = NULL;
+ }
+ virtual ~RegExpNode();
+ virtual void Accept(NodeVisitor* visitor) = 0;
+ // Generates a goto to this node or actually generates the code at this point.
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
+ // How many characters must this node consume at a minimum in order to
+ // succeed. If we have found at least 'still_to_find' characters that
+ // must be consumed there is no need to ask any following nodes whether
+ // they are sure to eat any more characters. The not_at_start argument is
+ // used to indicate that we know we are not at the start of the input. In
+ // this case anchored branches will always fail and can be ignored when
+ // determining how many characters are consumed on success.
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
+ // Emits some quick code that checks whether the preloaded characters match.
+ // Falls through on certain failure, jumps to the label on possible success.
+ // If the node cannot make a quick check it does nothing and returns false.
+ bool EmitQuickCheck(RegExpCompiler* compiler,
+ Trace* bounds_check_trace,
+ Trace* trace,
+ bool preload_has_checked_bounds,
+ Label* on_possible_success,
+ QuickCheckDetails* details_return,
+ bool fall_through_on_failure);
+ // For a given number of characters this returns a mask and a value. The
+ // next n characters are anded with the mask and compared with the value.
+ // A comparison failure indicates the node cannot match the next n characters.
+ // A comparison success indicates the node may match.
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) = 0;
+ static const int kNodeIsTooComplexForGreedyLoops = -1;
+ virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
+ // Only returns the successor for a text node of length 1 that matches any
+ // character and that has no guards on it.
+ virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
+ RegExpCompiler* compiler) {
+ return NULL;
+ }
+
+ // Collects information on the possible code units (mod 128) that can match if
+ // we look forward. This is used for a Boyer-Moore-like string searching
+ // implementation. TODO(erikcorry): This should share more code with
+ // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
+ // the number of nodes we are willing to look at in order to create this data.
+ static const int kRecursionBudget = 200;
+ bool KeepRecursing(RegExpCompiler* compiler);
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ UNREACHABLE();
+ }
+
+ // If we know that the input is one-byte then there are some nodes that can
+ // never match. This method returns a node that can be substituted for
+ // itself, or NULL if the node can never match.
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
+ return this;
+ }
+ // Helper for FilterOneByte.
+ RegExpNode* replacement() {
+ DCHECK(info()->replacement_calculated);
+ return replacement_;
+ }
+ RegExpNode* set_replacement(RegExpNode* replacement) {
+ info()->replacement_calculated = true;
+ replacement_ = replacement;
+ return replacement; // For convenience.
+ }
+
+ // We want to avoid recalculating the lookahead info, so we store it on the
+ // node. Only info that is for this node is stored. We can tell that the
+ // info is for this node when offset == 0, so the information is calculated
+ // relative to this node.
+ void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
+ if (offset == 0) set_bm_info(not_at_start, bm);
+ }
+
+ Label* label() { return &label_; }
+ // If non-generic code is generated for a node (i.e. the node is not at the
+ // start of the trace) then it cannot be reused. This variable sets a limit
+ // on how often we allow that to happen before we insist on starting a new
+ // trace and generating generic code for a node that can be reused by flushing
+ // the deferred actions in the current trace and generating a goto.
+ static const int kMaxCopiesCodeGenerated = 10;
+
+ bool on_work_list() { return on_work_list_; }
+ void set_on_work_list(bool value) { on_work_list_ = value; }
+
+ NodeInfo* info() { return &info_; }
+
+ BoyerMooreLookahead* bm_info(bool not_at_start) {
+ return bm_info_[not_at_start ? 1 : 0];
+ }
+
+ Zone* zone() const { return zone_; }
+
+ protected:
+ enum LimitResult { DONE, CONTINUE };
+ RegExpNode* replacement_;
+
+ LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
+
+ void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
+ bm_info_[not_at_start ? 1 : 0] = bm;
+ }
+
+ private:
+ static const int kFirstCharBudget = 10;
+ Label label_;
+ bool on_work_list_;
+ NodeInfo info_;
+ // This variable keeps track of how many times code has been generated for
+ // this node (in different traces). We don't keep track of where the
+ // generated code is located unless the code is generated at the start of
+ // a trace, in which case it is generic and can be reused by flushing the
+ // deferred operations in the current trace and generating a goto.
+ int trace_count_;
+ BoyerMooreLookahead* bm_info_[2];
+
+ Zone* zone_;
+};
+
+
+// A simple closed interval.
+class Interval {
+ public:
+ Interval() : from_(kNone), to_(kNone) { }
+ Interval(int from, int to) : from_(from), to_(to) { }
+ Interval Union(Interval that) {
+ if (that.from_ == kNone)
+ return *this;
+ else if (from_ == kNone)
+ return that;
+ else
+ return Interval(Min(from_, that.from_), Max(to_, that.to_));
+ }
+ bool Contains(int value) {
+ return (from_ <= value) && (value <= to_);
+ }
+ bool is_empty() { return from_ == kNone; }
+ int from() const { return from_; }
+ int to() const { return to_; }
+ static Interval Empty() { return Interval(); }
+ static const int kNone = -1;
+ private:
+ int from_;
+ int to_;
+};
+
+
+class SeqRegExpNode: public RegExpNode {
+ public:
+ explicit SeqRegExpNode(RegExpNode* on_success)
+ : RegExpNode(on_success->zone()), on_success_(on_success) { }
+ RegExpNode* on_success() { return on_success_; }
+ void set_on_success(RegExpNode* node) { on_success_ = node; }
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
+ if (offset == 0) set_bm_info(not_at_start, bm);
+ }
+
+ protected:
+ RegExpNode* FilterSuccessor(int depth, bool ignore_case);
+
+ private:
+ RegExpNode* on_success_;
+};
+
+
+class ActionNode: public SeqRegExpNode {
+ public:
+ enum ActionType {
+ SET_REGISTER,
+ INCREMENT_REGISTER,
+ STORE_POSITION,
+ BEGIN_SUBMATCH,
+ POSITIVE_SUBMATCH_SUCCESS,
+ EMPTY_MATCH_CHECK,
+ CLEAR_CAPTURES
+ };
+ static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
+ static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
+ static ActionNode* StorePosition(int reg,
+ bool is_capture,
+ RegExpNode* on_success);
+ static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
+ static ActionNode* BeginSubmatch(int stack_pointer_reg,
+ int position_reg,
+ RegExpNode* on_success);
+ static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
+ int restore_reg,
+ int clear_capture_count,
+ int clear_capture_from,
+ RegExpNode* on_success);
+ static ActionNode* EmptyMatchCheck(int start_register,
+ int repetition_register,
+ int repetition_limit,
+ RegExpNode* on_success);
+ virtual void Accept(NodeVisitor* visitor);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start) {
+ return on_success()->GetQuickCheckDetails(
+ details, compiler, filled_in, not_at_start);
+ }
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start);
+ ActionType action_type() { return action_type_; }
+ // TODO(erikcorry): We should allow some action nodes in greedy loops.
+ virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
+
+ private:
+ union {
+ struct {
+ int reg;
+ int value;
+ } u_store_register;
+ struct {
+ int reg;
+ } u_increment_register;
+ struct {
+ int reg;
+ bool is_capture;
+ } u_position_register;
+ struct {
+ int stack_pointer_register;
+ int current_position_register;
+ int clear_register_count;
+ int clear_register_from;
+ } u_submatch;
+ struct {
+ int start_register;
+ int repetition_register;
+ int repetition_limit;
+ } u_empty_match_check;
+ struct {
+ int range_from;
+ int range_to;
+ } u_clear_captures;
+ } data_;
+ ActionNode(ActionType action_type, RegExpNode* on_success)
+ : SeqRegExpNode(on_success),
+ action_type_(action_type) { }
+ ActionType action_type_;
+ friend class DotPrinter;
+};
+
+
+class TextNode: public SeqRegExpNode {
+ public:
+ TextNode(ZoneList<TextElement>* elms,
+ RegExpNode* on_success)
+ : SeqRegExpNode(on_success),
+ elms_(elms) { }
+ TextNode(RegExpCharacterClass* that,
+ RegExpNode* on_success)
+ : SeqRegExpNode(on_success),
+ elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
+ elms_->Add(TextElement::CharClass(that), zone());
+ }
+ virtual void Accept(NodeVisitor* visitor);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start);
+ ZoneList<TextElement>* elements() { return elms_; }
+ void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
+ virtual int GreedyLoopTextLength();
+ virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
+ RegExpCompiler* compiler);
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start);
+ void CalculateOffsets();
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+
+ private:
+ enum TextEmitPassType {
+ NON_LATIN1_MATCH, // Check for characters that can't match.
+ SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
+ NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
+ CASE_CHARACTER_MATCH, // Case-independent single character check.
+ CHARACTER_CLASS_MATCH // Character class.
+ };
+ static bool SkipPass(int pass, bool ignore_case);
+ static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
+ static const int kLastPass = CHARACTER_CLASS_MATCH;
+ void TextEmitPass(RegExpCompiler* compiler,
+ TextEmitPassType pass,
+ bool preloaded,
+ Trace* trace,
+ bool first_element_checked,
+ int* checked_up_to);
+ int Length();
+ ZoneList<TextElement>* elms_;
+};
+
+
+class AssertionNode: public SeqRegExpNode {
+ public:
+ enum AssertionType {
+ AT_END,
+ AT_START,
+ AT_BOUNDARY,
+ AT_NON_BOUNDARY,
+ AFTER_NEWLINE
+ };
+ static AssertionNode* AtEnd(RegExpNode* on_success) {
+ return new(on_success->zone()) AssertionNode(AT_END, on_success);
+ }
+ static AssertionNode* AtStart(RegExpNode* on_success) {
+ return new(on_success->zone()) AssertionNode(AT_START, on_success);
+ }
+ static AssertionNode* AtBoundary(RegExpNode* on_success) {
+ return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
+ }
+ static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
+ return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
+ }
+ static AssertionNode* AfterNewline(RegExpNode* on_success) {
+ return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
+ }
+ virtual void Accept(NodeVisitor* visitor);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start);
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start);
+ AssertionType assertion_type() { return assertion_type_; }
+
+ private:
+ void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
+ enum IfPrevious { kIsNonWord, kIsWord };
+ void BacktrackIfPrevious(RegExpCompiler* compiler,
+ Trace* trace,
+ IfPrevious backtrack_if_previous);
+ AssertionNode(AssertionType t, RegExpNode* on_success)
+ : SeqRegExpNode(on_success), assertion_type_(t) { }
+ AssertionType assertion_type_;
+};
+
+
+class BackReferenceNode: public SeqRegExpNode {
+ public:
+ BackReferenceNode(int start_reg,
+ int end_reg,
+ RegExpNode* on_success)
+ : SeqRegExpNode(on_success),
+ start_reg_(start_reg),
+ end_reg_(end_reg) { }
+ virtual void Accept(NodeVisitor* visitor);
+ int start_register() { return start_reg_; }
+ int end_register() { return end_reg_; }
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find,
+ int recursion_depth,
+ bool not_at_start);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ return;
+ }
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start);
+
+ private:
+ int start_reg_;
+ int end_reg_;
+};
+
+
+class EndNode: public RegExpNode {
+ public:
+ enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
+ explicit EndNode(Action action, Zone* zone)
+ : RegExpNode(zone), action_(action) { }
+ virtual void Accept(NodeVisitor* visitor);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find,
+ int recursion_depth,
+ bool not_at_start) { return 0; }
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ // Returning 0 from EatsAtLeast should ensure we never get here.
+ UNREACHABLE();
+ }
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ // Returning 0 from EatsAtLeast should ensure we never get here.
+ UNREACHABLE();
+ }
+
+ private:
+ Action action_;
+};
+
+
+class NegativeSubmatchSuccess: public EndNode {
+ public:
+ NegativeSubmatchSuccess(int stack_pointer_reg,
+ int position_reg,
+ int clear_capture_count,
+ int clear_capture_start,
+ Zone* zone)
+ : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
+ stack_pointer_register_(stack_pointer_reg),
+ current_position_register_(position_reg),
+ clear_capture_count_(clear_capture_count),
+ clear_capture_start_(clear_capture_start) { }
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+
+ private:
+ int stack_pointer_register_;
+ int current_position_register_;
+ int clear_capture_count_;
+ int clear_capture_start_;
+};
+
+
+class Guard: public ZoneObject {
+ public:
+ enum Relation { LT, GEQ };
+ Guard(int reg, Relation op, int value)
+ : reg_(reg),
+ op_(op),
+ value_(value) { }
+ int reg() { return reg_; }
+ Relation op() { return op_; }
+ int value() { return value_; }
+
+ private:
+ int reg_;
+ Relation op_;
+ int value_;
+};
+
+
+class GuardedAlternative {
+ public:
+ explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
+ void AddGuard(Guard* guard, Zone* zone);
+ RegExpNode* node() { return node_; }
+ void set_node(RegExpNode* node) { node_ = node; }
+ ZoneList<Guard*>* guards() { return guards_; }
+
+ private:
+ RegExpNode* node_;
+ ZoneList<Guard*>* guards_;
+};
+
+
+class AlternativeGeneration;
+
+
+class ChoiceNode: public RegExpNode {
+ public:
+ explicit ChoiceNode(int expected_size, Zone* zone)
+ : RegExpNode(zone),
+ alternatives_(new(zone)
+ ZoneList<GuardedAlternative>(expected_size, zone)),
+ table_(NULL),
+ not_at_start_(false),
+ being_calculated_(false) { }
+ virtual void Accept(NodeVisitor* visitor);
+ void AddAlternative(GuardedAlternative node) {
+ alternatives()->Add(node, zone());
+ }
+ ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
+ DispatchTable* GetTable(bool ignore_case);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+ int EatsAtLeastHelper(int still_to_find,
+ int budget,
+ RegExpNode* ignore_this_node,
+ bool not_at_start);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start);
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start);
+
+ bool being_calculated() { return being_calculated_; }
+ bool not_at_start() { return not_at_start_; }
+ void set_not_at_start() { not_at_start_ = true; }
+ void set_being_calculated(bool b) { being_calculated_ = b; }
+ virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
+ return true;
+ }
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+
+ protected:
+ int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
+ ZoneList<GuardedAlternative>* alternatives_;
+
+ private:
+ friend class DispatchTableConstructor;
+ friend class Analysis;
+ void GenerateGuard(RegExpMacroAssembler* macro_assembler,
+ Guard* guard,
+ Trace* trace);
+ int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
+ void EmitOutOfLineContinuation(RegExpCompiler* compiler,
+ Trace* trace,
+ GuardedAlternative alternative,
+ AlternativeGeneration* alt_gen,
+ int preload_characters,
+ bool next_expects_preload);
+ void SetUpPreLoad(RegExpCompiler* compiler,
+ Trace* current_trace,
+ PreloadState* preloads);
+ void AssertGuardsMentionRegisters(Trace* trace);
+ int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
+ Trace* EmitGreedyLoop(RegExpCompiler* compiler,
+ Trace* trace,
+ AlternativeGenerationList* alt_gens,
+ PreloadState* preloads,
+ GreedyLoopState* greedy_loop_state,
+ int text_length);
+ void EmitChoices(RegExpCompiler* compiler,
+ AlternativeGenerationList* alt_gens,
+ int first_choice,
+ Trace* trace,
+ PreloadState* preloads);
+ DispatchTable* table_;
+ // If true, this node is never checked at the start of the input.
+ // Allows a new trace to start with at_start() set to false.
+ bool not_at_start_;
+ bool being_calculated_;
+};
+
+
+class NegativeLookaheadChoiceNode: public ChoiceNode {
+ public:
+ explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
+ GuardedAlternative then_do_this,
+ Zone* zone)
+ : ChoiceNode(2, zone) {
+ AddAlternative(this_must_fail);
+ AddAlternative(then_do_this);
+ }
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start);
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start) {
+ alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
+ not_at_start);
+ if (offset == 0) set_bm_info(not_at_start, bm);
+ }
+ // For a negative lookahead we don't emit the quick check for the
+ // alternative that is expected to fail. This is because quick check code
+ // starts by loading enough characters for the alternative that takes fewest
+ // characters, but on a negative lookahead the negative branch did not take
+ // part in that calculation (EatsAtLeast) so the assumptions don't hold.
+ virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
+ return !is_first;
+ }
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+};
+
+
+class LoopChoiceNode: public ChoiceNode {
+ public:
+ explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
+ : ChoiceNode(2, zone),
+ loop_node_(NULL),
+ continue_node_(NULL),
+ body_can_be_zero_length_(body_can_be_zero_length)
+ { }
+ void AddLoopAlternative(GuardedAlternative alt);
+ void AddContinueAlternative(GuardedAlternative alt);
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace);
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start);
+ virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
+ BoyerMooreLookahead* bm, bool not_at_start);
+ RegExpNode* loop_node() { return loop_node_; }
+ RegExpNode* continue_node() { return continue_node_; }
+ bool body_can_be_zero_length() { return body_can_be_zero_length_; }
+ virtual void Accept(NodeVisitor* visitor);
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
+
+ private:
+ // AddAlternative is made private for loop nodes because alternatives
+ // should not be added freely, we need to keep track of which node
+ // goes back to the node itself.
+ void AddAlternative(GuardedAlternative node) {
+ ChoiceNode::AddAlternative(node);
+ }
+
+ RegExpNode* loop_node_;
+ RegExpNode* continue_node_;
+ bool body_can_be_zero_length_;
+};
+
+
+// Improve the speed that we scan for an initial point where a non-anchored
+// regexp can match by using a Boyer-Moore-like table. This is done by
+// identifying non-greedy non-capturing loops in the nodes that eat any
+// character one at a time. For example in the middle of the regexp
+// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
+// inserted at the start of any non-anchored regexp.
+//
+// When we have found such a loop we look ahead in the nodes to find the set of
+// characters that can come at given distances. For example for the regexp
+// /.?foo/ we know that there are at least 3 characters ahead of us, and the
+// sets of characters that can occur are [any, [f, o], [o]]. We find a range in
+// the lookahead info where the set of characters is reasonably constrained. In
+// our example this is from index 1 to 2 (0 is not constrained). We can now
+// look 3 characters ahead and if we don't find one of [f, o] (the union of
+// [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
+//
+// For Unicode input strings we do the same, but modulo 128.
+//
+// We also look at the first string fed to the regexp and use that to get a hint
+// of the character frequencies in the inputs. This affects the assessment of
+// whether the set of characters is 'reasonably constrained'.
+//
+// We also have another lookahead mechanism (called quick check in the code),
+// which uses a wide load of multiple characters followed by a mask and compare
+// to determine whether a match is possible at this point.
+enum ContainedInLattice {
+ kNotYet = 0,
+ kLatticeIn = 1,
+ kLatticeOut = 2,
+ kLatticeUnknown = 3 // Can also mean both in and out.
+};
+
+
+inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
+ return static_cast<ContainedInLattice>(a | b);
+}
+
+
+ContainedInLattice AddRange(ContainedInLattice a,
+ const int* ranges,
+ int ranges_size,
+ Interval new_range);
+
+
+class BoyerMoorePositionInfo : public ZoneObject {
+ public:
+ explicit BoyerMoorePositionInfo(Zone* zone)
+ : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
+ map_count_(0),
+ w_(kNotYet),
+ s_(kNotYet),
+ d_(kNotYet),
+ surrogate_(kNotYet) {
+ for (int i = 0; i < kMapSize; i++) {
+ map_->Add(false, zone);
+ }
+ }
+
+ bool& at(int i) { return map_->at(i); }
+
+ static const int kMapSize = 128;
+ static const int kMask = kMapSize - 1;
+
+ int map_count() const { return map_count_; }
+
+ void Set(int character);
+ void SetInterval(const Interval& interval);
+ void SetAll();
+ bool is_non_word() { return w_ == kLatticeOut; }
+ bool is_word() { return w_ == kLatticeIn; }
+
+ private:
+ ZoneList<bool>* map_;
+ int map_count_; // Number of set bits in the map.
+ ContainedInLattice w_; // The \w character class.
+ ContainedInLattice s_; // The \s character class.
+ ContainedInLattice d_; // The \d character class.
+ ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
+};
+
+
+class BoyerMooreLookahead : public ZoneObject {
+ public:
+ BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
+
+ int length() { return length_; }
+ int max_char() { return max_char_; }
+ RegExpCompiler* compiler() { return compiler_; }
+
+ int Count(int map_number) {
+ return bitmaps_->at(map_number)->map_count();
+ }
+
+ BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
+
+ void Set(int map_number, int character) {
+ if (character > max_char_) return;
+ BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
+ info->Set(character);
+ }
+
+ void SetInterval(int map_number, const Interval& interval) {
+ if (interval.from() > max_char_) return;
+ BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
+ if (interval.to() > max_char_) {
+ info->SetInterval(Interval(interval.from(), max_char_));
+ } else {
+ info->SetInterval(interval);
+ }
+ }
+
+ void SetAll(int map_number) {
+ bitmaps_->at(map_number)->SetAll();
+ }
+
+ void SetRest(int from_map) {
+ for (int i = from_map; i < length_; i++) SetAll(i);
+ }
+ void EmitSkipInstructions(RegExpMacroAssembler* masm);
+
+ private:
+ // This is the value obtained by EatsAtLeast. If we do not have at least this
+ // many characters left in the sample string then the match is bound to fail.
+ // Therefore it is OK to read a character this far ahead of the current match
+ // point.
+ int length_;
+ RegExpCompiler* compiler_;
+ // 0xff for Latin1, 0xffff for UTF-16.
+ int max_char_;
+ ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
+
+ int GetSkipTable(int min_lookahead,
+ int max_lookahead,
+ Handle<ByteArray> boolean_skip_table);
+ bool FindWorthwhileInterval(int* from, int* to);
+ int FindBestInterval(
+ int max_number_of_chars, int old_biggest_points, int* from, int* to);
+};
+
+
+// There are many ways to generate code for a node. This class encapsulates
+// the current way we should be generating. In other words it encapsulates
+// the current state of the code generator. The effect of this is that we
+// generate code for paths that the matcher can take through the regular
+// expression. A given node in the regexp can be code-generated several times
+// as it can be part of several traces. For example for the regexp:
+// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
+// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
+// to match foo is generated only once (the traces have a common prefix). The
+// code to store the capture is deferred and generated (twice) after the places
+// where baz has been matched.
+class Trace {
+ public:
+ // A value for a property that is either known to be true, know to be false,
+ // or not known.
+ enum TriBool {
+ UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
+ };
+
+ class DeferredAction {
+ public:
+ DeferredAction(ActionNode::ActionType action_type, int reg)
+ : action_type_(action_type), reg_(reg), next_(NULL) { }
+ DeferredAction* next() { return next_; }
+ bool Mentions(int reg);
+ int reg() { return reg_; }
+ ActionNode::ActionType action_type() { return action_type_; }
+ private:
+ ActionNode::ActionType action_type_;
+ int reg_;
+ DeferredAction* next_;
+ friend class Trace;
+ };
+
+ class DeferredCapture : public DeferredAction {
+ public:
+ DeferredCapture(int reg, bool is_capture, Trace* trace)
+ : DeferredAction(ActionNode::STORE_POSITION, reg),
+ cp_offset_(trace->cp_offset()),
+ is_capture_(is_capture) { }
+ int cp_offset() { return cp_offset_; }
+ bool is_capture() { return is_capture_; }
+ private:
+ int cp_offset_;
+ bool is_capture_;
+ void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
+ };
+
+ class DeferredSetRegister : public DeferredAction {
+ public:
+ DeferredSetRegister(int reg, int value)
+ : DeferredAction(ActionNode::SET_REGISTER, reg),
+ value_(value) { }
+ int value() { return value_; }
+ private:
+ int value_;
+ };
+
+ class DeferredClearCaptures : public DeferredAction {
+ public:
+ explicit DeferredClearCaptures(Interval range)
+ : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
+ range_(range) { }
+ Interval range() { return range_; }
+ private:
+ Interval range_;
+ };
+
+ class DeferredIncrementRegister : public DeferredAction {
+ public:
+ explicit DeferredIncrementRegister(int reg)
+ : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
+ };
+
+ Trace()
+ : cp_offset_(0),
+ actions_(NULL),
+ backtrack_(NULL),
+ stop_node_(NULL),
+ loop_label_(NULL),
+ characters_preloaded_(0),
+ bound_checked_up_to_(0),
+ flush_budget_(100),
+ at_start_(UNKNOWN) { }
+
+ // End the trace. This involves flushing the deferred actions in the trace
+ // and pushing a backtrack location onto the backtrack stack. Once this is
+ // done we can start a new trace or go to one that has already been
+ // generated.
+ void Flush(RegExpCompiler* compiler, RegExpNode* successor);
+ int cp_offset() { return cp_offset_; }
+ DeferredAction* actions() { return actions_; }
+ // A trivial trace is one that has no deferred actions or other state that
+ // affects the assumptions used when generating code. There is no recorded
+ // backtrack location in a trivial trace, so with a trivial trace we will
+ // generate code that, on a failure to match, gets the backtrack location
+ // from the backtrack stack rather than using a direct jump instruction. We
+ // always start code generation with a trivial trace and non-trivial traces
+ // are created as we emit code for nodes or add to the list of deferred
+ // actions in the trace. The location of the code generated for a node using
+ // a trivial trace is recorded in a label in the node so that gotos can be
+ // generated to that code.
+ bool is_trivial() {
+ return backtrack_ == NULL &&
+ actions_ == NULL &&
+ cp_offset_ == 0 &&
+ characters_preloaded_ == 0 &&
+ bound_checked_up_to_ == 0 &&
+ quick_check_performed_.characters() == 0 &&
+ at_start_ == UNKNOWN;
+ }
+ TriBool at_start() { return at_start_; }
+ void set_at_start(bool at_start) {
+ at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
+ }
+ Label* backtrack() { return backtrack_; }
+ Label* loop_label() { return loop_label_; }
+ RegExpNode* stop_node() { return stop_node_; }
+ int characters_preloaded() { return characters_preloaded_; }
+ int bound_checked_up_to() { return bound_checked_up_to_; }
+ int flush_budget() { return flush_budget_; }
+ QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
+ bool mentions_reg(int reg);
+ // Returns true if a deferred position store exists to the specified
+ // register and stores the offset in the out-parameter. Otherwise
+ // returns false.
+ bool GetStoredPosition(int reg, int* cp_offset);
+ // These set methods and AdvanceCurrentPositionInTrace should be used only on
+ // new traces - the intention is that traces are immutable after creation.
+ void add_action(DeferredAction* new_action) {
+ DCHECK(new_action->next_ == NULL);
+ new_action->next_ = actions_;
+ actions_ = new_action;
+ }
+ void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
+ void set_stop_node(RegExpNode* node) { stop_node_ = node; }
+ void set_loop_label(Label* label) { loop_label_ = label; }
+ void set_characters_preloaded(int count) { characters_preloaded_ = count; }
+ void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
+ void set_flush_budget(int to) { flush_budget_ = to; }
+ void set_quick_check_performed(QuickCheckDetails* d) {
+ quick_check_performed_ = *d;
+ }
+ void InvalidateCurrentCharacter();
+ void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
+
+ private:
+ int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
+ void PerformDeferredActions(RegExpMacroAssembler* macro,
+ int max_register,
+ const OutSet& affected_registers,
+ OutSet* registers_to_pop,
+ OutSet* registers_to_clear,
+ Zone* zone);
+ void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
+ int max_register,
+ const OutSet& registers_to_pop,
+ const OutSet& registers_to_clear);
+ int cp_offset_;
+ DeferredAction* actions_;
+ Label* backtrack_;
+ RegExpNode* stop_node_;
+ Label* loop_label_;
+ int characters_preloaded_;
+ int bound_checked_up_to_;
+ QuickCheckDetails quick_check_performed_;
+ int flush_budget_;
+ TriBool at_start_;
+};
+
+
+class GreedyLoopState {
+ public:
+ explicit GreedyLoopState(bool not_at_start);
+
+ Label* label() { return &label_; }
+ Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
+
+ private:
+ Label label_;
+ Trace counter_backtrack_trace_;
+};
+
+
+struct PreloadState {
+ static const int kEatsAtLeastNotYetInitialized = -1;
+ bool preload_is_current_;
+ bool preload_has_checked_bounds_;
+ int preload_characters_;
+ int eats_at_least_;
+ void init() {
+ eats_at_least_ = kEatsAtLeastNotYetInitialized;
+ }
+};
+
+
+class NodeVisitor {
+ public:
+ virtual ~NodeVisitor() { }
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that) = 0;
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+ virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
+};
+
+
+// Node visitor used to add the start set of the alternatives to the
+// dispatch table of a choice node.
+class DispatchTableConstructor: public NodeVisitor {
+ public:
+ DispatchTableConstructor(DispatchTable* table, bool ignore_case,
+ Zone* zone)
+ : table_(table),
+ choice_index_(-1),
+ ignore_case_(ignore_case),
+ zone_(zone) { }
+
+ void BuildTable(ChoiceNode* node);
+
+ void AddRange(CharacterRange range) {
+ table()->AddRange(range, choice_index_, zone_);
+ }
+
+ void AddInverse(ZoneList<CharacterRange>* ranges);
+
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+
+ DispatchTable* table() { return table_; }
+ void set_choice_index(int value) { choice_index_ = value; }
+
+ protected:
+ DispatchTable* table_;
+ int choice_index_;
+ bool ignore_case_;
+ Zone* zone_;
+};
+
+
+// Assertion propagation moves information about assertions such as
+// \b to the affected nodes. For instance, in /.\b./ information must
+// be propagated to the first '.' that whatever follows needs to know
+// if it matched a word or a non-word, and to the second '.' that it
+// has to check if it succeeds a word or non-word. In this case the
+// result will be something like:
+//
+// +-------+ +------------+
+// | . | | . |
+// +-------+ ---> +------------+
+// | word? | | check word |
+// +-------+ +------------+
+class Analysis: public NodeVisitor {
+ public:
+ Analysis(Isolate* isolate, bool ignore_case, bool is_one_byte)
+ : isolate_(isolate),
+ ignore_case_(ignore_case),
+ is_one_byte_(is_one_byte),
+ error_message_(NULL) {}
+ void EnsureAnalyzed(RegExpNode* node);
+
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+ virtual void VisitLoopChoice(LoopChoiceNode* that);
+
+ bool has_failed() { return error_message_ != NULL; }
+ const char* error_message() {
+ DCHECK(error_message_ != NULL);
+ return error_message_;
+ }
+ void fail(const char* error_message) {
+ error_message_ = error_message;
+ }
+
+ Isolate* isolate() const { return isolate_; }
+
+ private:
+ Isolate* isolate_;
+ bool ignore_case_;
+ bool is_one_byte_;
+ const char* error_message_;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
+};
+
+
+struct RegExpCompileData {
+ RegExpCompileData()
+ : tree(NULL),
+ node(NULL),
+ simple(true),
+ contains_anchor(false),
+ capture_count(0) { }
+ RegExpTree* tree;
+ RegExpNode* node;
+ bool simple;
+ bool contains_anchor;
+ Handle<String> error;
+ int capture_count;
+};
+
+
+class RegExpEngine: public AllStatic {
+ public:
+ struct CompilationResult {
+ CompilationResult(Isolate* isolate, const char* error_message)
+ : error_message(error_message),
+ code(isolate->heap()->the_hole_value()),
+ num_registers(0) {}
+ CompilationResult(Object* code, int registers)
+ : error_message(NULL), code(code), num_registers(registers) {}
+ const char* error_message;
+ Object* code;
+ int num_registers;
+ };
+
+ static CompilationResult Compile(Isolate* isolate, Zone* zone,
+ RegExpCompileData* input, bool ignore_case,
+ bool global, bool multiline, bool sticky,
+ Handle<String> pattern,
+ Handle<String> sample_subject,
+ bool is_one_byte);
+
+ static bool TooMuchRegExpCode(Handle<String> pattern);
+
+ static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
+};
+
+
+} } // namespace v8::internal
+
+#endif // V8_REGEXP_JSREGEXP_H_
--- /dev/null
+paul.lind@imgtec.com
+gergely.kis@imgtec.com
+akos.palfi@imgtec.com
+balazs.kilvady@imgtec.com
+dusan.milosavljevic@imgtec.com
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_MIPS
+
+#include "src/regexp/mips/regexp-macro-assembler-mips.h"
+
+#include "src/code-stubs.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - t7 : Temporarily stores the index of capture start after a matching pass
+ * for a global regexp.
+ * - t1 : Pointer to current code object (Code*) including heap object tag.
+ * - t2 : Current position in input, as negative offset from end of string.
+ * Please notice that this is the byte offset, not the character offset!
+ * - t3 : Currently loaded character. Must be loaded using
+ * LoadCurrentCharacter before using any of the dispatch methods.
+ * - t4 : Points to tip of backtrack stack
+ * - t5 : Unused.
+ * - t6 : End of input (points to byte after last character in input).
+ * - fp : Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - sp : Points to tip of C stack.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * The stack will have the following structure:
+ *
+ * - fp[64] Isolate* isolate (address of the current isolate)
+ * - fp[60] direct_call (if 1, direct call from JavaScript code,
+ * if 0, call through the runtime system).
+ * - fp[56] stack_area_base (High end of the memory area to use as
+ * backtracking stack).
+ * - fp[52] capture array size (may fit multiple sets of matches)
+ * - fp[48] int* capture_array (int[num_saved_registers_], for output).
+ * - fp[44] secondary link/return address used by native call.
+ * --- sp when called ---
+ * - fp[40] return address (lr).
+ * - fp[36] old frame pointer (r11).
+ * - fp[0..32] backup of registers s0..s7.
+ * --- frame pointer ----
+ * - fp[-4] end of input (address of end of string).
+ * - fp[-8] start of input (address of first character in string).
+ * - fp[-12] start index (character index of start).
+ * - fp[-16] void* input_string (location of a handle containing the string).
+ * - fp[-20] success counter (only for global regexps to count matches).
+ * - fp[-24] Offset of location before start of input (effectively character
+ * position -1). Used to initialize capture registers to a
+ * non-position.
+ * - fp[-28] At start (if 1, we are starting at the start of the
+ * string, otherwise 0)
+ * - fp[-32] register 0 (Only positions must be stored in the first
+ * - register 1 num_saved_registers_ registers)
+ * - ...
+ * - register num_registers-1
+ * --- sp ---
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ * int start_index,
+ * Address start,
+ * Address end,
+ * Address secondary_return_address, // Only used by native call.
+ * int* capture_output_array,
+ * byte* stack_area_base,
+ * bool direct_call = false)
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in mips/simulator-mips.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the ra register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
+ Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_(),
+ internal_failure_label_() {
+ DCHECK_EQ(0, registers_to_save % 2);
+ __ jmp(&entry_label_); // We'll write the entry code later.
+ // If the code gets too big or corrupted, an internal exception will be
+ // raised, and we will exit right away.
+ __ bind(&internal_failure_label_);
+ __ li(v0, Operand(FAILURE));
+ __ Ret();
+ __ bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
+ delete masm_;
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+ internal_failure_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerMIPS::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ Addu(current_input_offset(),
+ current_input_offset(), Operand(by * char_size()));
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
+ DCHECK(reg >= 0);
+ DCHECK(reg < num_registers_);
+ if (by != 0) {
+ __ lw(a0, register_location(reg));
+ __ Addu(a0, a0, Operand(by));
+ __ sw(a0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::Backtrack() {
+ CheckPreemption();
+ // Pop Code* offset from backtrack stack, add Code* and jump to location.
+ Pop(a0);
+ __ Addu(a0, a0, code_pointer());
+ __ Jump(a0);
+}
+
+
+void RegExpMacroAssemblerMIPS::Bind(Label* label) {
+ __ bind(label);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
+ BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
+ BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
+ Label not_at_start;
+ // Did we start the match at the start of the string at all?
+ __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
+ BranchOrBacktrack(¬_at_start, ne, a0, Operand(zero_reg));
+
+ // If we did, are we still at the start of the input?
+ __ lw(a1, MemOperand(frame_pointer(), kInputStart));
+ __ Addu(a0, end_of_input_address(), Operand(current_input_offset()));
+ BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
+ __ bind(¬_at_start);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) {
+ // Did we start the match at the start of the string at all?
+ __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
+ BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg));
+ // If we did, are we still at the start of the input?
+ __ lw(a1, MemOperand(frame_pointer(), kInputStart));
+ __ Addu(a0, end_of_input_address(), Operand(current_input_offset()));
+ BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
+ BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
+ Label backtrack_non_equal;
+ __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
+ __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
+ __ Addu(backtrack_stackpointer(),
+ backtrack_stackpointer(),
+ Operand(kPointerSize));
+ __ bind(&backtrack_non_equal);
+ BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ __ lw(a0, register_location(start_reg)); // Index of start of capture.
+ __ lw(a1, register_location(start_reg + 1)); // Index of end of capture.
+ __ Subu(a1, a1, a0); // Length of capture.
+
+ // If length is zero, either the capture is empty or it is not participating.
+ // In either case succeed immediately.
+ __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
+
+ __ Addu(t5, a1, current_input_offset());
+ // Check that there are enough characters left in the input.
+ BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
+
+ if (mode_ == LATIN1) {
+ Label success;
+ Label fail;
+ Label loop_check;
+
+ // a0 - offset of start of capture.
+ // a1 - length of capture.
+ __ Addu(a0, a0, Operand(end_of_input_address()));
+ __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
+ __ Addu(a1, a0, Operand(a1));
+
+ // a0 - Address of start of capture.
+ // a1 - Address of end of capture.
+ // a2 - Address of current input position.
+
+ Label loop;
+ __ bind(&loop);
+ __ lbu(a3, MemOperand(a0, 0));
+ __ addiu(a0, a0, char_size());
+ __ lbu(t0, MemOperand(a2, 0));
+ __ addiu(a2, a2, char_size());
+
+ __ Branch(&loop_check, eq, t0, Operand(a3));
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
+ __ Or(t0, t0, Operand(0x20)); // Also convert input character.
+ __ Branch(&fail, ne, t0, Operand(a3));
+ __ Subu(a3, a3, Operand('a'));
+ __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ Subu(a3, a3, Operand(224 - 'a'));
+ // Weren't Latin-1 letters.
+ __ Branch(&fail, hi, a3, Operand(254 - 224));
+ // Check for 247.
+ __ Branch(&fail, eq, a3, Operand(247 - 224));
+
+ __ bind(&loop_check);
+ __ Branch(&loop, lt, a0, Operand(a1));
+ __ jmp(&success);
+
+ __ bind(&fail);
+ GoTo(on_no_match);
+
+ __ bind(&success);
+ // Compute new value of character position after the matched part.
+ __ Subu(current_input_offset(), a2, end_of_input_address());
+ } else {
+ DCHECK(mode_ == UC16);
+ // Put regexp engine registers on stack.
+ RegList regexp_registers_to_retain = current_input_offset().bit() |
+ current_character().bit() | backtrack_stackpointer().bit();
+ __ MultiPush(regexp_registers_to_retain);
+
+ int argument_count = 4;
+ __ PrepareCallCFunction(argument_count, a2);
+
+ // a0 - offset of start of capture.
+ // a1 - length of capture.
+
+ // Put arguments into arguments registers.
+ // Parameters are
+ // a0: Address byte_offset1 - Address captured substring's start.
+ // a1: Address byte_offset2 - Address of current character position.
+ // a2: size_t byte_length - length of capture in bytes(!).
+ // a3: Isolate* isolate.
+
+ // Address of start of capture.
+ __ Addu(a0, a0, Operand(end_of_input_address()));
+ // Length of capture.
+ __ mov(a2, a1);
+ // Save length in callee-save register for use on return.
+ __ mov(s3, a1);
+ // Address of current input position.
+ __ Addu(a1, current_input_offset(), Operand(end_of_input_address()));
+ // Isolate.
+ __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
+
+ {
+ AllowExternalCallThatCantCauseGC scope(masm_);
+ ExternalReference function =
+ ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
+ __ CallCFunction(function, argument_count);
+ }
+
+ // Restore regexp engine registers.
+ __ MultiPop(regexp_registers_to_retain);
+ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+ __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+
+ // Check if function returned non-zero for success or zero for failure.
+ BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
+ // On success, increment position by length of capture.
+ __ Addu(current_input_offset(), current_input_offset(), Operand(s3));
+ }
+
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotBackReference(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ Label success;
+
+ // Find length of back-referenced capture.
+ __ lw(a0, register_location(start_reg));
+ __ lw(a1, register_location(start_reg + 1));
+ __ Subu(a1, a1, a0); // Length to check.
+ // Succeed on empty capture (including no capture).
+ __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
+
+ __ Addu(t5, a1, current_input_offset());
+ // Check that there are enough characters left in the input.
+ BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
+
+ // Compute pointers to match string and capture string.
+ __ Addu(a0, a0, Operand(end_of_input_address()));
+ __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
+ __ Addu(a1, a1, Operand(a0));
+
+ Label loop;
+ __ bind(&loop);
+ if (mode_ == LATIN1) {
+ __ lbu(a3, MemOperand(a0, 0));
+ __ addiu(a0, a0, char_size());
+ __ lbu(t0, MemOperand(a2, 0));
+ __ addiu(a2, a2, char_size());
+ } else {
+ DCHECK(mode_ == UC16);
+ __ lhu(a3, MemOperand(a0, 0));
+ __ addiu(a0, a0, char_size());
+ __ lhu(t0, MemOperand(a2, 0));
+ __ addiu(a2, a2, char_size());
+ }
+ BranchOrBacktrack(on_no_match, ne, a3, Operand(t0));
+ __ Branch(&loop, lt, a0, Operand(a1));
+
+ // Move current character position to position after match.
+ __ Subu(current_input_offset(), a2, end_of_input_address());
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
+ Label* on_not_equal) {
+ BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ __ And(a0, current_character(), Operand(mask));
+ Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
+ BranchOrBacktrack(on_equal, eq, a0, rhs);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal) {
+ __ And(a0, current_character(), Operand(mask));
+ Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
+ BranchOrBacktrack(on_not_equal, ne, a0, rhs);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ Subu(a0, current_character(), Operand(minus));
+ __ And(a0, a0, Operand(mask));
+ BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ __ Subu(a0, current_character(), Operand(from));
+ // Unsigned lower-or-same condition.
+ BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ __ Subu(a0, current_character(), Operand(from));
+ // Unsigned higher condition.
+ BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckBitInTable(
+ Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ li(a0, Operand(table));
+ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+ __ And(a1, current_character(), Operand(kTableSize - 1));
+ __ Addu(a0, a0, a1);
+ } else {
+ __ Addu(a0, a0, current_character());
+ }
+
+ __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
+ BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
+}
+
+
+bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check.
+ switch (type) {
+ case 's':
+ // Match space-characters.
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ __ Branch(&success, eq, current_character(), Operand(' '));
+ // Check range 0x09..0x0d.
+ __ Subu(a0, current_character(), Operand('\t'));
+ __ Branch(&success, ls, a0, Operand('\r' - '\t'));
+ // \u00a0 (NBSP).
+ BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
+ __ bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match Latin1 digits ('0'..'9').
+ __ Subu(a0, current_character(), Operand('0'));
+ BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
+ return true;
+ case 'D':
+ // Match non Latin1-digits.
+ __ Subu(a0, current_character(), Operand('0'));
+ BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
+ __ Xor(a0, current_character(), Operand(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
+ __ Subu(a0, a0, Operand(0x0b));
+ BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
+ if (mode_ == UC16) {
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ Subu(a0, a0, Operand(0x2028 - 0x0b));
+ BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
+ }
+ return true;
+ }
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
+ __ Xor(a0, current_character(), Operand(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
+ __ Subu(a0, a0, Operand(0x0b));
+ if (mode_ == LATIN1) {
+ BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
+ } else {
+ Label done;
+ BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ Subu(a0, a0, Operand(0x2028 - 0x0b));
+ BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
+ __ bind(&done);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ li(a0, Operand(map));
+ __ Addu(a0, a0, current_character());
+ __ lbu(a0, MemOperand(a0, 0));
+ BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ Branch(&done, hi, current_character(), Operand('z'));
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ li(a0, Operand(map));
+ __ Addu(a0, a0, current_character());
+ __ lbu(a0, MemOperand(a0, 0));
+ BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
+ if (mode_ != LATIN1) {
+ __ bind(&done);
+ }
+ return true;
+ }
+ case '*':
+ // Match any character.
+ return true;
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::Fail() {
+ __ li(v0, Operand(FAILURE));
+ __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
+ Label return_v0;
+ if (masm_->has_exception()) {
+ // If the code gets corrupted due to long regular expressions and lack of
+ // space on trampolines, an internal exception flag is set. If this case
+ // is detected, we will jump into exit sequence right away.
+ __ bind_to(&entry_label_, internal_failure_label_.pos());
+ } else {
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+
+ // Entry code:
+ __ bind(&entry_label_);
+
+ // Tell the system that we have a stack frame. Because the type is MANUAL,
+ // no is generated.
+ FrameScope scope(masm_, StackFrame::MANUAL);
+
+ // Actually emit code to start a new stack frame.
+ // Push arguments
+ // Save callee-save registers.
+ // Start new stack frame.
+ // Store link register in existing stack-cell.
+ // Order here should correspond to order of offset constants in header file.
+ RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
+ s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
+ RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
+ __ MultiPush(argument_registers | registers_to_retain | ra.bit());
+ // Set frame pointer in space for it if this is not a direct call
+ // from generated code.
+ __ Addu(frame_pointer(), sp, Operand(4 * kPointerSize));
+ __ mov(a0, zero_reg);
+ __ push(a0); // Make room for success counter and initialize it to 0.
+ __ push(a0); // Make room for "position - 1" constant (value irrelevant).
+
+ // Check if we have space on the stack for registers.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(masm_->isolate());
+ __ li(a0, Operand(stack_limit));
+ __ lw(a0, MemOperand(a0));
+ __ Subu(a0, sp, a0);
+ // Handle it if the stack pointer is already below the stack limit.
+ __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ li(v0, Operand(EXCEPTION));
+ __ jmp(&return_v0);
+
+ __ bind(&stack_limit_hit);
+ CallCheckStackGuardState(a0);
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ Branch(&return_v0, ne, v0, Operand(zero_reg));
+
+ __ bind(&stack_ok);
+ // Allocate space on stack for registers.
+ __ Subu(sp, sp, Operand(num_registers_ * kPointerSize));
+ // Load string end.
+ __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ // Load input start.
+ __ lw(a0, MemOperand(frame_pointer(), kInputStart));
+ // Find negative length (offset of start relative to end).
+ __ Subu(current_input_offset(), a0, end_of_input_address());
+ // Set a0 to address of char before start of the input string
+ // (effectively string position -1).
+ __ lw(a1, MemOperand(frame_pointer(), kStartIndex));
+ __ Subu(a0, current_input_offset(), Operand(char_size()));
+ __ sll(t5, a1, (mode_ == UC16) ? 1 : 0);
+ __ Subu(a0, a0, t5);
+ // Store this value in a local variable, for use when clearing
+ // position registers.
+ __ sw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
+
+ // Initialize code pointer register
+ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
+ __ li(current_character(), Operand('\n'));
+ __ jmp(&start_regexp);
+
+ // Global regexp restarts matching here.
+ __ bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&start_regexp);
+
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
+ // Fill saved registers with initial value = start offset - 1.
+ if (num_saved_registers_ > 8) {
+ // Address of register 0.
+ __ Addu(a1, frame_pointer(), Operand(kRegisterZero));
+ __ li(a2, Operand(num_saved_registers_));
+ Label init_loop;
+ __ bind(&init_loop);
+ __ sw(a0, MemOperand(a1));
+ __ Addu(a1, a1, Operand(-kPointerSize));
+ __ Subu(a2, a2, Operand(1));
+ __ Branch(&init_loop, ne, a2, Operand(zero_reg));
+ } else {
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ sw(a0, register_location(i));
+ }
+ }
+ }
+
+ // Initialize backtrack stack pointer.
+ __ lw(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
+
+ __ jmp(&start_label_);
+
+
+ // Exit code:
+ if (success_label_.is_linked()) {
+ // Save captures when successful.
+ __ bind(&success_label_);
+ if (num_saved_registers_ > 0) {
+ // Copy captures to output.
+ __ lw(a1, MemOperand(frame_pointer(), kInputStart));
+ __ lw(a0, MemOperand(frame_pointer(), kRegisterOutput));
+ __ lw(a2, MemOperand(frame_pointer(), kStartIndex));
+ __ Subu(a1, end_of_input_address(), a1);
+ // a1 is length of input in bytes.
+ if (mode_ == UC16) {
+ __ srl(a1, a1, 1);
+ }
+ // a1 is length of input in characters.
+ __ Addu(a1, a1, Operand(a2));
+ // a1 is length of string in characters.
+
+ DCHECK_EQ(0, num_saved_registers_ % 2);
+ // Always an even number of capture registers. This allows us to
+ // unroll the loop once to add an operation between a load of a register
+ // and the following use of that register.
+ for (int i = 0; i < num_saved_registers_; i += 2) {
+ __ lw(a2, register_location(i));
+ __ lw(a3, register_location(i + 1));
+ if (i == 0 && global_with_zero_length_check()) {
+ // Keep capture start in a4 for the zero-length check later.
+ __ mov(t7, a2);
+ }
+ if (mode_ == UC16) {
+ __ sra(a2, a2, 1);
+ __ Addu(a2, a2, a1);
+ __ sra(a3, a3, 1);
+ __ Addu(a3, a3, a1);
+ } else {
+ __ Addu(a2, a1, Operand(a2));
+ __ Addu(a3, a1, Operand(a3));
+ }
+ __ sw(a2, MemOperand(a0));
+ __ Addu(a0, a0, kPointerSize);
+ __ sw(a3, MemOperand(a0));
+ __ Addu(a0, a0, kPointerSize);
+ }
+ }
+
+ if (global()) {
+ // Restart matching if the regular expression is flagged as global.
+ __ lw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
+ __ lw(a2, MemOperand(frame_pointer(), kRegisterOutput));
+ // Increment success counter.
+ __ Addu(a0, a0, 1);
+ __ sw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ Subu(a1, a1, num_saved_registers_);
+ // Check whether we have enough room for another set of capture results.
+ __ mov(v0, a0);
+ __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
+
+ __ sw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
+ // Advance the location for output.
+ __ Addu(a2, a2, num_saved_registers_ * kPointerSize);
+ __ sw(a2, MemOperand(frame_pointer(), kRegisterOutput));
+
+ // Prepare a0 to initialize registers with its value in the next run.
+ __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ // t7: capture start index
+ // Not a zero-length match, restart.
+ __ Branch(
+ &load_char_start_regexp, ne, current_input_offset(), Operand(t7));
+ // Offset from the end is zero if we already reached the end.
+ __ Branch(&exit_label_, eq, current_input_offset(),
+ Operand(zero_reg));
+ // Advance current position after a zero-length match.
+ __ Addu(current_input_offset(),
+ current_input_offset(),
+ Operand((mode_ == UC16) ? 2 : 1));
+ }
+
+ __ Branch(&load_char_start_regexp);
+ } else {
+ __ li(v0, Operand(SUCCESS));
+ }
+ }
+ // Exit and return v0.
+ __ bind(&exit_label_);
+ if (global()) {
+ __ lw(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ }
+
+ __ bind(&return_v0);
+ // Skip sp past regexp registers and local variables..
+ __ mov(sp, frame_pointer());
+ // Restore registers s0..s7 and return (restoring ra to pc).
+ __ MultiPop(registers_to_retain | ra.bit());
+ __ Ret();
+
+ // Backtrack code (branch target for conditional backtracks).
+ if (backtrack_label_.is_linked()) {
+ __ bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ Label exit_with_exception;
+
+ // Preempt-code.
+ if (check_preempt_label_.is_linked()) {
+ SafeCallTarget(&check_preempt_label_);
+ // Put regexp engine registers on stack.
+ RegList regexp_registers_to_retain = current_input_offset().bit() |
+ current_character().bit() | backtrack_stackpointer().bit();
+ __ MultiPush(regexp_registers_to_retain);
+ CallCheckStackGuardState(a0);
+ __ MultiPop(regexp_registers_to_retain);
+ // If returning non-zero, we should end execution with the given
+ // result as return value.
+ __ Branch(&return_v0, ne, v0, Operand(zero_reg));
+
+ // String might have moved: Reload end of string from frame.
+ __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+ SafeReturn();
+ }
+
+ // Backtrack stack overflow code.
+ if (stack_overflow_label_.is_linked()) {
+ SafeCallTarget(&stack_overflow_label_);
+ // Reached if the backtrack-stack limit has been hit.
+ // Put regexp engine registers on stack first.
+ RegList regexp_registers = current_input_offset().bit() |
+ current_character().bit();
+ __ MultiPush(regexp_registers);
+ Label grow_failed;
+ // Call GrowStack(backtrack_stackpointer(), &stack_base)
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, a0);
+ __ mov(a0, backtrack_stackpointer());
+ __ Addu(a1, frame_pointer(), Operand(kStackHighEnd));
+ __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(masm_->isolate());
+ __ CallCFunction(grow_stack, num_arguments);
+ // Restore regexp registers.
+ __ MultiPop(regexp_registers);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
+ // Otherwise use return value as new stack pointer.
+ __ mov(backtrack_stackpointer(), v0);
+ // Restore saved registers and continue.
+ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+ __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ SafeReturn();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ // If any of the code above needed to exit with an exception.
+ __ bind(&exit_with_exception);
+ // Exit with Result EXCEPTION(-1) to signal thrown exception.
+ __ li(v0, Operand(EXCEPTION));
+ __ jmp(&return_v0);
+ }
+ }
+
+ CodeDesc code_desc;
+ masm_->GetCode(&code_desc);
+ Handle<Code> code = isolate()->factory()->NewCode(
+ code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+ LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
+ int comparand,
+ Label* if_ge) {
+ __ lw(a0, register_location(reg));
+ BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
+ int comparand,
+ Label* if_lt) {
+ __ lw(a0, register_location(reg));
+ BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
+ Label* if_eq) {
+ __ lw(a0, register_location(reg));
+ BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerMIPS::Implementation() {
+ return kMIPSImplementation;
+}
+
+
+void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
+ DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
+ if (check_bounds) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
+ Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
+ Pop(a0);
+ __ sw(a0, register_location(register_index));
+}
+
+
+void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
+ if (label->is_bound()) {
+ int target = label->pos();
+ __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
+ } else {
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ Label after_constant;
+ __ Branch(&after_constant);
+ int offset = masm_->pc_offset();
+ int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
+ __ emit(0);
+ masm_->label_at_put(label, offset);
+ __ bind(&after_constant);
+ if (is_int16(cp_offset)) {
+ __ lw(a0, MemOperand(code_pointer(), cp_offset));
+ } else {
+ __ Addu(a0, code_pointer(), cp_offset);
+ __ lw(a0, MemOperand(a0, 0));
+ }
+ }
+ Push(a0);
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
+ Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ __ lw(a0, register_location(register_index));
+ Push(a0);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
+ __ lw(current_input_offset(), register_location(reg));
+}
+
+
+void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
+ __ lw(backtrack_stackpointer(), register_location(reg));
+ __ lw(a0, MemOperand(frame_pointer(), kStackHighEnd));
+ __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ Branch(&after_position,
+ ge,
+ current_input_offset(),
+ Operand(-by * char_size()));
+ __ li(current_input_offset(), -by * char_size());
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ __ li(a0, Operand(to));
+ __ sw(a0, register_location(register_index));
+}
+
+
+bool RegExpMacroAssemblerMIPS::Succeed() {
+ __ jmp(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ if (cp_offset == 0) {
+ __ sw(current_input_offset(), register_location(reg));
+ } else {
+ __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size()));
+ __ sw(a0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ __ sw(a0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
+ __ lw(a1, MemOperand(frame_pointer(), kStackHighEnd));
+ __ Subu(a0, backtrack_stackpointer(), a1);
+ __ sw(a0, register_location(reg));
+}
+
+
+bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
+ return false;
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
+ int stack_alignment = base::OS::ActivationFrameAlignment();
+
+ // Align the stack pointer and save the original sp value on the stack.
+ __ mov(scratch, sp);
+ __ Subu(sp, sp, Operand(kPointerSize));
+ DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
+ __ And(sp, sp, Operand(-stack_alignment));
+ __ sw(scratch, MemOperand(sp));
+
+ __ mov(a2, frame_pointer());
+ // Code* of self.
+ __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
+
+ // We need to make room for the return address on the stack.
+ DCHECK(IsAligned(stack_alignment, kPointerSize));
+ __ Subu(sp, sp, Operand(stack_alignment));
+
+ // Stack pointer now points to cell where return address is to be written.
+ // Arguments are in registers, meaning we teat the return address as
+ // argument 5. Since DirectCEntryStub will handleallocating space for the C
+ // argument slots, we don't need to care about that here. This is how the
+ // stack will look (sp meaning the value of sp at this moment):
+ // [sp + 3] - empty slot if needed for alignment.
+ // [sp + 2] - saved sp.
+ // [sp + 1] - second word reserved for return value.
+ // [sp + 0] - first word reserved for return value.
+
+ // a0 will point to the return address, placed by DirectCEntry.
+ __ mov(a0, sp);
+
+ ExternalReference stack_guard_check =
+ ExternalReference::re_check_stack_guard_state(masm_->isolate());
+ __ li(t9, Operand(stack_guard_check));
+ DirectCEntryStub stub(isolate());
+ stub.GenerateCall(masm_, t9);
+
+ // DirectCEntryStub allocated space for the C argument slots so we have to
+ // drop them with the return address from the stack with loading saved sp.
+ // At this point stack must look:
+ // [sp + 7] - empty slot if needed for alignment.
+ // [sp + 6] - saved sp.
+ // [sp + 5] - second word reserved for return value.
+ // [sp + 4] - first word reserved for return value.
+ // [sp + 3] - C argument slot.
+ // [sp + 2] - C argument slot.
+ // [sp + 1] - C argument slot.
+ // [sp + 0] - C argument slot.
+ __ lw(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
+
+ __ li(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate),
+ frame_entry<int>(re_frame, kStartIndex),
+ frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+ frame_entry_address<String*>(re_frame, kInputString),
+ frame_entry_address<const byte*>(re_frame, kInputStart),
+ frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
+ DCHECK(register_index < (1<<30));
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ return MemOperand(frame_pointer(),
+ kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ BranchOrBacktrack(on_outside_input,
+ ge,
+ current_input_offset(),
+ Operand(-cp_offset * char_size()));
+}
+
+
+void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
+ Condition condition,
+ Register rs,
+ const Operand& rt) {
+ if (condition == al) { // Unconditional.
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+ }
+ if (to == NULL) {
+ __ Branch(&backtrack_label_, condition, rs, rt);
+ return;
+ }
+ __ Branch(to, condition, rs, rt);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
+ Condition cond,
+ Register rs,
+ const Operand& rt) {
+ __ BranchAndLink(to, cond, rs, rt);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeReturn() {
+ __ pop(ra);
+ __ Addu(t5, ra, Operand(masm_->CodeObject()));
+ __ Jump(t5);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
+ __ bind(name);
+ __ Subu(ra, ra, Operand(masm_->CodeObject()));
+ __ push(ra);
+}
+
+
+void RegExpMacroAssemblerMIPS::Push(Register source) {
+ DCHECK(!source.is(backtrack_stackpointer()));
+ __ Addu(backtrack_stackpointer(),
+ backtrack_stackpointer(),
+ Operand(-kPointerSize));
+ __ sw(source, MemOperand(backtrack_stackpointer()));
+}
+
+
+void RegExpMacroAssemblerMIPS::Pop(Register target) {
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ lw(target, MemOperand(backtrack_stackpointer()));
+ __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), kPointerSize);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckPreemption() {
+ // Check for preemption.
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(masm_->isolate());
+ __ li(a0, Operand(stack_limit));
+ __ lw(a0, MemOperand(a0));
+ SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckStackLimit() {
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
+
+ __ li(a0, Operand(stack_limit));
+ __ lw(a0, MemOperand(a0));
+ SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ Register offset = current_input_offset();
+ if (cp_offset != 0) {
+ // t7 is not being used to store the capture start index at this point.
+ __ Addu(t7, current_input_offset(), Operand(cp_offset * char_size()));
+ offset = t7;
+ }
+ // We assume that we cannot do unaligned loads on MIPS, so this function
+ // must only be used to load a single character at a time.
+ DCHECK(characters == 1);
+ __ Addu(t5, end_of_input_address(), Operand(offset));
+ if (mode_ == LATIN1) {
+ __ lbu(current_character(), MemOperand(t5, 0));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ lhu(current_character(), MemOperand(t5, 0));
+ }
+}
+
+
+#undef __
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_MIPS
--- /dev/null
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
+#define V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
+
+#include "src/macro-assembler.h"
+#include "src/mips/assembler-mips.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerMIPS: public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerMIPS();
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(uint32_t c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+ virtual bool CanReadUnaligned();
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame);
+
+ private:
+ // Offsets from frame_pointer() of function parameters and stored registers.
+ static const int kFramePointer = 0;
+
+ // Above the frame pointer - Stored registers and stack passed parameters.
+ // Registers s0 to s7, fp, and ra.
+ static const int kStoredRegisters = kFramePointer;
+ // Return address (stored from link register, read into pc on return).
+ static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
+ static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+ // Stack frame header.
+ static const int kStackFrameHeader = kReturnAddress + kPointerSize;
+ // Stack parameters placed by caller.
+ static const int kRegisterOutput = kStackFrameHeader + 20;
+ static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+ static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+ static const int kDirectCall = kStackHighEnd + kPointerSize;
+ static const int kIsolate = kDirectCall + kPointerSize;
+
+ // Below the frame pointer.
+ // Register parameters stored by setup code.
+ static const int kInputEnd = kFramePointer - kPointerSize;
+ static const int kInputStart = kInputEnd - kPointerSize;
+ static const int kStartIndex = kInputStart - kPointerSize;
+ static const int kInputString = kStartIndex - kPointerSize;
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kSuccessfulCaptures = kInputString - kPointerSize;
+ static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState(Register scratch);
+
+ // The ebp-relative location of a regexp register.
+ MemOperand register_location(int register_index);
+
+ // Register holding the current input position as negative offset from
+ // the end of the string.
+ inline Register current_input_offset() { return t2; }
+
+ // The register containing the current character after LoadCurrentCharacter.
+ inline Register current_character() { return t3; }
+
+ // Register holding address of the end of the input string.
+ inline Register end_of_input_address() { return t6; }
+
+ // Register holding the frame address. Local variables, parameters and
+ // regexp registers are addressed relative to this.
+ inline Register frame_pointer() { return fp; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ inline Register backtrack_stackpointer() { return t4; }
+
+ // Register holding pointer to the current code object.
+ inline Register code_pointer() { return t1; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument).
+ inline int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Label* to,
+ Condition condition,
+ Register rs,
+ const Operand& rt);
+
+ // Call and return internally in the generated code in a way that
+ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+ inline void SafeCall(Label* to,
+ Condition cond,
+ Register rs,
+ const Operand& rt);
+ inline void SafeReturn();
+ inline void SafeCallTarget(Label* name);
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // and increments it by a word size.
+ inline void Pop(Register target);
+
+ Isolate* isolate() const { return masm_->isolate(); }
+
+ MacroAssembler* masm_;
+
+ // Which mode to generate code for (Latin1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1).
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+ Label internal_failure_label_;
+};
+
+#endif // V8_INTERPRETED_REGEXP
+
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
--- /dev/null
+paul.lind@imgtec.com
+gergely.kis@imgtec.com
+akos.palfi@imgtec.com
+balazs.kilvady@imgtec.com
+dusan.milosavljevic@imgtec.com
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_MIPS64
+
+#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
+
+#include "src/code-stubs.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - t3 : Temporarily stores the index of capture start after a matching pass
+ * for a global regexp.
+ * - a5 : Pointer to current code object (Code*) including heap object tag.
+ * - a6 : Current position in input, as negative offset from end of string.
+ * Please notice that this is the byte offset, not the character offset!
+ * - a7 : Currently loaded character. Must be loaded using
+ * LoadCurrentCharacter before using any of the dispatch methods.
+ * - t0 : Points to tip of backtrack stack
+ * - t1 : Unused.
+ * - t2 : End of input (points to byte after last character in input).
+ * - fp : Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - sp : Points to tip of C stack.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * TODO(plind): O32 documented here with intent of having single 32/64 codebase
+ * in the future.
+ *
+ * The O32 stack will have the following structure:
+ *
+ * - fp[76] Isolate* isolate (address of the current isolate)
+ * - fp[72] direct_call (if 1, direct call from JavaScript code,
+ * if 0, call through the runtime system).
+ * - fp[68] stack_area_base (High end of the memory area to use as
+ * backtracking stack).
+ * - fp[64] capture array size (may fit multiple sets of matches)
+ * - fp[60] int* capture_array (int[num_saved_registers_], for output).
+ * - fp[44..59] MIPS O32 four argument slots
+ * - fp[40] secondary link/return address used by native call.
+ * --- sp when called ---
+ * - fp[36] return address (lr).
+ * - fp[32] old frame pointer (r11).
+ * - fp[0..31] backup of registers s0..s7.
+ * --- frame pointer ----
+ * - fp[-4] end of input (address of end of string).
+ * - fp[-8] start of input (address of first character in string).
+ * - fp[-12] start index (character index of start).
+ * - fp[-16] void* input_string (location of a handle containing the string).
+ * - fp[-20] success counter (only for global regexps to count matches).
+ * - fp[-24] Offset of location before start of input (effectively character
+ * position -1). Used to initialize capture registers to a
+ * non-position.
+ * - fp[-28] At start (if 1, we are starting at the start of the
+ * string, otherwise 0)
+ * - fp[-32] register 0 (Only positions must be stored in the first
+ * - register 1 num_saved_registers_ registers)
+ * - ...
+ * - register num_registers-1
+ * --- sp ---
+ *
+ *
+ * The N64 stack will have the following structure:
+ *
+ * - fp[88] Isolate* isolate (address of the current isolate) kIsolate
+ * - fp[80] secondary link/return address used by exit frame on native call. kSecondaryReturnAddress
+ kStackFrameHeader
+ * --- sp when called ---
+ * - fp[72] ra Return from RegExp code (ra). kReturnAddress
+ * - fp[64] s9, old-fp Old fp, callee saved(s9).
+ * - fp[0..63] s0..s7 Callee-saved registers s0..s7.
+ * --- frame pointer ----
+ * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall
+ * - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd
+ * - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters
+ * - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput
+ * - fp[-40] end of input (address of end of string). kInputEnd
+ * - fp[-48] start of input (address of first character in string). kInputStart
+ * - fp[-56] start index (character index of start). kStartIndex
+ * - fp[-64] void* input_string (location of a handle containing the string). kInputString
+ * - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures
+ * - fp[-80] Offset of location before start of input (effectively character kInputStartMinusOne
+ * position -1). Used to initialize capture registers to a
+ * non-position.
+ * --------- The following output registers are 32-bit values. ---------
+ * - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero
+ * - register 1 num_saved_registers_ registers)
+ * - ...
+ * - register num_registers-1
+ * --- sp ---
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ * int start_index,
+ * Address start,
+ * Address end,
+ * Address secondary_return_address, // Only used by native call.
+ * int* capture_output_array,
+ * byte* stack_area_base,
+ * bool direct_call = false,
+ * void* return_address,
+ * Isolate* isolate);
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in mips/simulator-mips.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the ra register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
+ Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_(),
+ internal_failure_label_() {
+ DCHECK_EQ(0, registers_to_save % 2);
+ __ jmp(&entry_label_); // We'll write the entry code later.
+ // If the code gets too big or corrupted, an internal exception will be
+ // raised, and we will exit right away.
+ __ bind(&internal_failure_label_);
+ __ li(v0, Operand(FAILURE));
+ __ Ret();
+ __ bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
+ delete masm_;
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+ internal_failure_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerMIPS::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ Daddu(current_input_offset(),
+ current_input_offset(), Operand(by * char_size()));
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
+ DCHECK(reg >= 0);
+ DCHECK(reg < num_registers_);
+ if (by != 0) {
+ __ ld(a0, register_location(reg));
+ __ Daddu(a0, a0, Operand(by));
+ __ sd(a0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::Backtrack() {
+ CheckPreemption();
+ // Pop Code* offset from backtrack stack, add Code* and jump to location.
+ Pop(a0);
+ __ Daddu(a0, a0, code_pointer());
+ __ Jump(a0);
+}
+
+
+void RegExpMacroAssemblerMIPS::Bind(Label* label) {
+ __ bind(label);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
+ BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
+ BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
+ Label not_at_start;
+ // Did we start the match at the start of the string at all?
+ __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
+ BranchOrBacktrack(¬_at_start, ne, a0, Operand(zero_reg));
+
+ // If we did, are we still at the start of the input?
+ __ ld(a1, MemOperand(frame_pointer(), kInputStart));
+ __ Daddu(a0, end_of_input_address(), Operand(current_input_offset()));
+ BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
+ __ bind(¬_at_start);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) {
+ // Did we start the match at the start of the string at all?
+ __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
+ BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg));
+ // If we did, are we still at the start of the input?
+ __ ld(a1, MemOperand(frame_pointer(), kInputStart));
+ __ Daddu(a0, end_of_input_address(), Operand(current_input_offset()));
+ BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
+ BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
+ Label backtrack_non_equal;
+ __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
+ __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
+ __ Daddu(backtrack_stackpointer(),
+ backtrack_stackpointer(),
+ Operand(kIntSize));
+ __ bind(&backtrack_non_equal);
+ BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ __ ld(a0, register_location(start_reg)); // Index of start of capture.
+ __ ld(a1, register_location(start_reg + 1)); // Index of end of capture.
+ __ Dsubu(a1, a1, a0); // Length of capture.
+
+ // If length is zero, either the capture is empty or it is not participating.
+ // In either case succeed immediately.
+ __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
+
+ __ Daddu(t1, a1, current_input_offset());
+ // Check that there are enough characters left in the input.
+ BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
+
+ if (mode_ == LATIN1) {
+ Label success;
+ Label fail;
+ Label loop_check;
+
+ // a0 - offset of start of capture.
+ // a1 - length of capture.
+ __ Daddu(a0, a0, Operand(end_of_input_address()));
+ __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
+ __ Daddu(a1, a0, Operand(a1));
+
+ // a0 - Address of start of capture.
+ // a1 - Address of end of capture.
+ // a2 - Address of current input position.
+
+ Label loop;
+ __ bind(&loop);
+ __ lbu(a3, MemOperand(a0, 0));
+ __ daddiu(a0, a0, char_size());
+ __ lbu(a4, MemOperand(a2, 0));
+ __ daddiu(a2, a2, char_size());
+
+ __ Branch(&loop_check, eq, a4, Operand(a3));
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
+ __ Or(a4, a4, Operand(0x20)); // Also convert input character.
+ __ Branch(&fail, ne, a4, Operand(a3));
+ __ Dsubu(a3, a3, Operand('a'));
+ __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ Dsubu(a3, a3, Operand(224 - 'a'));
+ // Weren't Latin-1 letters.
+ __ Branch(&fail, hi, a3, Operand(254 - 224));
+ // Check for 247.
+ __ Branch(&fail, eq, a3, Operand(247 - 224));
+
+ __ bind(&loop_check);
+ __ Branch(&loop, lt, a0, Operand(a1));
+ __ jmp(&success);
+
+ __ bind(&fail);
+ GoTo(on_no_match);
+
+ __ bind(&success);
+ // Compute new value of character position after the matched part.
+ __ Dsubu(current_input_offset(), a2, end_of_input_address());
+ } else {
+ DCHECK(mode_ == UC16);
+ // Put regexp engine registers on stack.
+ RegList regexp_registers_to_retain = current_input_offset().bit() |
+ current_character().bit() | backtrack_stackpointer().bit();
+ __ MultiPush(regexp_registers_to_retain);
+
+ int argument_count = 4;
+ __ PrepareCallCFunction(argument_count, a2);
+
+ // a0 - offset of start of capture.
+ // a1 - length of capture.
+
+ // Put arguments into arguments registers.
+ // Parameters are
+ // a0: Address byte_offset1 - Address captured substring's start.
+ // a1: Address byte_offset2 - Address of current character position.
+ // a2: size_t byte_length - length of capture in bytes(!).
+ // a3: Isolate* isolate.
+
+ // Address of start of capture.
+ __ Daddu(a0, a0, Operand(end_of_input_address()));
+ // Length of capture.
+ __ mov(a2, a1);
+ // Save length in callee-save register for use on return.
+ __ mov(s3, a1);
+ // Address of current input position.
+ __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
+ // Isolate.
+ __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
+
+ {
+ AllowExternalCallThatCantCauseGC scope(masm_);
+ ExternalReference function =
+ ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
+ __ CallCFunction(function, argument_count);
+ }
+
+ // Restore regexp engine registers.
+ __ MultiPop(regexp_registers_to_retain);
+ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+ __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+
+ // Check if function returned non-zero for success or zero for failure.
+ BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
+ // On success, increment position by length of capture.
+ __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
+ }
+
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotBackReference(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ Label success;
+
+ // Find length of back-referenced capture.
+ __ ld(a0, register_location(start_reg));
+ __ ld(a1, register_location(start_reg + 1));
+ __ Dsubu(a1, a1, a0); // Length to check.
+ // Succeed on empty capture (including no capture).
+ __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
+
+ __ Daddu(t1, a1, current_input_offset());
+ // Check that there are enough characters left in the input.
+ BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
+
+ // Compute pointers to match string and capture string.
+ __ Daddu(a0, a0, Operand(end_of_input_address()));
+ __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
+ __ Daddu(a1, a1, Operand(a0));
+
+ Label loop;
+ __ bind(&loop);
+ if (mode_ == LATIN1) {
+ __ lbu(a3, MemOperand(a0, 0));
+ __ daddiu(a0, a0, char_size());
+ __ lbu(a4, MemOperand(a2, 0));
+ __ daddiu(a2, a2, char_size());
+ } else {
+ DCHECK(mode_ == UC16);
+ __ lhu(a3, MemOperand(a0, 0));
+ __ daddiu(a0, a0, char_size());
+ __ lhu(a4, MemOperand(a2, 0));
+ __ daddiu(a2, a2, char_size());
+ }
+ BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
+ __ Branch(&loop, lt, a0, Operand(a1));
+
+ // Move current character position to position after match.
+ __ Dsubu(current_input_offset(), a2, end_of_input_address());
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
+ Label* on_not_equal) {
+ BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ __ And(a0, current_character(), Operand(mask));
+ Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
+ BranchOrBacktrack(on_equal, eq, a0, rhs);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal) {
+ __ And(a0, current_character(), Operand(mask));
+ Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
+ BranchOrBacktrack(on_not_equal, ne, a0, rhs);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ Dsubu(a0, current_character(), Operand(minus));
+ __ And(a0, a0, Operand(mask));
+ BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ __ Dsubu(a0, current_character(), Operand(from));
+ // Unsigned lower-or-same condition.
+ BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ __ Dsubu(a0, current_character(), Operand(from));
+ // Unsigned higher condition.
+ BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckBitInTable(
+ Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ li(a0, Operand(table));
+ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+ __ And(a1, current_character(), Operand(kTableSize - 1));
+ __ Daddu(a0, a0, a1);
+ } else {
+ __ Daddu(a0, a0, current_character());
+ }
+
+ __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
+ BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
+}
+
+
+bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check.
+ switch (type) {
+ case 's':
+ // Match space-characters.
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ __ Branch(&success, eq, current_character(), Operand(' '));
+ // Check range 0x09..0x0d.
+ __ Dsubu(a0, current_character(), Operand('\t'));
+ __ Branch(&success, ls, a0, Operand('\r' - '\t'));
+ // \u00a0 (NBSP).
+ BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
+ __ bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match Latin1 digits ('0'..'9').
+ __ Dsubu(a0, current_character(), Operand('0'));
+ BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
+ return true;
+ case 'D':
+ // Match non Latin1-digits.
+ __ Dsubu(a0, current_character(), Operand('0'));
+ BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
+ __ Xor(a0, current_character(), Operand(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
+ __ Dsubu(a0, a0, Operand(0x0b));
+ BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
+ if (mode_ == UC16) {
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
+ BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
+ }
+ return true;
+ }
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
+ __ Xor(a0, current_character(), Operand(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
+ __ Dsubu(a0, a0, Operand(0x0b));
+ if (mode_ == LATIN1) {
+ BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
+ } else {
+ Label done;
+ BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
+ BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
+ __ bind(&done);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ li(a0, Operand(map));
+ __ Daddu(a0, a0, current_character());
+ __ lbu(a0, MemOperand(a0, 0));
+ BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ Branch(&done, hi, current_character(), Operand('z'));
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ li(a0, Operand(map));
+ __ Daddu(a0, a0, current_character());
+ __ lbu(a0, MemOperand(a0, 0));
+ BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
+ if (mode_ != LATIN1) {
+ __ bind(&done);
+ }
+ return true;
+ }
+ case '*':
+ // Match any character.
+ return true;
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::Fail() {
+ __ li(v0, Operand(FAILURE));
+ __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
+ Label return_v0;
+ if (masm_->has_exception()) {
+ // If the code gets corrupted due to long regular expressions and lack of
+ // space on trampolines, an internal exception flag is set. If this case
+ // is detected, we will jump into exit sequence right away.
+ __ bind_to(&entry_label_, internal_failure_label_.pos());
+ } else {
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+
+ // Entry code:
+ __ bind(&entry_label_);
+
+ // Tell the system that we have a stack frame. Because the type is MANUAL,
+ // no is generated.
+ FrameScope scope(masm_, StackFrame::MANUAL);
+
+ // Actually emit code to start a new stack frame.
+ // Push arguments
+ // Save callee-save registers.
+ // Start new stack frame.
+ // Store link register in existing stack-cell.
+ // Order here should correspond to order of offset constants in header file.
+ // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
+ // or dont save.
+ RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
+ s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
+ RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
+
+ if (kMipsAbi == kN64) {
+ // TODO(plind): Should probably alias a4-a7, for clarity.
+ argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
+ }
+
+ __ MultiPush(argument_registers | registers_to_retain | ra.bit());
+ // Set frame pointer in space for it if this is not a direct call
+ // from generated code.
+ // TODO(plind): this 8 is the # of argument regs, should have definition.
+ __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
+ __ mov(a0, zero_reg);
+ __ push(a0); // Make room for success counter and initialize it to 0.
+ __ push(a0); // Make room for "position - 1" constant (value irrelevant).
+
+ // Check if we have space on the stack for registers.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(masm_->isolate());
+ __ li(a0, Operand(stack_limit));
+ __ ld(a0, MemOperand(a0));
+ __ Dsubu(a0, sp, a0);
+ // Handle it if the stack pointer is already below the stack limit.
+ __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ li(v0, Operand(EXCEPTION));
+ __ jmp(&return_v0);
+
+ __ bind(&stack_limit_hit);
+ CallCheckStackGuardState(a0);
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ Branch(&return_v0, ne, v0, Operand(zero_reg));
+
+ __ bind(&stack_ok);
+ // Allocate space on stack for registers.
+ __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
+ // Load string end.
+ __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ // Load input start.
+ __ ld(a0, MemOperand(frame_pointer(), kInputStart));
+ // Find negative length (offset of start relative to end).
+ __ Dsubu(current_input_offset(), a0, end_of_input_address());
+ // Set a0 to address of char before start of the input string
+ // (effectively string position -1).
+ __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
+ __ Dsubu(a0, current_input_offset(), Operand(char_size()));
+ __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
+ __ Dsubu(a0, a0, t1);
+ // Store this value in a local variable, for use when clearing
+ // position registers.
+ __ sd(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
+
+ // Initialize code pointer register
+ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
+ __ li(current_character(), Operand('\n'));
+ __ jmp(&start_regexp);
+
+ // Global regexp restarts matching here.
+ __ bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&start_regexp);
+
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
+ // Fill saved registers with initial value = start offset - 1.
+ if (num_saved_registers_ > 8) {
+ // Address of register 0.
+ __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
+ __ li(a2, Operand(num_saved_registers_));
+ Label init_loop;
+ __ bind(&init_loop);
+ __ sd(a0, MemOperand(a1));
+ __ Daddu(a1, a1, Operand(-kPointerSize));
+ __ Dsubu(a2, a2, Operand(1));
+ __ Branch(&init_loop, ne, a2, Operand(zero_reg));
+ } else {
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ sd(a0, register_location(i));
+ }
+ }
+ }
+
+ // Initialize backtrack stack pointer.
+ __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
+
+ __ jmp(&start_label_);
+
+
+ // Exit code:
+ if (success_label_.is_linked()) {
+ // Save captures when successful.
+ __ bind(&success_label_);
+ if (num_saved_registers_ > 0) {
+ // Copy captures to output.
+ __ ld(a1, MemOperand(frame_pointer(), kInputStart));
+ __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
+ __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
+ __ Dsubu(a1, end_of_input_address(), a1);
+ // a1 is length of input in bytes.
+ if (mode_ == UC16) {
+ __ dsrl(a1, a1, 1);
+ }
+ // a1 is length of input in characters.
+ __ Daddu(a1, a1, Operand(a2));
+ // a1 is length of string in characters.
+
+ DCHECK_EQ(0, num_saved_registers_ % 2);
+ // Always an even number of capture registers. This allows us to
+ // unroll the loop once to add an operation between a load of a register
+ // and the following use of that register.
+ for (int i = 0; i < num_saved_registers_; i += 2) {
+ __ ld(a2, register_location(i));
+ __ ld(a3, register_location(i + 1));
+ if (i == 0 && global_with_zero_length_check()) {
+ // Keep capture start in a4 for the zero-length check later.
+ __ mov(t3, a2);
+ }
+ if (mode_ == UC16) {
+ __ dsra(a2, a2, 1);
+ __ Daddu(a2, a2, a1);
+ __ dsra(a3, a3, 1);
+ __ Daddu(a3, a3, a1);
+ } else {
+ __ Daddu(a2, a1, Operand(a2));
+ __ Daddu(a3, a1, Operand(a3));
+ }
+ // V8 expects the output to be an int32_t array.
+ __ sw(a2, MemOperand(a0));
+ __ Daddu(a0, a0, kIntSize);
+ __ sw(a3, MemOperand(a0));
+ __ Daddu(a0, a0, kIntSize);
+ }
+ }
+
+ if (global()) {
+ // Restart matching if the regular expression is flagged as global.
+ __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
+ __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
+ // Increment success counter.
+ __ Daddu(a0, a0, 1);
+ __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ Dsubu(a1, a1, num_saved_registers_);
+ // Check whether we have enough room for another set of capture results.
+ __ mov(v0, a0);
+ __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
+
+ __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
+ // Advance the location for output.
+ __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
+ __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
+
+ // Prepare a0 to initialize registers with its value in the next run.
+ __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ // t3: capture start index
+ // Not a zero-length match, restart.
+ __ Branch(
+ &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
+ // Offset from the end is zero if we already reached the end.
+ __ Branch(&exit_label_, eq, current_input_offset(),
+ Operand(zero_reg));
+ // Advance current position after a zero-length match.
+ __ Daddu(current_input_offset(),
+ current_input_offset(),
+ Operand((mode_ == UC16) ? 2 : 1));
+ }
+
+ __ Branch(&load_char_start_regexp);
+ } else {
+ __ li(v0, Operand(SUCCESS));
+ }
+ }
+ // Exit and return v0.
+ __ bind(&exit_label_);
+ if (global()) {
+ __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ }
+
+ __ bind(&return_v0);
+ // Skip sp past regexp registers and local variables..
+ __ mov(sp, frame_pointer());
+ // Restore registers s0..s7 and return (restoring ra to pc).
+ __ MultiPop(registers_to_retain | ra.bit());
+ __ Ret();
+
+ // Backtrack code (branch target for conditional backtracks).
+ if (backtrack_label_.is_linked()) {
+ __ bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ Label exit_with_exception;
+
+ // Preempt-code.
+ if (check_preempt_label_.is_linked()) {
+ SafeCallTarget(&check_preempt_label_);
+ // Put regexp engine registers on stack.
+ RegList regexp_registers_to_retain = current_input_offset().bit() |
+ current_character().bit() | backtrack_stackpointer().bit();
+ __ MultiPush(regexp_registers_to_retain);
+ CallCheckStackGuardState(a0);
+ __ MultiPop(regexp_registers_to_retain);
+ // If returning non-zero, we should end execution with the given
+ // result as return value.
+ __ Branch(&return_v0, ne, v0, Operand(zero_reg));
+
+ // String might have moved: Reload end of string from frame.
+ __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+ SafeReturn();
+ }
+
+ // Backtrack stack overflow code.
+ if (stack_overflow_label_.is_linked()) {
+ SafeCallTarget(&stack_overflow_label_);
+ // Reached if the backtrack-stack limit has been hit.
+ // Put regexp engine registers on stack first.
+ RegList regexp_registers = current_input_offset().bit() |
+ current_character().bit();
+ __ MultiPush(regexp_registers);
+ Label grow_failed;
+ // Call GrowStack(backtrack_stackpointer(), &stack_base)
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, a0);
+ __ mov(a0, backtrack_stackpointer());
+ __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
+ __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(masm_->isolate());
+ __ CallCFunction(grow_stack, num_arguments);
+ // Restore regexp registers.
+ __ MultiPop(regexp_registers);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
+ // Otherwise use return value as new stack pointer.
+ __ mov(backtrack_stackpointer(), v0);
+ // Restore saved registers and continue.
+ __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
+ __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ SafeReturn();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ // If any of the code above needed to exit with an exception.
+ __ bind(&exit_with_exception);
+ // Exit with Result EXCEPTION(-1) to signal thrown exception.
+ __ li(v0, Operand(EXCEPTION));
+ __ jmp(&return_v0);
+ }
+ }
+
+ CodeDesc code_desc;
+ masm_->GetCode(&code_desc);
+ Handle<Code> code = isolate()->factory()->NewCode(
+ code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+ LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
+ int comparand,
+ Label* if_ge) {
+ __ ld(a0, register_location(reg));
+ BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
+ int comparand,
+ Label* if_lt) {
+ __ ld(a0, register_location(reg));
+ BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
+}
+
+
+void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
+ Label* if_eq) {
+ __ ld(a0, register_location(reg));
+ BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerMIPS::Implementation() {
+ return kMIPSImplementation;
+}
+
+
+void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
+ DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
+ if (check_bounds) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
+ Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
+ Pop(a0);
+ __ sd(a0, register_location(register_index));
+}
+
+
+void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
+ if (label->is_bound()) {
+ int target = label->pos();
+ __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
+ } else {
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ Label after_constant;
+ __ Branch(&after_constant);
+ int offset = masm_->pc_offset();
+ int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
+ __ emit(0);
+ masm_->label_at_put(label, offset);
+ __ bind(&after_constant);
+ if (is_int16(cp_offset)) {
+ __ lwu(a0, MemOperand(code_pointer(), cp_offset));
+ } else {
+ __ Daddu(a0, code_pointer(), cp_offset);
+ __ lwu(a0, MemOperand(a0, 0));
+ }
+ }
+ Push(a0);
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
+ Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ __ ld(a0, register_location(register_index));
+ Push(a0);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
+ __ ld(current_input_offset(), register_location(reg));
+}
+
+
+void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
+ __ ld(backtrack_stackpointer(), register_location(reg));
+ __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
+ __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ Branch(&after_position,
+ ge,
+ current_input_offset(),
+ Operand(-by * char_size()));
+ __ li(current_input_offset(), -by * char_size());
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ __ li(a0, Operand(to));
+ __ sd(a0, register_location(register_index));
+}
+
+
+bool RegExpMacroAssemblerMIPS::Succeed() {
+ __ jmp(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ if (cp_offset == 0) {
+ __ sd(current_input_offset(), register_location(reg));
+ } else {
+ __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
+ __ sd(a0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ __ sd(a0, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
+ __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
+ __ Dsubu(a0, backtrack_stackpointer(), a1);
+ __ sd(a0, register_location(reg));
+}
+
+
+bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
+ return false;
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
+ int stack_alignment = base::OS::ActivationFrameAlignment();
+
+ // Align the stack pointer and save the original sp value on the stack.
+ __ mov(scratch, sp);
+ __ Dsubu(sp, sp, Operand(kPointerSize));
+ DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
+ __ And(sp, sp, Operand(-stack_alignment));
+ __ sd(scratch, MemOperand(sp));
+
+ __ mov(a2, frame_pointer());
+ // Code* of self.
+ __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
+
+ // We need to make room for the return address on the stack.
+ DCHECK(IsAligned(stack_alignment, kPointerSize));
+ __ Dsubu(sp, sp, Operand(stack_alignment));
+
+ // Stack pointer now points to cell where return address is to be written.
+ // Arguments are in registers, meaning we teat the return address as
+ // argument 5. Since DirectCEntryStub will handleallocating space for the C
+ // argument slots, we don't need to care about that here. This is how the
+ // stack will look (sp meaning the value of sp at this moment):
+ // [sp + 3] - empty slot if needed for alignment.
+ // [sp + 2] - saved sp.
+ // [sp + 1] - second word reserved for return value.
+ // [sp + 0] - first word reserved for return value.
+
+ // a0 will point to the return address, placed by DirectCEntry.
+ __ mov(a0, sp);
+
+ ExternalReference stack_guard_check =
+ ExternalReference::re_check_stack_guard_state(masm_->isolate());
+ __ li(t9, Operand(stack_guard_check));
+ DirectCEntryStub stub(isolate());
+ stub.GenerateCall(masm_, t9);
+
+ // DirectCEntryStub allocated space for the C argument slots so we have to
+ // drop them with the return address from the stack with loading saved sp.
+ // At this point stack must look:
+ // [sp + 7] - empty slot if needed for alignment.
+ // [sp + 6] - saved sp.
+ // [sp + 5] - second word reserved for return value.
+ // [sp + 4] - first word reserved for return value.
+ // [sp + 3] - C argument slot.
+ // [sp + 2] - C argument slot.
+ // [sp + 1] - C argument slot.
+ // [sp + 0] - C argument slot.
+ __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
+
+ __ li(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate),
+ frame_entry<int>(re_frame, kStartIndex),
+ frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+ frame_entry_address<String*>(re_frame, kInputString),
+ frame_entry_address<const byte*>(re_frame, kInputStart),
+ frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
+ DCHECK(register_index < (1<<30));
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ return MemOperand(frame_pointer(),
+ kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ BranchOrBacktrack(on_outside_input,
+ ge,
+ current_input_offset(),
+ Operand(-cp_offset * char_size()));
+}
+
+
+void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
+ Condition condition,
+ Register rs,
+ const Operand& rt) {
+ if (condition == al) { // Unconditional.
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+ }
+ if (to == NULL) {
+ __ Branch(&backtrack_label_, condition, rs, rt);
+ return;
+ }
+ __ Branch(to, condition, rs, rt);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
+ Condition cond,
+ Register rs,
+ const Operand& rt) {
+ __ BranchAndLink(to, cond, rs, rt);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeReturn() {
+ __ pop(ra);
+ __ Daddu(t1, ra, Operand(masm_->CodeObject()));
+ __ Jump(t1);
+}
+
+
+void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
+ __ bind(name);
+ __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
+ __ push(ra);
+}
+
+
+void RegExpMacroAssemblerMIPS::Push(Register source) {
+ DCHECK(!source.is(backtrack_stackpointer()));
+ __ Daddu(backtrack_stackpointer(),
+ backtrack_stackpointer(),
+ Operand(-kIntSize));
+ __ sw(source, MemOperand(backtrack_stackpointer()));
+}
+
+
+void RegExpMacroAssemblerMIPS::Pop(Register target) {
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ lw(target, MemOperand(backtrack_stackpointer()));
+ __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckPreemption() {
+ // Check for preemption.
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(masm_->isolate());
+ __ li(a0, Operand(stack_limit));
+ __ ld(a0, MemOperand(a0));
+ SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::CheckStackLimit() {
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
+
+ __ li(a0, Operand(stack_limit));
+ __ ld(a0, MemOperand(a0));
+ SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
+}
+
+
+void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ Register offset = current_input_offset();
+ if (cp_offset != 0) {
+ // t3 is not being used to store the capture start index at this point.
+ __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
+ offset = t3;
+ }
+ // We assume that we cannot do unaligned loads on MIPS, so this function
+ // must only be used to load a single character at a time.
+ DCHECK(characters == 1);
+ __ Daddu(t1, end_of_input_address(), Operand(offset));
+ if (mode_ == LATIN1) {
+ __ lbu(current_character(), MemOperand(t1, 0));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ lhu(current_character(), MemOperand(t1, 0));
+ }
+}
+
+#undef __
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_MIPS64
--- /dev/null
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
+#define V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
+
+#include "src/macro-assembler.h"
+#include "src/mips64/assembler-mips64.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerMIPS: public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerMIPS();
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(uint32_t c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+ virtual bool CanReadUnaligned();
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int64_t CheckStackGuardState(Address* return_address, Code* re_code,
+ Address re_frame);
+
+ void print_regexp_frame_constants();
+
+ private:
+#if defined(MIPS_ABI_N64)
+ // Offsets from frame_pointer() of function parameters and stored registers.
+ static const int kFramePointer = 0;
+
+ // Above the frame pointer - Stored registers and stack passed parameters.
+ // Registers s0 to s7, fp, and ra.
+ static const int kStoredRegisters = kFramePointer;
+ // Return address (stored from link register, read into pc on return).
+
+// TODO(plind): This 9 - is 8 s-regs (s0..s7) plus fp.
+
+ static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
+ static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+ // Stack frame header.
+ static const int kStackFrameHeader = kSecondaryReturnAddress;
+ // Stack parameters placed by caller.
+ static const int kIsolate = kStackFrameHeader + kPointerSize;
+
+ // Below the frame pointer.
+ // Register parameters stored by setup code.
+ static const int kDirectCall = kFramePointer - kPointerSize;
+ static const int kStackHighEnd = kDirectCall - kPointerSize;
+ static const int kNumOutputRegisters = kStackHighEnd - kPointerSize;
+ static const int kRegisterOutput = kNumOutputRegisters - kPointerSize;
+ static const int kInputEnd = kRegisterOutput - kPointerSize;
+ static const int kInputStart = kInputEnd - kPointerSize;
+ static const int kStartIndex = kInputStart - kPointerSize;
+ static const int kInputString = kStartIndex - kPointerSize;
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kSuccessfulCaptures = kInputString - kPointerSize;
+ static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
+
+#elif defined(MIPS_ABI_O32)
+ // Offsets from frame_pointer() of function parameters and stored registers.
+ static const int kFramePointer = 0;
+
+ // Above the frame pointer - Stored registers and stack passed parameters.
+ // Registers s0 to s7, fp, and ra.
+ static const int kStoredRegisters = kFramePointer;
+ // Return address (stored from link register, read into pc on return).
+ static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
+ static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
+ // Stack frame header.
+ static const int kStackFrameHeader = kReturnAddress + kPointerSize;
+ // Stack parameters placed by caller.
+ static const int kRegisterOutput =
+ kStackFrameHeader + 4 * kPointerSize + kPointerSize;
+ static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+ static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+ static const int kDirectCall = kStackHighEnd + kPointerSize;
+ static const int kIsolate = kDirectCall + kPointerSize;
+
+ // Below the frame pointer.
+ // Register parameters stored by setup code.
+ static const int kInputEnd = kFramePointer - kPointerSize;
+ static const int kInputStart = kInputEnd - kPointerSize;
+ static const int kStartIndex = kInputStart - kPointerSize;
+ static const int kInputString = kStartIndex - kPointerSize;
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kSuccessfulCaptures = kInputString - kPointerSize;
+ static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
+
+#else
+# error "undefined MIPS ABI"
+#endif
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState(Register scratch);
+
+ // The ebp-relative location of a regexp register.
+ MemOperand register_location(int register_index);
+
+ // Register holding the current input position as negative offset from
+ // the end of the string.
+ inline Register current_input_offset() { return a6; }
+
+ // The register containing the current character after LoadCurrentCharacter.
+ inline Register current_character() { return a7; }
+
+ // Register holding address of the end of the input string.
+ inline Register end_of_input_address() { return t2; }
+
+ // Register holding the frame address. Local variables, parameters and
+ // regexp registers are addressed relative to this.
+ inline Register frame_pointer() { return fp; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ inline Register backtrack_stackpointer() { return t0; }
+
+ // Register holding pointer to the current code object.
+ inline Register code_pointer() { return a5; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument).
+ inline int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Label* to,
+ Condition condition,
+ Register rs,
+ const Operand& rt);
+
+ // Call and return internally in the generated code in a way that
+ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+ inline void SafeCall(Label* to,
+ Condition cond,
+ Register rs,
+ const Operand& rt);
+ inline void SafeReturn();
+ inline void SafeCallTarget(Label* name);
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // and increments it by a word size.
+ inline void Pop(Register target);
+
+ Isolate* isolate() const { return masm_->isolate(); }
+
+ MacroAssembler* masm_;
+
+ // Which mode to generate code for (Latin1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1).
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+ Label internal_failure_label_;
+};
+
+#endif // V8_INTERPRETED_REGEXP
+
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
--- /dev/null
+jyan@ca.ibm.com
+dstence@us.ibm.com
+joransiu@ca.ibm.com
+mbrandy@us.ibm.com
+michael_dawson@ca.ibm.com
--- /dev/null
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_PPC
+
+#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
+
+#include "src/base/bits.h"
+#include "src/code-stubs.h"
+#include "src/cpu-profiler.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - r25: Temporarily stores the index of capture start after a matching pass
+ * for a global regexp.
+ * - r26: Pointer to current code object (Code*) including heap object tag.
+ * - r27: Current position in input, as negative offset from end of string.
+ * Please notice that this is the byte offset, not the character offset!
+ * - r28: Currently loaded character. Must be loaded using
+ * LoadCurrentCharacter before using any of the dispatch methods.
+ * - r29: Points to tip of backtrack stack
+ * - r30: End of input (points to byte after last character in input).
+ * - r31: Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - r12: IP register, used by assembler. Very volatile.
+ * - r1/sp : Points to tip of C stack.
+ *
+ * The remaining registers are free for computations.
+ * Each call to a public method should retain this convention.
+ *
+ * The stack will have the following structure:
+ * - fp[44] Isolate* isolate (address of the current isolate)
+ * - fp[40] secondary link/return address used by native call.
+ * - fp[36] lr save area (currently unused)
+ * - fp[32] backchain (currently unused)
+ * --- sp when called ---
+ * - fp[28] return address (lr).
+ * - fp[24] old frame pointer (r31).
+ * - fp[0..20] backup of registers r25..r30
+ * --- frame pointer ----
+ * - fp[-4] direct_call (if 1, direct call from JavaScript code,
+ * if 0, call through the runtime system).
+ * - fp[-8] stack_area_base (high end of the memory area to use as
+ * backtracking stack).
+ * - fp[-12] capture array size (may fit multiple sets of matches)
+ * - fp[-16] int* capture_array (int[num_saved_registers_], for output).
+ * - fp[-20] end of input (address of end of string).
+ * - fp[-24] start of input (address of first character in string).
+ * - fp[-28] start index (character index of start).
+ * - fp[-32] void* input_string (location of a handle containing the string).
+ * - fp[-36] success counter (only for global regexps to count matches).
+ * - fp[-40] Offset of location before start of input (effectively character
+ * position -1). Used to initialize capture registers to a
+ * non-position.
+ * - fp[-44] At start (if 1, we are starting at the start of the
+ * string, otherwise 0)
+ * - fp[-48] register 0 (Only positions must be stored in the first
+ * - register 1 num_saved_registers_ registers)
+ * - ...
+ * - register num_registers-1
+ * --- sp ---
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers start out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code and the remaining arguments are passed in registers, e.g. by calling the
+ * code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ * int start_index,
+ * Address start,
+ * Address end,
+ * int* capture_output_array,
+ * byte* stack_area_base,
+ * Address secondary_return_address, // Only used by native call.
+ * bool direct_call = false)
+ * The call is performed by NativeRegExpMacroAssembler::Execute()
+ * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
+ * in ppc/simulator-ppc.h.
+ * When calling as a non-direct call (i.e., from C++ code), the return address
+ * area is overwritten with the LR register by the RegExp code. When doing a
+ * direct call from generated code, the return address is placed there by
+ * the calling code, as in a normal exit frame.
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
+ Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_(),
+ internal_failure_label_() {
+ DCHECK_EQ(0, registers_to_save % 2);
+
+// Called from C
+ __ function_descriptor();
+
+ __ b(&entry_label_); // We'll write the entry code later.
+ // If the code gets too big or corrupted, an internal exception will be
+ // raised, and we will exit right away.
+ __ bind(&internal_failure_label_);
+ __ li(r3, Operand(FAILURE));
+ __ Ret();
+ __ bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
+ delete masm_;
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+ internal_failure_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerPPC::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ addi(current_input_offset(), current_input_offset(),
+ Operand(by * char_size()));
+ }
+}
+
+
+void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
+ DCHECK(reg >= 0);
+ DCHECK(reg < num_registers_);
+ if (by != 0) {
+ __ LoadP(r3, register_location(reg), r0);
+ __ mov(r0, Operand(by));
+ __ add(r3, r3, r0);
+ __ StoreP(r3, register_location(reg), r0);
+ }
+}
+
+
+void RegExpMacroAssemblerPPC::Backtrack() {
+ CheckPreemption();
+ // Pop Code* offset from backtrack stack, add Code* and jump to location.
+ Pop(r3);
+ __ add(r3, r3, code_pointer());
+ __ Jump(r3);
+}
+
+
+void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
+
+
+void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
+ __ Cmpli(current_character(), Operand(c), r0);
+ BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
+ __ Cmpli(current_character(), Operand(limit), r0);
+ BranchOrBacktrack(gt, on_greater);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
+ Label not_at_start;
+ // Did we start the match at the start of the string at all?
+ __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
+ __ cmpi(r3, Operand::Zero());
+ BranchOrBacktrack(ne, ¬_at_start);
+
+ // If we did, are we still at the start of the input?
+ __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
+ __ mr(r0, current_input_offset());
+ __ add(r3, end_of_input_address(), r0);
+ __ cmp(r4, r3);
+ BranchOrBacktrack(eq, on_at_start);
+ __ bind(¬_at_start);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotAtStart(Label* on_not_at_start) {
+ // Did we start the match at the start of the string at all?
+ __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
+ __ cmpi(r3, Operand::Zero());
+ BranchOrBacktrack(ne, on_not_at_start);
+ // If we did, are we still at the start of the input?
+ __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
+ __ add(r3, end_of_input_address(), current_input_offset());
+ __ cmp(r3, r4);
+ BranchOrBacktrack(ne, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
+ __ Cmpli(current_character(), Operand(limit), r0);
+ BranchOrBacktrack(lt, on_less);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
+ Label backtrack_non_equal;
+ __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
+ __ cmp(current_input_offset(), r3);
+ __ bne(&backtrack_non_equal);
+ __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
+ Operand(kPointerSize));
+
+ __ bind(&backtrack_non_equal);
+ BranchOrBacktrack(eq, on_equal);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
+ int start_reg, Label* on_no_match) {
+ Label fallthrough;
+ __ LoadP(r3, register_location(start_reg), r0); // Index of start of capture
+ __ LoadP(r4, register_location(start_reg + 1), r0); // Index of end
+ __ sub(r4, r4, r3, LeaveOE, SetRC); // Length of capture.
+
+ // If length is zero, either the capture is empty or it is not participating.
+ // In either case succeed immediately.
+ __ beq(&fallthrough, cr0);
+
+ // Check that there are enough characters left in the input.
+ __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
+ // __ cmn(r1, Operand(current_input_offset()));
+ BranchOrBacktrack(gt, on_no_match, cr0);
+
+ if (mode_ == LATIN1) {
+ Label success;
+ Label fail;
+ Label loop_check;
+
+ // r3 - offset of start of capture
+ // r4 - length of capture
+ __ add(r3, r3, end_of_input_address());
+ __ add(r5, end_of_input_address(), current_input_offset());
+ __ add(r4, r3, r4);
+
+ // r3 - Address of start of capture.
+ // r4 - Address of end of capture
+ // r5 - Address of current input position.
+
+ Label loop;
+ __ bind(&loop);
+ __ lbz(r6, MemOperand(r3));
+ __ addi(r3, r3, Operand(char_size()));
+ __ lbz(r25, MemOperand(r5));
+ __ addi(r5, r5, Operand(char_size()));
+ __ cmp(r25, r6);
+ __ beq(&loop_check);
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ __ ori(r6, r6, Operand(0x20)); // Convert capture character to lower-case.
+ __ ori(r25, r25, Operand(0x20)); // Also convert input character.
+ __ cmp(r25, r6);
+ __ bne(&fail);
+ __ subi(r6, r6, Operand('a'));
+ __ cmpli(r6, Operand('z' - 'a')); // Is r6 a lowercase letter?
+ __ ble(&loop_check); // In range 'a'-'z'.
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ subi(r6, r6, Operand(224 - 'a'));
+ __ cmpli(r6, Operand(254 - 224));
+ __ bgt(&fail); // Weren't Latin-1 letters.
+ __ cmpi(r6, Operand(247 - 224)); // Check for 247.
+ __ beq(&fail);
+
+ __ bind(&loop_check);
+ __ cmp(r3, r4);
+ __ blt(&loop);
+ __ b(&success);
+
+ __ bind(&fail);
+ BranchOrBacktrack(al, on_no_match);
+
+ __ bind(&success);
+ // Compute new value of character position after the matched part.
+ __ sub(current_input_offset(), r5, end_of_input_address());
+ } else {
+ DCHECK(mode_ == UC16);
+ int argument_count = 4;
+ __ PrepareCallCFunction(argument_count, r5);
+
+ // r3 - offset of start of capture
+ // r4 - length of capture
+
+ // Put arguments into arguments registers.
+ // Parameters are
+ // r3: Address byte_offset1 - Address captured substring's start.
+ // r4: Address byte_offset2 - Address of current character position.
+ // r5: size_t byte_length - length of capture in bytes(!)
+ // r6: Isolate* isolate
+
+ // Address of start of capture.
+ __ add(r3, r3, end_of_input_address());
+ // Length of capture.
+ __ mr(r5, r4);
+ // Save length in callee-save register for use on return.
+ __ mr(r25, r4);
+ // Address of current input position.
+ __ add(r4, current_input_offset(), end_of_input_address());
+ // Isolate.
+ __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
+
+ {
+ AllowExternalCallThatCantCauseGC scope(masm_);
+ ExternalReference function =
+ ExternalReference::re_case_insensitive_compare_uc16(isolate());
+ __ CallCFunction(function, argument_count);
+ }
+
+ // Check if function returned non-zero for success or zero for failure.
+ __ cmpi(r3, Operand::Zero());
+ BranchOrBacktrack(eq, on_no_match);
+ // On success, increment position by length of capture.
+ __ add(current_input_offset(), current_input_offset(), r25);
+ }
+
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ Label success;
+
+ // Find length of back-referenced capture.
+ __ LoadP(r3, register_location(start_reg), r0);
+ __ LoadP(r4, register_location(start_reg + 1), r0);
+ __ sub(r4, r4, r3, LeaveOE, SetRC); // Length to check.
+ // Succeed on empty capture (including no capture).
+ __ beq(&fallthrough, cr0);
+
+ // Check that there are enough characters left in the input.
+ __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
+ BranchOrBacktrack(gt, on_no_match, cr0);
+
+ // Compute pointers to match string and capture string
+ __ add(r3, r3, end_of_input_address());
+ __ add(r5, end_of_input_address(), current_input_offset());
+ __ add(r4, r4, r3);
+
+ Label loop;
+ __ bind(&loop);
+ if (mode_ == LATIN1) {
+ __ lbz(r6, MemOperand(r3));
+ __ addi(r3, r3, Operand(char_size()));
+ __ lbz(r25, MemOperand(r5));
+ __ addi(r5, r5, Operand(char_size()));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ lhz(r6, MemOperand(r3));
+ __ addi(r3, r3, Operand(char_size()));
+ __ lhz(r25, MemOperand(r5));
+ __ addi(r5, r5, Operand(char_size()));
+ }
+ __ cmp(r6, r25);
+ BranchOrBacktrack(ne, on_no_match);
+ __ cmp(r3, r4);
+ __ blt(&loop);
+
+ // Move current character position to position after match.
+ __ sub(current_input_offset(), r5, end_of_input_address());
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
+ Label* on_not_equal) {
+ __ Cmpli(current_character(), Operand(c), r0);
+ BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
+ Label* on_equal) {
+ __ mov(r0, Operand(mask));
+ if (c == 0) {
+ __ and_(r3, current_character(), r0, SetRC);
+ } else {
+ __ and_(r3, current_character(), r0);
+ __ Cmpli(r3, Operand(c), r0, cr0);
+ }
+ BranchOrBacktrack(eq, on_equal, cr0);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_not_equal) {
+ __ mov(r0, Operand(mask));
+ if (c == 0) {
+ __ and_(r3, current_character(), r0, SetRC);
+ } else {
+ __ and_(r3, current_character(), r0);
+ __ Cmpli(r3, Operand(c), r0, cr0);
+ }
+ BranchOrBacktrack(ne, on_not_equal, cr0);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
+ uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ subi(r3, current_character(), Operand(minus));
+ __ mov(r0, Operand(mask));
+ __ and_(r3, r3, r0);
+ __ Cmpli(r3, Operand(c), r0);
+ BranchOrBacktrack(ne, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
+ Label* on_in_range) {
+ __ mov(r0, Operand(from));
+ __ sub(r3, current_character(), r0);
+ __ Cmpli(r3, Operand(to - from), r0);
+ BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
+}
+
+
+void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
+ Label* on_not_in_range) {
+ __ mov(r0, Operand(from));
+ __ sub(r3, current_character(), r0);
+ __ Cmpli(r3, Operand(to - from), r0);
+ BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
+}
+
+
+void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ mov(r3, Operand(table));
+ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+ __ andi(r4, current_character(), Operand(kTableSize - 1));
+ __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
+ } else {
+ __ addi(r4, current_character(),
+ Operand(ByteArray::kHeaderSize - kHeapObjectTag));
+ }
+ __ lbzx(r3, MemOperand(r3, r4));
+ __ cmpi(r3, Operand::Zero());
+ BranchOrBacktrack(ne, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check
+ switch (type) {
+ case 's':
+ // Match space-characters
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ __ cmpi(current_character(), Operand(' '));
+ __ beq(&success);
+ // Check range 0x09..0x0d
+ __ subi(r3, current_character(), Operand('\t'));
+ __ cmpli(r3, Operand('\r' - '\t'));
+ __ ble(&success);
+ // \u00a0 (NBSP).
+ __ cmpi(r3, Operand(0x00a0 - '\t'));
+ BranchOrBacktrack(ne, on_no_match);
+ __ bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match ASCII digits ('0'..'9')
+ __ subi(r3, current_character(), Operand('0'));
+ __ cmpli(r3, Operand('9' - '0'));
+ BranchOrBacktrack(gt, on_no_match);
+ return true;
+ case 'D':
+ // Match non ASCII-digits
+ __ subi(r3, current_character(), Operand('0'));
+ __ cmpli(r3, Operand('9' - '0'));
+ BranchOrBacktrack(le, on_no_match);
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ xori(r3, current_character(), Operand(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ subi(r3, r3, Operand(0x0b));
+ __ cmpli(r3, Operand(0x0c - 0x0b));
+ BranchOrBacktrack(le, on_no_match);
+ if (mode_ == UC16) {
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ subi(r3, r3, Operand(0x2028 - 0x0b));
+ __ cmpli(r3, Operand(1));
+ BranchOrBacktrack(le, on_no_match);
+ }
+ return true;
+ }
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ xori(r3, current_character(), Operand(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ subi(r3, r3, Operand(0x0b));
+ __ cmpli(r3, Operand(0x0c - 0x0b));
+ if (mode_ == LATIN1) {
+ BranchOrBacktrack(gt, on_no_match);
+ } else {
+ Label done;
+ __ ble(&done);
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ subi(r3, r3, Operand(0x2028 - 0x0b));
+ __ cmpli(r3, Operand(1));
+ BranchOrBacktrack(gt, on_no_match);
+ __ bind(&done);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmpi(current_character(), Operand('z'));
+ BranchOrBacktrack(gt, on_no_match);
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ mov(r3, Operand(map));
+ __ lbzx(r3, MemOperand(r3, current_character()));
+ __ cmpli(r3, Operand::Zero());
+ BranchOrBacktrack(eq, on_no_match);
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmpli(current_character(), Operand('z'));
+ __ bgt(&done);
+ }
+ ExternalReference map = ExternalReference::re_word_character_map();
+ __ mov(r3, Operand(map));
+ __ lbzx(r3, MemOperand(r3, current_character()));
+ __ cmpli(r3, Operand::Zero());
+ BranchOrBacktrack(ne, on_no_match);
+ if (mode_ != LATIN1) {
+ __ bind(&done);
+ }
+ return true;
+ }
+ case '*':
+ // Match any character.
+ return true;
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerPPC::Fail() {
+ __ li(r3, Operand(FAILURE));
+ __ b(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
+ Label return_r3;
+
+ if (masm_->has_exception()) {
+ // If the code gets corrupted due to long regular expressions and lack of
+ // space on trampolines, an internal exception flag is set. If this case
+ // is detected, we will jump into exit sequence right away.
+ __ bind_to(&entry_label_, internal_failure_label_.pos());
+ } else {
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+
+ // Entry code:
+ __ bind(&entry_label_);
+
+ // Tell the system that we have a stack frame. Because the type
+ // is MANUAL, no is generated.
+ FrameScope scope(masm_, StackFrame::MANUAL);
+
+ // Ensure register assigments are consistent with callee save mask
+ DCHECK(r25.bit() & kRegExpCalleeSaved);
+ DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
+ DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
+ DCHECK(current_character().bit() & kRegExpCalleeSaved);
+ DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
+ DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
+ DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
+
+ // Actually emit code to start a new stack frame.
+ // Push arguments
+ // Save callee-save registers.
+ // Start new stack frame.
+ // Store link register in existing stack-cell.
+ // Order here should correspond to order of offset constants in header file.
+ RegList registers_to_retain = kRegExpCalleeSaved;
+ RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
+ r7.bit() | r8.bit() | r9.bit() | r10.bit();
+ __ mflr(r0);
+ __ push(r0);
+ __ MultiPush(argument_registers | registers_to_retain);
+ // Set frame pointer in space for it if this is not a direct call
+ // from generated code.
+ __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
+ __ li(r3, Operand::Zero());
+ __ push(r3); // Make room for success counter and initialize it to 0.
+ __ push(r3); // Make room for "position - 1" constant (value is irrelevant)
+ // Check if we have space on the stack for registers.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ mov(r3, Operand(stack_limit));
+ __ LoadP(r3, MemOperand(r3));
+ __ sub(r3, sp, r3, LeaveOE, SetRC);
+ // Handle it if the stack pointer is already below the stack limit.
+ __ ble(&stack_limit_hit, cr0);
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
+ __ bge(&stack_ok);
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ li(r3, Operand(EXCEPTION));
+ __ b(&return_r3);
+
+ __ bind(&stack_limit_hit);
+ CallCheckStackGuardState(r3);
+ __ cmpi(r3, Operand::Zero());
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ bne(&return_r3);
+
+ __ bind(&stack_ok);
+
+ // Allocate space on stack for registers.
+ __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
+ // Load string end.
+ __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ // Load input start.
+ __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
+ // Find negative length (offset of start relative to end).
+ __ sub(current_input_offset(), r3, end_of_input_address());
+ // Set r3 to address of char before start of the input string
+ // (effectively string position -1).
+ __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
+ __ subi(r3, current_input_offset(), Operand(char_size()));
+ if (mode_ == UC16) {
+ __ ShiftLeftImm(r0, r4, Operand(1));
+ __ sub(r3, r3, r0);
+ } else {
+ __ sub(r3, r3, r4);
+ }
+ // Store this value in a local variable, for use when clearing
+ // position registers.
+ __ StoreP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
+
+ // Initialize code pointer register
+ __ mov(code_pointer(), Operand(masm_->CodeObject()));
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ cmpi(r4, Operand::Zero());
+ __ bne(&load_char_start_regexp);
+ __ li(current_character(), Operand('\n'));
+ __ b(&start_regexp);
+
+ // Global regexp restarts matching here.
+ __ bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&start_regexp);
+
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
+ // Fill saved registers with initial value = start offset - 1
+ if (num_saved_registers_ > 8) {
+ // One slot beyond address of register 0.
+ __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
+ __ li(r5, Operand(num_saved_registers_));
+ __ mtctr(r5);
+ Label init_loop;
+ __ bind(&init_loop);
+ __ StorePU(r3, MemOperand(r4, -kPointerSize));
+ __ bdnz(&init_loop);
+ } else {
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ StoreP(r3, register_location(i), r0);
+ }
+ }
+ }
+
+ // Initialize backtrack stack pointer.
+ __ LoadP(backtrack_stackpointer(),
+ MemOperand(frame_pointer(), kStackHighEnd));
+
+ __ b(&start_label_);
+
+ // Exit code:
+ if (success_label_.is_linked()) {
+ // Save captures when successful.
+ __ bind(&success_label_);
+ if (num_saved_registers_ > 0) {
+ // copy captures to output
+ __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
+ __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
+ __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
+ __ sub(r4, end_of_input_address(), r4);
+ // r4 is length of input in bytes.
+ if (mode_ == UC16) {
+ __ ShiftRightImm(r4, r4, Operand(1));
+ }
+ // r4 is length of input in characters.
+ __ add(r4, r4, r5);
+ // r4 is length of string in characters.
+
+ DCHECK_EQ(0, num_saved_registers_ % 2);
+ // Always an even number of capture registers. This allows us to
+ // unroll the loop once to add an operation between a load of a register
+ // and the following use of that register.
+ for (int i = 0; i < num_saved_registers_; i += 2) {
+ __ LoadP(r5, register_location(i), r0);
+ __ LoadP(r6, register_location(i + 1), r0);
+ if (i == 0 && global_with_zero_length_check()) {
+ // Keep capture start in r25 for the zero-length check later.
+ __ mr(r25, r5);
+ }
+ if (mode_ == UC16) {
+ __ ShiftRightArithImm(r5, r5, 1);
+ __ add(r5, r4, r5);
+ __ ShiftRightArithImm(r6, r6, 1);
+ __ add(r6, r4, r6);
+ } else {
+ __ add(r5, r4, r5);
+ __ add(r6, r4, r6);
+ }
+ __ stw(r5, MemOperand(r3));
+ __ addi(r3, r3, Operand(kIntSize));
+ __ stw(r6, MemOperand(r3));
+ __ addi(r3, r3, Operand(kIntSize));
+ }
+ }
+
+ if (global()) {
+ // Restart matching if the regular expression is flagged as global.
+ __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
+ __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
+ // Increment success counter.
+ __ addi(r3, r3, Operand(1));
+ __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ subi(r4, r4, Operand(num_saved_registers_));
+ // Check whether we have enough room for another set of capture results.
+ __ cmpi(r4, Operand(num_saved_registers_));
+ __ blt(&return_r3);
+
+ __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
+ // Advance the location for output.
+ __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
+ __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
+
+ // Prepare r3 to initialize registers with its value in the next run.
+ __ LoadP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ // r25: capture start index
+ __ cmp(current_input_offset(), r25);
+ // Not a zero-length match, restart.
+ __ bne(&load_char_start_regexp);
+ // Offset from the end is zero if we already reached the end.
+ __ cmpi(current_input_offset(), Operand::Zero());
+ __ beq(&exit_label_);
+ // Advance current position after a zero-length match.
+ __ addi(current_input_offset(), current_input_offset(),
+ Operand((mode_ == UC16) ? 2 : 1));
+ }
+
+ __ b(&load_char_start_regexp);
+ } else {
+ __ li(r3, Operand(SUCCESS));
+ }
+ }
+
+ // Exit and return r3
+ __ bind(&exit_label_);
+ if (global()) {
+ __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
+ }
+
+ __ bind(&return_r3);
+ // Skip sp past regexp registers and local variables..
+ __ mr(sp, frame_pointer());
+ // Restore registers r25..r31 and return (restoring lr to pc).
+ __ MultiPop(registers_to_retain);
+ __ pop(r0);
+ __ mtlr(r0);
+ __ blr();
+
+ // Backtrack code (branch target for conditional backtracks).
+ if (backtrack_label_.is_linked()) {
+ __ bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ Label exit_with_exception;
+
+ // Preempt-code
+ if (check_preempt_label_.is_linked()) {
+ SafeCallTarget(&check_preempt_label_);
+
+ CallCheckStackGuardState(r3);
+ __ cmpi(r3, Operand::Zero());
+ // If returning non-zero, we should end execution with the given
+ // result as return value.
+ __ bne(&return_r3);
+
+ // String might have moved: Reload end of string from frame.
+ __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
+ SafeReturn();
+ }
+
+ // Backtrack stack overflow code.
+ if (stack_overflow_label_.is_linked()) {
+ SafeCallTarget(&stack_overflow_label_);
+ // Reached if the backtrack-stack limit has been hit.
+ Label grow_failed;
+
+ // Call GrowStack(backtrack_stackpointer(), &stack_base)
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, r3);
+ __ mr(r3, backtrack_stackpointer());
+ __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
+ __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(isolate());
+ __ CallCFunction(grow_stack, num_arguments);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ __ cmpi(r3, Operand::Zero());
+ __ beq(&exit_with_exception);
+ // Otherwise use return value as new stack pointer.
+ __ mr(backtrack_stackpointer(), r3);
+ // Restore saved registers and continue.
+ SafeReturn();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ // If any of the code above needed to exit with an exception.
+ __ bind(&exit_with_exception);
+ // Exit with Result EXCEPTION(-1) to signal thrown exception.
+ __ li(r3, Operand(EXCEPTION));
+ __ b(&return_r3);
+ }
+ }
+
+ CodeDesc code_desc;
+ masm_->GetCode(&code_desc);
+ Handle<Code> code = isolate()->factory()->NewCode(
+ code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
+ PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
+
+
+void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
+ Label* if_ge) {
+ __ LoadP(r3, register_location(reg), r0);
+ __ Cmpi(r3, Operand(comparand), r0);
+ BranchOrBacktrack(ge, if_ge);
+}
+
+
+void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
+ Label* if_lt) {
+ __ LoadP(r3, register_location(reg), r0);
+ __ Cmpi(r3, Operand(comparand), r0);
+ BranchOrBacktrack(lt, if_lt);
+}
+
+
+void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
+ __ LoadP(r3, register_location(reg), r0);
+ __ cmp(r3, current_input_offset());
+ BranchOrBacktrack(eq, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+RegExpMacroAssemblerPPC::Implementation() {
+ return kPPCImplementation;
+}
+
+
+void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
+ DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works)
+ if (check_bounds) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerPPC::PopCurrentPosition() {
+ Pop(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
+ Pop(r3);
+ __ StoreP(r3, register_location(register_index), r0);
+}
+
+
+void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
+ __ mov_label_offset(r3, label);
+ Push(r3);
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerPPC::PushCurrentPosition() {
+ Push(current_input_offset());
+}
+
+
+void RegExpMacroAssemblerPPC::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ __ LoadP(r3, register_location(register_index), r0);
+ Push(r3);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
+ __ LoadP(current_input_offset(), register_location(reg), r0);
+}
+
+
+void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
+ __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
+ __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
+ __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
+}
+
+
+void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
+ __ bge(&after_position);
+ __ mov(current_input_offset(), Operand(-by * char_size()));
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ __ mov(r3, Operand(to));
+ __ StoreP(r3, register_location(register_index), r0);
+}
+
+
+bool RegExpMacroAssemblerPPC::Succeed() {
+ __ b(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ if (cp_offset == 0) {
+ __ StoreP(current_input_offset(), register_location(reg), r0);
+ } else {
+ __ mov(r0, Operand(cp_offset * char_size()));
+ __ add(r3, current_input_offset(), r0);
+ __ StoreP(r3, register_location(reg), r0);
+ }
+}
+
+
+void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ __ LoadP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ __ StoreP(r3, register_location(reg), r0);
+ }
+}
+
+
+void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
+ __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
+ __ sub(r3, backtrack_stackpointer(), r4);
+ __ StoreP(r3, register_location(reg), r0);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
+ int frame_alignment = masm_->ActivationFrameAlignment();
+ int stack_space = kNumRequiredStackFrameSlots;
+ int stack_passed_arguments = 1; // space for return address pointer
+
+ // The following stack manipulation logic is similar to
+ // PrepareCallCFunction. However, we need an extra slot on the
+ // stack to house the return address parameter.
+ if (frame_alignment > kPointerSize) {
+ // Make stack end at alignment and make room for stack arguments
+ // -- preserving original value of sp.
+ __ mr(scratch, sp);
+ __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
+ DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+ __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
+ __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ // Make room for stack arguments
+ stack_space += stack_passed_arguments;
+ }
+
+ // Allocate frame with required slots to make ABI work.
+ __ li(r0, Operand::Zero());
+ __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
+
+ // RegExp code frame pointer.
+ __ mr(r5, frame_pointer());
+ // Code* of self.
+ __ mov(r4, Operand(masm_->CodeObject()));
+ // r3 will point to the return address, placed by DirectCEntry.
+ __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
+
+ ExternalReference stack_guard_check =
+ ExternalReference::re_check_stack_guard_state(isolate());
+ __ mov(ip, Operand(stack_guard_check));
+ DirectCEntryStub stub(isolate());
+ stub.GenerateCall(masm_, ip);
+
+ // Restore the stack pointer
+ stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
+ if (frame_alignment > kPointerSize) {
+ __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
+ } else {
+ __ addi(sp, sp, Operand(stack_space * kPointerSize));
+ }
+
+ __ mov(code_pointer(), Operand(masm_->CodeObject()));
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate),
+ frame_entry<intptr_t>(re_frame, kStartIndex),
+ frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
+ re_code, frame_entry_address<String*>(re_frame, kInputString),
+ frame_entry_address<const byte*>(re_frame, kInputStart),
+ frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
+ DCHECK(register_index < (1 << 30));
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ return MemOperand(frame_pointer(),
+ kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
+ BranchOrBacktrack(ge, on_outside_input);
+}
+
+
+void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
+ CRegister cr) {
+ if (condition == al) { // Unconditional.
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ b(to);
+ return;
+ }
+ if (to == NULL) {
+ __ b(condition, &backtrack_label_, cr);
+ return;
+ }
+ __ b(condition, to, cr);
+}
+
+
+void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
+ CRegister cr) {
+ __ b(cond, to, cr, SetLK);
+}
+
+
+void RegExpMacroAssemblerPPC::SafeReturn() {
+ __ pop(r0);
+ __ mov(ip, Operand(masm_->CodeObject()));
+ __ add(r0, r0, ip);
+ __ mtlr(r0);
+ __ blr();
+}
+
+
+void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
+ __ bind(name);
+ __ mflr(r0);
+ __ mov(ip, Operand(masm_->CodeObject()));
+ __ sub(r0, r0, ip);
+ __ push(r0);
+}
+
+
+void RegExpMacroAssemblerPPC::Push(Register source) {
+ DCHECK(!source.is(backtrack_stackpointer()));
+ __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
+}
+
+
+void RegExpMacroAssemblerPPC::Pop(Register target) {
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ LoadP(target, MemOperand(backtrack_stackpointer()));
+ __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
+ Operand(kPointerSize));
+}
+
+
+void RegExpMacroAssemblerPPC::CheckPreemption() {
+ // Check for preemption.
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ mov(r3, Operand(stack_limit));
+ __ LoadP(r3, MemOperand(r3));
+ __ cmpl(sp, r3);
+ SafeCall(&check_preempt_label_, le);
+}
+
+
+void RegExpMacroAssemblerPPC::CheckStackLimit() {
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(isolate());
+ __ mov(r3, Operand(stack_limit));
+ __ LoadP(r3, MemOperand(r3));
+ __ cmpl(backtrack_stackpointer(), r3);
+ SafeCall(&stack_overflow_label_, le);
+}
+
+
+bool RegExpMacroAssemblerPPC::CanReadUnaligned() {
+ return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
+}
+
+
+void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ Register offset = current_input_offset();
+ if (cp_offset != 0) {
+ // r25 is not being used to store the capture start index at this point.
+ __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
+ offset = r25;
+ }
+ // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
+ // and the operating system running on the target allow it.
+ // We assume we don't want to do unaligned loads on PPC, so this function
+ // must only be used to load a single character at a time.
+
+ DCHECK(characters == 1);
+ __ add(current_character(), end_of_input_address(), offset);
+ if (mode_ == LATIN1) {
+ __ lbz(current_character(), MemOperand(current_character()));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ lhz(current_character(), MemOperand(current_character()));
+ }
+}
+
+
+#undef __
+
+#endif // V8_INTERPRETED_REGEXP
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_PPC
--- /dev/null
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
+#define V8_REGEXP_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
+
+#include "src/macro-assembler.h"
+#include "src/ppc/assembler-ppc.h"
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerPPC : public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerPPC();
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(unsigned c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(unsigned c, unsigned mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(unsigned c, unsigned mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from, uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset, Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+ virtual bool CanReadUnaligned();
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int CheckStackGuardState(Address* return_address, Code* re_code,
+ Address re_frame);
+
+ private:
+ // Offsets from frame_pointer() of function parameters and stored registers.
+ static const int kFramePointer = 0;
+
+ // Above the frame pointer - Stored registers and stack passed parameters.
+ // Register 25..31.
+ static const int kStoredRegisters = kFramePointer;
+ // Return address (stored from link register, read into pc on return).
+ static const int kReturnAddress = kStoredRegisters + 7 * kPointerSize;
+ static const int kCallerFrame = kReturnAddress + kPointerSize;
+ // Stack parameters placed by caller.
+ static const int kSecondaryReturnAddress =
+ kCallerFrame + kStackFrameExtraParamSlot * kPointerSize;
+ static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
+
+ // Below the frame pointer.
+ // Register parameters stored by setup code.
+ static const int kDirectCall = kFramePointer - kPointerSize;
+ static const int kStackHighEnd = kDirectCall - kPointerSize;
+ static const int kNumOutputRegisters = kStackHighEnd - kPointerSize;
+ static const int kRegisterOutput = kNumOutputRegisters - kPointerSize;
+ static const int kInputEnd = kRegisterOutput - kPointerSize;
+ static const int kInputStart = kInputEnd - kPointerSize;
+ static const int kStartIndex = kInputStart - kPointerSize;
+ static const int kInputString = kStartIndex - kPointerSize;
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kSuccessfulCaptures = kInputString - kPointerSize;
+ static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState(Register scratch);
+
+ // The ebp-relative location of a regexp register.
+ MemOperand register_location(int register_index);
+
+ // Register holding the current input position as negative offset from
+ // the end of the string.
+ inline Register current_input_offset() { return r27; }
+
+ // The register containing the current character after LoadCurrentCharacter.
+ inline Register current_character() { return r28; }
+
+ // Register holding address of the end of the input string.
+ inline Register end_of_input_address() { return r30; }
+
+ // Register holding the frame address. Local variables, parameters and
+ // regexp registers are addressed relative to this.
+ inline Register frame_pointer() { return fp; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ inline Register backtrack_stackpointer() { return r29; }
+
+ // Register holding pointer to the current code object.
+ inline Register code_pointer() { return r26; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument)
+ inline int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Condition condition, Label* to, CRegister cr = cr7);
+
+ // Call and return internally in the generated code in a way that
+ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+ inline void SafeCall(Label* to, Condition cond = al, CRegister cr = cr7);
+ inline void SafeReturn();
+ inline void SafeCallTarget(Label* name);
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // and increments it by a word size.
+ inline void Pop(Register target);
+
+ Isolate* isolate() const { return masm_->isolate(); }
+
+ MacroAssembler* masm_;
+
+ // Which mode to generate code for (Latin1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1)
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+ Label internal_failure_label_;
+};
+
+// Set of non-volatile registers saved/restored by generated regexp code.
+const RegList kRegExpCalleeSaved =
+ 1 << 25 | 1 << 26 | 1 << 27 | 1 << 28 | 1 << 29 | 1 << 30 | 1 << 31;
+
+#endif // V8_INTERPRETED_REGEXP
+}
+} // namespace v8::internal
+
+#endif // V8_REGEXP_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
--- /dev/null
+// Copyright 2008-2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
+#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
+
+#include "src/ast.h"
+#include "src/regexp/bytecodes-irregexp.h"
+
+namespace v8 {
+namespace internal {
+
+#ifdef V8_INTERPRETED_REGEXP
+
+void RegExpMacroAssemblerIrregexp::Emit(uint32_t byte,
+ uint32_t twenty_four_bits) {
+ uint32_t word = ((twenty_four_bits << BYTECODE_SHIFT) | byte);
+ DCHECK(pc_ <= buffer_.length());
+ if (pc_ + 3 >= buffer_.length()) {
+ Expand();
+ }
+ *reinterpret_cast<uint32_t*>(buffer_.start() + pc_) = word;
+ pc_ += 4;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Emit16(uint32_t word) {
+ DCHECK(pc_ <= buffer_.length());
+ if (pc_ + 1 >= buffer_.length()) {
+ Expand();
+ }
+ *reinterpret_cast<uint16_t*>(buffer_.start() + pc_) = word;
+ pc_ += 2;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Emit8(uint32_t word) {
+ DCHECK(pc_ <= buffer_.length());
+ if (pc_ == buffer_.length()) {
+ Expand();
+ }
+ *reinterpret_cast<unsigned char*>(buffer_.start() + pc_) = word;
+ pc_ += 1;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Emit32(uint32_t word) {
+ DCHECK(pc_ <= buffer_.length());
+ if (pc_ + 3 >= buffer_.length()) {
+ Expand();
+ }
+ *reinterpret_cast<uint32_t*>(buffer_.start() + pc_) = word;
+ pc_ += 4;
+}
+
+#endif // V8_INTERPRETED_REGEXP
+
+} } // namespace v8::internal
+
+#endif // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_INL_H_
--- /dev/null
+// Copyright 2008-2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/ast.h"
+#include "src/regexp/bytecodes-irregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler-irregexp.h"
+#include "src/regexp/regexp-macro-assembler-irregexp-inl.h"
+
+
+namespace v8 {
+namespace internal {
+
+#ifdef V8_INTERPRETED_REGEXP
+
+RegExpMacroAssemblerIrregexp::RegExpMacroAssemblerIrregexp(Isolate* isolate,
+ Vector<byte> buffer,
+ Zone* zone)
+ : RegExpMacroAssembler(isolate, zone),
+ buffer_(buffer),
+ pc_(0),
+ own_buffer_(false),
+ advance_current_end_(kInvalidPC),
+ isolate_(isolate) {}
+
+
+RegExpMacroAssemblerIrregexp::~RegExpMacroAssemblerIrregexp() {
+ if (backtrack_.is_linked()) backtrack_.Unuse();
+ if (own_buffer_) buffer_.Dispose();
+}
+
+
+RegExpMacroAssemblerIrregexp::IrregexpImplementation
+RegExpMacroAssemblerIrregexp::Implementation() {
+ return kBytecodeImplementation;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Bind(Label* l) {
+ advance_current_end_ = kInvalidPC;
+ DCHECK(!l->is_bound());
+ if (l->is_linked()) {
+ int pos = l->pos();
+ while (pos != 0) {
+ int fixup = pos;
+ pos = *reinterpret_cast<int32_t*>(buffer_.start() + fixup);
+ *reinterpret_cast<uint32_t*>(buffer_.start() + fixup) = pc_;
+ }
+ }
+ l->bind_to(pc_);
+}
+
+
+void RegExpMacroAssemblerIrregexp::EmitOrLink(Label* l) {
+ if (l == NULL) l = &backtrack_;
+ if (l->is_bound()) {
+ Emit32(l->pos());
+ } else {
+ int pos = 0;
+ if (l->is_linked()) {
+ pos = l->pos();
+ }
+ l->link_to(pc_);
+ Emit32(pos);
+ }
+}
+
+
+void RegExpMacroAssemblerIrregexp::PopRegister(int register_index) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_POP_REGISTER, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::PushRegister(
+ int register_index,
+ StackCheckFlag check_stack_limit) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_PUSH_REGISTER, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::WriteCurrentPositionToRegister(
+ int register_index, int cp_offset) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_SET_REGISTER_TO_CP, register_index);
+ Emit32(cp_offset); // Current position offset.
+}
+
+
+void RegExpMacroAssemblerIrregexp::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ SetRegister(reg, -1);
+ }
+}
+
+
+void RegExpMacroAssemblerIrregexp::ReadCurrentPositionFromRegister(
+ int register_index) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_SET_CP_TO_REGISTER, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::WriteStackPointerToRegister(
+ int register_index) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_SET_REGISTER_TO_SP, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::ReadStackPointerFromRegister(
+ int register_index) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_SET_SP_TO_REGISTER, register_index);
+}
+
+
+void RegExpMacroAssemblerIrregexp::SetCurrentPositionFromEnd(int by) {
+ DCHECK(is_uint24(by));
+ Emit(BC_SET_CURRENT_POSITION_FROM_END, by);
+}
+
+
+void RegExpMacroAssemblerIrregexp::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_SET_REGISTER, register_index);
+ Emit32(to);
+}
+
+
+void RegExpMacroAssemblerIrregexp::AdvanceRegister(int register_index, int by) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_ADVANCE_REGISTER, register_index);
+ Emit32(by);
+}
+
+
+void RegExpMacroAssemblerIrregexp::PopCurrentPosition() {
+ Emit(BC_POP_CP, 0);
+}
+
+
+void RegExpMacroAssemblerIrregexp::PushCurrentPosition() {
+ Emit(BC_PUSH_CP, 0);
+}
+
+
+void RegExpMacroAssemblerIrregexp::Backtrack() {
+ Emit(BC_POP_BT, 0);
+}
+
+
+void RegExpMacroAssemblerIrregexp::GoTo(Label* l) {
+ if (advance_current_end_ == pc_) {
+ // Combine advance current and goto.
+ pc_ = advance_current_start_;
+ Emit(BC_ADVANCE_CP_AND_GOTO, advance_current_offset_);
+ EmitOrLink(l);
+ advance_current_end_ = kInvalidPC;
+ } else {
+ // Regular goto.
+ Emit(BC_GOTO, 0);
+ EmitOrLink(l);
+ }
+}
+
+
+void RegExpMacroAssemblerIrregexp::PushBacktrack(Label* l) {
+ Emit(BC_PUSH_BT, 0);
+ EmitOrLink(l);
+}
+
+
+bool RegExpMacroAssemblerIrregexp::Succeed() {
+ Emit(BC_SUCCEED, 0);
+ return false; // Restart matching for global regexp not supported.
+}
+
+
+void RegExpMacroAssemblerIrregexp::Fail() {
+ Emit(BC_FAIL, 0);
+}
+
+
+void RegExpMacroAssemblerIrregexp::AdvanceCurrentPosition(int by) {
+ DCHECK(by >= kMinCPOffset);
+ DCHECK(by <= kMaxCPOffset);
+ advance_current_start_ = pc_;
+ advance_current_offset_ = by;
+ Emit(BC_ADVANCE_CP, by);
+ advance_current_end_ = pc_;
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckGreedyLoop(
+ Label* on_tos_equals_current_position) {
+ Emit(BC_CHECK_GREEDY, 0);
+ EmitOrLink(on_tos_equals_current_position);
+}
+
+
+void RegExpMacroAssemblerIrregexp::LoadCurrentCharacter(int cp_offset,
+ Label* on_failure,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset >= kMinCPOffset);
+ DCHECK(cp_offset <= kMaxCPOffset);
+ int bytecode;
+ if (check_bounds) {
+ if (characters == 4) {
+ bytecode = BC_LOAD_4_CURRENT_CHARS;
+ } else if (characters == 2) {
+ bytecode = BC_LOAD_2_CURRENT_CHARS;
+ } else {
+ DCHECK(characters == 1);
+ bytecode = BC_LOAD_CURRENT_CHAR;
+ }
+ } else {
+ if (characters == 4) {
+ bytecode = BC_LOAD_4_CURRENT_CHARS_UNCHECKED;
+ } else if (characters == 2) {
+ bytecode = BC_LOAD_2_CURRENT_CHARS_UNCHECKED;
+ } else {
+ DCHECK(characters == 1);
+ bytecode = BC_LOAD_CURRENT_CHAR_UNCHECKED;
+ }
+ }
+ Emit(bytecode, cp_offset);
+ if (check_bounds) EmitOrLink(on_failure);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterLT(uc16 limit,
+ Label* on_less) {
+ Emit(BC_CHECK_LT, limit);
+ EmitOrLink(on_less);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterGT(uc16 limit,
+ Label* on_greater) {
+ Emit(BC_CHECK_GT, limit);
+ EmitOrLink(on_greater);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacter(uint32_t c, Label* on_equal) {
+ if (c > MAX_FIRST_ARG) {
+ Emit(BC_CHECK_4_CHARS, 0);
+ Emit32(c);
+ } else {
+ Emit(BC_CHECK_CHAR, c);
+ }
+ EmitOrLink(on_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckAtStart(Label* on_at_start) {
+ Emit(BC_CHECK_AT_START, 0);
+ EmitOrLink(on_at_start);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotAtStart(Label* on_not_at_start) {
+ Emit(BC_CHECK_NOT_AT_START, 0);
+ EmitOrLink(on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotCharacter(uint32_t c,
+ Label* on_not_equal) {
+ if (c > MAX_FIRST_ARG) {
+ Emit(BC_CHECK_NOT_4_CHARS, 0);
+ Emit32(c);
+ } else {
+ Emit(BC_CHECK_NOT_CHAR, c);
+ }
+ EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterAfterAnd(
+ uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ if (c > MAX_FIRST_ARG) {
+ Emit(BC_AND_CHECK_4_CHARS, 0);
+ Emit32(c);
+ } else {
+ Emit(BC_AND_CHECK_CHAR, c);
+ }
+ Emit32(mask);
+ EmitOrLink(on_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotCharacterAfterAnd(
+ uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal) {
+ if (c > MAX_FIRST_ARG) {
+ Emit(BC_AND_CHECK_NOT_4_CHARS, 0);
+ Emit32(c);
+ } else {
+ Emit(BC_AND_CHECK_NOT_CHAR, c);
+ }
+ Emit32(mask);
+ EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ Emit(BC_MINUS_AND_CHECK_NOT_CHAR, c);
+ Emit16(minus);
+ Emit16(mask);
+ EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ Emit(BC_CHECK_CHAR_IN_RANGE, 0);
+ Emit16(from);
+ Emit16(to);
+ EmitOrLink(on_in_range);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ Emit(BC_CHECK_CHAR_NOT_IN_RANGE, 0);
+ Emit16(from);
+ Emit16(to);
+ EmitOrLink(on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckBitInTable(
+ Handle<ByteArray> table, Label* on_bit_set) {
+ Emit(BC_CHECK_BIT_IN_TABLE, 0);
+ EmitOrLink(on_bit_set);
+ for (int i = 0; i < kTableSize; i += kBitsPerByte) {
+ int byte = 0;
+ for (int j = 0; j < kBitsPerByte; j++) {
+ if (table->get(i + j) != 0) byte |= 1 << j;
+ }
+ Emit8(byte);
+ }
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotBackReference(int start_reg,
+ Label* on_not_equal) {
+ DCHECK(start_reg >= 0);
+ DCHECK(start_reg <= kMaxRegister);
+ Emit(BC_CHECK_NOT_BACK_REF, start_reg);
+ EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_not_equal) {
+ DCHECK(start_reg >= 0);
+ DCHECK(start_reg <= kMaxRegister);
+ Emit(BC_CHECK_NOT_BACK_REF_NO_CASE, start_reg);
+ EmitOrLink(on_not_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::IfRegisterLT(int register_index,
+ int comparand,
+ Label* on_less_than) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_CHECK_REGISTER_LT, register_index);
+ Emit32(comparand);
+ EmitOrLink(on_less_than);
+}
+
+
+void RegExpMacroAssemblerIrregexp::IfRegisterGE(int register_index,
+ int comparand,
+ Label* on_greater_or_equal) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_CHECK_REGISTER_GE, register_index);
+ Emit32(comparand);
+ EmitOrLink(on_greater_or_equal);
+}
+
+
+void RegExpMacroAssemblerIrregexp::IfRegisterEqPos(int register_index,
+ Label* on_eq) {
+ DCHECK(register_index >= 0);
+ DCHECK(register_index <= kMaxRegister);
+ Emit(BC_CHECK_REGISTER_EQ_POS, register_index);
+ EmitOrLink(on_eq);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerIrregexp::GetCode(
+ Handle<String> source) {
+ Bind(&backtrack_);
+ Emit(BC_POP_BT, 0);
+ Handle<ByteArray> array = isolate_->factory()->NewByteArray(length());
+ Copy(array->GetDataStartAddress());
+ return array;
+}
+
+
+int RegExpMacroAssemblerIrregexp::length() {
+ return pc_;
+}
+
+
+void RegExpMacroAssemblerIrregexp::Copy(Address a) {
+ MemCopy(a, buffer_.start(), length());
+}
+
+
+void RegExpMacroAssemblerIrregexp::Expand() {
+ bool old_buffer_was_our_own = own_buffer_;
+ Vector<byte> old_buffer = buffer_;
+ buffer_ = Vector<byte>::New(old_buffer.length() * 2);
+ own_buffer_ = true;
+ MemCopy(buffer_.start(), old_buffer.start(), old_buffer.length());
+ if (old_buffer_was_our_own) {
+ old_buffer.Dispose();
+ }
+}
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
+#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
+
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#ifdef V8_INTERPRETED_REGEXP
+
+// A light-weight assembler for the Irregexp byte code.
+class RegExpMacroAssemblerIrregexp: public RegExpMacroAssembler {
+ public:
+ // Create an assembler. Instructions and relocation information are emitted
+ // into a buffer, with the instructions starting from the beginning and the
+ // relocation information starting from the end of the buffer. See CodeDesc
+ // for a detailed comment on the layout (globals.h).
+ //
+ // If the provided buffer is NULL, the assembler allocates and grows its own
+ // buffer, and buffer_size determines the initial buffer size. The buffer is
+ // owned by the assembler and deallocated upon destruction of the assembler.
+ //
+ // If the provided buffer is not NULL, the assembler uses the provided buffer
+ // for code generation and assumes its size to be buffer_size. If the buffer
+ // is too small, a fatal error occurs. No deallocation of the buffer is done
+ // upon destruction of the assembler.
+ RegExpMacroAssemblerIrregexp(Isolate* isolate, Vector<byte> buffer,
+ Zone* zone);
+ virtual ~RegExpMacroAssemblerIrregexp();
+ // The byte-code interpreter checks on each push anyway.
+ virtual int stack_limit_slack() { return 1; }
+ virtual bool CanReadUnaligned() { return false; }
+ virtual void Bind(Label* label);
+ virtual void AdvanceCurrentPosition(int by); // Signed cp change.
+ virtual void PopCurrentPosition();
+ virtual void PushCurrentPosition();
+ virtual void Backtrack();
+ virtual void GoTo(Label* label);
+ virtual void PushBacktrack(Label* label);
+ virtual bool Succeed();
+ virtual void Fail();
+ virtual void PopRegister(int register_index);
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void AdvanceRegister(int reg, int by); // r[reg] += by.
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void WriteStackPointerToRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void CheckCharacter(unsigned c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(unsigned c,
+ unsigned mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void IfRegisterLT(int register_index, int comparand, Label* if_lt);
+ virtual void IfRegisterGE(int register_index, int comparand, Label* if_ge);
+ virtual void IfRegisterEqPos(int register_index, Label* if_eq);
+
+ virtual IrregexpImplementation Implementation();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+
+ private:
+ void Expand();
+ // Code and bitmap emission.
+ inline void EmitOrLink(Label* label);
+ inline void Emit32(uint32_t x);
+ inline void Emit16(uint32_t x);
+ inline void Emit8(uint32_t x);
+ inline void Emit(uint32_t bc, uint32_t arg);
+ // Bytecode buffer.
+ int length();
+ void Copy(Address a);
+
+ // The buffer into which code and relocation info are generated.
+ Vector<byte> buffer_;
+ // The program counter.
+ int pc_;
+ // True if the assembler owns the buffer, false if buffer is external.
+ bool own_buffer_;
+ Label backtrack_;
+
+ int advance_current_start_;
+ int advance_current_offset_;
+ int advance_current_end_;
+
+ Isolate* isolate_;
+
+ static const int kInvalidPC = -1;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpMacroAssemblerIrregexp);
+};
+
+#endif // V8_INTERPRETED_REGEXP
+
+} } // namespace v8::internal
+
+#endif // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_IRREGEXP_H_
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/ast.h"
+#include "src/regexp/regexp-macro-assembler-tracer.h"
+
+namespace v8 {
+namespace internal {
+
+RegExpMacroAssemblerTracer::RegExpMacroAssemblerTracer(
+ Isolate* isolate, RegExpMacroAssembler* assembler)
+ : RegExpMacroAssembler(isolate, assembler->zone()), assembler_(assembler) {
+ unsigned int type = assembler->Implementation();
+ DCHECK(type < 6);
+ const char* impl_names[] = {"IA32", "ARM", "ARM64",
+ "MIPS", "X64", "X87", "Bytecode"};
+ PrintF("RegExpMacroAssembler%s();\n", impl_names[type]);
+}
+
+
+RegExpMacroAssemblerTracer::~RegExpMacroAssemblerTracer() {
+}
+
+
+void RegExpMacroAssemblerTracer::AbortedCodeGeneration() {
+ PrintF(" AbortedCodeGeneration\n");
+ assembler_->AbortedCodeGeneration();
+}
+
+
+// This is used for printing out debugging information. It makes an integer
+// that is closely related to the address of an object.
+static int LabelToInt(Label* label) {
+ return static_cast<int>(reinterpret_cast<intptr_t>(label));
+}
+
+
+void RegExpMacroAssemblerTracer::Bind(Label* label) {
+ PrintF("label[%08x]: (Bind)\n", LabelToInt(label));
+ assembler_->Bind(label);
+}
+
+
+void RegExpMacroAssemblerTracer::AdvanceCurrentPosition(int by) {
+ PrintF(" AdvanceCurrentPosition(by=%d);\n", by);
+ assembler_->AdvanceCurrentPosition(by);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckGreedyLoop(Label* label) {
+ PrintF(" CheckGreedyLoop(label[%08x]);\n\n", LabelToInt(label));
+ assembler_->CheckGreedyLoop(label);
+}
+
+
+void RegExpMacroAssemblerTracer::PopCurrentPosition() {
+ PrintF(" PopCurrentPosition();\n");
+ assembler_->PopCurrentPosition();
+}
+
+
+void RegExpMacroAssemblerTracer::PushCurrentPosition() {
+ PrintF(" PushCurrentPosition();\n");
+ assembler_->PushCurrentPosition();
+}
+
+
+void RegExpMacroAssemblerTracer::Backtrack() {
+ PrintF(" Backtrack();\n");
+ assembler_->Backtrack();
+}
+
+
+void RegExpMacroAssemblerTracer::GoTo(Label* label) {
+ PrintF(" GoTo(label[%08x]);\n\n", LabelToInt(label));
+ assembler_->GoTo(label);
+}
+
+
+void RegExpMacroAssemblerTracer::PushBacktrack(Label* label) {
+ PrintF(" PushBacktrack(label[%08x]);\n", LabelToInt(label));
+ assembler_->PushBacktrack(label);
+}
+
+
+bool RegExpMacroAssemblerTracer::Succeed() {
+ bool restart = assembler_->Succeed();
+ PrintF(" Succeed();%s\n", restart ? " [restart for global match]" : "");
+ return restart;
+}
+
+
+void RegExpMacroAssemblerTracer::Fail() {
+ PrintF(" Fail();");
+ assembler_->Fail();
+}
+
+
+void RegExpMacroAssemblerTracer::PopRegister(int register_index) {
+ PrintF(" PopRegister(register=%d);\n", register_index);
+ assembler_->PopRegister(register_index);
+}
+
+
+void RegExpMacroAssemblerTracer::PushRegister(
+ int register_index,
+ StackCheckFlag check_stack_limit) {
+ PrintF(" PushRegister(register=%d, %s);\n",
+ register_index,
+ check_stack_limit ? "check stack limit" : "");
+ assembler_->PushRegister(register_index, check_stack_limit);
+}
+
+
+void RegExpMacroAssemblerTracer::AdvanceRegister(int reg, int by) {
+ PrintF(" AdvanceRegister(register=%d, by=%d);\n", reg, by);
+ assembler_->AdvanceRegister(reg, by);
+}
+
+
+void RegExpMacroAssemblerTracer::SetCurrentPositionFromEnd(int by) {
+ PrintF(" SetCurrentPositionFromEnd(by=%d);\n", by);
+ assembler_->SetCurrentPositionFromEnd(by);
+}
+
+
+void RegExpMacroAssemblerTracer::SetRegister(int register_index, int to) {
+ PrintF(" SetRegister(register=%d, to=%d);\n", register_index, to);
+ assembler_->SetRegister(register_index, to);
+}
+
+
+void RegExpMacroAssemblerTracer::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ PrintF(" WriteCurrentPositionToRegister(register=%d,cp_offset=%d);\n",
+ reg,
+ cp_offset);
+ assembler_->WriteCurrentPositionToRegister(reg, cp_offset);
+}
+
+
+void RegExpMacroAssemblerTracer::ClearRegisters(int reg_from, int reg_to) {
+ PrintF(" ClearRegister(from=%d, to=%d);\n", reg_from, reg_to);
+ assembler_->ClearRegisters(reg_from, reg_to);
+}
+
+
+void RegExpMacroAssemblerTracer::ReadCurrentPositionFromRegister(int reg) {
+ PrintF(" ReadCurrentPositionFromRegister(register=%d);\n", reg);
+ assembler_->ReadCurrentPositionFromRegister(reg);
+}
+
+
+void RegExpMacroAssemblerTracer::WriteStackPointerToRegister(int reg) {
+ PrintF(" WriteStackPointerToRegister(register=%d);\n", reg);
+ assembler_->WriteStackPointerToRegister(reg);
+}
+
+
+void RegExpMacroAssemblerTracer::ReadStackPointerFromRegister(int reg) {
+ PrintF(" ReadStackPointerFromRegister(register=%d);\n", reg);
+ assembler_->ReadStackPointerFromRegister(reg);
+}
+
+
+void RegExpMacroAssemblerTracer::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ const char* check_msg = check_bounds ? "" : " (unchecked)";
+ PrintF(" LoadCurrentCharacter(cp_offset=%d, label[%08x]%s (%d chars));\n",
+ cp_offset,
+ LabelToInt(on_end_of_input),
+ check_msg,
+ characters);
+ assembler_->LoadCurrentCharacter(cp_offset,
+ on_end_of_input,
+ check_bounds,
+ characters);
+}
+
+
+class PrintablePrinter {
+ public:
+ explicit PrintablePrinter(uc16 character) : character_(character) { }
+
+ const char* operator*() {
+ if (character_ >= ' ' && character_ <= '~') {
+ buffer_[0] = '(';
+ buffer_[1] = static_cast<char>(character_);
+ buffer_[2] = ')';
+ buffer_[3] = '\0';
+ } else {
+ buffer_[0] = '\0';
+ }
+ return &buffer_[0];
+ }
+
+ private:
+ uc16 character_;
+ char buffer_[4];
+};
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterLT(uc16 limit, Label* on_less) {
+ PrintablePrinter printable(limit);
+ PrintF(" CheckCharacterLT(c=0x%04x%s, label[%08x]);\n",
+ limit,
+ *printable,
+ LabelToInt(on_less));
+ assembler_->CheckCharacterLT(limit, on_less);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterGT(uc16 limit,
+ Label* on_greater) {
+ PrintablePrinter printable(limit);
+ PrintF(" CheckCharacterGT(c=0x%04x%s, label[%08x]);\n",
+ limit,
+ *printable,
+ LabelToInt(on_greater));
+ assembler_->CheckCharacterGT(limit, on_greater);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacter(unsigned c, Label* on_equal) {
+ PrintablePrinter printable(c);
+ PrintF(" CheckCharacter(c=0x%04x%s, label[%08x]);\n",
+ c,
+ *printable,
+ LabelToInt(on_equal));
+ assembler_->CheckCharacter(c, on_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckAtStart(Label* on_at_start) {
+ PrintF(" CheckAtStart(label[%08x]);\n", LabelToInt(on_at_start));
+ assembler_->CheckAtStart(on_at_start);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotAtStart(Label* on_not_at_start) {
+ PrintF(" CheckNotAtStart(label[%08x]);\n", LabelToInt(on_not_at_start));
+ assembler_->CheckNotAtStart(on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotCharacter(unsigned c,
+ Label* on_not_equal) {
+ PrintablePrinter printable(c);
+ PrintF(" CheckNotCharacter(c=0x%04x%s, label[%08x]);\n",
+ c,
+ *printable,
+ LabelToInt(on_not_equal));
+ assembler_->CheckNotCharacter(c, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterAfterAnd(
+ unsigned c,
+ unsigned mask,
+ Label* on_equal) {
+ PrintablePrinter printable(c);
+ PrintF(" CheckCharacterAfterAnd(c=0x%04x%s, mask=0x%04x, label[%08x]);\n",
+ c,
+ *printable,
+ mask,
+ LabelToInt(on_equal));
+ assembler_->CheckCharacterAfterAnd(c, mask, on_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotCharacterAfterAnd(
+ unsigned c,
+ unsigned mask,
+ Label* on_not_equal) {
+ PrintablePrinter printable(c);
+ PrintF(" CheckNotCharacterAfterAnd(c=0x%04x%s, mask=0x%04x, label[%08x]);\n",
+ c,
+ *printable,
+ mask,
+ LabelToInt(on_not_equal));
+ assembler_->CheckNotCharacterAfterAnd(c, mask, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ PrintF(" CheckNotCharacterAfterMinusAnd(c=0x%04x, minus=%04x, mask=0x%04x, "
+ "label[%08x]);\n",
+ c,
+ minus,
+ mask,
+ LabelToInt(on_not_equal));
+ assembler_->CheckNotCharacterAfterMinusAnd(c, minus, mask, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ PrintablePrinter printable_from(from);
+ PrintablePrinter printable_to(to);
+ PrintF(" CheckCharacterInRange(from=0x%04x%s, to=0x%04x%s, label[%08x]);\n",
+ from,
+ *printable_from,
+ to,
+ *printable_to,
+ LabelToInt(on_not_in_range));
+ assembler_->CheckCharacterInRange(from, to, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ PrintablePrinter printable_from(from);
+ PrintablePrinter printable_to(to);
+ PrintF(
+ " CheckCharacterNotInRange(from=0x%04x%s," " to=%04x%s, label[%08x]);\n",
+ from,
+ *printable_from,
+ to,
+ *printable_to,
+ LabelToInt(on_in_range));
+ assembler_->CheckCharacterNotInRange(from, to, on_in_range);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckBitInTable(
+ Handle<ByteArray> table, Label* on_bit_set) {
+ PrintF(" CheckBitInTable(label[%08x] ", LabelToInt(on_bit_set));
+ for (int i = 0; i < kTableSize; i++) {
+ PrintF("%c", table->get(i) != 0 ? 'X' : '.');
+ if (i % 32 == 31 && i != kTableMask) {
+ PrintF("\n ");
+ }
+ }
+ PrintF(");\n");
+ assembler_->CheckBitInTable(table, on_bit_set);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotBackReference(int start_reg,
+ Label* on_no_match) {
+ PrintF(" CheckNotBackReference(register=%d, label[%08x]);\n", start_reg,
+ LabelToInt(on_no_match));
+ assembler_->CheckNotBackReference(start_reg, on_no_match);
+}
+
+
+void RegExpMacroAssemblerTracer::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_no_match) {
+ PrintF(" CheckNotBackReferenceIgnoreCase(register=%d, label[%08x]);\n",
+ start_reg, LabelToInt(on_no_match));
+ assembler_->CheckNotBackReferenceIgnoreCase(start_reg, on_no_match);
+}
+
+
+bool RegExpMacroAssemblerTracer::CheckSpecialCharacterClass(
+ uc16 type,
+ Label* on_no_match) {
+ bool supported = assembler_->CheckSpecialCharacterClass(type,
+ on_no_match);
+ PrintF(" CheckSpecialCharacterClass(type='%c', label[%08x]): %s;\n",
+ type,
+ LabelToInt(on_no_match),
+ supported ? "true" : "false");
+ return supported;
+}
+
+
+void RegExpMacroAssemblerTracer::IfRegisterLT(int register_index,
+ int comparand, Label* if_lt) {
+ PrintF(" IfRegisterLT(register=%d, number=%d, label[%08x]);\n",
+ register_index, comparand, LabelToInt(if_lt));
+ assembler_->IfRegisterLT(register_index, comparand, if_lt);
+}
+
+
+void RegExpMacroAssemblerTracer::IfRegisterEqPos(int register_index,
+ Label* if_eq) {
+ PrintF(" IfRegisterEqPos(register=%d, label[%08x]);\n",
+ register_index, LabelToInt(if_eq));
+ assembler_->IfRegisterEqPos(register_index, if_eq);
+}
+
+
+void RegExpMacroAssemblerTracer::IfRegisterGE(int register_index,
+ int comparand, Label* if_ge) {
+ PrintF(" IfRegisterGE(register=%d, number=%d, label[%08x]);\n",
+ register_index, comparand, LabelToInt(if_ge));
+ assembler_->IfRegisterGE(register_index, comparand, if_ge);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerTracer::Implementation() {
+ return assembler_->Implementation();
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerTracer::GetCode(Handle<String> source) {
+ PrintF(" GetCode(%s);\n", source->ToCString().get());
+ return assembler_->GetCode(source);
+}
+
+} // namespace internal
+} // namespace v8
--- /dev/null
+// Copyright 2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_
+#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_
+
+#include "src/regexp/regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+// Decorator on a RegExpMacroAssembler that write all calls.
+class RegExpMacroAssemblerTracer: public RegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerTracer(Isolate* isolate, RegExpMacroAssembler* assembler);
+ virtual ~RegExpMacroAssemblerTracer();
+ virtual void AbortedCodeGeneration();
+ virtual int stack_limit_slack() { return assembler_->stack_limit_slack(); }
+ virtual bool CanReadUnaligned() { return assembler_->CanReadUnaligned(); }
+ virtual void AdvanceCurrentPosition(int by); // Signed cp change.
+ virtual void AdvanceRegister(int reg, int by); // r[reg] += by.
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(unsigned c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(unsigned c,
+ unsigned and_with,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(unsigned c,
+ unsigned and_with,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 and_with,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+ virtual bool CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+
+ private:
+ RegExpMacroAssembler* assembler_;
+};
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_TRACER_H_
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/assembler.h"
+#include "src/ast.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/simulator.h"
+
+namespace v8 {
+namespace internal {
+
+RegExpMacroAssembler::RegExpMacroAssembler(Isolate* isolate, Zone* zone)
+ : slow_safe_compiler_(false),
+ global_mode_(NOT_GLOBAL),
+ isolate_(isolate),
+ zone_(zone) {}
+
+
+RegExpMacroAssembler::~RegExpMacroAssembler() {
+}
+
+
+#ifndef V8_INTERPRETED_REGEXP // Avoid unused code, e.g., on ARM.
+
+NativeRegExpMacroAssembler::NativeRegExpMacroAssembler(Isolate* isolate,
+ Zone* zone)
+ : RegExpMacroAssembler(isolate, zone) {}
+
+
+NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() {
+}
+
+
+bool NativeRegExpMacroAssembler::CanReadUnaligned() {
+ return FLAG_enable_unaligned_accesses && !slow_safe();
+}
+
+const byte* NativeRegExpMacroAssembler::StringCharacterPosition(
+ String* subject,
+ int start_index) {
+ if (subject->IsConsString()) {
+ subject = ConsString::cast(subject)->first();
+ } else if (subject->IsSlicedString()) {
+ start_index += SlicedString::cast(subject)->offset();
+ subject = SlicedString::cast(subject)->parent();
+ }
+ DCHECK(start_index >= 0);
+ DCHECK(start_index <= subject->length());
+ if (subject->IsSeqOneByteString()) {
+ return reinterpret_cast<const byte*>(
+ SeqOneByteString::cast(subject)->GetChars() + start_index);
+ } else if (subject->IsSeqTwoByteString()) {
+ return reinterpret_cast<const byte*>(
+ SeqTwoByteString::cast(subject)->GetChars() + start_index);
+ } else if (subject->IsExternalOneByteString()) {
+ return reinterpret_cast<const byte*>(
+ ExternalOneByteString::cast(subject)->GetChars() + start_index);
+ } else {
+ return reinterpret_cast<const byte*>(
+ ExternalTwoByteString::cast(subject)->GetChars() + start_index);
+ }
+}
+
+
+int NativeRegExpMacroAssembler::CheckStackGuardState(
+ Isolate* isolate, int start_index, bool is_direct_call,
+ Address* return_address, Code* re_code, String** subject,
+ const byte** input_start, const byte** input_end) {
+ DCHECK(re_code->instruction_start() <= *return_address);
+ DCHECK(*return_address <= re_code->instruction_end());
+ int return_value = 0;
+ // Prepare for possible GC.
+ HandleScope handles(isolate);
+ Handle<Code> code_handle(re_code);
+ Handle<String> subject_handle(*subject);
+ bool is_one_byte = subject_handle->IsOneByteRepresentationUnderneath();
+
+ StackLimitCheck check(isolate);
+ if (check.JsHasOverflowed()) {
+ isolate->StackOverflow();
+ return_value = EXCEPTION;
+ } else if (is_direct_call) {
+ // If not real stack overflow the stack guard was used to interrupt
+ // execution for another purpose. If this is a direct call from JavaScript
+ // retry the RegExp forcing the call through the runtime system.
+ // Currently the direct call cannot handle a GC.
+ return_value = RETRY;
+ } else {
+ Object* result = isolate->stack_guard()->HandleInterrupts();
+ if (result->IsException()) return_value = EXCEPTION;
+ }
+
+ DisallowHeapAllocation no_gc;
+
+ if (*code_handle != re_code) { // Return address no longer valid
+ intptr_t delta = code_handle->address() - re_code->address();
+ // Overwrite the return address on the stack.
+ *return_address += delta;
+ }
+
+ // If we continue, we need to update the subject string addresses.
+ if (return_value == 0) {
+ // String encoding might have changed.
+ if (subject_handle->IsOneByteRepresentationUnderneath() != is_one_byte) {
+ // If we changed between an LATIN1 and an UC16 string, the specialized
+ // code cannot be used, and we need to restart regexp matching from
+ // scratch (including, potentially, compiling a new version of the code).
+ return_value = RETRY;
+ } else {
+ *subject = *subject_handle;
+ intptr_t byte_length = *input_end - *input_start;
+ *input_start = StringCharacterPosition(*subject, start_index);
+ *input_end = *input_start + byte_length;
+ }
+ }
+ return return_value;
+}
+
+
+NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Match(
+ Handle<Code> regexp_code,
+ Handle<String> subject,
+ int* offsets_vector,
+ int offsets_vector_length,
+ int previous_index,
+ Isolate* isolate) {
+
+ DCHECK(subject->IsFlat());
+ DCHECK(previous_index >= 0);
+ DCHECK(previous_index <= subject->length());
+
+ // No allocations before calling the regexp, but we can't use
+ // DisallowHeapAllocation, since regexps might be preempted, and another
+ // thread might do allocation anyway.
+
+ String* subject_ptr = *subject;
+ // Character offsets into string.
+ int start_offset = previous_index;
+ int char_length = subject_ptr->length() - start_offset;
+ int slice_offset = 0;
+
+ // The string has been flattened, so if it is a cons string it contains the
+ // full string in the first part.
+ if (StringShape(subject_ptr).IsCons()) {
+ DCHECK_EQ(0, ConsString::cast(subject_ptr)->second()->length());
+ subject_ptr = ConsString::cast(subject_ptr)->first();
+ } else if (StringShape(subject_ptr).IsSliced()) {
+ SlicedString* slice = SlicedString::cast(subject_ptr);
+ subject_ptr = slice->parent();
+ slice_offset = slice->offset();
+ }
+ // Ensure that an underlying string has the same representation.
+ bool is_one_byte = subject_ptr->IsOneByteRepresentation();
+ DCHECK(subject_ptr->IsExternalString() || subject_ptr->IsSeqString());
+ // String is now either Sequential or External
+ int char_size_shift = is_one_byte ? 0 : 1;
+
+ const byte* input_start =
+ StringCharacterPosition(subject_ptr, start_offset + slice_offset);
+ int byte_length = char_length << char_size_shift;
+ const byte* input_end = input_start + byte_length;
+ Result res = Execute(*regexp_code,
+ *subject,
+ start_offset,
+ input_start,
+ input_end,
+ offsets_vector,
+ offsets_vector_length,
+ isolate);
+ return res;
+}
+
+
+NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Execute(
+ Code* code,
+ String* input, // This needs to be the unpacked (sliced, cons) string.
+ int start_offset,
+ const byte* input_start,
+ const byte* input_end,
+ int* output,
+ int output_size,
+ Isolate* isolate) {
+ // Ensure that the minimum stack has been allocated.
+ RegExpStackScope stack_scope(isolate);
+ Address stack_base = stack_scope.stack()->stack_base();
+
+ int direct_call = 0;
+ int result = CALL_GENERATED_REGEXP_CODE(code->entry(),
+ input,
+ start_offset,
+ input_start,
+ input_end,
+ output,
+ output_size,
+ stack_base,
+ direct_call,
+ isolate);
+ DCHECK(result >= RETRY);
+
+ if (result == EXCEPTION && !isolate->has_pending_exception()) {
+ // We detected a stack overflow (on the backtrack stack) in RegExp code,
+ // but haven't created the exception yet.
+ isolate->StackOverflow();
+ }
+ return static_cast<Result>(result);
+}
+
+
+const byte NativeRegExpMacroAssembler::word_character_map[] = {
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // '0' - '7'
+ 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // '8' - '9'
+
+ 0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'A' - 'G'
+ 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'H' - 'O'
+ 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'P' - 'W'
+ 0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0xffu, // 'X' - 'Z', '_'
+
+ 0x00u, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'a' - 'g'
+ 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'h' - 'o'
+ 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, 0xffu, // 'p' - 'w'
+ 0xffu, 0xffu, 0xffu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // 'x' - 'z'
+ // Latin-1 range
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+ 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u,
+};
+
+
+int NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16(
+ Address byte_offset1,
+ Address byte_offset2,
+ size_t byte_length,
+ Isolate* isolate) {
+ unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize =
+ isolate->regexp_macro_assembler_canonicalize();
+ // This function is not allowed to cause a garbage collection.
+ // A GC might move the calling generated code and invalidate the
+ // return address on the stack.
+ DCHECK(byte_length % 2 == 0);
+ uc16* substring1 = reinterpret_cast<uc16*>(byte_offset1);
+ uc16* substring2 = reinterpret_cast<uc16*>(byte_offset2);
+ size_t length = byte_length >> 1;
+
+ for (size_t i = 0; i < length; i++) {
+ unibrow::uchar c1 = substring1[i];
+ unibrow::uchar c2 = substring2[i];
+ if (c1 != c2) {
+ unibrow::uchar s1[1] = { c1 };
+ canonicalize->get(c1, '\0', s1);
+ if (s1[0] != c2) {
+ unibrow::uchar s2[1] = { c2 };
+ canonicalize->get(c2, '\0', s2);
+ if (s1[0] != s2[0]) {
+ return 0;
+ }
+ }
+ }
+ }
+ return 1;
+}
+
+
+Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer,
+ Address* stack_base,
+ Isolate* isolate) {
+ RegExpStack* regexp_stack = isolate->regexp_stack();
+ size_t size = regexp_stack->stack_capacity();
+ Address old_stack_base = regexp_stack->stack_base();
+ DCHECK(old_stack_base == *stack_base);
+ DCHECK(stack_pointer <= old_stack_base);
+ DCHECK(static_cast<size_t>(old_stack_base - stack_pointer) <= size);
+ Address new_stack_base = regexp_stack->EnsureCapacity(size * 2);
+ if (new_stack_base == NULL) {
+ return NULL;
+ }
+ *stack_base = new_stack_base;
+ intptr_t stack_content_size = old_stack_base - stack_pointer;
+ return new_stack_base - stack_content_size;
+}
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_
+#define V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_
+
+#include "src/ast.h"
+
+namespace v8 {
+namespace internal {
+
+struct DisjunctDecisionRow {
+ RegExpCharacterClass cc;
+ Label* on_match;
+};
+
+
+class RegExpMacroAssembler {
+ public:
+ // The implementation must be able to handle at least:
+ static const int kMaxRegister = (1 << 16) - 1;
+ static const int kMaxCPOffset = (1 << 15) - 1;
+ static const int kMinCPOffset = -(1 << 15);
+
+ static const int kTableSizeBits = 7;
+ static const int kTableSize = 1 << kTableSizeBits;
+ static const int kTableMask = kTableSize - 1;
+
+ enum IrregexpImplementation {
+ kIA32Implementation,
+ kARMImplementation,
+ kARM64Implementation,
+ kMIPSImplementation,
+ kPPCImplementation,
+ kX64Implementation,
+ kX87Implementation,
+ kBytecodeImplementation
+ };
+
+ enum StackCheckFlag {
+ kNoStackLimitCheck = false,
+ kCheckStackLimit = true
+ };
+
+ RegExpMacroAssembler(Isolate* isolate, Zone* zone);
+ virtual ~RegExpMacroAssembler();
+ // This function is called when code generation is aborted, so that
+ // the assembler could clean up internal data structures.
+ virtual void AbortedCodeGeneration() {}
+ // The maximal number of pushes between stack checks. Users must supply
+ // kCheckStackLimit flag to push operations (instead of kNoStackLimitCheck)
+ // at least once for every stack_limit() pushes that are executed.
+ virtual int stack_limit_slack() = 0;
+ virtual bool CanReadUnaligned() = 0;
+ virtual void AdvanceCurrentPosition(int by) = 0; // Signed cp change.
+ virtual void AdvanceRegister(int reg, int by) = 0; // r[reg] += by.
+ // Continues execution from the position pushed on the top of the backtrack
+ // stack by an earlier PushBacktrack(Label*).
+ virtual void Backtrack() = 0;
+ virtual void Bind(Label* label) = 0;
+ virtual void CheckAtStart(Label* on_at_start) = 0;
+ // Dispatch after looking the current character up in a 2-bits-per-entry
+ // map. The destinations vector has up to 4 labels.
+ virtual void CheckCharacter(unsigned c, Label* on_equal) = 0;
+ // Bitwise and the current character with the given constant and then
+ // check for a match with c.
+ virtual void CheckCharacterAfterAnd(unsigned c,
+ unsigned and_with,
+ Label* on_equal) = 0;
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater) = 0;
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less) = 0;
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position) = 0;
+ virtual void CheckNotAtStart(Label* on_not_at_start) = 0;
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match) = 0;
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match) = 0;
+ // Check the current character for a match with a literal character. If we
+ // fail to match then goto the on_failure label. End of input always
+ // matches. If the label is NULL then we should pop a backtrack address off
+ // the stack and go to that.
+ virtual void CheckNotCharacter(unsigned c, Label* on_not_equal) = 0;
+ virtual void CheckNotCharacterAfterAnd(unsigned c,
+ unsigned and_with,
+ Label* on_not_equal) = 0;
+ // Subtract a constant from the current character, then and with the given
+ // constant and then check for a match with c.
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 and_with,
+ Label* on_not_equal) = 0;
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to, // Both inclusive.
+ Label* on_in_range) = 0;
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to, // Both inclusive.
+ Label* on_not_in_range) = 0;
+
+ // The current character (modulus the kTableSize) is looked up in the byte
+ // array, and if the found byte is non-zero, we jump to the on_bit_set label.
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set) = 0;
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string. May overwrite the current character.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input) {
+ LoadCurrentCharacter(cp_offset, on_outside_input, true);
+ }
+ // Check whether a standard/default character class matches the current
+ // character. Returns false if the type of special character class does
+ // not have custom support.
+ // May clobber the current loaded character.
+ virtual bool CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ return false;
+ }
+ virtual void Fail() = 0;
+ virtual Handle<HeapObject> GetCode(Handle<String> source) = 0;
+ virtual void GoTo(Label* label) = 0;
+ // Check whether a register is >= a given constant and go to a label if it
+ // is. Backtracks instead if the label is NULL.
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge) = 0;
+ // Check whether a register is < a given constant and go to a label if it is.
+ // Backtracks instead if the label is NULL.
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt) = 0;
+ // Check whether a register is == to the current position and go to a
+ // label if it is.
+ virtual void IfRegisterEqPos(int reg, Label* if_eq) = 0;
+ virtual IrregexpImplementation Implementation() = 0;
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1) = 0;
+ virtual void PopCurrentPosition() = 0;
+ virtual void PopRegister(int register_index) = 0;
+ // Pushes the label on the backtrack stack, so that a following Backtrack
+ // will go to this label. Always checks the backtrack stack limit.
+ virtual void PushBacktrack(Label* label) = 0;
+ virtual void PushCurrentPosition() = 0;
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) = 0;
+ virtual void ReadCurrentPositionFromRegister(int reg) = 0;
+ virtual void ReadStackPointerFromRegister(int reg) = 0;
+ virtual void SetCurrentPositionFromEnd(int by) = 0;
+ virtual void SetRegister(int register_index, int to) = 0;
+ // Return whether the matching (with a global regexp) will be restarted.
+ virtual bool Succeed() = 0;
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset) = 0;
+ virtual void ClearRegisters(int reg_from, int reg_to) = 0;
+ virtual void WriteStackPointerToRegister(int reg) = 0;
+
+ // Controls the generation of large inlined constants in the code.
+ void set_slow_safe(bool ssc) { slow_safe_compiler_ = ssc; }
+ bool slow_safe() { return slow_safe_compiler_; }
+
+ enum GlobalMode { NOT_GLOBAL, GLOBAL, GLOBAL_NO_ZERO_LENGTH_CHECK };
+ // Set whether the regular expression has the global flag. Exiting due to
+ // a failure in a global regexp may still mean success overall.
+ inline void set_global_mode(GlobalMode mode) { global_mode_ = mode; }
+ inline bool global() { return global_mode_ != NOT_GLOBAL; }
+ inline bool global_with_zero_length_check() {
+ return global_mode_ == GLOBAL;
+ }
+
+ Isolate* isolate() const { return isolate_; }
+ Zone* zone() const { return zone_; }
+
+ private:
+ bool slow_safe_compiler_;
+ bool global_mode_;
+ Isolate* isolate_;
+ Zone* zone_;
+};
+
+
+#ifndef V8_INTERPRETED_REGEXP // Avoid compiling unused code.
+
+class NativeRegExpMacroAssembler: public RegExpMacroAssembler {
+ public:
+ // Type of input string to generate code for.
+ enum Mode { LATIN1 = 1, UC16 = 2 };
+
+ // Result of calling generated native RegExp code.
+ // RETRY: Something significant changed during execution, and the matching
+ // should be retried from scratch.
+ // EXCEPTION: Something failed during execution. If no exception has been
+ // thrown, it's an internal out-of-memory, and the caller should
+ // throw the exception.
+ // FAILURE: Matching failed.
+ // SUCCESS: Matching succeeded, and the output array has been filled with
+ // capture positions.
+ enum Result { RETRY = -2, EXCEPTION = -1, FAILURE = 0, SUCCESS = 1 };
+
+ NativeRegExpMacroAssembler(Isolate* isolate, Zone* zone);
+ virtual ~NativeRegExpMacroAssembler();
+ virtual bool CanReadUnaligned();
+
+ static Result Match(Handle<Code> regexp,
+ Handle<String> subject,
+ int* offsets_vector,
+ int offsets_vector_length,
+ int previous_index,
+ Isolate* isolate);
+
+ // Compares two-byte strings case insensitively.
+ // Called from generated RegExp code.
+ static int CaseInsensitiveCompareUC16(Address byte_offset1,
+ Address byte_offset2,
+ size_t byte_length,
+ Isolate* isolate);
+
+ // Called from RegExp if the backtrack stack limit is hit.
+ // Tries to expand the stack. Returns the new stack-pointer if
+ // successful, and updates the stack_top address, or returns 0 if unable
+ // to grow the stack.
+ // This function must not trigger a garbage collection.
+ static Address GrowStack(Address stack_pointer, Address* stack_top,
+ Isolate* isolate);
+
+ static const byte* StringCharacterPosition(String* subject, int start_index);
+
+ static int CheckStackGuardState(Isolate* isolate, int start_index,
+ bool is_direct_call, Address* return_address,
+ Code* re_code, String** subject,
+ const byte** input_start,
+ const byte** input_end);
+
+ // Byte map of one byte characters with a 0xff if the character is a word
+ // character (digit, letter or underscore) and 0x00 otherwise.
+ // Used by generated RegExp code.
+ static const byte word_character_map[256];
+
+ static Address word_character_map_address() {
+ return const_cast<Address>(&word_character_map[0]);
+ }
+
+ static Result Execute(Code* code,
+ String* input,
+ int start_offset,
+ const byte* input_start,
+ const byte* input_end,
+ int* output,
+ int output_size,
+ Isolate* isolate);
+};
+
+#endif // V8_INTERPRETED_REGEXP
+
+} } // namespace v8::internal
+
+#endif // V8_REGEXP_REGEXP_MACRO_ASSEMBLER_H_
--- /dev/null
+// Copyright 2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/regexp/regexp-stack.h"
+
+namespace v8 {
+namespace internal {
+
+RegExpStackScope::RegExpStackScope(Isolate* isolate)
+ : regexp_stack_(isolate->regexp_stack()) {
+ // Initialize, if not already initialized.
+ regexp_stack_->EnsureCapacity(0);
+}
+
+
+RegExpStackScope::~RegExpStackScope() {
+ // Reset the buffer if it has grown.
+ regexp_stack_->Reset();
+}
+
+
+RegExpStack::RegExpStack()
+ : isolate_(NULL) {
+}
+
+
+RegExpStack::~RegExpStack() {
+ thread_local_.Free();
+}
+
+
+char* RegExpStack::ArchiveStack(char* to) {
+ size_t size = sizeof(thread_local_);
+ MemCopy(reinterpret_cast<void*>(to), &thread_local_, size);
+ thread_local_ = ThreadLocal();
+ return to + size;
+}
+
+
+char* RegExpStack::RestoreStack(char* from) {
+ size_t size = sizeof(thread_local_);
+ MemCopy(&thread_local_, reinterpret_cast<void*>(from), size);
+ return from + size;
+}
+
+
+void RegExpStack::Reset() {
+ if (thread_local_.memory_size_ > kMinimumStackSize) {
+ DeleteArray(thread_local_.memory_);
+ thread_local_ = ThreadLocal();
+ }
+}
+
+
+void RegExpStack::ThreadLocal::Free() {
+ if (memory_size_ > 0) {
+ DeleteArray(memory_);
+ Clear();
+ }
+}
+
+
+Address RegExpStack::EnsureCapacity(size_t size) {
+ if (size > kMaximumStackSize) return NULL;
+ if (size < kMinimumStackSize) size = kMinimumStackSize;
+ if (thread_local_.memory_size_ < size) {
+ Address new_memory = NewArray<byte>(static_cast<int>(size));
+ if (thread_local_.memory_size_ > 0) {
+ // Copy original memory into top of new memory.
+ MemCopy(reinterpret_cast<void*>(new_memory + size -
+ thread_local_.memory_size_),
+ reinterpret_cast<void*>(thread_local_.memory_),
+ thread_local_.memory_size_);
+ DeleteArray(thread_local_.memory_);
+ }
+ thread_local_.memory_ = new_memory;
+ thread_local_.memory_size_ = size;
+ thread_local_.limit_ = new_memory + kStackLimitSlack * kPointerSize;
+ }
+ return thread_local_.memory_ + thread_local_.memory_size_;
+}
+
+
+} // namespace internal
+} // namespace v8
--- /dev/null
+// Copyright 2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_REGEXP_STACK_H_
+#define V8_REGEXP_REGEXP_STACK_H_
+
+#include "src/allocation.h"
+#include "src/globals.h"
+#include "src/isolate.h"
+
+namespace v8 {
+namespace internal {
+
+class RegExpStack;
+
+// Maintains a per-v8thread stack area that can be used by irregexp
+// implementation for its backtracking stack.
+// Since there is only one stack area, the Irregexp implementation is not
+// re-entrant. I.e., no regular expressions may be executed in the same thread
+// during a preempted Irregexp execution.
+class RegExpStackScope {
+ public:
+ // Create and delete an instance to control the life-time of a growing stack.
+
+ // Initializes the stack memory area if necessary.
+ explicit RegExpStackScope(Isolate* isolate);
+ ~RegExpStackScope(); // Releases the stack if it has grown.
+
+ RegExpStack* stack() const { return regexp_stack_; }
+
+ private:
+ RegExpStack* regexp_stack_;
+
+ DISALLOW_COPY_AND_ASSIGN(RegExpStackScope);
+};
+
+
+class RegExpStack {
+ public:
+ // Number of allocated locations on the stack below the limit.
+ // No sequence of pushes must be longer that this without doing a stack-limit
+ // check.
+ static const int kStackLimitSlack = 32;
+
+ // Gives the top of the memory used as stack.
+ Address stack_base() {
+ DCHECK(thread_local_.memory_size_ != 0);
+ return thread_local_.memory_ + thread_local_.memory_size_;
+ }
+
+ // The total size of the memory allocated for the stack.
+ size_t stack_capacity() { return thread_local_.memory_size_; }
+
+ // If the stack pointer gets below the limit, we should react and
+ // either grow the stack or report an out-of-stack exception.
+ // There is only a limited number of locations below the stack limit,
+ // so users of the stack should check the stack limit during any
+ // sequence of pushes longer that this.
+ Address* limit_address() { return &(thread_local_.limit_); }
+
+ // Ensures that there is a memory area with at least the specified size.
+ // If passing zero, the default/minimum size buffer is allocated.
+ Address EnsureCapacity(size_t size);
+
+ // Thread local archiving.
+ static int ArchiveSpacePerThread() {
+ return static_cast<int>(sizeof(ThreadLocal));
+ }
+ char* ArchiveStack(char* to);
+ char* RestoreStack(char* from);
+ void FreeThreadResources() { thread_local_.Free(); }
+
+ private:
+ RegExpStack();
+ ~RegExpStack();
+
+ // Artificial limit used when no memory has been allocated.
+ static const uintptr_t kMemoryTop = static_cast<uintptr_t>(-1);
+
+ // Minimal size of allocated stack area.
+ static const size_t kMinimumStackSize = 1 * KB;
+
+ // Maximal size of allocated stack area.
+ static const size_t kMaximumStackSize = 64 * MB;
+
+ // Structure holding the allocated memory, size and limit.
+ struct ThreadLocal {
+ ThreadLocal() { Clear(); }
+ // If memory_size_ > 0 then memory_ must be non-NULL.
+ Address memory_;
+ size_t memory_size_;
+ Address limit_;
+ void Clear() {
+ memory_ = NULL;
+ memory_size_ = 0;
+ limit_ = reinterpret_cast<Address>(kMemoryTop);
+ }
+ void Free();
+ };
+
+ // Address of allocated memory.
+ Address memory_address() {
+ return reinterpret_cast<Address>(&thread_local_.memory_);
+ }
+
+ // Address of size of allocated memory.
+ Address memory_size_address() {
+ return reinterpret_cast<Address>(&thread_local_.memory_size_);
+ }
+
+ // Resets the buffer if it has grown beyond the default/minimum size.
+ // After this, the buffer is either the default size, or it is empty, so
+ // you have to call EnsureCapacity before using it again.
+ void Reset();
+
+ ThreadLocal thread_local_;
+ Isolate* isolate_;
+
+ friend class ExternalReference;
+ friend class Isolate;
+ friend class RegExpStackScope;
+
+ DISALLOW_COPY_AND_ASSIGN(RegExpStack);
+};
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_REGEXP_STACK_H_
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_X64
+
+#include "src/regexp/x64/regexp-macro-assembler-x64.h"
+
+#include "src/cpu-profiler.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+
+/*
+ * This assembler uses the following register assignment convention
+ * - rdx : Currently loaded character(s) as Latin1 or UC16. Must be loaded
+ * using LoadCurrentCharacter before using any of the dispatch methods.
+ * Temporarily stores the index of capture start after a matching pass
+ * for a global regexp.
+ * - rdi : Current position in input, as negative offset from end of string.
+ * Please notice that this is the byte offset, not the character
+ * offset! Is always a 32-bit signed (negative) offset, but must be
+ * maintained sign-extended to 64 bits, since it is used as index.
+ * - rsi : End of input (points to byte after last character in input),
+ * so that rsi+rdi points to the current character.
+ * - rbp : Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - rsp : Points to tip of C stack.
+ * - rcx : Points to tip of backtrack stack. The backtrack stack contains
+ * only 32-bit values. Most are offsets from some base (e.g., character
+ * positions from end of string or code location from Code* pointer).
+ * - r8 : Code object pointer. Used to convert between absolute and
+ * code-object-relative addresses.
+ *
+ * The registers rax, rbx, r9 and r11 are free to use for computations.
+ * If changed to use r12+, they should be saved as callee-save registers.
+ * The macro assembler special register r13 (kRootRegister) isn't special
+ * during execution of RegExp code (it doesn't hold the value assumed when
+ * creating JS code), so Root related macro operations can be used.
+ *
+ * Each call to a C++ method should retain these registers.
+ *
+ * The stack will have the following content, in some order, indexable from the
+ * frame pointer (see, e.g., kStackHighEnd):
+ * - Isolate* isolate (address of the current isolate)
+ * - direct_call (if 1, direct call from JavaScript code, if 0 call
+ * through the runtime system)
+ * - stack_area_base (high end of the memory area to use as
+ * backtracking stack)
+ * - capture array size (may fit multiple sets of matches)
+ * - int* capture_array (int[num_saved_registers_], for output).
+ * - end of input (address of end of string)
+ * - start of input (address of first character in string)
+ * - start index (character index of start)
+ * - String* input_string (input string)
+ * - return address
+ * - backup of callee save registers (rbx, possibly rsi and rdi).
+ * - success counter (only useful for global regexp to count matches)
+ * - Offset of location before start of input (effectively character
+ * position -1). Used to initialize capture registers to a non-position.
+ * - At start of string (if 1, we are starting at the start of the
+ * string, otherwise 0)
+ * - register 0 rbp[-n] (Only positions must be stored in the first
+ * - register 1 rbp[-n-8] num_saved_registers_ registers)
+ * - ...
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers starts out uninitialized.
+ *
+ * The first seven values must be provided by the calling code by
+ * calling the code's entry address cast to a function pointer with the
+ * following signature:
+ * int (*match)(String* input_string,
+ * int start_index,
+ * Address start,
+ * Address end,
+ * int* capture_output_array,
+ * bool at_start,
+ * byte* stack_area_base,
+ * bool direct_call)
+ */
+
+#define __ ACCESS_MASM((&masm_))
+
+RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone,
+ Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(isolate, NULL, kRegExpCodeSize),
+ no_root_array_scope_(&masm_),
+ code_relative_fixup_positions_(4, zone),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_() {
+ DCHECK_EQ(0, registers_to_save % 2);
+ __ jmp(&entry_label_); // We'll write the entry code when we know more.
+ __ bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerX64::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ addq(rdi, Immediate(by * char_size()));
+ }
+}
+
+
+void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
+ DCHECK(reg >= 0);
+ DCHECK(reg < num_registers_);
+ if (by != 0) {
+ __ addp(register_location(reg), Immediate(by));
+ }
+}
+
+
+void RegExpMacroAssemblerX64::Backtrack() {
+ CheckPreemption();
+ // Pop Code* offset from backtrack stack, add Code* and jump to location.
+ Pop(rbx);
+ __ addp(rbx, code_object_pointer());
+ __ jmp(rbx);
+}
+
+
+void RegExpMacroAssemblerX64::Bind(Label* label) {
+ __ bind(label);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
+ __ cmpl(current_character(), Immediate(c));
+ BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
+ __ cmpl(current_character(), Immediate(limit));
+ BranchOrBacktrack(greater, on_greater);
+}
+
+
+void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
+ Label not_at_start;
+ // Did we start the match at the start of the string at all?
+ __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
+ BranchOrBacktrack(not_equal, ¬_at_start);
+ // If we did, are we still at the start of the input?
+ __ leap(rax, Operand(rsi, rdi, times_1, 0));
+ __ cmpp(rax, Operand(rbp, kInputStart));
+ BranchOrBacktrack(equal, on_at_start);
+ __ bind(¬_at_start);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
+ // Did we start the match at the start of the string at all?
+ __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
+ BranchOrBacktrack(not_equal, on_not_at_start);
+ // If we did, are we still at the start of the input?
+ __ leap(rax, Operand(rsi, rdi, times_1, 0));
+ __ cmpp(rax, Operand(rbp, kInputStart));
+ BranchOrBacktrack(not_equal, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
+ __ cmpl(current_character(), Immediate(limit));
+ BranchOrBacktrack(less, on_less);
+}
+
+
+void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
+ Label fallthrough;
+ __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
+ __ j(not_equal, &fallthrough);
+ Drop();
+ BranchOrBacktrack(no_condition, on_equal);
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
+ ReadPositionFromRegister(rbx, start_reg + 1); // Offset of end of capture
+ __ subp(rbx, rdx); // Length of capture.
+
+ // -----------------------
+ // rdx = Start offset of capture.
+ // rbx = Length of capture
+
+ // If length is negative, this code will fail (it's a symptom of a partial or
+ // illegal capture where start of capture after end of capture).
+ // This must not happen (no back-reference can reference a capture that wasn't
+ // closed before in the reg-exp, and we must not generate code that can cause
+ // this condition).
+
+ // If length is zero, either the capture is empty or it is nonparticipating.
+ // In either case succeed immediately.
+ __ j(equal, &fallthrough);
+
+ // -----------------------
+ // rdx - Start of capture
+ // rbx - length of capture
+ // Check that there are sufficient characters left in the input.
+ __ movl(rax, rdi);
+ __ addl(rax, rbx);
+ BranchOrBacktrack(greater, on_no_match);
+
+ if (mode_ == LATIN1) {
+ Label loop_increment;
+ if (on_no_match == NULL) {
+ on_no_match = &backtrack_label_;
+ }
+
+ __ leap(r9, Operand(rsi, rdx, times_1, 0));
+ __ leap(r11, Operand(rsi, rdi, times_1, 0));
+ __ addp(rbx, r9); // End of capture
+ // ---------------------
+ // r11 - current input character address
+ // r9 - current capture character address
+ // rbx - end of capture
+
+ Label loop;
+ __ bind(&loop);
+ __ movzxbl(rdx, Operand(r9, 0));
+ __ movzxbl(rax, Operand(r11, 0));
+ // al - input character
+ // dl - capture character
+ __ cmpb(rax, rdx);
+ __ j(equal, &loop_increment);
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
+ // a match.
+ __ orp(rax, Immediate(0x20)); // Convert match character to lower-case.
+ __ orp(rdx, Immediate(0x20)); // Convert capture character to lower-case.
+ __ cmpb(rax, rdx);
+ __ j(not_equal, on_no_match); // Definitely not equal.
+ __ subb(rax, Immediate('a'));
+ __ cmpb(rax, Immediate('z' - 'a'));
+ __ j(below_equal, &loop_increment); // In range 'a'-'z'.
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ subb(rax, Immediate(224 - 'a'));
+ __ cmpb(rax, Immediate(254 - 224));
+ __ j(above, on_no_match); // Weren't Latin-1 letters.
+ __ cmpb(rax, Immediate(247 - 224)); // Check for 247.
+ __ j(equal, on_no_match);
+ __ bind(&loop_increment);
+ // Increment pointers into match and capture strings.
+ __ addp(r11, Immediate(1));
+ __ addp(r9, Immediate(1));
+ // Compare to end of capture, and loop if not done.
+ __ cmpp(r9, rbx);
+ __ j(below, &loop);
+
+ // Compute new value of character position after the matched part.
+ __ movp(rdi, r11);
+ __ subq(rdi, rsi);
+ } else {
+ DCHECK(mode_ == UC16);
+ // Save important/volatile registers before calling C function.
+#ifndef _WIN64
+ // Caller save on Linux and callee save in Windows.
+ __ pushq(rsi);
+ __ pushq(rdi);
+#endif
+ __ pushq(backtrack_stackpointer());
+
+ static const int num_arguments = 4;
+ __ PrepareCallCFunction(num_arguments);
+
+ // Put arguments into parameter registers. Parameters are
+ // Address byte_offset1 - Address captured substring's start.
+ // Address byte_offset2 - Address of current character position.
+ // size_t byte_length - length of capture in bytes(!)
+ // Isolate* isolate
+#ifdef _WIN64
+ // Compute and set byte_offset1 (start of capture).
+ __ leap(rcx, Operand(rsi, rdx, times_1, 0));
+ // Set byte_offset2.
+ __ leap(rdx, Operand(rsi, rdi, times_1, 0));
+ // Set byte_length.
+ __ movp(r8, rbx);
+ // Isolate.
+ __ LoadAddress(r9, ExternalReference::isolate_address(isolate()));
+#else // AMD64 calling convention
+ // Compute byte_offset2 (current position = rsi+rdi).
+ __ leap(rax, Operand(rsi, rdi, times_1, 0));
+ // Compute and set byte_offset1 (start of capture).
+ __ leap(rdi, Operand(rsi, rdx, times_1, 0));
+ // Set byte_offset2.
+ __ movp(rsi, rax);
+ // Set byte_length.
+ __ movp(rdx, rbx);
+ // Isolate.
+ __ LoadAddress(rcx, ExternalReference::isolate_address(isolate()));
+#endif
+
+ { // NOLINT: Can't find a way to open this scope without confusing the
+ // linter.
+ AllowExternalCallThatCantCauseGC scope(&masm_);
+ ExternalReference compare =
+ ExternalReference::re_case_insensitive_compare_uc16(isolate());
+ __ CallCFunction(compare, num_arguments);
+ }
+
+ // Restore original values before reacting on result value.
+ __ Move(code_object_pointer(), masm_.CodeObject());
+ __ popq(backtrack_stackpointer());
+#ifndef _WIN64
+ __ popq(rdi);
+ __ popq(rsi);
+#endif
+
+ // Check if function returned non-zero for success or zero for failure.
+ __ testp(rax, rax);
+ BranchOrBacktrack(zero, on_no_match);
+ // On success, increment position by length of capture.
+ // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
+ __ addq(rdi, rbx);
+ }
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotBackReference(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+
+ // Find length of back-referenced capture.
+ ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
+ ReadPositionFromRegister(rax, start_reg + 1); // Offset of end of capture
+ __ subp(rax, rdx); // Length to check.
+
+ // Fail on partial or illegal capture (start of capture after end of capture).
+ // This must not happen (no back-reference can reference a capture that wasn't
+ // closed before in the reg-exp).
+ __ Check(greater_equal, kInvalidCaptureReferenced);
+
+ // Succeed on empty capture (including non-participating capture)
+ __ j(equal, &fallthrough);
+
+ // -----------------------
+ // rdx - Start of capture
+ // rax - length of capture
+
+ // Check that there are sufficient characters left in the input.
+ __ movl(rbx, rdi);
+ __ addl(rbx, rax);
+ BranchOrBacktrack(greater, on_no_match);
+
+ // Compute pointers to match string and capture string
+ __ leap(rbx, Operand(rsi, rdi, times_1, 0)); // Start of match.
+ __ addp(rdx, rsi); // Start of capture.
+ __ leap(r9, Operand(rdx, rax, times_1, 0)); // End of capture
+
+ // -----------------------
+ // rbx - current capture character address.
+ // rbx - current input character address .
+ // r9 - end of input to match (capture length after rbx).
+
+ Label loop;
+ __ bind(&loop);
+ if (mode_ == LATIN1) {
+ __ movzxbl(rax, Operand(rdx, 0));
+ __ cmpb(rax, Operand(rbx, 0));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ movzxwl(rax, Operand(rdx, 0));
+ __ cmpw(rax, Operand(rbx, 0));
+ }
+ BranchOrBacktrack(not_equal, on_no_match);
+ // Increment pointers into capture and match string.
+ __ addp(rbx, Immediate(char_size()));
+ __ addp(rdx, Immediate(char_size()));
+ // Check if we have reached end of match area.
+ __ cmpp(rdx, r9);
+ __ j(below, &loop);
+
+ // Success.
+ // Set current character position to position after match.
+ __ movp(rdi, rbx);
+ __ subq(rdi, rsi);
+
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
+ Label* on_not_equal) {
+ __ cmpl(current_character(), Immediate(c));
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ if (c == 0) {
+ __ testl(current_character(), Immediate(mask));
+ } else {
+ __ movl(rax, Immediate(mask));
+ __ andp(rax, current_character());
+ __ cmpl(rax, Immediate(c));
+ }
+ BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal) {
+ if (c == 0) {
+ __ testl(current_character(), Immediate(mask));
+ } else {
+ __ movl(rax, Immediate(mask));
+ __ andp(rax, current_character());
+ __ cmpl(rax, Immediate(c));
+ }
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ leap(rax, Operand(current_character(), -minus));
+ __ andp(rax, Immediate(mask));
+ __ cmpl(rax, Immediate(c));
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ __ leal(rax, Operand(current_character(), -from));
+ __ cmpl(rax, Immediate(to - from));
+ BranchOrBacktrack(below_equal, on_in_range);
+}
+
+
+void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ __ leal(rax, Operand(current_character(), -from));
+ __ cmpl(rax, Immediate(to - from));
+ BranchOrBacktrack(above, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerX64::CheckBitInTable(
+ Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ Move(rax, table);
+ Register index = current_character();
+ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+ __ movp(rbx, current_character());
+ __ andp(rbx, Immediate(kTableMask));
+ index = rbx;
+ }
+ __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
+ Immediate(0));
+ BranchOrBacktrack(not_equal, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check, using the sequence:
+ // leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
+ // cmp(rax, Immediate(max - min))
+ switch (type) {
+ case 's':
+ // Match space-characters
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ __ cmpl(current_character(), Immediate(' '));
+ __ j(equal, &success, Label::kNear);
+ // Check range 0x09..0x0d
+ __ leap(rax, Operand(current_character(), -'\t'));
+ __ cmpl(rax, Immediate('\r' - '\t'));
+ __ j(below_equal, &success, Label::kNear);
+ // \u00a0 (NBSP).
+ __ cmpl(rax, Immediate(0x00a0 - '\t'));
+ BranchOrBacktrack(not_equal, on_no_match);
+ __ bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match ASCII digits ('0'..'9')
+ __ leap(rax, Operand(current_character(), -'0'));
+ __ cmpl(rax, Immediate('9' - '0'));
+ BranchOrBacktrack(above, on_no_match);
+ return true;
+ case 'D':
+ // Match non ASCII-digits
+ __ leap(rax, Operand(current_character(), -'0'));
+ __ cmpl(rax, Immediate('9' - '0'));
+ BranchOrBacktrack(below_equal, on_no_match);
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ movl(rax, current_character());
+ __ xorp(rax, Immediate(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ subl(rax, Immediate(0x0b));
+ __ cmpl(rax, Immediate(0x0c - 0x0b));
+ BranchOrBacktrack(below_equal, on_no_match);
+ if (mode_ == UC16) {
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ subl(rax, Immediate(0x2028 - 0x0b));
+ __ cmpl(rax, Immediate(0x2029 - 0x2028));
+ BranchOrBacktrack(below_equal, on_no_match);
+ }
+ return true;
+ }
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ movl(rax, current_character());
+ __ xorp(rax, Immediate(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ subl(rax, Immediate(0x0b));
+ __ cmpl(rax, Immediate(0x0c - 0x0b));
+ if (mode_ == LATIN1) {
+ BranchOrBacktrack(above, on_no_match);
+ } else {
+ Label done;
+ BranchOrBacktrack(below_equal, &done);
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ subl(rax, Immediate(0x2028 - 0x0b));
+ __ cmpl(rax, Immediate(0x2029 - 0x2028));
+ BranchOrBacktrack(above, on_no_match);
+ __ bind(&done);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmpl(current_character(), Immediate('z'));
+ BranchOrBacktrack(above, on_no_match);
+ }
+ __ Move(rbx, ExternalReference::re_word_character_map());
+ DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
+ __ testb(Operand(rbx, current_character(), times_1, 0),
+ current_character());
+ BranchOrBacktrack(zero, on_no_match);
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmpl(current_character(), Immediate('z'));
+ __ j(above, &done);
+ }
+ __ Move(rbx, ExternalReference::re_word_character_map());
+ DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
+ __ testb(Operand(rbx, current_character(), times_1, 0),
+ current_character());
+ BranchOrBacktrack(not_zero, on_no_match);
+ if (mode_ != LATIN1) {
+ __ bind(&done);
+ }
+ return true;
+ }
+
+ case '*':
+ // Match any character.
+ return true;
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerX64::Fail() {
+ STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
+ if (!global()) {
+ __ Set(rax, FAILURE);
+ }
+ __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
+ Label return_rax;
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+ // Entry code:
+ __ bind(&entry_label_);
+
+ // Tell the system that we have a stack frame. Because the type is MANUAL, no
+ // is generated.
+ FrameScope scope(&masm_, StackFrame::MANUAL);
+
+ // Actually emit code to start a new stack frame.
+ __ pushq(rbp);
+ __ movp(rbp, rsp);
+ // Save parameters and callee-save registers. Order here should correspond
+ // to order of kBackup_ebx etc.
+#ifdef _WIN64
+ // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
+ // Store register parameters in pre-allocated stack slots,
+ __ movq(Operand(rbp, kInputString), rcx);
+ __ movq(Operand(rbp, kStartIndex), rdx); // Passed as int32 in edx.
+ __ movq(Operand(rbp, kInputStart), r8);
+ __ movq(Operand(rbp, kInputEnd), r9);
+ // Callee-save on Win64.
+ __ pushq(rsi);
+ __ pushq(rdi);
+ __ pushq(rbx);
+#else
+ // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
+ // Push register parameters on stack for reference.
+ DCHECK_EQ(kInputString, -1 * kRegisterSize);
+ DCHECK_EQ(kStartIndex, -2 * kRegisterSize);
+ DCHECK_EQ(kInputStart, -3 * kRegisterSize);
+ DCHECK_EQ(kInputEnd, -4 * kRegisterSize);
+ DCHECK_EQ(kRegisterOutput, -5 * kRegisterSize);
+ DCHECK_EQ(kNumOutputRegisters, -6 * kRegisterSize);
+ __ pushq(rdi);
+ __ pushq(rsi);
+ __ pushq(rdx);
+ __ pushq(rcx);
+ __ pushq(r8);
+ __ pushq(r9);
+
+ __ pushq(rbx); // Callee-save
+#endif
+
+ __ Push(Immediate(0)); // Number of successful matches in a global regexp.
+ __ Push(Immediate(0)); // Make room for "input start - 1" constant.
+
+ // Check if we have space on the stack for registers.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ movp(rcx, rsp);
+ __ Move(kScratchRegister, stack_limit);
+ __ subp(rcx, Operand(kScratchRegister, 0));
+ // Handle it if the stack pointer is already below the stack limit.
+ __ j(below_equal, &stack_limit_hit);
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ cmpp(rcx, Immediate(num_registers_ * kPointerSize));
+ __ j(above_equal, &stack_ok);
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ Set(rax, EXCEPTION);
+ __ jmp(&return_rax);
+
+ __ bind(&stack_limit_hit);
+ __ Move(code_object_pointer(), masm_.CodeObject());
+ CallCheckStackGuardState(); // Preserves no registers beside rbp and rsp.
+ __ testp(rax, rax);
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ j(not_zero, &return_rax);
+
+ __ bind(&stack_ok);
+
+ // Allocate space on stack for registers.
+ __ subp(rsp, Immediate(num_registers_ * kPointerSize));
+ // Load string length.
+ __ movp(rsi, Operand(rbp, kInputEnd));
+ // Load input position.
+ __ movp(rdi, Operand(rbp, kInputStart));
+ // Set up rdi to be negative offset from string end.
+ __ subq(rdi, rsi);
+ // Set rax to address of char before start of the string
+ // (effectively string position -1).
+ __ movp(rbx, Operand(rbp, kStartIndex));
+ __ negq(rbx);
+ if (mode_ == UC16) {
+ __ leap(rax, Operand(rdi, rbx, times_2, -char_size()));
+ } else {
+ __ leap(rax, Operand(rdi, rbx, times_1, -char_size()));
+ }
+ // Store this value in a local variable, for use when clearing
+ // position registers.
+ __ movp(Operand(rbp, kInputStartMinusOne), rax);
+
+#if V8_OS_WIN
+ // Ensure that we have written to each stack page, in order. Skipping a page
+ // on Windows can cause segmentation faults. Assuming page size is 4k.
+ const int kPageSize = 4096;
+ const int kRegistersPerPage = kPageSize / kPointerSize;
+ for (int i = num_saved_registers_ + kRegistersPerPage - 1;
+ i < num_registers_;
+ i += kRegistersPerPage) {
+ __ movp(register_location(i), rax); // One write every page.
+ }
+#endif // V8_OS_WIN
+
+ // Initialize code object pointer.
+ __ Move(code_object_pointer(), masm_.CodeObject());
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
+ __ j(not_equal, &load_char_start_regexp, Label::kNear);
+ __ Set(current_character(), '\n');
+ __ jmp(&start_regexp, Label::kNear);
+
+ // Global regexp restarts matching here.
+ __ bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&start_regexp);
+
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) {
+ // Fill saved registers with initial value = start offset - 1
+ // Fill in stack push order, to avoid accessing across an unwritten
+ // page (a problem on Windows).
+ if (num_saved_registers_ > 8) {
+ __ Set(rcx, kRegisterZero);
+ Label init_loop;
+ __ bind(&init_loop);
+ __ movp(Operand(rbp, rcx, times_1, 0), rax);
+ __ subq(rcx, Immediate(kPointerSize));
+ __ cmpq(rcx,
+ Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
+ __ j(greater, &init_loop);
+ } else { // Unroll the loop.
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ movp(register_location(i), rax);
+ }
+ }
+ }
+
+ // Initialize backtrack stack pointer.
+ __ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
+
+ __ jmp(&start_label_);
+
+ // Exit code:
+ if (success_label_.is_linked()) {
+ // Save captures when successful.
+ __ bind(&success_label_);
+ if (num_saved_registers_ > 0) {
+ // copy captures to output
+ __ movp(rdx, Operand(rbp, kStartIndex));
+ __ movp(rbx, Operand(rbp, kRegisterOutput));
+ __ movp(rcx, Operand(rbp, kInputEnd));
+ __ subp(rcx, Operand(rbp, kInputStart));
+ if (mode_ == UC16) {
+ __ leap(rcx, Operand(rcx, rdx, times_2, 0));
+ } else {
+ __ addp(rcx, rdx);
+ }
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ movp(rax, register_location(i));
+ if (i == 0 && global_with_zero_length_check()) {
+ // Keep capture start in rdx for the zero-length check later.
+ __ movp(rdx, rax);
+ }
+ __ addp(rax, rcx); // Convert to index from start, not end.
+ if (mode_ == UC16) {
+ __ sarp(rax, Immediate(1)); // Convert byte index to character index.
+ }
+ __ movl(Operand(rbx, i * kIntSize), rax);
+ }
+ }
+
+ if (global()) {
+ // Restart matching if the regular expression is flagged as global.
+ // Increment success counter.
+ __ incp(Operand(rbp, kSuccessfulCaptures));
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
+ __ subp(rcx, Immediate(num_saved_registers_));
+ // Check whether we have enough room for another set of capture results.
+ __ cmpp(rcx, Immediate(num_saved_registers_));
+ __ j(less, &exit_label_);
+
+ __ movp(Operand(rbp, kNumOutputRegisters), rcx);
+ // Advance the location for output.
+ __ addp(Operand(rbp, kRegisterOutput),
+ Immediate(num_saved_registers_ * kIntSize));
+
+ // Prepare rax to initialize registers with its value in the next run.
+ __ movp(rax, Operand(rbp, kInputStartMinusOne));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ // rdx: capture start index
+ __ cmpp(rdi, rdx);
+ // Not a zero-length match, restart.
+ __ j(not_equal, &load_char_start_regexp);
+ // rdi (offset from the end) is zero if we already reached the end.
+ __ testp(rdi, rdi);
+ __ j(zero, &exit_label_, Label::kNear);
+ // Advance current position after a zero-length match.
+ if (mode_ == UC16) {
+ __ addq(rdi, Immediate(2));
+ } else {
+ __ incq(rdi);
+ }
+ }
+
+ __ jmp(&load_char_start_regexp);
+ } else {
+ __ movp(rax, Immediate(SUCCESS));
+ }
+ }
+
+ __ bind(&exit_label_);
+ if (global()) {
+ // Return the number of successful captures.
+ __ movp(rax, Operand(rbp, kSuccessfulCaptures));
+ }
+
+ __ bind(&return_rax);
+#ifdef _WIN64
+ // Restore callee save registers.
+ __ leap(rsp, Operand(rbp, kLastCalleeSaveRegister));
+ __ popq(rbx);
+ __ popq(rdi);
+ __ popq(rsi);
+ // Stack now at rbp.
+#else
+ // Restore callee save register.
+ __ movp(rbx, Operand(rbp, kBackup_rbx));
+ // Skip rsp to rbp.
+ __ movp(rsp, rbp);
+#endif
+ // Exit function frame, restore previous one.
+ __ popq(rbp);
+ __ ret(0);
+
+ // Backtrack code (branch target for conditional backtracks).
+ if (backtrack_label_.is_linked()) {
+ __ bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ Label exit_with_exception;
+
+ // Preempt-code
+ if (check_preempt_label_.is_linked()) {
+ SafeCallTarget(&check_preempt_label_);
+
+ __ pushq(backtrack_stackpointer());
+ __ pushq(rdi);
+
+ CallCheckStackGuardState();
+ __ testp(rax, rax);
+ // If returning non-zero, we should end execution with the given
+ // result as return value.
+ __ j(not_zero, &return_rax);
+
+ // Restore registers.
+ __ Move(code_object_pointer(), masm_.CodeObject());
+ __ popq(rdi);
+ __ popq(backtrack_stackpointer());
+ // String might have moved: Reload esi from frame.
+ __ movp(rsi, Operand(rbp, kInputEnd));
+ SafeReturn();
+ }
+
+ // Backtrack stack overflow code.
+ if (stack_overflow_label_.is_linked()) {
+ SafeCallTarget(&stack_overflow_label_);
+ // Reached if the backtrack-stack limit has been hit.
+
+ Label grow_failed;
+ // Save registers before calling C function
+#ifndef _WIN64
+ // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
+ __ pushq(rsi);
+ __ pushq(rdi);
+#endif
+
+ // Call GrowStack(backtrack_stackpointer())
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments);
+#ifdef _WIN64
+ // Microsoft passes parameters in rcx, rdx, r8.
+ // First argument, backtrack stackpointer, is already in rcx.
+ __ leap(rdx, Operand(rbp, kStackHighEnd)); // Second argument
+ __ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
+#else
+ // AMD64 ABI passes parameters in rdi, rsi, rdx.
+ __ movp(rdi, backtrack_stackpointer()); // First argument.
+ __ leap(rsi, Operand(rbp, kStackHighEnd)); // Second argument.
+ __ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
+#endif
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(isolate());
+ __ CallCFunction(grow_stack, num_arguments);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ __ testp(rax, rax);
+ __ j(equal, &exit_with_exception);
+ // Otherwise use return value as new stack pointer.
+ __ movp(backtrack_stackpointer(), rax);
+ // Restore saved registers and continue.
+ __ Move(code_object_pointer(), masm_.CodeObject());
+#ifndef _WIN64
+ __ popq(rdi);
+ __ popq(rsi);
+#endif
+ SafeReturn();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ // If any of the code above needed to exit with an exception.
+ __ bind(&exit_with_exception);
+ // Exit with Result EXCEPTION(-1) to signal thrown exception.
+ __ Set(rax, EXCEPTION);
+ __ jmp(&return_rax);
+ }
+
+ FixupCodeRelativePositions();
+
+ CodeDesc code_desc;
+ masm_.GetCode(&code_desc);
+ Isolate* isolate = this->isolate();
+ Handle<Code> code = isolate->factory()->NewCode(
+ code_desc, Code::ComputeFlags(Code::REGEXP),
+ masm_.CodeObject());
+ PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerX64::GoTo(Label* to) {
+ BranchOrBacktrack(no_condition, to);
+}
+
+
+void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
+ int comparand,
+ Label* if_ge) {
+ __ cmpp(register_location(reg), Immediate(comparand));
+ BranchOrBacktrack(greater_equal, if_ge);
+}
+
+
+void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
+ int comparand,
+ Label* if_lt) {
+ __ cmpp(register_location(reg), Immediate(comparand));
+ BranchOrBacktrack(less, if_lt);
+}
+
+
+void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
+ Label* if_eq) {
+ __ cmpp(rdi, register_location(reg));
+ BranchOrBacktrack(equal, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerX64::Implementation() {
+ return kX64Implementation;
+}
+
+
+void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
+ DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
+ if (check_bounds) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerX64::PopCurrentPosition() {
+ Pop(rdi);
+}
+
+
+void RegExpMacroAssemblerX64::PopRegister(int register_index) {
+ Pop(rax);
+ __ movp(register_location(register_index), rax);
+}
+
+
+void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
+ Push(label);
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerX64::PushCurrentPosition() {
+ Push(rdi);
+}
+
+
+void RegExpMacroAssemblerX64::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ __ movp(rax, register_location(register_index));
+ Push(rax);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
+
+
+void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
+ if (kPointerSize == kInt64Size) {
+ __ movq(rdi, register_location(reg));
+ } else {
+ // Need sign extension for x32 as rdi might be used as an index register.
+ __ movsxlq(rdi, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
+ if (kPointerSize == kInt64Size) {
+ __ movq(dst, register_location(reg));
+ } else {
+ // Need sign extension for x32 as dst might be used as an index register.
+ __ movsxlq(dst, register_location(reg));
+ }
+}
+
+
+void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
+ __ movp(backtrack_stackpointer(), register_location(reg));
+ __ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
+}
+
+
+void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ cmpp(rdi, Immediate(-by * char_size()));
+ __ j(greater_equal, &after_position, Label::kNear);
+ __ movq(rdi, Immediate(-by * char_size()));
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ __ movp(register_location(register_index), Immediate(to));
+}
+
+
+bool RegExpMacroAssemblerX64::Succeed() {
+ __ jmp(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ if (cp_offset == 0) {
+ __ movp(register_location(reg), rdi);
+ } else {
+ __ leap(rax, Operand(rdi, cp_offset * char_size()));
+ __ movp(register_location(reg), rax);
+ }
+}
+
+
+void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ __ movp(rax, Operand(rbp, kInputStartMinusOne));
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ __ movp(register_location(reg), rax);
+ }
+}
+
+
+void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
+ __ movp(rax, backtrack_stackpointer());
+ __ subp(rax, Operand(rbp, kStackHighEnd));
+ __ movp(register_location(reg), rax);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
+ // This function call preserves no register values. Caller should
+ // store anything volatile in a C call or overwritten by this function.
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments);
+#ifdef _WIN64
+ // Second argument: Code* of self. (Do this before overwriting r8).
+ __ movp(rdx, code_object_pointer());
+ // Third argument: RegExp code frame pointer.
+ __ movp(r8, rbp);
+ // First argument: Next address on the stack (will be address of
+ // return address).
+ __ leap(rcx, Operand(rsp, -kPointerSize));
+#else
+ // Third argument: RegExp code frame pointer.
+ __ movp(rdx, rbp);
+ // Second argument: Code* of self.
+ __ movp(rsi, code_object_pointer());
+ // First argument: Next address on the stack (will be address of
+ // return address).
+ __ leap(rdi, Operand(rsp, -kRegisterSize));
+#endif
+ ExternalReference stack_check =
+ ExternalReference::re_check_stack_guard_state(isolate());
+ __ CallCFunction(stack_check, num_arguments);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate),
+ frame_entry<int>(re_frame, kStartIndex),
+ frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+ frame_entry_address<String*>(re_frame, kInputString),
+ frame_entry_address<const byte*>(re_frame, kInputStart),
+ frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+Operand RegExpMacroAssemblerX64::register_location(int register_index) {
+ DCHECK(register_index < (1<<30));
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ return Operand(rbp, kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ __ cmpl(rdi, Immediate(-cp_offset * char_size()));
+ BranchOrBacktrack(greater_equal, on_outside_input);
+}
+
+
+void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
+ Label* to) {
+ if (condition < 0) { // No condition
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+ }
+ if (to == NULL) {
+ __ j(condition, &backtrack_label_);
+ return;
+ }
+ __ j(condition, to);
+}
+
+
+void RegExpMacroAssemblerX64::SafeCall(Label* to) {
+ __ call(to);
+}
+
+
+void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
+ __ bind(label);
+ __ subp(Operand(rsp, 0), code_object_pointer());
+}
+
+
+void RegExpMacroAssemblerX64::SafeReturn() {
+ __ addp(Operand(rsp, 0), code_object_pointer());
+ __ ret(0);
+}
+
+
+void RegExpMacroAssemblerX64::Push(Register source) {
+ DCHECK(!source.is(backtrack_stackpointer()));
+ // Notice: This updates flags, unlike normal Push.
+ __ subp(backtrack_stackpointer(), Immediate(kIntSize));
+ __ movl(Operand(backtrack_stackpointer(), 0), source);
+}
+
+
+void RegExpMacroAssemblerX64::Push(Immediate value) {
+ // Notice: This updates flags, unlike normal Push.
+ __ subp(backtrack_stackpointer(), Immediate(kIntSize));
+ __ movl(Operand(backtrack_stackpointer(), 0), value);
+}
+
+
+void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
+ for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
+ int position = code_relative_fixup_positions_[i];
+ // The position succeeds a relative label offset from position.
+ // Patch the relative offset to be relative to the Code object pointer
+ // instead.
+ int patch_position = position - kIntSize;
+ int offset = masm_.long_at(patch_position);
+ masm_.long_at_put(patch_position,
+ offset
+ + position
+ + Code::kHeaderSize
+ - kHeapObjectTag);
+ }
+ code_relative_fixup_positions_.Clear();
+}
+
+
+void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
+ __ subp(backtrack_stackpointer(), Immediate(kIntSize));
+ __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
+ MarkPositionForCodeRelativeFixup();
+}
+
+
+void RegExpMacroAssemblerX64::Pop(Register target) {
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
+ // Notice: This updates flags, unlike normal Pop.
+ __ addp(backtrack_stackpointer(), Immediate(kIntSize));
+}
+
+
+void RegExpMacroAssemblerX64::Drop() {
+ __ addp(backtrack_stackpointer(), Immediate(kIntSize));
+}
+
+
+void RegExpMacroAssemblerX64::CheckPreemption() {
+ // Check for preemption.
+ Label no_preempt;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ load_rax(stack_limit);
+ __ cmpp(rsp, rax);
+ __ j(above, &no_preempt);
+
+ SafeCall(&check_preempt_label_);
+
+ __ bind(&no_preempt);
+}
+
+
+void RegExpMacroAssemblerX64::CheckStackLimit() {
+ Label no_stack_overflow;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(isolate());
+ __ load_rax(stack_limit);
+ __ cmpp(backtrack_stackpointer(), rax);
+ __ j(above, &no_stack_overflow);
+
+ SafeCall(&stack_overflow_label_);
+
+ __ bind(&no_stack_overflow);
+}
+
+
+void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ if (mode_ == LATIN1) {
+ if (characters == 4) {
+ __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
+ } else if (characters == 2) {
+ __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
+ } else {
+ DCHECK(characters == 1);
+ __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
+ }
+ } else {
+ DCHECK(mode_ == UC16);
+ if (characters == 2) {
+ __ movl(current_character(),
+ Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
+ } else {
+ DCHECK(characters == 1);
+ __ movzxwl(current_character(),
+ Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
+ }
+ }
+}
+
+#undef __
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X64
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
+#define V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
+
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/x64/assembler-x64.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+
+class RegExpMacroAssemblerX64: public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerX64();
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(uint32_t c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+
+ static Result Match(Handle<Code> regexp,
+ Handle<String> subject,
+ int* offsets_vector,
+ int offsets_vector_length,
+ int previous_index,
+ Isolate* isolate);
+
+ static Result Execute(Code* code,
+ String* input,
+ int start_offset,
+ const byte* input_start,
+ const byte* input_end,
+ int* output,
+ bool at_start);
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame);
+
+ private:
+ // Offsets from rbp of function parameters and stored registers.
+ static const int kFramePointer = 0;
+ // Above the frame pointer - function parameters and return address.
+ static const int kReturn_eip = kFramePointer + kRegisterSize;
+ static const int kFrameAlign = kReturn_eip + kRegisterSize;
+
+#ifdef _WIN64
+ // Parameters (first four passed as registers, but with room on stack).
+ // In Microsoft 64-bit Calling Convention, there is room on the callers
+ // stack (before the return address) to spill parameter registers. We
+ // use this space to store the register passed parameters.
+ static const int kInputString = kFrameAlign;
+ // StartIndex is passed as 32 bit int.
+ static const int kStartIndex = kInputString + kRegisterSize;
+ static const int kInputStart = kStartIndex + kRegisterSize;
+ static const int kInputEnd = kInputStart + kRegisterSize;
+ static const int kRegisterOutput = kInputEnd + kRegisterSize;
+ // For the case of global regular expression, we have room to store at least
+ // one set of capture results. For the case of non-global regexp, we ignore
+ // this value. NumOutputRegisters is passed as 32-bit value. The upper
+ // 32 bit of this 64-bit stack slot may contain garbage.
+ static const int kNumOutputRegisters = kRegisterOutput + kRegisterSize;
+ static const int kStackHighEnd = kNumOutputRegisters + kRegisterSize;
+ // DirectCall is passed as 32 bit int (values 0 or 1).
+ static const int kDirectCall = kStackHighEnd + kRegisterSize;
+ static const int kIsolate = kDirectCall + kRegisterSize;
+#else
+ // In AMD64 ABI Calling Convention, the first six integer parameters
+ // are passed as registers, and caller must allocate space on the stack
+ // if it wants them stored. We push the parameters after the frame pointer.
+ static const int kInputString = kFramePointer - kRegisterSize;
+ static const int kStartIndex = kInputString - kRegisterSize;
+ static const int kInputStart = kStartIndex - kRegisterSize;
+ static const int kInputEnd = kInputStart - kRegisterSize;
+ static const int kRegisterOutput = kInputEnd - kRegisterSize;
+
+ // For the case of global regular expression, we have room to store at least
+ // one set of capture results. For the case of non-global regexp, we ignore
+ // this value.
+ static const int kNumOutputRegisters = kRegisterOutput - kRegisterSize;
+ static const int kStackHighEnd = kFrameAlign;
+ static const int kDirectCall = kStackHighEnd + kRegisterSize;
+ static const int kIsolate = kDirectCall + kRegisterSize;
+#endif
+
+#ifdef _WIN64
+ // Microsoft calling convention has three callee-saved registers
+ // (that we are using). We push these after the frame pointer.
+ static const int kBackup_rsi = kFramePointer - kRegisterSize;
+ static const int kBackup_rdi = kBackup_rsi - kRegisterSize;
+ static const int kBackup_rbx = kBackup_rdi - kRegisterSize;
+ static const int kLastCalleeSaveRegister = kBackup_rbx;
+#else
+ // AMD64 Calling Convention has only one callee-save register that
+ // we use. We push this after the frame pointer (and after the
+ // parameters).
+ static const int kBackup_rbx = kNumOutputRegisters - kRegisterSize;
+ static const int kLastCalleeSaveRegister = kBackup_rbx;
+#endif
+
+ static const int kSuccessfulCaptures = kLastCalleeSaveRegister - kPointerSize;
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
+
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState();
+
+ // The rbp-relative location of a regexp register.
+ Operand register_location(int register_index);
+
+ // The register containing the current character after LoadCurrentCharacter.
+ inline Register current_character() { return rdx; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ inline Register backtrack_stackpointer() { return rcx; }
+
+ // The registers containing a self pointer to this code's Code object.
+ inline Register code_object_pointer() { return r8; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument)
+ inline int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Condition condition, Label* to);
+
+ void MarkPositionForCodeRelativeFixup() {
+ code_relative_fixup_positions_.Add(masm_.pc_offset(), zone());
+ }
+
+ void FixupCodeRelativePositions();
+
+ // Call and return internally in the generated code in a way that
+ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+ inline void SafeCall(Label* to);
+ inline void SafeCallTarget(Label* label);
+ inline void SafeReturn();
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer (rcx) by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pushes a value on the backtrack stack. Decrements the stack pointer (rcx)
+ // by a word size and stores the value there.
+ inline void Push(Immediate value);
+
+ // Pushes the Code object relative offset of a label on the backtrack stack
+ // (i.e., a backtrack target). Decrements the stack pointer (rcx)
+ // by a word size and stores the value there.
+ inline void Push(Label* label);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // (rcx) and increments it by a word size.
+ inline void Pop(Register target);
+
+ // Drops the top value from the backtrack stack without reading it.
+ // Increments the stack pointer (rcx) by a word size.
+ inline void Drop();
+
+ inline void ReadPositionFromRegister(Register dst, int reg);
+
+ Isolate* isolate() const { return masm_.isolate(); }
+
+ MacroAssembler masm_;
+ MacroAssembler::NoRootArrayScope no_root_array_scope_;
+
+ ZoneList<int> code_relative_fixup_positions_;
+
+ // Which mode to generate code for (LATIN1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1)
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+};
+
+#endif // V8_INTERPRETED_REGEXP
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
--- /dev/null
+weiliang.lin@intel.com
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/regexp/x87/regexp-macro-assembler-x87.h"
+
+#include "src/cpu-profiler.h"
+#include "src/log.h"
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-stack.h"
+#include "src/unicode.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+/*
+ * This assembler uses the following register assignment convention
+ * - edx : Current character. Must be loaded using LoadCurrentCharacter
+ * before using any of the dispatch methods. Temporarily stores the
+ * index of capture start after a matching pass for a global regexp.
+ * - edi : Current position in input, as negative offset from end of string.
+ * Please notice that this is the byte offset, not the character offset!
+ * - esi : end of input (points to byte after last character in input).
+ * - ebp : Frame pointer. Used to access arguments, local variables and
+ * RegExp registers.
+ * - esp : Points to tip of C stack.
+ * - ecx : Points to tip of backtrack stack
+ *
+ * The registers eax and ebx are free to use for computations.
+ *
+ * Each call to a public method should retain this convention.
+ * The stack will have the following structure:
+ * - Isolate* isolate (address of the current isolate)
+ * - direct_call (if 1, direct call from JavaScript code, if 0
+ * call through the runtime system)
+ * - stack_area_base (high end of the memory area to use as
+ * backtracking stack)
+ * - capture array size (may fit multiple sets of matches)
+ * - int* capture_array (int[num_saved_registers_], for output).
+ * - end of input (address of end of string)
+ * - start of input (address of first character in string)
+ * - start index (character index of start)
+ * - String* input_string (location of a handle containing the string)
+ * --- frame alignment (if applicable) ---
+ * - return address
+ * ebp-> - old ebp
+ * - backup of caller esi
+ * - backup of caller edi
+ * - backup of caller ebx
+ * - success counter (only for global regexps to count matches).
+ * - Offset of location before start of input (effectively character
+ * position -1). Used to initialize capture registers to a non-position.
+ * - register 0 ebp[-4] (only positions must be stored in the first
+ * - register 1 ebp[-8] num_saved_registers_ registers)
+ * - ...
+ *
+ * The first num_saved_registers_ registers are initialized to point to
+ * "character -1" in the string (i.e., char_size() bytes before the first
+ * character of the string). The remaining registers starts out as garbage.
+ *
+ * The data up to the return address must be placed there by the calling
+ * code, by calling the code entry as cast to a function with the signature:
+ * int (*match)(String* input_string,
+ * int start_index,
+ * Address start,
+ * Address end,
+ * int* capture_output_array,
+ * bool at_start,
+ * byte* stack_area_base,
+ * bool direct_call)
+ */
+
+#define __ ACCESS_MASM(masm_)
+
+RegExpMacroAssemblerX87::RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone,
+ Mode mode,
+ int registers_to_save)
+ : NativeRegExpMacroAssembler(isolate, zone),
+ masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
+ mode_(mode),
+ num_registers_(registers_to_save),
+ num_saved_registers_(registers_to_save),
+ entry_label_(),
+ start_label_(),
+ success_label_(),
+ backtrack_label_(),
+ exit_label_() {
+ DCHECK_EQ(0, registers_to_save % 2);
+ __ jmp(&entry_label_); // We'll write the entry code later.
+ __ bind(&start_label_); // And then continue from here.
+}
+
+
+RegExpMacroAssemblerX87::~RegExpMacroAssemblerX87() {
+ delete masm_;
+ // Unuse labels in case we throw away the assembler without calling GetCode.
+ entry_label_.Unuse();
+ start_label_.Unuse();
+ success_label_.Unuse();
+ backtrack_label_.Unuse();
+ exit_label_.Unuse();
+ check_preempt_label_.Unuse();
+ stack_overflow_label_.Unuse();
+}
+
+
+int RegExpMacroAssemblerX87::stack_limit_slack() {
+ return RegExpStack::kStackLimitSlack;
+}
+
+
+void RegExpMacroAssemblerX87::AdvanceCurrentPosition(int by) {
+ if (by != 0) {
+ __ add(edi, Immediate(by * char_size()));
+ }
+}
+
+
+void RegExpMacroAssemblerX87::AdvanceRegister(int reg, int by) {
+ DCHECK(reg >= 0);
+ DCHECK(reg < num_registers_);
+ if (by != 0) {
+ __ add(register_location(reg), Immediate(by));
+ }
+}
+
+
+void RegExpMacroAssemblerX87::Backtrack() {
+ CheckPreemption();
+ // Pop Code* offset from backtrack stack, add Code* and jump to location.
+ Pop(ebx);
+ __ add(ebx, Immediate(masm_->CodeObject()));
+ __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerX87::Bind(Label* label) {
+ __ bind(label);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacter(uint32_t c, Label* on_equal) {
+ __ cmp(current_character(), c);
+ BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterGT(uc16 limit, Label* on_greater) {
+ __ cmp(current_character(), limit);
+ BranchOrBacktrack(greater, on_greater);
+}
+
+
+void RegExpMacroAssemblerX87::CheckAtStart(Label* on_at_start) {
+ Label not_at_start;
+ // Did we start the match at the start of the string at all?
+ __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+ BranchOrBacktrack(not_equal, ¬_at_start);
+ // If we did, are we still at the start of the input?
+ __ lea(eax, Operand(esi, edi, times_1, 0));
+ __ cmp(eax, Operand(ebp, kInputStart));
+ BranchOrBacktrack(equal, on_at_start);
+ __ bind(¬_at_start);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotAtStart(Label* on_not_at_start) {
+ // Did we start the match at the start of the string at all?
+ __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+ BranchOrBacktrack(not_equal, on_not_at_start);
+ // If we did, are we still at the start of the input?
+ __ lea(eax, Operand(esi, edi, times_1, 0));
+ __ cmp(eax, Operand(ebp, kInputStart));
+ BranchOrBacktrack(not_equal, on_not_at_start);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterLT(uc16 limit, Label* on_less) {
+ __ cmp(current_character(), limit);
+ BranchOrBacktrack(less, on_less);
+}
+
+
+void RegExpMacroAssemblerX87::CheckGreedyLoop(Label* on_equal) {
+ Label fallthrough;
+ __ cmp(edi, Operand(backtrack_stackpointer(), 0));
+ __ j(not_equal, &fallthrough);
+ __ add(backtrack_stackpointer(), Immediate(kPointerSize)); // Pop.
+ BranchOrBacktrack(no_condition, on_equal);
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotBackReferenceIgnoreCase(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ __ mov(edx, register_location(start_reg)); // Index of start of capture
+ __ mov(ebx, register_location(start_reg + 1)); // Index of end of capture
+ __ sub(ebx, edx); // Length of capture.
+
+ // The length of a capture should not be negative. This can only happen
+ // if the end of the capture is unrecorded, or at a point earlier than
+ // the start of the capture.
+ BranchOrBacktrack(less, on_no_match);
+
+ // If length is zero, either the capture is empty or it is completely
+ // uncaptured. In either case succeed immediately.
+ __ j(equal, &fallthrough);
+
+ // Check that there are sufficient characters left in the input.
+ __ mov(eax, edi);
+ __ add(eax, ebx);
+ BranchOrBacktrack(greater, on_no_match);
+
+ if (mode_ == LATIN1) {
+ Label success;
+ Label fail;
+ Label loop_increment;
+ // Save register contents to make the registers available below.
+ __ push(edi);
+ __ push(backtrack_stackpointer());
+ // After this, the eax, ecx, and edi registers are available.
+
+ __ add(edx, esi); // Start of capture
+ __ add(edi, esi); // Start of text to match against capture.
+ __ add(ebx, edi); // End of text to match against capture.
+
+ Label loop;
+ __ bind(&loop);
+ __ movzx_b(eax, Operand(edi, 0));
+ __ cmpb_al(Operand(edx, 0));
+ __ j(equal, &loop_increment);
+
+ // Mismatch, try case-insensitive match (converting letters to lower-case).
+ __ or_(eax, 0x20); // Convert match character to lower-case.
+ __ lea(ecx, Operand(eax, -'a'));
+ __ cmp(ecx, static_cast<int32_t>('z' - 'a')); // Is eax a lowercase letter?
+ Label convert_capture;
+ __ j(below_equal, &convert_capture); // In range 'a'-'z'.
+ // Latin-1: Check for values in range [224,254] but not 247.
+ __ sub(ecx, Immediate(224 - 'a'));
+ __ cmp(ecx, Immediate(254 - 224));
+ __ j(above, &fail); // Weren't Latin-1 letters.
+ __ cmp(ecx, Immediate(247 - 224)); // Check for 247.
+ __ j(equal, &fail);
+ __ bind(&convert_capture);
+ // Also convert capture character.
+ __ movzx_b(ecx, Operand(edx, 0));
+ __ or_(ecx, 0x20);
+
+ __ cmp(eax, ecx);
+ __ j(not_equal, &fail);
+
+ __ bind(&loop_increment);
+ // Increment pointers into match and capture strings.
+ __ add(edx, Immediate(1));
+ __ add(edi, Immediate(1));
+ // Compare to end of match, and loop if not done.
+ __ cmp(edi, ebx);
+ __ j(below, &loop);
+ __ jmp(&success);
+
+ __ bind(&fail);
+ // Restore original values before failing.
+ __ pop(backtrack_stackpointer());
+ __ pop(edi);
+ BranchOrBacktrack(no_condition, on_no_match);
+
+ __ bind(&success);
+ // Restore original value before continuing.
+ __ pop(backtrack_stackpointer());
+ // Drop original value of character position.
+ __ add(esp, Immediate(kPointerSize));
+ // Compute new value of character position after the matched part.
+ __ sub(edi, esi);
+ } else {
+ DCHECK(mode_ == UC16);
+ // Save registers before calling C function.
+ __ push(esi);
+ __ push(edi);
+ __ push(backtrack_stackpointer());
+ __ push(ebx);
+
+ static const int argument_count = 4;
+ __ PrepareCallCFunction(argument_count, ecx);
+ // Put arguments into allocated stack area, last argument highest on stack.
+ // Parameters are
+ // Address byte_offset1 - Address captured substring's start.
+ // Address byte_offset2 - Address of current character position.
+ // size_t byte_length - length of capture in bytes(!)
+ // Isolate* isolate
+
+ // Set isolate.
+ __ mov(Operand(esp, 3 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ // Set byte_length.
+ __ mov(Operand(esp, 2 * kPointerSize), ebx);
+ // Set byte_offset2.
+ // Found by adding negative string-end offset of current position (edi)
+ // to end of string.
+ __ add(edi, esi);
+ __ mov(Operand(esp, 1 * kPointerSize), edi);
+ // Set byte_offset1.
+ // Start of capture, where edx already holds string-end negative offset.
+ __ add(edx, esi);
+ __ mov(Operand(esp, 0 * kPointerSize), edx);
+
+ {
+ AllowExternalCallThatCantCauseGC scope(masm_);
+ ExternalReference compare =
+ ExternalReference::re_case_insensitive_compare_uc16(isolate());
+ __ CallCFunction(compare, argument_count);
+ }
+ // Pop original values before reacting on result value.
+ __ pop(ebx);
+ __ pop(backtrack_stackpointer());
+ __ pop(edi);
+ __ pop(esi);
+
+ // Check if function returned non-zero for success or zero for failure.
+ __ or_(eax, eax);
+ BranchOrBacktrack(zero, on_no_match);
+ // On success, increment position by length of capture.
+ __ add(edi, ebx);
+ }
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotBackReference(
+ int start_reg,
+ Label* on_no_match) {
+ Label fallthrough;
+ Label success;
+ Label fail;
+
+ // Find length of back-referenced capture.
+ __ mov(edx, register_location(start_reg));
+ __ mov(eax, register_location(start_reg + 1));
+ __ sub(eax, edx); // Length to check.
+ // Fail on partial or illegal capture (start of capture after end of capture).
+ BranchOrBacktrack(less, on_no_match);
+ // Succeed on empty capture (including no capture)
+ __ j(equal, &fallthrough);
+
+ // Check that there are sufficient characters left in the input.
+ __ mov(ebx, edi);
+ __ add(ebx, eax);
+ BranchOrBacktrack(greater, on_no_match);
+
+ // Save register to make it available below.
+ __ push(backtrack_stackpointer());
+
+ // Compute pointers to match string and capture string
+ __ lea(ebx, Operand(esi, edi, times_1, 0)); // Start of match.
+ __ add(edx, esi); // Start of capture.
+ __ lea(ecx, Operand(eax, ebx, times_1, 0)); // End of match
+
+ Label loop;
+ __ bind(&loop);
+ if (mode_ == LATIN1) {
+ __ movzx_b(eax, Operand(edx, 0));
+ __ cmpb_al(Operand(ebx, 0));
+ } else {
+ DCHECK(mode_ == UC16);
+ __ movzx_w(eax, Operand(edx, 0));
+ __ cmpw_ax(Operand(ebx, 0));
+ }
+ __ j(not_equal, &fail);
+ // Increment pointers into capture and match string.
+ __ add(edx, Immediate(char_size()));
+ __ add(ebx, Immediate(char_size()));
+ // Check if we have reached end of match area.
+ __ cmp(ebx, ecx);
+ __ j(below, &loop);
+ __ jmp(&success);
+
+ __ bind(&fail);
+ // Restore backtrack stackpointer.
+ __ pop(backtrack_stackpointer());
+ BranchOrBacktrack(no_condition, on_no_match);
+
+ __ bind(&success);
+ // Move current character position to position after match.
+ __ mov(edi, ecx);
+ __ sub(edi, esi);
+ // Restore backtrack stackpointer.
+ __ pop(backtrack_stackpointer());
+
+ __ bind(&fallthrough);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacter(uint32_t c,
+ Label* on_not_equal) {
+ __ cmp(current_character(), c);
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal) {
+ if (c == 0) {
+ __ test(current_character(), Immediate(mask));
+ } else {
+ __ mov(eax, mask);
+ __ and_(eax, current_character());
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(equal, on_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal) {
+ if (c == 0) {
+ __ test(current_character(), Immediate(mask));
+ } else {
+ __ mov(eax, mask);
+ __ and_(eax, current_character());
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckNotCharacterAfterMinusAnd(
+ uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal) {
+ DCHECK(minus < String::kMaxUtf16CodeUnit);
+ __ lea(eax, Operand(current_character(), -minus));
+ if (c == 0) {
+ __ test(eax, Immediate(mask));
+ } else {
+ __ and_(eax, mask);
+ __ cmp(eax, c);
+ }
+ BranchOrBacktrack(not_equal, on_not_equal);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_in_range) {
+ __ lea(eax, Operand(current_character(), -from));
+ __ cmp(eax, to - from);
+ BranchOrBacktrack(below_equal, on_in_range);
+}
+
+
+void RegExpMacroAssemblerX87::CheckCharacterNotInRange(
+ uc16 from,
+ uc16 to,
+ Label* on_not_in_range) {
+ __ lea(eax, Operand(current_character(), -from));
+ __ cmp(eax, to - from);
+ BranchOrBacktrack(above, on_not_in_range);
+}
+
+
+void RegExpMacroAssemblerX87::CheckBitInTable(
+ Handle<ByteArray> table,
+ Label* on_bit_set) {
+ __ mov(eax, Immediate(table));
+ Register index = current_character();
+ if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
+ __ mov(ebx, kTableSize - 1);
+ __ and_(ebx, current_character());
+ index = ebx;
+ }
+ __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize), 0);
+ BranchOrBacktrack(not_equal, on_bit_set);
+}
+
+
+bool RegExpMacroAssemblerX87::CheckSpecialCharacterClass(uc16 type,
+ Label* on_no_match) {
+ // Range checks (c in min..max) are generally implemented by an unsigned
+ // (c - min) <= (max - min) check
+ switch (type) {
+ case 's':
+ // Match space-characters
+ if (mode_ == LATIN1) {
+ // One byte space characters are '\t'..'\r', ' ' and \u00a0.
+ Label success;
+ __ cmp(current_character(), ' ');
+ __ j(equal, &success, Label::kNear);
+ // Check range 0x09..0x0d
+ __ lea(eax, Operand(current_character(), -'\t'));
+ __ cmp(eax, '\r' - '\t');
+ __ j(below_equal, &success, Label::kNear);
+ // \u00a0 (NBSP).
+ __ cmp(eax, 0x00a0 - '\t');
+ BranchOrBacktrack(not_equal, on_no_match);
+ __ bind(&success);
+ return true;
+ }
+ return false;
+ case 'S':
+ // The emitted code for generic character classes is good enough.
+ return false;
+ case 'd':
+ // Match ASCII digits ('0'..'9')
+ __ lea(eax, Operand(current_character(), -'0'));
+ __ cmp(eax, '9' - '0');
+ BranchOrBacktrack(above, on_no_match);
+ return true;
+ case 'D':
+ // Match non ASCII-digits
+ __ lea(eax, Operand(current_character(), -'0'));
+ __ cmp(eax, '9' - '0');
+ BranchOrBacktrack(below_equal, on_no_match);
+ return true;
+ case '.': {
+ // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
+ __ mov(eax, current_character());
+ __ xor_(eax, Immediate(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ sub(eax, Immediate(0x0b));
+ __ cmp(eax, 0x0c - 0x0b);
+ BranchOrBacktrack(below_equal, on_no_match);
+ if (mode_ == UC16) {
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ sub(eax, Immediate(0x2028 - 0x0b));
+ __ cmp(eax, 0x2029 - 0x2028);
+ BranchOrBacktrack(below_equal, on_no_match);
+ }
+ return true;
+ }
+ case 'w': {
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmp(current_character(), Immediate('z'));
+ BranchOrBacktrack(above, on_no_match);
+ }
+ DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
+ ExternalReference word_map = ExternalReference::re_word_character_map();
+ __ test_b(current_character(),
+ Operand::StaticArray(current_character(), times_1, word_map));
+ BranchOrBacktrack(zero, on_no_match);
+ return true;
+ }
+ case 'W': {
+ Label done;
+ if (mode_ != LATIN1) {
+ // Table is 256 entries, so all Latin1 characters can be tested.
+ __ cmp(current_character(), Immediate('z'));
+ __ j(above, &done);
+ }
+ DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
+ ExternalReference word_map = ExternalReference::re_word_character_map();
+ __ test_b(current_character(),
+ Operand::StaticArray(current_character(), times_1, word_map));
+ BranchOrBacktrack(not_zero, on_no_match);
+ if (mode_ != LATIN1) {
+ __ bind(&done);
+ }
+ return true;
+ }
+ // Non-standard classes (with no syntactic shorthand) used internally.
+ case '*':
+ // Match any character.
+ return true;
+ case 'n': {
+ // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
+ // The opposite of '.'.
+ __ mov(eax, current_character());
+ __ xor_(eax, Immediate(0x01));
+ // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
+ __ sub(eax, Immediate(0x0b));
+ __ cmp(eax, 0x0c - 0x0b);
+ if (mode_ == LATIN1) {
+ BranchOrBacktrack(above, on_no_match);
+ } else {
+ Label done;
+ BranchOrBacktrack(below_equal, &done);
+ DCHECK_EQ(UC16, mode_);
+ // Compare original value to 0x2028 and 0x2029, using the already
+ // computed (current_char ^ 0x01 - 0x0b). I.e., check for
+ // 0x201d (0x2028 - 0x0b) or 0x201e.
+ __ sub(eax, Immediate(0x2028 - 0x0b));
+ __ cmp(eax, 1);
+ BranchOrBacktrack(above, on_no_match);
+ __ bind(&done);
+ }
+ return true;
+ }
+ // No custom implementation (yet): s(UC16), S(UC16).
+ default:
+ return false;
+ }
+}
+
+
+void RegExpMacroAssemblerX87::Fail() {
+ STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
+ if (!global()) {
+ __ Move(eax, Immediate(FAILURE));
+ }
+ __ jmp(&exit_label_);
+}
+
+
+Handle<HeapObject> RegExpMacroAssemblerX87::GetCode(Handle<String> source) {
+ Label return_eax;
+ // Finalize code - write the entry point code now we know how many
+ // registers we need.
+
+ // Entry code:
+ __ bind(&entry_label_);
+
+ // Tell the system that we have a stack frame. Because the type is MANUAL, no
+ // code is generated.
+ FrameScope scope(masm_, StackFrame::MANUAL);
+
+ // Actually emit code to start a new stack frame.
+ __ push(ebp);
+ __ mov(ebp, esp);
+ // Save callee-save registers. Order here should correspond to order of
+ // kBackup_ebx etc.
+ __ push(esi);
+ __ push(edi);
+ __ push(ebx); // Callee-save on MacOS.
+ __ push(Immediate(0)); // Number of successful matches in a global regexp.
+ __ push(Immediate(0)); // Make room for "input start - 1" constant.
+
+ // Check if we have space on the stack for registers.
+ Label stack_limit_hit;
+ Label stack_ok;
+
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ mov(ecx, esp);
+ __ sub(ecx, Operand::StaticVariable(stack_limit));
+ // Handle it if the stack pointer is already below the stack limit.
+ __ j(below_equal, &stack_limit_hit);
+ // Check if there is room for the variable number of registers above
+ // the stack limit.
+ __ cmp(ecx, num_registers_ * kPointerSize);
+ __ j(above_equal, &stack_ok);
+ // Exit with OutOfMemory exception. There is not enough space on the stack
+ // for our working registers.
+ __ mov(eax, EXCEPTION);
+ __ jmp(&return_eax);
+
+ __ bind(&stack_limit_hit);
+ CallCheckStackGuardState(ebx);
+ __ or_(eax, eax);
+ // If returned value is non-zero, we exit with the returned value as result.
+ __ j(not_zero, &return_eax);
+
+ __ bind(&stack_ok);
+ // Load start index for later use.
+ __ mov(ebx, Operand(ebp, kStartIndex));
+
+ // Allocate space on stack for registers.
+ __ sub(esp, Immediate(num_registers_ * kPointerSize));
+ // Load string length.
+ __ mov(esi, Operand(ebp, kInputEnd));
+ // Load input position.
+ __ mov(edi, Operand(ebp, kInputStart));
+ // Set up edi to be negative offset from string end.
+ __ sub(edi, esi);
+
+ // Set eax to address of char before start of the string.
+ // (effectively string position -1).
+ __ neg(ebx);
+ if (mode_ == UC16) {
+ __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
+ } else {
+ __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
+ }
+ // Store this value in a local variable, for use when clearing
+ // position registers.
+ __ mov(Operand(ebp, kInputStartMinusOne), eax);
+
+#if V8_OS_WIN
+ // Ensure that we write to each stack page, in order. Skipping a page
+ // on Windows can cause segmentation faults. Assuming page size is 4k.
+ const int kPageSize = 4096;
+ const int kRegistersPerPage = kPageSize / kPointerSize;
+ for (int i = num_saved_registers_ + kRegistersPerPage - 1;
+ i < num_registers_;
+ i += kRegistersPerPage) {
+ __ mov(register_location(i), eax); // One write every page.
+ }
+#endif // V8_OS_WIN
+
+ Label load_char_start_regexp, start_regexp;
+ // Load newline if index is at start, previous character otherwise.
+ __ cmp(Operand(ebp, kStartIndex), Immediate(0));
+ __ j(not_equal, &load_char_start_regexp, Label::kNear);
+ __ mov(current_character(), '\n');
+ __ jmp(&start_regexp, Label::kNear);
+
+ // Global regexp restarts matching here.
+ __ bind(&load_char_start_regexp);
+ // Load previous char as initial value of current character register.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&start_regexp);
+
+ // Initialize on-stack registers.
+ if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
+ // Fill saved registers with initial value = start offset - 1
+ // Fill in stack push order, to avoid accessing across an unwritten
+ // page (a problem on Windows).
+ if (num_saved_registers_ > 8) {
+ __ mov(ecx, kRegisterZero);
+ Label init_loop;
+ __ bind(&init_loop);
+ __ mov(Operand(ebp, ecx, times_1, 0), eax);
+ __ sub(ecx, Immediate(kPointerSize));
+ __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
+ __ j(greater, &init_loop);
+ } else { // Unroll the loop.
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ mov(register_location(i), eax);
+ }
+ }
+ }
+
+ // Initialize backtrack stack pointer.
+ __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+
+ __ jmp(&start_label_);
+
+ // Exit code:
+ if (success_label_.is_linked()) {
+ // Save captures when successful.
+ __ bind(&success_label_);
+ if (num_saved_registers_ > 0) {
+ // copy captures to output
+ __ mov(ebx, Operand(ebp, kRegisterOutput));
+ __ mov(ecx, Operand(ebp, kInputEnd));
+ __ mov(edx, Operand(ebp, kStartIndex));
+ __ sub(ecx, Operand(ebp, kInputStart));
+ if (mode_ == UC16) {
+ __ lea(ecx, Operand(ecx, edx, times_2, 0));
+ } else {
+ __ add(ecx, edx);
+ }
+ for (int i = 0; i < num_saved_registers_; i++) {
+ __ mov(eax, register_location(i));
+ if (i == 0 && global_with_zero_length_check()) {
+ // Keep capture start in edx for the zero-length check later.
+ __ mov(edx, eax);
+ }
+ // Convert to index from start of string, not end.
+ __ add(eax, ecx);
+ if (mode_ == UC16) {
+ __ sar(eax, 1); // Convert byte index to character index.
+ }
+ __ mov(Operand(ebx, i * kPointerSize), eax);
+ }
+ }
+
+ if (global()) {
+ // Restart matching if the regular expression is flagged as global.
+ // Increment success counter.
+ __ inc(Operand(ebp, kSuccessfulCaptures));
+ // Capture results have been stored, so the number of remaining global
+ // output registers is reduced by the number of stored captures.
+ __ mov(ecx, Operand(ebp, kNumOutputRegisters));
+ __ sub(ecx, Immediate(num_saved_registers_));
+ // Check whether we have enough room for another set of capture results.
+ __ cmp(ecx, Immediate(num_saved_registers_));
+ __ j(less, &exit_label_);
+
+ __ mov(Operand(ebp, kNumOutputRegisters), ecx);
+ // Advance the location for output.
+ __ add(Operand(ebp, kRegisterOutput),
+ Immediate(num_saved_registers_ * kPointerSize));
+
+ // Prepare eax to initialize registers with its value in the next run.
+ __ mov(eax, Operand(ebp, kInputStartMinusOne));
+
+ if (global_with_zero_length_check()) {
+ // Special case for zero-length matches.
+ // edx: capture start index
+ __ cmp(edi, edx);
+ // Not a zero-length match, restart.
+ __ j(not_equal, &load_char_start_regexp);
+ // edi (offset from the end) is zero if we already reached the end.
+ __ test(edi, edi);
+ __ j(zero, &exit_label_, Label::kNear);
+ // Advance current position after a zero-length match.
+ if (mode_ == UC16) {
+ __ add(edi, Immediate(2));
+ } else {
+ __ inc(edi);
+ }
+ }
+
+ __ jmp(&load_char_start_regexp);
+ } else {
+ __ mov(eax, Immediate(SUCCESS));
+ }
+ }
+
+ __ bind(&exit_label_);
+ if (global()) {
+ // Return the number of successful captures.
+ __ mov(eax, Operand(ebp, kSuccessfulCaptures));
+ }
+
+ __ bind(&return_eax);
+ // Skip esp past regexp registers.
+ __ lea(esp, Operand(ebp, kBackup_ebx));
+ // Restore callee-save registers.
+ __ pop(ebx);
+ __ pop(edi);
+ __ pop(esi);
+ // Exit function frame, restore previous one.
+ __ pop(ebp);
+ __ ret(0);
+
+ // Backtrack code (branch target for conditional backtracks).
+ if (backtrack_label_.is_linked()) {
+ __ bind(&backtrack_label_);
+ Backtrack();
+ }
+
+ Label exit_with_exception;
+
+ // Preempt-code
+ if (check_preempt_label_.is_linked()) {
+ SafeCallTarget(&check_preempt_label_);
+
+ __ push(backtrack_stackpointer());
+ __ push(edi);
+
+ CallCheckStackGuardState(ebx);
+ __ or_(eax, eax);
+ // If returning non-zero, we should end execution with the given
+ // result as return value.
+ __ j(not_zero, &return_eax);
+
+ __ pop(edi);
+ __ pop(backtrack_stackpointer());
+ // String might have moved: Reload esi from frame.
+ __ mov(esi, Operand(ebp, kInputEnd));
+ SafeReturn();
+ }
+
+ // Backtrack stack overflow code.
+ if (stack_overflow_label_.is_linked()) {
+ SafeCallTarget(&stack_overflow_label_);
+ // Reached if the backtrack-stack limit has been hit.
+
+ Label grow_failed;
+ // Save registers before calling C function
+ __ push(esi);
+ __ push(edi);
+
+ // Call GrowStack(backtrack_stackpointer())
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, ebx);
+ __ mov(Operand(esp, 2 * kPointerSize),
+ Immediate(ExternalReference::isolate_address(isolate())));
+ __ lea(eax, Operand(ebp, kStackHighEnd));
+ __ mov(Operand(esp, 1 * kPointerSize), eax);
+ __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
+ ExternalReference grow_stack =
+ ExternalReference::re_grow_stack(isolate());
+ __ CallCFunction(grow_stack, num_arguments);
+ // If return NULL, we have failed to grow the stack, and
+ // must exit with a stack-overflow exception.
+ __ or_(eax, eax);
+ __ j(equal, &exit_with_exception);
+ // Otherwise use return value as new stack pointer.
+ __ mov(backtrack_stackpointer(), eax);
+ // Restore saved registers and continue.
+ __ pop(edi);
+ __ pop(esi);
+ SafeReturn();
+ }
+
+ if (exit_with_exception.is_linked()) {
+ // If any of the code above needed to exit with an exception.
+ __ bind(&exit_with_exception);
+ // Exit with Result EXCEPTION(-1) to signal thrown exception.
+ __ mov(eax, EXCEPTION);
+ __ jmp(&return_eax);
+ }
+
+ CodeDesc code_desc;
+ masm_->GetCode(&code_desc);
+ Handle<Code> code =
+ isolate()->factory()->NewCode(code_desc,
+ Code::ComputeFlags(Code::REGEXP),
+ masm_->CodeObject());
+ PROFILE(isolate(), RegExpCodeCreateEvent(*code, *source));
+ return Handle<HeapObject>::cast(code);
+}
+
+
+void RegExpMacroAssemblerX87::GoTo(Label* to) {
+ BranchOrBacktrack(no_condition, to);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterGE(int reg,
+ int comparand,
+ Label* if_ge) {
+ __ cmp(register_location(reg), Immediate(comparand));
+ BranchOrBacktrack(greater_equal, if_ge);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterLT(int reg,
+ int comparand,
+ Label* if_lt) {
+ __ cmp(register_location(reg), Immediate(comparand));
+ BranchOrBacktrack(less, if_lt);
+}
+
+
+void RegExpMacroAssemblerX87::IfRegisterEqPos(int reg,
+ Label* if_eq) {
+ __ cmp(edi, register_location(reg));
+ BranchOrBacktrack(equal, if_eq);
+}
+
+
+RegExpMacroAssembler::IrregexpImplementation
+ RegExpMacroAssemblerX87::Implementation() {
+ return kX87Implementation;
+}
+
+
+void RegExpMacroAssemblerX87::LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds,
+ int characters) {
+ DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
+ DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
+ if (check_bounds) {
+ CheckPosition(cp_offset + characters - 1, on_end_of_input);
+ }
+ LoadCurrentCharacterUnchecked(cp_offset, characters);
+}
+
+
+void RegExpMacroAssemblerX87::PopCurrentPosition() {
+ Pop(edi);
+}
+
+
+void RegExpMacroAssemblerX87::PopRegister(int register_index) {
+ Pop(eax);
+ __ mov(register_location(register_index), eax);
+}
+
+
+void RegExpMacroAssemblerX87::PushBacktrack(Label* label) {
+ Push(Immediate::CodeRelativeOffset(label));
+ CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerX87::PushCurrentPosition() {
+ Push(edi);
+}
+
+
+void RegExpMacroAssemblerX87::PushRegister(int register_index,
+ StackCheckFlag check_stack_limit) {
+ __ mov(eax, register_location(register_index));
+ Push(eax);
+ if (check_stack_limit) CheckStackLimit();
+}
+
+
+void RegExpMacroAssemblerX87::ReadCurrentPositionFromRegister(int reg) {
+ __ mov(edi, register_location(reg));
+}
+
+
+void RegExpMacroAssemblerX87::ReadStackPointerFromRegister(int reg) {
+ __ mov(backtrack_stackpointer(), register_location(reg));
+ __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
+}
+
+void RegExpMacroAssemblerX87::SetCurrentPositionFromEnd(int by) {
+ Label after_position;
+ __ cmp(edi, -by * char_size());
+ __ j(greater_equal, &after_position, Label::kNear);
+ __ mov(edi, -by * char_size());
+ // On RegExp code entry (where this operation is used), the character before
+ // the current position is expected to be already loaded.
+ // We have advanced the position, so it's safe to read backwards.
+ LoadCurrentCharacterUnchecked(-1, 1);
+ __ bind(&after_position);
+}
+
+
+void RegExpMacroAssemblerX87::SetRegister(int register_index, int to) {
+ DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
+ __ mov(register_location(register_index), Immediate(to));
+}
+
+
+bool RegExpMacroAssemblerX87::Succeed() {
+ __ jmp(&success_label_);
+ return global();
+}
+
+
+void RegExpMacroAssemblerX87::WriteCurrentPositionToRegister(int reg,
+ int cp_offset) {
+ if (cp_offset == 0) {
+ __ mov(register_location(reg), edi);
+ } else {
+ __ lea(eax, Operand(edi, cp_offset * char_size()));
+ __ mov(register_location(reg), eax);
+ }
+}
+
+
+void RegExpMacroAssemblerX87::ClearRegisters(int reg_from, int reg_to) {
+ DCHECK(reg_from <= reg_to);
+ __ mov(eax, Operand(ebp, kInputStartMinusOne));
+ for (int reg = reg_from; reg <= reg_to; reg++) {
+ __ mov(register_location(reg), eax);
+ }
+}
+
+
+void RegExpMacroAssemblerX87::WriteStackPointerToRegister(int reg) {
+ __ mov(eax, backtrack_stackpointer());
+ __ sub(eax, Operand(ebp, kStackHighEnd));
+ __ mov(register_location(reg), eax);
+}
+
+
+// Private methods:
+
+void RegExpMacroAssemblerX87::CallCheckStackGuardState(Register scratch) {
+ static const int num_arguments = 3;
+ __ PrepareCallCFunction(num_arguments, scratch);
+ // RegExp code frame pointer.
+ __ mov(Operand(esp, 2 * kPointerSize), ebp);
+ // Code* of self.
+ __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
+ // Next address on the stack (will be address of return address).
+ __ lea(eax, Operand(esp, -kPointerSize));
+ __ mov(Operand(esp, 0 * kPointerSize), eax);
+ ExternalReference check_stack_guard =
+ ExternalReference::re_check_stack_guard_state(isolate());
+ __ CallCFunction(check_stack_guard, num_arguments);
+}
+
+
+// Helper function for reading a value out of a stack frame.
+template <typename T>
+static T& frame_entry(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
+}
+
+
+template <typename T>
+static T* frame_entry_address(Address re_frame, int frame_offset) {
+ return reinterpret_cast<T*>(re_frame + frame_offset);
+}
+
+
+int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame) {
+ return NativeRegExpMacroAssembler::CheckStackGuardState(
+ frame_entry<Isolate*>(re_frame, kIsolate),
+ frame_entry<int>(re_frame, kStartIndex),
+ frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
+ frame_entry_address<String*>(re_frame, kInputString),
+ frame_entry_address<const byte*>(re_frame, kInputStart),
+ frame_entry_address<const byte*>(re_frame, kInputEnd));
+}
+
+
+Operand RegExpMacroAssemblerX87::register_location(int register_index) {
+ DCHECK(register_index < (1<<30));
+ if (num_registers_ <= register_index) {
+ num_registers_ = register_index + 1;
+ }
+ return Operand(ebp, kRegisterZero - register_index * kPointerSize);
+}
+
+
+void RegExpMacroAssemblerX87::CheckPosition(int cp_offset,
+ Label* on_outside_input) {
+ __ cmp(edi, -cp_offset * char_size());
+ BranchOrBacktrack(greater_equal, on_outside_input);
+}
+
+
+void RegExpMacroAssemblerX87::BranchOrBacktrack(Condition condition,
+ Label* to) {
+ if (condition < 0) { // No condition
+ if (to == NULL) {
+ Backtrack();
+ return;
+ }
+ __ jmp(to);
+ return;
+ }
+ if (to == NULL) {
+ __ j(condition, &backtrack_label_);
+ return;
+ }
+ __ j(condition, to);
+}
+
+
+void RegExpMacroAssemblerX87::SafeCall(Label* to) {
+ Label return_to;
+ __ push(Immediate::CodeRelativeOffset(&return_to));
+ __ jmp(to);
+ __ bind(&return_to);
+}
+
+
+void RegExpMacroAssemblerX87::SafeReturn() {
+ __ pop(ebx);
+ __ add(ebx, Immediate(masm_->CodeObject()));
+ __ jmp(ebx);
+}
+
+
+void RegExpMacroAssemblerX87::SafeCallTarget(Label* name) {
+ __ bind(name);
+}
+
+
+void RegExpMacroAssemblerX87::Push(Register source) {
+ DCHECK(!source.is(backtrack_stackpointer()));
+ // Notice: This updates flags, unlike normal Push.
+ __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+ __ mov(Operand(backtrack_stackpointer(), 0), source);
+}
+
+
+void RegExpMacroAssemblerX87::Push(Immediate value) {
+ // Notice: This updates flags, unlike normal Push.
+ __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
+ __ mov(Operand(backtrack_stackpointer(), 0), value);
+}
+
+
+void RegExpMacroAssemblerX87::Pop(Register target) {
+ DCHECK(!target.is(backtrack_stackpointer()));
+ __ mov(target, Operand(backtrack_stackpointer(), 0));
+ // Notice: This updates flags, unlike normal Pop.
+ __ add(backtrack_stackpointer(), Immediate(kPointerSize));
+}
+
+
+void RegExpMacroAssemblerX87::CheckPreemption() {
+ // Check for preemption.
+ Label no_preempt;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(above, &no_preempt);
+
+ SafeCall(&check_preempt_label_);
+
+ __ bind(&no_preempt);
+}
+
+
+void RegExpMacroAssemblerX87::CheckStackLimit() {
+ Label no_stack_overflow;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_regexp_stack_limit(isolate());
+ __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
+ __ j(above, &no_stack_overflow);
+
+ SafeCall(&stack_overflow_label_);
+
+ __ bind(&no_stack_overflow);
+}
+
+
+void RegExpMacroAssemblerX87::LoadCurrentCharacterUnchecked(int cp_offset,
+ int characters) {
+ if (mode_ == LATIN1) {
+ if (characters == 4) {
+ __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
+ } else if (characters == 2) {
+ __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
+ } else {
+ DCHECK(characters == 1);
+ __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
+ }
+ } else {
+ DCHECK(mode_ == UC16);
+ if (characters == 2) {
+ __ mov(current_character(),
+ Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+ } else {
+ DCHECK(characters == 1);
+ __ movzx_w(current_character(),
+ Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
+ }
+ }
+}
+
+
+#undef __
+
+#endif // V8_INTERPRETED_REGEXP
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87
--- /dev/null
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
+#define V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
+
+#include "src/macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/x87/assembler-x87.h"
+
+namespace v8 {
+namespace internal {
+
+#ifndef V8_INTERPRETED_REGEXP
+class RegExpMacroAssemblerX87: public NativeRegExpMacroAssembler {
+ public:
+ RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone, Mode mode,
+ int registers_to_save);
+ virtual ~RegExpMacroAssemblerX87();
+ virtual int stack_limit_slack();
+ virtual void AdvanceCurrentPosition(int by);
+ virtual void AdvanceRegister(int reg, int by);
+ virtual void Backtrack();
+ virtual void Bind(Label* label);
+ virtual void CheckAtStart(Label* on_at_start);
+ virtual void CheckCharacter(uint32_t c, Label* on_equal);
+ virtual void CheckCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_equal);
+ virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
+ virtual void CheckCharacterLT(uc16 limit, Label* on_less);
+ // A "greedy loop" is a loop that is both greedy and with a simple
+ // body. It has a particularly simple implementation.
+ virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
+ virtual void CheckNotAtStart(Label* on_not_at_start);
+ virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
+ virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
+ Label* on_no_match);
+ virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
+ virtual void CheckNotCharacterAfterAnd(uint32_t c,
+ uint32_t mask,
+ Label* on_not_equal);
+ virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
+ uc16 minus,
+ uc16 mask,
+ Label* on_not_equal);
+ virtual void CheckCharacterInRange(uc16 from,
+ uc16 to,
+ Label* on_in_range);
+ virtual void CheckCharacterNotInRange(uc16 from,
+ uc16 to,
+ Label* on_not_in_range);
+ virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
+
+ // Checks whether the given offset from the current position is before
+ // the end of the string.
+ virtual void CheckPosition(int cp_offset, Label* on_outside_input);
+ virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
+ virtual void Fail();
+ virtual Handle<HeapObject> GetCode(Handle<String> source);
+ virtual void GoTo(Label* label);
+ virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
+ virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
+ virtual void IfRegisterEqPos(int reg, Label* if_eq);
+ virtual IrregexpImplementation Implementation();
+ virtual void LoadCurrentCharacter(int cp_offset,
+ Label* on_end_of_input,
+ bool check_bounds = true,
+ int characters = 1);
+ virtual void PopCurrentPosition();
+ virtual void PopRegister(int register_index);
+ virtual void PushBacktrack(Label* label);
+ virtual void PushCurrentPosition();
+ virtual void PushRegister(int register_index,
+ StackCheckFlag check_stack_limit);
+ virtual void ReadCurrentPositionFromRegister(int reg);
+ virtual void ReadStackPointerFromRegister(int reg);
+ virtual void SetCurrentPositionFromEnd(int by);
+ virtual void SetRegister(int register_index, int to);
+ virtual bool Succeed();
+ virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
+ virtual void ClearRegisters(int reg_from, int reg_to);
+ virtual void WriteStackPointerToRegister(int reg);
+
+ // Called from RegExp if the stack-guard is triggered.
+ // If the code object is relocated, the return address is fixed before
+ // returning.
+ static int CheckStackGuardState(Address* return_address,
+ Code* re_code,
+ Address re_frame);
+
+ private:
+ // Offsets from ebp of function parameters and stored registers.
+ static const int kFramePointer = 0;
+ // Above the frame pointer - function parameters and return address.
+ static const int kReturn_eip = kFramePointer + kPointerSize;
+ static const int kFrameAlign = kReturn_eip + kPointerSize;
+ // Parameters.
+ static const int kInputString = kFrameAlign;
+ static const int kStartIndex = kInputString + kPointerSize;
+ static const int kInputStart = kStartIndex + kPointerSize;
+ static const int kInputEnd = kInputStart + kPointerSize;
+ static const int kRegisterOutput = kInputEnd + kPointerSize;
+ // For the case of global regular expression, we have room to store at least
+ // one set of capture results. For the case of non-global regexp, we ignore
+ // this value.
+ static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
+ static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
+ static const int kDirectCall = kStackHighEnd + kPointerSize;
+ static const int kIsolate = kDirectCall + kPointerSize;
+ // Below the frame pointer - local stack variables.
+ // When adding local variables remember to push space for them in
+ // the frame in GetCode.
+ static const int kBackup_esi = kFramePointer - kPointerSize;
+ static const int kBackup_edi = kBackup_esi - kPointerSize;
+ static const int kBackup_ebx = kBackup_edi - kPointerSize;
+ static const int kSuccessfulCaptures = kBackup_ebx - kPointerSize;
+ static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
+ // First register address. Following registers are below it on the stack.
+ static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
+
+ // Initial size of code buffer.
+ static const size_t kRegExpCodeSize = 1024;
+
+ // Load a number of characters at the given offset from the
+ // current position, into the current-character register.
+ void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
+
+ // Check whether preemption has been requested.
+ void CheckPreemption();
+
+ // Check whether we are exceeding the stack limit on the backtrack stack.
+ void CheckStackLimit();
+
+ // Generate a call to CheckStackGuardState.
+ void CallCheckStackGuardState(Register scratch);
+
+ // The ebp-relative location of a regexp register.
+ Operand register_location(int register_index);
+
+ // The register containing the current character after LoadCurrentCharacter.
+ inline Register current_character() { return edx; }
+
+ // The register containing the backtrack stack top. Provides a meaningful
+ // name to the register.
+ inline Register backtrack_stackpointer() { return ecx; }
+
+ // Byte size of chars in the string to match (decided by the Mode argument)
+ inline int char_size() { return static_cast<int>(mode_); }
+
+ // Equivalent to a conditional branch to the label, unless the label
+ // is NULL, in which case it is a conditional Backtrack.
+ void BranchOrBacktrack(Condition condition, Label* to);
+
+ // Call and return internally in the generated code in a way that
+ // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
+ inline void SafeCall(Label* to);
+ inline void SafeReturn();
+ inline void SafeCallTarget(Label* name);
+
+ // Pushes the value of a register on the backtrack stack. Decrements the
+ // stack pointer (ecx) by a word size and stores the register's value there.
+ inline void Push(Register source);
+
+ // Pushes a value on the backtrack stack. Decrements the stack pointer (ecx)
+ // by a word size and stores the value there.
+ inline void Push(Immediate value);
+
+ // Pops a value from the backtrack stack. Reads the word at the stack pointer
+ // (ecx) and increments it by a word size.
+ inline void Pop(Register target);
+
+ Isolate* isolate() const { return masm_->isolate(); }
+
+ MacroAssembler* masm_;
+
+ // Which mode to generate code for (LATIN1 or UC16).
+ Mode mode_;
+
+ // One greater than maximal register index actually used.
+ int num_registers_;
+
+ // Number of registers to output at the end (the saved registers
+ // are always 0..num_saved_registers_-1)
+ int num_saved_registers_;
+
+ // Labels used internally.
+ Label entry_label_;
+ Label start_label_;
+ Label success_label_;
+ Label backtrack_label_;
+ Label exit_label_;
+ Label check_preempt_label_;
+ Label stack_overflow_label_;
+};
+#endif // V8_INTERPRETED_REGEXP
+
+}} // namespace v8::internal
+
+#endif // V8_REGEXP_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
#include "src/v8.h"
#include "src/arguments.h"
-#include "src/jsregexp-inl.h"
-#include "src/jsregexp.h"
#include "src/messages.h"
+#include "src/regexp/jsregexp-inl.h"
+#include "src/regexp/jsregexp.h"
#include "src/runtime/runtime-utils.h"
#include "src/string-builder.h"
#include "src/string-search.h"
#include "src/v8.h"
#include "src/arguments.h"
-#include "src/jsregexp-inl.h"
-#include "src/jsregexp.h"
+#include "src/regexp/jsregexp-inl.h"
+#include "src/regexp/jsregexp.h"
#include "src/runtime/runtime-utils.h"
#include "src/string-builder.h"
#include "src/string-search.h"
#include "src/bootstrapper.h"
#include "src/debug/debug.h"
#include "src/execution.h"
-#include "src/regexp-stack.h"
+#include "src/regexp/regexp-stack.h"
#include "src/v8threads.h"
namespace v8 {
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#if V8_TARGET_ARCH_X64
-
-#include "src/cpu-profiler.h"
-#include "src/log.h"
-#include "src/macro-assembler.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/unicode.h"
-#include "src/x64/regexp-macro-assembler-x64.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-
-/*
- * This assembler uses the following register assignment convention
- * - rdx : Currently loaded character(s) as Latin1 or UC16. Must be loaded
- * using LoadCurrentCharacter before using any of the dispatch methods.
- * Temporarily stores the index of capture start after a matching pass
- * for a global regexp.
- * - rdi : Current position in input, as negative offset from end of string.
- * Please notice that this is the byte offset, not the character
- * offset! Is always a 32-bit signed (negative) offset, but must be
- * maintained sign-extended to 64 bits, since it is used as index.
- * - rsi : End of input (points to byte after last character in input),
- * so that rsi+rdi points to the current character.
- * - rbp : Frame pointer. Used to access arguments, local variables and
- * RegExp registers.
- * - rsp : Points to tip of C stack.
- * - rcx : Points to tip of backtrack stack. The backtrack stack contains
- * only 32-bit values. Most are offsets from some base (e.g., character
- * positions from end of string or code location from Code* pointer).
- * - r8 : Code object pointer. Used to convert between absolute and
- * code-object-relative addresses.
- *
- * The registers rax, rbx, r9 and r11 are free to use for computations.
- * If changed to use r12+, they should be saved as callee-save registers.
- * The macro assembler special register r13 (kRootRegister) isn't special
- * during execution of RegExp code (it doesn't hold the value assumed when
- * creating JS code), so Root related macro operations can be used.
- *
- * Each call to a C++ method should retain these registers.
- *
- * The stack will have the following content, in some order, indexable from the
- * frame pointer (see, e.g., kStackHighEnd):
- * - Isolate* isolate (address of the current isolate)
- * - direct_call (if 1, direct call from JavaScript code, if 0 call
- * through the runtime system)
- * - stack_area_base (high end of the memory area to use as
- * backtracking stack)
- * - capture array size (may fit multiple sets of matches)
- * - int* capture_array (int[num_saved_registers_], for output).
- * - end of input (address of end of string)
- * - start of input (address of first character in string)
- * - start index (character index of start)
- * - String* input_string (input string)
- * - return address
- * - backup of callee save registers (rbx, possibly rsi and rdi).
- * - success counter (only useful for global regexp to count matches)
- * - Offset of location before start of input (effectively character
- * position -1). Used to initialize capture registers to a non-position.
- * - At start of string (if 1, we are starting at the start of the
- * string, otherwise 0)
- * - register 0 rbp[-n] (Only positions must be stored in the first
- * - register 1 rbp[-n-8] num_saved_registers_ registers)
- * - ...
- *
- * The first num_saved_registers_ registers are initialized to point to
- * "character -1" in the string (i.e., char_size() bytes before the first
- * character of the string). The remaining registers starts out uninitialized.
- *
- * The first seven values must be provided by the calling code by
- * calling the code's entry address cast to a function pointer with the
- * following signature:
- * int (*match)(String* input_string,
- * int start_index,
- * Address start,
- * Address end,
- * int* capture_output_array,
- * bool at_start,
- * byte* stack_area_base,
- * bool direct_call)
- */
-
-#define __ ACCESS_MASM((&masm_))
-
-RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone,
- Mode mode,
- int registers_to_save)
- : NativeRegExpMacroAssembler(isolate, zone),
- masm_(isolate, NULL, kRegExpCodeSize),
- no_root_array_scope_(&masm_),
- code_relative_fixup_positions_(4, zone),
- mode_(mode),
- num_registers_(registers_to_save),
- num_saved_registers_(registers_to_save),
- entry_label_(),
- start_label_(),
- success_label_(),
- backtrack_label_(),
- exit_label_() {
- DCHECK_EQ(0, registers_to_save % 2);
- __ jmp(&entry_label_); // We'll write the entry code when we know more.
- __ bind(&start_label_); // And then continue from here.
-}
-
-
-RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
- // Unuse labels in case we throw away the assembler without calling GetCode.
- entry_label_.Unuse();
- start_label_.Unuse();
- success_label_.Unuse();
- backtrack_label_.Unuse();
- exit_label_.Unuse();
- check_preempt_label_.Unuse();
- stack_overflow_label_.Unuse();
-}
-
-
-int RegExpMacroAssemblerX64::stack_limit_slack() {
- return RegExpStack::kStackLimitSlack;
-}
-
-
-void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
- if (by != 0) {
- __ addq(rdi, Immediate(by * char_size()));
- }
-}
-
-
-void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
- DCHECK(reg >= 0);
- DCHECK(reg < num_registers_);
- if (by != 0) {
- __ addp(register_location(reg), Immediate(by));
- }
-}
-
-
-void RegExpMacroAssemblerX64::Backtrack() {
- CheckPreemption();
- // Pop Code* offset from backtrack stack, add Code* and jump to location.
- Pop(rbx);
- __ addp(rbx, code_object_pointer());
- __ jmp(rbx);
-}
-
-
-void RegExpMacroAssemblerX64::Bind(Label* label) {
- __ bind(label);
-}
-
-
-void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
- __ cmpl(current_character(), Immediate(c));
- BranchOrBacktrack(equal, on_equal);
-}
-
-
-void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
- __ cmpl(current_character(), Immediate(limit));
- BranchOrBacktrack(greater, on_greater);
-}
-
-
-void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
- Label not_at_start;
- // Did we start the match at the start of the string at all?
- __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
- BranchOrBacktrack(not_equal, ¬_at_start);
- // If we did, are we still at the start of the input?
- __ leap(rax, Operand(rsi, rdi, times_1, 0));
- __ cmpp(rax, Operand(rbp, kInputStart));
- BranchOrBacktrack(equal, on_at_start);
- __ bind(¬_at_start);
-}
-
-
-void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
- // Did we start the match at the start of the string at all?
- __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
- BranchOrBacktrack(not_equal, on_not_at_start);
- // If we did, are we still at the start of the input?
- __ leap(rax, Operand(rsi, rdi, times_1, 0));
- __ cmpp(rax, Operand(rbp, kInputStart));
- BranchOrBacktrack(not_equal, on_not_at_start);
-}
-
-
-void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
- __ cmpl(current_character(), Immediate(limit));
- BranchOrBacktrack(less, on_less);
-}
-
-
-void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
- Label fallthrough;
- __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
- __ j(not_equal, &fallthrough);
- Drop();
- BranchOrBacktrack(no_condition, on_equal);
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
- ReadPositionFromRegister(rbx, start_reg + 1); // Offset of end of capture
- __ subp(rbx, rdx); // Length of capture.
-
- // -----------------------
- // rdx = Start offset of capture.
- // rbx = Length of capture
-
- // If length is negative, this code will fail (it's a symptom of a partial or
- // illegal capture where start of capture after end of capture).
- // This must not happen (no back-reference can reference a capture that wasn't
- // closed before in the reg-exp, and we must not generate code that can cause
- // this condition).
-
- // If length is zero, either the capture is empty or it is nonparticipating.
- // In either case succeed immediately.
- __ j(equal, &fallthrough);
-
- // -----------------------
- // rdx - Start of capture
- // rbx - length of capture
- // Check that there are sufficient characters left in the input.
- __ movl(rax, rdi);
- __ addl(rax, rbx);
- BranchOrBacktrack(greater, on_no_match);
-
- if (mode_ == LATIN1) {
- Label loop_increment;
- if (on_no_match == NULL) {
- on_no_match = &backtrack_label_;
- }
-
- __ leap(r9, Operand(rsi, rdx, times_1, 0));
- __ leap(r11, Operand(rsi, rdi, times_1, 0));
- __ addp(rbx, r9); // End of capture
- // ---------------------
- // r11 - current input character address
- // r9 - current capture character address
- // rbx - end of capture
-
- Label loop;
- __ bind(&loop);
- __ movzxbl(rdx, Operand(r9, 0));
- __ movzxbl(rax, Operand(r11, 0));
- // al - input character
- // dl - capture character
- __ cmpb(rax, rdx);
- __ j(equal, &loop_increment);
-
- // Mismatch, try case-insensitive match (converting letters to lower-case).
- // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
- // a match.
- __ orp(rax, Immediate(0x20)); // Convert match character to lower-case.
- __ orp(rdx, Immediate(0x20)); // Convert capture character to lower-case.
- __ cmpb(rax, rdx);
- __ j(not_equal, on_no_match); // Definitely not equal.
- __ subb(rax, Immediate('a'));
- __ cmpb(rax, Immediate('z' - 'a'));
- __ j(below_equal, &loop_increment); // In range 'a'-'z'.
- // Latin-1: Check for values in range [224,254] but not 247.
- __ subb(rax, Immediate(224 - 'a'));
- __ cmpb(rax, Immediate(254 - 224));
- __ j(above, on_no_match); // Weren't Latin-1 letters.
- __ cmpb(rax, Immediate(247 - 224)); // Check for 247.
- __ j(equal, on_no_match);
- __ bind(&loop_increment);
- // Increment pointers into match and capture strings.
- __ addp(r11, Immediate(1));
- __ addp(r9, Immediate(1));
- // Compare to end of capture, and loop if not done.
- __ cmpp(r9, rbx);
- __ j(below, &loop);
-
- // Compute new value of character position after the matched part.
- __ movp(rdi, r11);
- __ subq(rdi, rsi);
- } else {
- DCHECK(mode_ == UC16);
- // Save important/volatile registers before calling C function.
-#ifndef _WIN64
- // Caller save on Linux and callee save in Windows.
- __ pushq(rsi);
- __ pushq(rdi);
-#endif
- __ pushq(backtrack_stackpointer());
-
- static const int num_arguments = 4;
- __ PrepareCallCFunction(num_arguments);
-
- // Put arguments into parameter registers. Parameters are
- // Address byte_offset1 - Address captured substring's start.
- // Address byte_offset2 - Address of current character position.
- // size_t byte_length - length of capture in bytes(!)
- // Isolate* isolate
-#ifdef _WIN64
- // Compute and set byte_offset1 (start of capture).
- __ leap(rcx, Operand(rsi, rdx, times_1, 0));
- // Set byte_offset2.
- __ leap(rdx, Operand(rsi, rdi, times_1, 0));
- // Set byte_length.
- __ movp(r8, rbx);
- // Isolate.
- __ LoadAddress(r9, ExternalReference::isolate_address(isolate()));
-#else // AMD64 calling convention
- // Compute byte_offset2 (current position = rsi+rdi).
- __ leap(rax, Operand(rsi, rdi, times_1, 0));
- // Compute and set byte_offset1 (start of capture).
- __ leap(rdi, Operand(rsi, rdx, times_1, 0));
- // Set byte_offset2.
- __ movp(rsi, rax);
- // Set byte_length.
- __ movp(rdx, rbx);
- // Isolate.
- __ LoadAddress(rcx, ExternalReference::isolate_address(isolate()));
-#endif
-
- { // NOLINT: Can't find a way to open this scope without confusing the
- // linter.
- AllowExternalCallThatCantCauseGC scope(&masm_);
- ExternalReference compare =
- ExternalReference::re_case_insensitive_compare_uc16(isolate());
- __ CallCFunction(compare, num_arguments);
- }
-
- // Restore original values before reacting on result value.
- __ Move(code_object_pointer(), masm_.CodeObject());
- __ popq(backtrack_stackpointer());
-#ifndef _WIN64
- __ popq(rdi);
- __ popq(rsi);
-#endif
-
- // Check if function returned non-zero for success or zero for failure.
- __ testp(rax, rax);
- BranchOrBacktrack(zero, on_no_match);
- // On success, increment position by length of capture.
- // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
- __ addq(rdi, rbx);
- }
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerX64::CheckNotBackReference(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
-
- // Find length of back-referenced capture.
- ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
- ReadPositionFromRegister(rax, start_reg + 1); // Offset of end of capture
- __ subp(rax, rdx); // Length to check.
-
- // Fail on partial or illegal capture (start of capture after end of capture).
- // This must not happen (no back-reference can reference a capture that wasn't
- // closed before in the reg-exp).
- __ Check(greater_equal, kInvalidCaptureReferenced);
-
- // Succeed on empty capture (including non-participating capture)
- __ j(equal, &fallthrough);
-
- // -----------------------
- // rdx - Start of capture
- // rax - length of capture
-
- // Check that there are sufficient characters left in the input.
- __ movl(rbx, rdi);
- __ addl(rbx, rax);
- BranchOrBacktrack(greater, on_no_match);
-
- // Compute pointers to match string and capture string
- __ leap(rbx, Operand(rsi, rdi, times_1, 0)); // Start of match.
- __ addp(rdx, rsi); // Start of capture.
- __ leap(r9, Operand(rdx, rax, times_1, 0)); // End of capture
-
- // -----------------------
- // rbx - current capture character address.
- // rbx - current input character address .
- // r9 - end of input to match (capture length after rbx).
-
- Label loop;
- __ bind(&loop);
- if (mode_ == LATIN1) {
- __ movzxbl(rax, Operand(rdx, 0));
- __ cmpb(rax, Operand(rbx, 0));
- } else {
- DCHECK(mode_ == UC16);
- __ movzxwl(rax, Operand(rdx, 0));
- __ cmpw(rax, Operand(rbx, 0));
- }
- BranchOrBacktrack(not_equal, on_no_match);
- // Increment pointers into capture and match string.
- __ addp(rbx, Immediate(char_size()));
- __ addp(rdx, Immediate(char_size()));
- // Check if we have reached end of match area.
- __ cmpp(rdx, r9);
- __ j(below, &loop);
-
- // Success.
- // Set current character position to position after match.
- __ movp(rdi, rbx);
- __ subq(rdi, rsi);
-
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
- Label* on_not_equal) {
- __ cmpl(current_character(), Immediate(c));
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal) {
- if (c == 0) {
- __ testl(current_character(), Immediate(mask));
- } else {
- __ movl(rax, Immediate(mask));
- __ andp(rax, current_character());
- __ cmpl(rax, Immediate(c));
- }
- BranchOrBacktrack(equal, on_equal);
-}
-
-
-void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal) {
- if (c == 0) {
- __ testl(current_character(), Immediate(mask));
- } else {
- __ movl(rax, Immediate(mask));
- __ andp(rax, current_character());
- __ cmpl(rax, Immediate(c));
- }
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- DCHECK(minus < String::kMaxUtf16CodeUnit);
- __ leap(rax, Operand(current_character(), -minus));
- __ andp(rax, Immediate(mask));
- __ cmpl(rax, Immediate(c));
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerX64::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- __ leal(rax, Operand(current_character(), -from));
- __ cmpl(rax, Immediate(to - from));
- BranchOrBacktrack(below_equal, on_in_range);
-}
-
-
-void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- __ leal(rax, Operand(current_character(), -from));
- __ cmpl(rax, Immediate(to - from));
- BranchOrBacktrack(above, on_not_in_range);
-}
-
-
-void RegExpMacroAssemblerX64::CheckBitInTable(
- Handle<ByteArray> table,
- Label* on_bit_set) {
- __ Move(rax, table);
- Register index = current_character();
- if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
- __ movp(rbx, current_character());
- __ andp(rbx, Immediate(kTableMask));
- index = rbx;
- }
- __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
- Immediate(0));
- BranchOrBacktrack(not_equal, on_bit_set);
-}
-
-
-bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- // Range checks (c in min..max) are generally implemented by an unsigned
- // (c - min) <= (max - min) check, using the sequence:
- // leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
- // cmp(rax, Immediate(max - min))
- switch (type) {
- case 's':
- // Match space-characters
- if (mode_ == LATIN1) {
- // One byte space characters are '\t'..'\r', ' ' and \u00a0.
- Label success;
- __ cmpl(current_character(), Immediate(' '));
- __ j(equal, &success, Label::kNear);
- // Check range 0x09..0x0d
- __ leap(rax, Operand(current_character(), -'\t'));
- __ cmpl(rax, Immediate('\r' - '\t'));
- __ j(below_equal, &success, Label::kNear);
- // \u00a0 (NBSP).
- __ cmpl(rax, Immediate(0x00a0 - '\t'));
- BranchOrBacktrack(not_equal, on_no_match);
- __ bind(&success);
- return true;
- }
- return false;
- case 'S':
- // The emitted code for generic character classes is good enough.
- return false;
- case 'd':
- // Match ASCII digits ('0'..'9')
- __ leap(rax, Operand(current_character(), -'0'));
- __ cmpl(rax, Immediate('9' - '0'));
- BranchOrBacktrack(above, on_no_match);
- return true;
- case 'D':
- // Match non ASCII-digits
- __ leap(rax, Operand(current_character(), -'0'));
- __ cmpl(rax, Immediate('9' - '0'));
- BranchOrBacktrack(below_equal, on_no_match);
- return true;
- case '.': {
- // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- __ movl(rax, current_character());
- __ xorp(rax, Immediate(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ subl(rax, Immediate(0x0b));
- __ cmpl(rax, Immediate(0x0c - 0x0b));
- BranchOrBacktrack(below_equal, on_no_match);
- if (mode_ == UC16) {
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ subl(rax, Immediate(0x2028 - 0x0b));
- __ cmpl(rax, Immediate(0x2029 - 0x2028));
- BranchOrBacktrack(below_equal, on_no_match);
- }
- return true;
- }
- case 'n': {
- // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- __ movl(rax, current_character());
- __ xorp(rax, Immediate(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ subl(rax, Immediate(0x0b));
- __ cmpl(rax, Immediate(0x0c - 0x0b));
- if (mode_ == LATIN1) {
- BranchOrBacktrack(above, on_no_match);
- } else {
- Label done;
- BranchOrBacktrack(below_equal, &done);
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ subl(rax, Immediate(0x2028 - 0x0b));
- __ cmpl(rax, Immediate(0x2029 - 0x2028));
- BranchOrBacktrack(above, on_no_match);
- __ bind(&done);
- }
- return true;
- }
- case 'w': {
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmpl(current_character(), Immediate('z'));
- BranchOrBacktrack(above, on_no_match);
- }
- __ Move(rbx, ExternalReference::re_word_character_map());
- DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
- __ testb(Operand(rbx, current_character(), times_1, 0),
- current_character());
- BranchOrBacktrack(zero, on_no_match);
- return true;
- }
- case 'W': {
- Label done;
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmpl(current_character(), Immediate('z'));
- __ j(above, &done);
- }
- __ Move(rbx, ExternalReference::re_word_character_map());
- DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
- __ testb(Operand(rbx, current_character(), times_1, 0),
- current_character());
- BranchOrBacktrack(not_zero, on_no_match);
- if (mode_ != LATIN1) {
- __ bind(&done);
- }
- return true;
- }
-
- case '*':
- // Match any character.
- return true;
- // No custom implementation (yet): s(UC16), S(UC16).
- default:
- return false;
- }
-}
-
-
-void RegExpMacroAssemblerX64::Fail() {
- STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
- if (!global()) {
- __ Set(rax, FAILURE);
- }
- __ jmp(&exit_label_);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
- Label return_rax;
- // Finalize code - write the entry point code now we know how many
- // registers we need.
- // Entry code:
- __ bind(&entry_label_);
-
- // Tell the system that we have a stack frame. Because the type is MANUAL, no
- // is generated.
- FrameScope scope(&masm_, StackFrame::MANUAL);
-
- // Actually emit code to start a new stack frame.
- __ pushq(rbp);
- __ movp(rbp, rsp);
- // Save parameters and callee-save registers. Order here should correspond
- // to order of kBackup_ebx etc.
-#ifdef _WIN64
- // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
- // Store register parameters in pre-allocated stack slots,
- __ movq(Operand(rbp, kInputString), rcx);
- __ movq(Operand(rbp, kStartIndex), rdx); // Passed as int32 in edx.
- __ movq(Operand(rbp, kInputStart), r8);
- __ movq(Operand(rbp, kInputEnd), r9);
- // Callee-save on Win64.
- __ pushq(rsi);
- __ pushq(rdi);
- __ pushq(rbx);
-#else
- // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
- // Push register parameters on stack for reference.
- DCHECK_EQ(kInputString, -1 * kRegisterSize);
- DCHECK_EQ(kStartIndex, -2 * kRegisterSize);
- DCHECK_EQ(kInputStart, -3 * kRegisterSize);
- DCHECK_EQ(kInputEnd, -4 * kRegisterSize);
- DCHECK_EQ(kRegisterOutput, -5 * kRegisterSize);
- DCHECK_EQ(kNumOutputRegisters, -6 * kRegisterSize);
- __ pushq(rdi);
- __ pushq(rsi);
- __ pushq(rdx);
- __ pushq(rcx);
- __ pushq(r8);
- __ pushq(r9);
-
- __ pushq(rbx); // Callee-save
-#endif
-
- __ Push(Immediate(0)); // Number of successful matches in a global regexp.
- __ Push(Immediate(0)); // Make room for "input start - 1" constant.
-
- // Check if we have space on the stack for registers.
- Label stack_limit_hit;
- Label stack_ok;
-
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ movp(rcx, rsp);
- __ Move(kScratchRegister, stack_limit);
- __ subp(rcx, Operand(kScratchRegister, 0));
- // Handle it if the stack pointer is already below the stack limit.
- __ j(below_equal, &stack_limit_hit);
- // Check if there is room for the variable number of registers above
- // the stack limit.
- __ cmpp(rcx, Immediate(num_registers_ * kPointerSize));
- __ j(above_equal, &stack_ok);
- // Exit with OutOfMemory exception. There is not enough space on the stack
- // for our working registers.
- __ Set(rax, EXCEPTION);
- __ jmp(&return_rax);
-
- __ bind(&stack_limit_hit);
- __ Move(code_object_pointer(), masm_.CodeObject());
- CallCheckStackGuardState(); // Preserves no registers beside rbp and rsp.
- __ testp(rax, rax);
- // If returned value is non-zero, we exit with the returned value as result.
- __ j(not_zero, &return_rax);
-
- __ bind(&stack_ok);
-
- // Allocate space on stack for registers.
- __ subp(rsp, Immediate(num_registers_ * kPointerSize));
- // Load string length.
- __ movp(rsi, Operand(rbp, kInputEnd));
- // Load input position.
- __ movp(rdi, Operand(rbp, kInputStart));
- // Set up rdi to be negative offset from string end.
- __ subq(rdi, rsi);
- // Set rax to address of char before start of the string
- // (effectively string position -1).
- __ movp(rbx, Operand(rbp, kStartIndex));
- __ negq(rbx);
- if (mode_ == UC16) {
- __ leap(rax, Operand(rdi, rbx, times_2, -char_size()));
- } else {
- __ leap(rax, Operand(rdi, rbx, times_1, -char_size()));
- }
- // Store this value in a local variable, for use when clearing
- // position registers.
- __ movp(Operand(rbp, kInputStartMinusOne), rax);
-
-#if V8_OS_WIN
- // Ensure that we have written to each stack page, in order. Skipping a page
- // on Windows can cause segmentation faults. Assuming page size is 4k.
- const int kPageSize = 4096;
- const int kRegistersPerPage = kPageSize / kPointerSize;
- for (int i = num_saved_registers_ + kRegistersPerPage - 1;
- i < num_registers_;
- i += kRegistersPerPage) {
- __ movp(register_location(i), rax); // One write every page.
- }
-#endif // V8_OS_WIN
-
- // Initialize code object pointer.
- __ Move(code_object_pointer(), masm_.CodeObject());
-
- Label load_char_start_regexp, start_regexp;
- // Load newline if index is at start, previous character otherwise.
- __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
- __ j(not_equal, &load_char_start_regexp, Label::kNear);
- __ Set(current_character(), '\n');
- __ jmp(&start_regexp, Label::kNear);
-
- // Global regexp restarts matching here.
- __ bind(&load_char_start_regexp);
- // Load previous char as initial value of current character register.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&start_regexp);
-
- // Initialize on-stack registers.
- if (num_saved_registers_ > 0) {
- // Fill saved registers with initial value = start offset - 1
- // Fill in stack push order, to avoid accessing across an unwritten
- // page (a problem on Windows).
- if (num_saved_registers_ > 8) {
- __ Set(rcx, kRegisterZero);
- Label init_loop;
- __ bind(&init_loop);
- __ movp(Operand(rbp, rcx, times_1, 0), rax);
- __ subq(rcx, Immediate(kPointerSize));
- __ cmpq(rcx,
- Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
- __ j(greater, &init_loop);
- } else { // Unroll the loop.
- for (int i = 0; i < num_saved_registers_; i++) {
- __ movp(register_location(i), rax);
- }
- }
- }
-
- // Initialize backtrack stack pointer.
- __ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
-
- __ jmp(&start_label_);
-
- // Exit code:
- if (success_label_.is_linked()) {
- // Save captures when successful.
- __ bind(&success_label_);
- if (num_saved_registers_ > 0) {
- // copy captures to output
- __ movp(rdx, Operand(rbp, kStartIndex));
- __ movp(rbx, Operand(rbp, kRegisterOutput));
- __ movp(rcx, Operand(rbp, kInputEnd));
- __ subp(rcx, Operand(rbp, kInputStart));
- if (mode_ == UC16) {
- __ leap(rcx, Operand(rcx, rdx, times_2, 0));
- } else {
- __ addp(rcx, rdx);
- }
- for (int i = 0; i < num_saved_registers_; i++) {
- __ movp(rax, register_location(i));
- if (i == 0 && global_with_zero_length_check()) {
- // Keep capture start in rdx for the zero-length check later.
- __ movp(rdx, rax);
- }
- __ addp(rax, rcx); // Convert to index from start, not end.
- if (mode_ == UC16) {
- __ sarp(rax, Immediate(1)); // Convert byte index to character index.
- }
- __ movl(Operand(rbx, i * kIntSize), rax);
- }
- }
-
- if (global()) {
- // Restart matching if the regular expression is flagged as global.
- // Increment success counter.
- __ incp(Operand(rbp, kSuccessfulCaptures));
- // Capture results have been stored, so the number of remaining global
- // output registers is reduced by the number of stored captures.
- __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
- __ subp(rcx, Immediate(num_saved_registers_));
- // Check whether we have enough room for another set of capture results.
- __ cmpp(rcx, Immediate(num_saved_registers_));
- __ j(less, &exit_label_);
-
- __ movp(Operand(rbp, kNumOutputRegisters), rcx);
- // Advance the location for output.
- __ addp(Operand(rbp, kRegisterOutput),
- Immediate(num_saved_registers_ * kIntSize));
-
- // Prepare rax to initialize registers with its value in the next run.
- __ movp(rax, Operand(rbp, kInputStartMinusOne));
-
- if (global_with_zero_length_check()) {
- // Special case for zero-length matches.
- // rdx: capture start index
- __ cmpp(rdi, rdx);
- // Not a zero-length match, restart.
- __ j(not_equal, &load_char_start_regexp);
- // rdi (offset from the end) is zero if we already reached the end.
- __ testp(rdi, rdi);
- __ j(zero, &exit_label_, Label::kNear);
- // Advance current position after a zero-length match.
- if (mode_ == UC16) {
- __ addq(rdi, Immediate(2));
- } else {
- __ incq(rdi);
- }
- }
-
- __ jmp(&load_char_start_regexp);
- } else {
- __ movp(rax, Immediate(SUCCESS));
- }
- }
-
- __ bind(&exit_label_);
- if (global()) {
- // Return the number of successful captures.
- __ movp(rax, Operand(rbp, kSuccessfulCaptures));
- }
-
- __ bind(&return_rax);
-#ifdef _WIN64
- // Restore callee save registers.
- __ leap(rsp, Operand(rbp, kLastCalleeSaveRegister));
- __ popq(rbx);
- __ popq(rdi);
- __ popq(rsi);
- // Stack now at rbp.
-#else
- // Restore callee save register.
- __ movp(rbx, Operand(rbp, kBackup_rbx));
- // Skip rsp to rbp.
- __ movp(rsp, rbp);
-#endif
- // Exit function frame, restore previous one.
- __ popq(rbp);
- __ ret(0);
-
- // Backtrack code (branch target for conditional backtracks).
- if (backtrack_label_.is_linked()) {
- __ bind(&backtrack_label_);
- Backtrack();
- }
-
- Label exit_with_exception;
-
- // Preempt-code
- if (check_preempt_label_.is_linked()) {
- SafeCallTarget(&check_preempt_label_);
-
- __ pushq(backtrack_stackpointer());
- __ pushq(rdi);
-
- CallCheckStackGuardState();
- __ testp(rax, rax);
- // If returning non-zero, we should end execution with the given
- // result as return value.
- __ j(not_zero, &return_rax);
-
- // Restore registers.
- __ Move(code_object_pointer(), masm_.CodeObject());
- __ popq(rdi);
- __ popq(backtrack_stackpointer());
- // String might have moved: Reload esi from frame.
- __ movp(rsi, Operand(rbp, kInputEnd));
- SafeReturn();
- }
-
- // Backtrack stack overflow code.
- if (stack_overflow_label_.is_linked()) {
- SafeCallTarget(&stack_overflow_label_);
- // Reached if the backtrack-stack limit has been hit.
-
- Label grow_failed;
- // Save registers before calling C function
-#ifndef _WIN64
- // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
- __ pushq(rsi);
- __ pushq(rdi);
-#endif
-
- // Call GrowStack(backtrack_stackpointer())
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments);
-#ifdef _WIN64
- // Microsoft passes parameters in rcx, rdx, r8.
- // First argument, backtrack stackpointer, is already in rcx.
- __ leap(rdx, Operand(rbp, kStackHighEnd)); // Second argument
- __ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
-#else
- // AMD64 ABI passes parameters in rdi, rsi, rdx.
- __ movp(rdi, backtrack_stackpointer()); // First argument.
- __ leap(rsi, Operand(rbp, kStackHighEnd)); // Second argument.
- __ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
-#endif
- ExternalReference grow_stack =
- ExternalReference::re_grow_stack(isolate());
- __ CallCFunction(grow_stack, num_arguments);
- // If return NULL, we have failed to grow the stack, and
- // must exit with a stack-overflow exception.
- __ testp(rax, rax);
- __ j(equal, &exit_with_exception);
- // Otherwise use return value as new stack pointer.
- __ movp(backtrack_stackpointer(), rax);
- // Restore saved registers and continue.
- __ Move(code_object_pointer(), masm_.CodeObject());
-#ifndef _WIN64
- __ popq(rdi);
- __ popq(rsi);
-#endif
- SafeReturn();
- }
-
- if (exit_with_exception.is_linked()) {
- // If any of the code above needed to exit with an exception.
- __ bind(&exit_with_exception);
- // Exit with Result EXCEPTION(-1) to signal thrown exception.
- __ Set(rax, EXCEPTION);
- __ jmp(&return_rax);
- }
-
- FixupCodeRelativePositions();
-
- CodeDesc code_desc;
- masm_.GetCode(&code_desc);
- Isolate* isolate = this->isolate();
- Handle<Code> code = isolate->factory()->NewCode(
- code_desc, Code::ComputeFlags(Code::REGEXP),
- masm_.CodeObject());
- PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
- return Handle<HeapObject>::cast(code);
-}
-
-
-void RegExpMacroAssemblerX64::GoTo(Label* to) {
- BranchOrBacktrack(no_condition, to);
-}
-
-
-void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
- int comparand,
- Label* if_ge) {
- __ cmpp(register_location(reg), Immediate(comparand));
- BranchOrBacktrack(greater_equal, if_ge);
-}
-
-
-void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
- int comparand,
- Label* if_lt) {
- __ cmpp(register_location(reg), Immediate(comparand));
- BranchOrBacktrack(less, if_lt);
-}
-
-
-void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
- Label* if_eq) {
- __ cmpp(rdi, register_location(reg));
- BranchOrBacktrack(equal, if_eq);
-}
-
-
-RegExpMacroAssembler::IrregexpImplementation
- RegExpMacroAssemblerX64::Implementation() {
- return kX64Implementation;
-}
-
-
-void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
- DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
- if (check_bounds) {
- CheckPosition(cp_offset + characters - 1, on_end_of_input);
- }
- LoadCurrentCharacterUnchecked(cp_offset, characters);
-}
-
-
-void RegExpMacroAssemblerX64::PopCurrentPosition() {
- Pop(rdi);
-}
-
-
-void RegExpMacroAssemblerX64::PopRegister(int register_index) {
- Pop(rax);
- __ movp(register_location(register_index), rax);
-}
-
-
-void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
- Push(label);
- CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerX64::PushCurrentPosition() {
- Push(rdi);
-}
-
-
-void RegExpMacroAssemblerX64::PushRegister(int register_index,
- StackCheckFlag check_stack_limit) {
- __ movp(rax, register_location(register_index));
- Push(rax);
- if (check_stack_limit) CheckStackLimit();
-}
-
-
-STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
-
-
-void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
- if (kPointerSize == kInt64Size) {
- __ movq(rdi, register_location(reg));
- } else {
- // Need sign extension for x32 as rdi might be used as an index register.
- __ movsxlq(rdi, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
- if (kPointerSize == kInt64Size) {
- __ movq(dst, register_location(reg));
- } else {
- // Need sign extension for x32 as dst might be used as an index register.
- __ movsxlq(dst, register_location(reg));
- }
-}
-
-
-void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
- __ movp(backtrack_stackpointer(), register_location(reg));
- __ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
-}
-
-
-void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
- Label after_position;
- __ cmpp(rdi, Immediate(-by * char_size()));
- __ j(greater_equal, &after_position, Label::kNear);
- __ movq(rdi, Immediate(-by * char_size()));
- // On RegExp code entry (where this operation is used), the character before
- // the current position is expected to be already loaded.
- // We have advanced the position, so it's safe to read backwards.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&after_position);
-}
-
-
-void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
- DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
- __ movp(register_location(register_index), Immediate(to));
-}
-
-
-bool RegExpMacroAssemblerX64::Succeed() {
- __ jmp(&success_label_);
- return global();
-}
-
-
-void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- if (cp_offset == 0) {
- __ movp(register_location(reg), rdi);
- } else {
- __ leap(rax, Operand(rdi, cp_offset * char_size()));
- __ movp(register_location(reg), rax);
- }
-}
-
-
-void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- __ movp(rax, Operand(rbp, kInputStartMinusOne));
- for (int reg = reg_from; reg <= reg_to; reg++) {
- __ movp(register_location(reg), rax);
- }
-}
-
-
-void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
- __ movp(rax, backtrack_stackpointer());
- __ subp(rax, Operand(rbp, kStackHighEnd));
- __ movp(register_location(reg), rax);
-}
-
-
-// Private methods:
-
-void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
- // This function call preserves no register values. Caller should
- // store anything volatile in a C call or overwritten by this function.
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments);
-#ifdef _WIN64
- // Second argument: Code* of self. (Do this before overwriting r8).
- __ movp(rdx, code_object_pointer());
- // Third argument: RegExp code frame pointer.
- __ movp(r8, rbp);
- // First argument: Next address on the stack (will be address of
- // return address).
- __ leap(rcx, Operand(rsp, -kPointerSize));
-#else
- // Third argument: RegExp code frame pointer.
- __ movp(rdx, rbp);
- // Second argument: Code* of self.
- __ movp(rsi, code_object_pointer());
- // First argument: Next address on the stack (will be address of
- // return address).
- __ leap(rdi, Operand(rsp, -kRegisterSize));
-#endif
- ExternalReference stack_check =
- ExternalReference::re_check_stack_guard_state(isolate());
- __ CallCFunction(stack_check, num_arguments);
-}
-
-
-// Helper function for reading a value out of a stack frame.
-template <typename T>
-static T& frame_entry(Address re_frame, int frame_offset) {
- return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
-}
-
-
-template <typename T>
-static T* frame_entry_address(Address re_frame, int frame_offset) {
- return reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame) {
- return NativeRegExpMacroAssembler::CheckStackGuardState(
- frame_entry<Isolate*>(re_frame, kIsolate),
- frame_entry<int>(re_frame, kStartIndex),
- frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
- frame_entry_address<String*>(re_frame, kInputString),
- frame_entry_address<const byte*>(re_frame, kInputStart),
- frame_entry_address<const byte*>(re_frame, kInputEnd));
-}
-
-
-Operand RegExpMacroAssemblerX64::register_location(int register_index) {
- DCHECK(register_index < (1<<30));
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- return Operand(rbp, kRegisterZero - register_index * kPointerSize);
-}
-
-
-void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
- Label* on_outside_input) {
- __ cmpl(rdi, Immediate(-cp_offset * char_size()));
- BranchOrBacktrack(greater_equal, on_outside_input);
-}
-
-
-void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
- Label* to) {
- if (condition < 0) { // No condition
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ jmp(to);
- return;
- }
- if (to == NULL) {
- __ j(condition, &backtrack_label_);
- return;
- }
- __ j(condition, to);
-}
-
-
-void RegExpMacroAssemblerX64::SafeCall(Label* to) {
- __ call(to);
-}
-
-
-void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
- __ bind(label);
- __ subp(Operand(rsp, 0), code_object_pointer());
-}
-
-
-void RegExpMacroAssemblerX64::SafeReturn() {
- __ addp(Operand(rsp, 0), code_object_pointer());
- __ ret(0);
-}
-
-
-void RegExpMacroAssemblerX64::Push(Register source) {
- DCHECK(!source.is(backtrack_stackpointer()));
- // Notice: This updates flags, unlike normal Push.
- __ subp(backtrack_stackpointer(), Immediate(kIntSize));
- __ movl(Operand(backtrack_stackpointer(), 0), source);
-}
-
-
-void RegExpMacroAssemblerX64::Push(Immediate value) {
- // Notice: This updates flags, unlike normal Push.
- __ subp(backtrack_stackpointer(), Immediate(kIntSize));
- __ movl(Operand(backtrack_stackpointer(), 0), value);
-}
-
-
-void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
- for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
- int position = code_relative_fixup_positions_[i];
- // The position succeeds a relative label offset from position.
- // Patch the relative offset to be relative to the Code object pointer
- // instead.
- int patch_position = position - kIntSize;
- int offset = masm_.long_at(patch_position);
- masm_.long_at_put(patch_position,
- offset
- + position
- + Code::kHeaderSize
- - kHeapObjectTag);
- }
- code_relative_fixup_positions_.Clear();
-}
-
-
-void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
- __ subp(backtrack_stackpointer(), Immediate(kIntSize));
- __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
- MarkPositionForCodeRelativeFixup();
-}
-
-
-void RegExpMacroAssemblerX64::Pop(Register target) {
- DCHECK(!target.is(backtrack_stackpointer()));
- __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
- // Notice: This updates flags, unlike normal Pop.
- __ addp(backtrack_stackpointer(), Immediate(kIntSize));
-}
-
-
-void RegExpMacroAssemblerX64::Drop() {
- __ addp(backtrack_stackpointer(), Immediate(kIntSize));
-}
-
-
-void RegExpMacroAssemblerX64::CheckPreemption() {
- // Check for preemption.
- Label no_preempt;
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ load_rax(stack_limit);
- __ cmpp(rsp, rax);
- __ j(above, &no_preempt);
-
- SafeCall(&check_preempt_label_);
-
- __ bind(&no_preempt);
-}
-
-
-void RegExpMacroAssemblerX64::CheckStackLimit() {
- Label no_stack_overflow;
- ExternalReference stack_limit =
- ExternalReference::address_of_regexp_stack_limit(isolate());
- __ load_rax(stack_limit);
- __ cmpp(backtrack_stackpointer(), rax);
- __ j(above, &no_stack_overflow);
-
- SafeCall(&stack_overflow_label_);
-
- __ bind(&no_stack_overflow);
-}
-
-
-void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
- int characters) {
- if (mode_ == LATIN1) {
- if (characters == 4) {
- __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
- } else if (characters == 2) {
- __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
- } else {
- DCHECK(characters == 1);
- __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
- }
- } else {
- DCHECK(mode_ == UC16);
- if (characters == 2) {
- __ movl(current_character(),
- Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
- } else {
- DCHECK(characters == 1);
- __ movzxwl(current_character(),
- Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
- }
- }
-}
-
-#undef __
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
-
-#endif // V8_TARGET_ARCH_X64
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
-#define V8_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
-
-#include "src/macro-assembler.h"
-#include "src/x64/assembler-x64.h"
-#include "src/x64/macro-assembler-x64.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-
-class RegExpMacroAssemblerX64: public NativeRegExpMacroAssembler {
- public:
- RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone, Mode mode,
- int registers_to_save);
- virtual ~RegExpMacroAssemblerX64();
- virtual int stack_limit_slack();
- virtual void AdvanceCurrentPosition(int by);
- virtual void AdvanceRegister(int reg, int by);
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(uint32_t c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- // A "greedy loop" is a loop that is both greedy and with a simple
- // body. It has a particularly simple implementation.
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
-
- // Checks whether the given offset from the current position is before
- // the end of the string.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input);
- virtual bool CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
-
- static Result Match(Handle<Code> regexp,
- Handle<String> subject,
- int* offsets_vector,
- int offsets_vector_length,
- int previous_index,
- Isolate* isolate);
-
- static Result Execute(Code* code,
- String* input,
- int start_offset,
- const byte* input_start,
- const byte* input_end,
- int* output,
- bool at_start);
-
- // Called from RegExp if the stack-guard is triggered.
- // If the code object is relocated, the return address is fixed before
- // returning.
- static int CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame);
-
- private:
- // Offsets from rbp of function parameters and stored registers.
- static const int kFramePointer = 0;
- // Above the frame pointer - function parameters and return address.
- static const int kReturn_eip = kFramePointer + kRegisterSize;
- static const int kFrameAlign = kReturn_eip + kRegisterSize;
-
-#ifdef _WIN64
- // Parameters (first four passed as registers, but with room on stack).
- // In Microsoft 64-bit Calling Convention, there is room on the callers
- // stack (before the return address) to spill parameter registers. We
- // use this space to store the register passed parameters.
- static const int kInputString = kFrameAlign;
- // StartIndex is passed as 32 bit int.
- static const int kStartIndex = kInputString + kRegisterSize;
- static const int kInputStart = kStartIndex + kRegisterSize;
- static const int kInputEnd = kInputStart + kRegisterSize;
- static const int kRegisterOutput = kInputEnd + kRegisterSize;
- // For the case of global regular expression, we have room to store at least
- // one set of capture results. For the case of non-global regexp, we ignore
- // this value. NumOutputRegisters is passed as 32-bit value. The upper
- // 32 bit of this 64-bit stack slot may contain garbage.
- static const int kNumOutputRegisters = kRegisterOutput + kRegisterSize;
- static const int kStackHighEnd = kNumOutputRegisters + kRegisterSize;
- // DirectCall is passed as 32 bit int (values 0 or 1).
- static const int kDirectCall = kStackHighEnd + kRegisterSize;
- static const int kIsolate = kDirectCall + kRegisterSize;
-#else
- // In AMD64 ABI Calling Convention, the first six integer parameters
- // are passed as registers, and caller must allocate space on the stack
- // if it wants them stored. We push the parameters after the frame pointer.
- static const int kInputString = kFramePointer - kRegisterSize;
- static const int kStartIndex = kInputString - kRegisterSize;
- static const int kInputStart = kStartIndex - kRegisterSize;
- static const int kInputEnd = kInputStart - kRegisterSize;
- static const int kRegisterOutput = kInputEnd - kRegisterSize;
-
- // For the case of global regular expression, we have room to store at least
- // one set of capture results. For the case of non-global regexp, we ignore
- // this value.
- static const int kNumOutputRegisters = kRegisterOutput - kRegisterSize;
- static const int kStackHighEnd = kFrameAlign;
- static const int kDirectCall = kStackHighEnd + kRegisterSize;
- static const int kIsolate = kDirectCall + kRegisterSize;
-#endif
-
-#ifdef _WIN64
- // Microsoft calling convention has three callee-saved registers
- // (that we are using). We push these after the frame pointer.
- static const int kBackup_rsi = kFramePointer - kRegisterSize;
- static const int kBackup_rdi = kBackup_rsi - kRegisterSize;
- static const int kBackup_rbx = kBackup_rdi - kRegisterSize;
- static const int kLastCalleeSaveRegister = kBackup_rbx;
-#else
- // AMD64 Calling Convention has only one callee-save register that
- // we use. We push this after the frame pointer (and after the
- // parameters).
- static const int kBackup_rbx = kNumOutputRegisters - kRegisterSize;
- static const int kLastCalleeSaveRegister = kBackup_rbx;
-#endif
-
- static const int kSuccessfulCaptures = kLastCalleeSaveRegister - kPointerSize;
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
-
- // First register address. Following registers are below it on the stack.
- static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
-
- // Initial size of code buffer.
- static const size_t kRegExpCodeSize = 1024;
-
- // Load a number of characters at the given offset from the
- // current position, into the current-character register.
- void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
-
- // Check whether preemption has been requested.
- void CheckPreemption();
-
- // Check whether we are exceeding the stack limit on the backtrack stack.
- void CheckStackLimit();
-
- // Generate a call to CheckStackGuardState.
- void CallCheckStackGuardState();
-
- // The rbp-relative location of a regexp register.
- Operand register_location(int register_index);
-
- // The register containing the current character after LoadCurrentCharacter.
- inline Register current_character() { return rdx; }
-
- // The register containing the backtrack stack top. Provides a meaningful
- // name to the register.
- inline Register backtrack_stackpointer() { return rcx; }
-
- // The registers containing a self pointer to this code's Code object.
- inline Register code_object_pointer() { return r8; }
-
- // Byte size of chars in the string to match (decided by the Mode argument)
- inline int char_size() { return static_cast<int>(mode_); }
-
- // Equivalent to a conditional branch to the label, unless the label
- // is NULL, in which case it is a conditional Backtrack.
- void BranchOrBacktrack(Condition condition, Label* to);
-
- void MarkPositionForCodeRelativeFixup() {
- code_relative_fixup_positions_.Add(masm_.pc_offset(), zone());
- }
-
- void FixupCodeRelativePositions();
-
- // Call and return internally in the generated code in a way that
- // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
- inline void SafeCall(Label* to);
- inline void SafeCallTarget(Label* label);
- inline void SafeReturn();
-
- // Pushes the value of a register on the backtrack stack. Decrements the
- // stack pointer (rcx) by a word size and stores the register's value there.
- inline void Push(Register source);
-
- // Pushes a value on the backtrack stack. Decrements the stack pointer (rcx)
- // by a word size and stores the value there.
- inline void Push(Immediate value);
-
- // Pushes the Code object relative offset of a label on the backtrack stack
- // (i.e., a backtrack target). Decrements the stack pointer (rcx)
- // by a word size and stores the value there.
- inline void Push(Label* label);
-
- // Pops a value from the backtrack stack. Reads the word at the stack pointer
- // (rcx) and increments it by a word size.
- inline void Pop(Register target);
-
- // Drops the top value from the backtrack stack without reading it.
- // Increments the stack pointer (rcx) by a word size.
- inline void Drop();
-
- inline void ReadPositionFromRegister(Register dst, int reg);
-
- Isolate* isolate() const { return masm_.isolate(); }
-
- MacroAssembler masm_;
- MacroAssembler::NoRootArrayScope no_root_array_scope_;
-
- ZoneList<int> code_relative_fixup_positions_;
-
- // Which mode to generate code for (LATIN1 or UC16).
- Mode mode_;
-
- // One greater than maximal register index actually used.
- int num_registers_;
-
- // Number of registers to output at the end (the saved registers
- // are always 0..num_saved_registers_-1)
- int num_saved_registers_;
-
- // Labels used internally.
- Label entry_label_;
- Label start_label_;
- Label success_label_;
- Label backtrack_label_;
- Label exit_label_;
- Label check_preempt_label_;
- Label stack_overflow_label_;
-};
-
-#endif // V8_INTERPRETED_REGEXP
-
-}} // namespace v8::internal
-
-#endif // V8_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
-#include "src/jsregexp.h"
-#include "src/regexp-macro-assembler.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
#include "src/x87/frames-x87.h"
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/v8.h"
-
-#if V8_TARGET_ARCH_X87
-
-#include "src/cpu-profiler.h"
-#include "src/log.h"
-#include "src/macro-assembler.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-stack.h"
-#include "src/unicode.h"
-#include "src/x87/regexp-macro-assembler-x87.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-/*
- * This assembler uses the following register assignment convention
- * - edx : Current character. Must be loaded using LoadCurrentCharacter
- * before using any of the dispatch methods. Temporarily stores the
- * index of capture start after a matching pass for a global regexp.
- * - edi : Current position in input, as negative offset from end of string.
- * Please notice that this is the byte offset, not the character offset!
- * - esi : end of input (points to byte after last character in input).
- * - ebp : Frame pointer. Used to access arguments, local variables and
- * RegExp registers.
- * - esp : Points to tip of C stack.
- * - ecx : Points to tip of backtrack stack
- *
- * The registers eax and ebx are free to use for computations.
- *
- * Each call to a public method should retain this convention.
- * The stack will have the following structure:
- * - Isolate* isolate (address of the current isolate)
- * - direct_call (if 1, direct call from JavaScript code, if 0
- * call through the runtime system)
- * - stack_area_base (high end of the memory area to use as
- * backtracking stack)
- * - capture array size (may fit multiple sets of matches)
- * - int* capture_array (int[num_saved_registers_], for output).
- * - end of input (address of end of string)
- * - start of input (address of first character in string)
- * - start index (character index of start)
- * - String* input_string (location of a handle containing the string)
- * --- frame alignment (if applicable) ---
- * - return address
- * ebp-> - old ebp
- * - backup of caller esi
- * - backup of caller edi
- * - backup of caller ebx
- * - success counter (only for global regexps to count matches).
- * - Offset of location before start of input (effectively character
- * position -1). Used to initialize capture registers to a non-position.
- * - register 0 ebp[-4] (only positions must be stored in the first
- * - register 1 ebp[-8] num_saved_registers_ registers)
- * - ...
- *
- * The first num_saved_registers_ registers are initialized to point to
- * "character -1" in the string (i.e., char_size() bytes before the first
- * character of the string). The remaining registers starts out as garbage.
- *
- * The data up to the return address must be placed there by the calling
- * code, by calling the code entry as cast to a function with the signature:
- * int (*match)(String* input_string,
- * int start_index,
- * Address start,
- * Address end,
- * int* capture_output_array,
- * bool at_start,
- * byte* stack_area_base,
- * bool direct_call)
- */
-
-#define __ ACCESS_MASM(masm_)
-
-RegExpMacroAssemblerX87::RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone,
- Mode mode,
- int registers_to_save)
- : NativeRegExpMacroAssembler(isolate, zone),
- masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
- mode_(mode),
- num_registers_(registers_to_save),
- num_saved_registers_(registers_to_save),
- entry_label_(),
- start_label_(),
- success_label_(),
- backtrack_label_(),
- exit_label_() {
- DCHECK_EQ(0, registers_to_save % 2);
- __ jmp(&entry_label_); // We'll write the entry code later.
- __ bind(&start_label_); // And then continue from here.
-}
-
-
-RegExpMacroAssemblerX87::~RegExpMacroAssemblerX87() {
- delete masm_;
- // Unuse labels in case we throw away the assembler without calling GetCode.
- entry_label_.Unuse();
- start_label_.Unuse();
- success_label_.Unuse();
- backtrack_label_.Unuse();
- exit_label_.Unuse();
- check_preempt_label_.Unuse();
- stack_overflow_label_.Unuse();
-}
-
-
-int RegExpMacroAssemblerX87::stack_limit_slack() {
- return RegExpStack::kStackLimitSlack;
-}
-
-
-void RegExpMacroAssemblerX87::AdvanceCurrentPosition(int by) {
- if (by != 0) {
- __ add(edi, Immediate(by * char_size()));
- }
-}
-
-
-void RegExpMacroAssemblerX87::AdvanceRegister(int reg, int by) {
- DCHECK(reg >= 0);
- DCHECK(reg < num_registers_);
- if (by != 0) {
- __ add(register_location(reg), Immediate(by));
- }
-}
-
-
-void RegExpMacroAssemblerX87::Backtrack() {
- CheckPreemption();
- // Pop Code* offset from backtrack stack, add Code* and jump to location.
- Pop(ebx);
- __ add(ebx, Immediate(masm_->CodeObject()));
- __ jmp(ebx);
-}
-
-
-void RegExpMacroAssemblerX87::Bind(Label* label) {
- __ bind(label);
-}
-
-
-void RegExpMacroAssemblerX87::CheckCharacter(uint32_t c, Label* on_equal) {
- __ cmp(current_character(), c);
- BranchOrBacktrack(equal, on_equal);
-}
-
-
-void RegExpMacroAssemblerX87::CheckCharacterGT(uc16 limit, Label* on_greater) {
- __ cmp(current_character(), limit);
- BranchOrBacktrack(greater, on_greater);
-}
-
-
-void RegExpMacroAssemblerX87::CheckAtStart(Label* on_at_start) {
- Label not_at_start;
- // Did we start the match at the start of the string at all?
- __ cmp(Operand(ebp, kStartIndex), Immediate(0));
- BranchOrBacktrack(not_equal, ¬_at_start);
- // If we did, are we still at the start of the input?
- __ lea(eax, Operand(esi, edi, times_1, 0));
- __ cmp(eax, Operand(ebp, kInputStart));
- BranchOrBacktrack(equal, on_at_start);
- __ bind(¬_at_start);
-}
-
-
-void RegExpMacroAssemblerX87::CheckNotAtStart(Label* on_not_at_start) {
- // Did we start the match at the start of the string at all?
- __ cmp(Operand(ebp, kStartIndex), Immediate(0));
- BranchOrBacktrack(not_equal, on_not_at_start);
- // If we did, are we still at the start of the input?
- __ lea(eax, Operand(esi, edi, times_1, 0));
- __ cmp(eax, Operand(ebp, kInputStart));
- BranchOrBacktrack(not_equal, on_not_at_start);
-}
-
-
-void RegExpMacroAssemblerX87::CheckCharacterLT(uc16 limit, Label* on_less) {
- __ cmp(current_character(), limit);
- BranchOrBacktrack(less, on_less);
-}
-
-
-void RegExpMacroAssemblerX87::CheckGreedyLoop(Label* on_equal) {
- Label fallthrough;
- __ cmp(edi, Operand(backtrack_stackpointer(), 0));
- __ j(not_equal, &fallthrough);
- __ add(backtrack_stackpointer(), Immediate(kPointerSize)); // Pop.
- BranchOrBacktrack(no_condition, on_equal);
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerX87::CheckNotBackReferenceIgnoreCase(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- __ mov(edx, register_location(start_reg)); // Index of start of capture
- __ mov(ebx, register_location(start_reg + 1)); // Index of end of capture
- __ sub(ebx, edx); // Length of capture.
-
- // The length of a capture should not be negative. This can only happen
- // if the end of the capture is unrecorded, or at a point earlier than
- // the start of the capture.
- BranchOrBacktrack(less, on_no_match);
-
- // If length is zero, either the capture is empty or it is completely
- // uncaptured. In either case succeed immediately.
- __ j(equal, &fallthrough);
-
- // Check that there are sufficient characters left in the input.
- __ mov(eax, edi);
- __ add(eax, ebx);
- BranchOrBacktrack(greater, on_no_match);
-
- if (mode_ == LATIN1) {
- Label success;
- Label fail;
- Label loop_increment;
- // Save register contents to make the registers available below.
- __ push(edi);
- __ push(backtrack_stackpointer());
- // After this, the eax, ecx, and edi registers are available.
-
- __ add(edx, esi); // Start of capture
- __ add(edi, esi); // Start of text to match against capture.
- __ add(ebx, edi); // End of text to match against capture.
-
- Label loop;
- __ bind(&loop);
- __ movzx_b(eax, Operand(edi, 0));
- __ cmpb_al(Operand(edx, 0));
- __ j(equal, &loop_increment);
-
- // Mismatch, try case-insensitive match (converting letters to lower-case).
- __ or_(eax, 0x20); // Convert match character to lower-case.
- __ lea(ecx, Operand(eax, -'a'));
- __ cmp(ecx, static_cast<int32_t>('z' - 'a')); // Is eax a lowercase letter?
- Label convert_capture;
- __ j(below_equal, &convert_capture); // In range 'a'-'z'.
- // Latin-1: Check for values in range [224,254] but not 247.
- __ sub(ecx, Immediate(224 - 'a'));
- __ cmp(ecx, Immediate(254 - 224));
- __ j(above, &fail); // Weren't Latin-1 letters.
- __ cmp(ecx, Immediate(247 - 224)); // Check for 247.
- __ j(equal, &fail);
- __ bind(&convert_capture);
- // Also convert capture character.
- __ movzx_b(ecx, Operand(edx, 0));
- __ or_(ecx, 0x20);
-
- __ cmp(eax, ecx);
- __ j(not_equal, &fail);
-
- __ bind(&loop_increment);
- // Increment pointers into match and capture strings.
- __ add(edx, Immediate(1));
- __ add(edi, Immediate(1));
- // Compare to end of match, and loop if not done.
- __ cmp(edi, ebx);
- __ j(below, &loop);
- __ jmp(&success);
-
- __ bind(&fail);
- // Restore original values before failing.
- __ pop(backtrack_stackpointer());
- __ pop(edi);
- BranchOrBacktrack(no_condition, on_no_match);
-
- __ bind(&success);
- // Restore original value before continuing.
- __ pop(backtrack_stackpointer());
- // Drop original value of character position.
- __ add(esp, Immediate(kPointerSize));
- // Compute new value of character position after the matched part.
- __ sub(edi, esi);
- } else {
- DCHECK(mode_ == UC16);
- // Save registers before calling C function.
- __ push(esi);
- __ push(edi);
- __ push(backtrack_stackpointer());
- __ push(ebx);
-
- static const int argument_count = 4;
- __ PrepareCallCFunction(argument_count, ecx);
- // Put arguments into allocated stack area, last argument highest on stack.
- // Parameters are
- // Address byte_offset1 - Address captured substring's start.
- // Address byte_offset2 - Address of current character position.
- // size_t byte_length - length of capture in bytes(!)
- // Isolate* isolate
-
- // Set isolate.
- __ mov(Operand(esp, 3 * kPointerSize),
- Immediate(ExternalReference::isolate_address(isolate())));
- // Set byte_length.
- __ mov(Operand(esp, 2 * kPointerSize), ebx);
- // Set byte_offset2.
- // Found by adding negative string-end offset of current position (edi)
- // to end of string.
- __ add(edi, esi);
- __ mov(Operand(esp, 1 * kPointerSize), edi);
- // Set byte_offset1.
- // Start of capture, where edx already holds string-end negative offset.
- __ add(edx, esi);
- __ mov(Operand(esp, 0 * kPointerSize), edx);
-
- {
- AllowExternalCallThatCantCauseGC scope(masm_);
- ExternalReference compare =
- ExternalReference::re_case_insensitive_compare_uc16(isolate());
- __ CallCFunction(compare, argument_count);
- }
- // Pop original values before reacting on result value.
- __ pop(ebx);
- __ pop(backtrack_stackpointer());
- __ pop(edi);
- __ pop(esi);
-
- // Check if function returned non-zero for success or zero for failure.
- __ or_(eax, eax);
- BranchOrBacktrack(zero, on_no_match);
- // On success, increment position by length of capture.
- __ add(edi, ebx);
- }
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerX87::CheckNotBackReference(
- int start_reg,
- Label* on_no_match) {
- Label fallthrough;
- Label success;
- Label fail;
-
- // Find length of back-referenced capture.
- __ mov(edx, register_location(start_reg));
- __ mov(eax, register_location(start_reg + 1));
- __ sub(eax, edx); // Length to check.
- // Fail on partial or illegal capture (start of capture after end of capture).
- BranchOrBacktrack(less, on_no_match);
- // Succeed on empty capture (including no capture)
- __ j(equal, &fallthrough);
-
- // Check that there are sufficient characters left in the input.
- __ mov(ebx, edi);
- __ add(ebx, eax);
- BranchOrBacktrack(greater, on_no_match);
-
- // Save register to make it available below.
- __ push(backtrack_stackpointer());
-
- // Compute pointers to match string and capture string
- __ lea(ebx, Operand(esi, edi, times_1, 0)); // Start of match.
- __ add(edx, esi); // Start of capture.
- __ lea(ecx, Operand(eax, ebx, times_1, 0)); // End of match
-
- Label loop;
- __ bind(&loop);
- if (mode_ == LATIN1) {
- __ movzx_b(eax, Operand(edx, 0));
- __ cmpb_al(Operand(ebx, 0));
- } else {
- DCHECK(mode_ == UC16);
- __ movzx_w(eax, Operand(edx, 0));
- __ cmpw_ax(Operand(ebx, 0));
- }
- __ j(not_equal, &fail);
- // Increment pointers into capture and match string.
- __ add(edx, Immediate(char_size()));
- __ add(ebx, Immediate(char_size()));
- // Check if we have reached end of match area.
- __ cmp(ebx, ecx);
- __ j(below, &loop);
- __ jmp(&success);
-
- __ bind(&fail);
- // Restore backtrack stackpointer.
- __ pop(backtrack_stackpointer());
- BranchOrBacktrack(no_condition, on_no_match);
-
- __ bind(&success);
- // Move current character position to position after match.
- __ mov(edi, ecx);
- __ sub(edi, esi);
- // Restore backtrack stackpointer.
- __ pop(backtrack_stackpointer());
-
- __ bind(&fallthrough);
-}
-
-
-void RegExpMacroAssemblerX87::CheckNotCharacter(uint32_t c,
- Label* on_not_equal) {
- __ cmp(current_character(), c);
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerX87::CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal) {
- if (c == 0) {
- __ test(current_character(), Immediate(mask));
- } else {
- __ mov(eax, mask);
- __ and_(eax, current_character());
- __ cmp(eax, c);
- }
- BranchOrBacktrack(equal, on_equal);
-}
-
-
-void RegExpMacroAssemblerX87::CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal) {
- if (c == 0) {
- __ test(current_character(), Immediate(mask));
- } else {
- __ mov(eax, mask);
- __ and_(eax, current_character());
- __ cmp(eax, c);
- }
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerX87::CheckNotCharacterAfterMinusAnd(
- uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal) {
- DCHECK(minus < String::kMaxUtf16CodeUnit);
- __ lea(eax, Operand(current_character(), -minus));
- if (c == 0) {
- __ test(eax, Immediate(mask));
- } else {
- __ and_(eax, mask);
- __ cmp(eax, c);
- }
- BranchOrBacktrack(not_equal, on_not_equal);
-}
-
-
-void RegExpMacroAssemblerX87::CheckCharacterInRange(
- uc16 from,
- uc16 to,
- Label* on_in_range) {
- __ lea(eax, Operand(current_character(), -from));
- __ cmp(eax, to - from);
- BranchOrBacktrack(below_equal, on_in_range);
-}
-
-
-void RegExpMacroAssemblerX87::CheckCharacterNotInRange(
- uc16 from,
- uc16 to,
- Label* on_not_in_range) {
- __ lea(eax, Operand(current_character(), -from));
- __ cmp(eax, to - from);
- BranchOrBacktrack(above, on_not_in_range);
-}
-
-
-void RegExpMacroAssemblerX87::CheckBitInTable(
- Handle<ByteArray> table,
- Label* on_bit_set) {
- __ mov(eax, Immediate(table));
- Register index = current_character();
- if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
- __ mov(ebx, kTableSize - 1);
- __ and_(ebx, current_character());
- index = ebx;
- }
- __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize), 0);
- BranchOrBacktrack(not_equal, on_bit_set);
-}
-
-
-bool RegExpMacroAssemblerX87::CheckSpecialCharacterClass(uc16 type,
- Label* on_no_match) {
- // Range checks (c in min..max) are generally implemented by an unsigned
- // (c - min) <= (max - min) check
- switch (type) {
- case 's':
- // Match space-characters
- if (mode_ == LATIN1) {
- // One byte space characters are '\t'..'\r', ' ' and \u00a0.
- Label success;
- __ cmp(current_character(), ' ');
- __ j(equal, &success, Label::kNear);
- // Check range 0x09..0x0d
- __ lea(eax, Operand(current_character(), -'\t'));
- __ cmp(eax, '\r' - '\t');
- __ j(below_equal, &success, Label::kNear);
- // \u00a0 (NBSP).
- __ cmp(eax, 0x00a0 - '\t');
- BranchOrBacktrack(not_equal, on_no_match);
- __ bind(&success);
- return true;
- }
- return false;
- case 'S':
- // The emitted code for generic character classes is good enough.
- return false;
- case 'd':
- // Match ASCII digits ('0'..'9')
- __ lea(eax, Operand(current_character(), -'0'));
- __ cmp(eax, '9' - '0');
- BranchOrBacktrack(above, on_no_match);
- return true;
- case 'D':
- // Match non ASCII-digits
- __ lea(eax, Operand(current_character(), -'0'));
- __ cmp(eax, '9' - '0');
- BranchOrBacktrack(below_equal, on_no_match);
- return true;
- case '.': {
- // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
- __ mov(eax, current_character());
- __ xor_(eax, Immediate(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ sub(eax, Immediate(0x0b));
- __ cmp(eax, 0x0c - 0x0b);
- BranchOrBacktrack(below_equal, on_no_match);
- if (mode_ == UC16) {
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ sub(eax, Immediate(0x2028 - 0x0b));
- __ cmp(eax, 0x2029 - 0x2028);
- BranchOrBacktrack(below_equal, on_no_match);
- }
- return true;
- }
- case 'w': {
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmp(current_character(), Immediate('z'));
- BranchOrBacktrack(above, on_no_match);
- }
- DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
- ExternalReference word_map = ExternalReference::re_word_character_map();
- __ test_b(current_character(),
- Operand::StaticArray(current_character(), times_1, word_map));
- BranchOrBacktrack(zero, on_no_match);
- return true;
- }
- case 'W': {
- Label done;
- if (mode_ != LATIN1) {
- // Table is 256 entries, so all Latin1 characters can be tested.
- __ cmp(current_character(), Immediate('z'));
- __ j(above, &done);
- }
- DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
- ExternalReference word_map = ExternalReference::re_word_character_map();
- __ test_b(current_character(),
- Operand::StaticArray(current_character(), times_1, word_map));
- BranchOrBacktrack(not_zero, on_no_match);
- if (mode_ != LATIN1) {
- __ bind(&done);
- }
- return true;
- }
- // Non-standard classes (with no syntactic shorthand) used internally.
- case '*':
- // Match any character.
- return true;
- case 'n': {
- // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
- // The opposite of '.'.
- __ mov(eax, current_character());
- __ xor_(eax, Immediate(0x01));
- // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
- __ sub(eax, Immediate(0x0b));
- __ cmp(eax, 0x0c - 0x0b);
- if (mode_ == LATIN1) {
- BranchOrBacktrack(above, on_no_match);
- } else {
- Label done;
- BranchOrBacktrack(below_equal, &done);
- DCHECK_EQ(UC16, mode_);
- // Compare original value to 0x2028 and 0x2029, using the already
- // computed (current_char ^ 0x01 - 0x0b). I.e., check for
- // 0x201d (0x2028 - 0x0b) or 0x201e.
- __ sub(eax, Immediate(0x2028 - 0x0b));
- __ cmp(eax, 1);
- BranchOrBacktrack(above, on_no_match);
- __ bind(&done);
- }
- return true;
- }
- // No custom implementation (yet): s(UC16), S(UC16).
- default:
- return false;
- }
-}
-
-
-void RegExpMacroAssemblerX87::Fail() {
- STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
- if (!global()) {
- __ Move(eax, Immediate(FAILURE));
- }
- __ jmp(&exit_label_);
-}
-
-
-Handle<HeapObject> RegExpMacroAssemblerX87::GetCode(Handle<String> source) {
- Label return_eax;
- // Finalize code - write the entry point code now we know how many
- // registers we need.
-
- // Entry code:
- __ bind(&entry_label_);
-
- // Tell the system that we have a stack frame. Because the type is MANUAL, no
- // code is generated.
- FrameScope scope(masm_, StackFrame::MANUAL);
-
- // Actually emit code to start a new stack frame.
- __ push(ebp);
- __ mov(ebp, esp);
- // Save callee-save registers. Order here should correspond to order of
- // kBackup_ebx etc.
- __ push(esi);
- __ push(edi);
- __ push(ebx); // Callee-save on MacOS.
- __ push(Immediate(0)); // Number of successful matches in a global regexp.
- __ push(Immediate(0)); // Make room for "input start - 1" constant.
-
- // Check if we have space on the stack for registers.
- Label stack_limit_hit;
- Label stack_ok;
-
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ mov(ecx, esp);
- __ sub(ecx, Operand::StaticVariable(stack_limit));
- // Handle it if the stack pointer is already below the stack limit.
- __ j(below_equal, &stack_limit_hit);
- // Check if there is room for the variable number of registers above
- // the stack limit.
- __ cmp(ecx, num_registers_ * kPointerSize);
- __ j(above_equal, &stack_ok);
- // Exit with OutOfMemory exception. There is not enough space on the stack
- // for our working registers.
- __ mov(eax, EXCEPTION);
- __ jmp(&return_eax);
-
- __ bind(&stack_limit_hit);
- CallCheckStackGuardState(ebx);
- __ or_(eax, eax);
- // If returned value is non-zero, we exit with the returned value as result.
- __ j(not_zero, &return_eax);
-
- __ bind(&stack_ok);
- // Load start index for later use.
- __ mov(ebx, Operand(ebp, kStartIndex));
-
- // Allocate space on stack for registers.
- __ sub(esp, Immediate(num_registers_ * kPointerSize));
- // Load string length.
- __ mov(esi, Operand(ebp, kInputEnd));
- // Load input position.
- __ mov(edi, Operand(ebp, kInputStart));
- // Set up edi to be negative offset from string end.
- __ sub(edi, esi);
-
- // Set eax to address of char before start of the string.
- // (effectively string position -1).
- __ neg(ebx);
- if (mode_ == UC16) {
- __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
- } else {
- __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
- }
- // Store this value in a local variable, for use when clearing
- // position registers.
- __ mov(Operand(ebp, kInputStartMinusOne), eax);
-
-#if V8_OS_WIN
- // Ensure that we write to each stack page, in order. Skipping a page
- // on Windows can cause segmentation faults. Assuming page size is 4k.
- const int kPageSize = 4096;
- const int kRegistersPerPage = kPageSize / kPointerSize;
- for (int i = num_saved_registers_ + kRegistersPerPage - 1;
- i < num_registers_;
- i += kRegistersPerPage) {
- __ mov(register_location(i), eax); // One write every page.
- }
-#endif // V8_OS_WIN
-
- Label load_char_start_regexp, start_regexp;
- // Load newline if index is at start, previous character otherwise.
- __ cmp(Operand(ebp, kStartIndex), Immediate(0));
- __ j(not_equal, &load_char_start_regexp, Label::kNear);
- __ mov(current_character(), '\n');
- __ jmp(&start_regexp, Label::kNear);
-
- // Global regexp restarts matching here.
- __ bind(&load_char_start_regexp);
- // Load previous char as initial value of current character register.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&start_regexp);
-
- // Initialize on-stack registers.
- if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
- // Fill saved registers with initial value = start offset - 1
- // Fill in stack push order, to avoid accessing across an unwritten
- // page (a problem on Windows).
- if (num_saved_registers_ > 8) {
- __ mov(ecx, kRegisterZero);
- Label init_loop;
- __ bind(&init_loop);
- __ mov(Operand(ebp, ecx, times_1, 0), eax);
- __ sub(ecx, Immediate(kPointerSize));
- __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
- __ j(greater, &init_loop);
- } else { // Unroll the loop.
- for (int i = 0; i < num_saved_registers_; i++) {
- __ mov(register_location(i), eax);
- }
- }
- }
-
- // Initialize backtrack stack pointer.
- __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
-
- __ jmp(&start_label_);
-
- // Exit code:
- if (success_label_.is_linked()) {
- // Save captures when successful.
- __ bind(&success_label_);
- if (num_saved_registers_ > 0) {
- // copy captures to output
- __ mov(ebx, Operand(ebp, kRegisterOutput));
- __ mov(ecx, Operand(ebp, kInputEnd));
- __ mov(edx, Operand(ebp, kStartIndex));
- __ sub(ecx, Operand(ebp, kInputStart));
- if (mode_ == UC16) {
- __ lea(ecx, Operand(ecx, edx, times_2, 0));
- } else {
- __ add(ecx, edx);
- }
- for (int i = 0; i < num_saved_registers_; i++) {
- __ mov(eax, register_location(i));
- if (i == 0 && global_with_zero_length_check()) {
- // Keep capture start in edx for the zero-length check later.
- __ mov(edx, eax);
- }
- // Convert to index from start of string, not end.
- __ add(eax, ecx);
- if (mode_ == UC16) {
- __ sar(eax, 1); // Convert byte index to character index.
- }
- __ mov(Operand(ebx, i * kPointerSize), eax);
- }
- }
-
- if (global()) {
- // Restart matching if the regular expression is flagged as global.
- // Increment success counter.
- __ inc(Operand(ebp, kSuccessfulCaptures));
- // Capture results have been stored, so the number of remaining global
- // output registers is reduced by the number of stored captures.
- __ mov(ecx, Operand(ebp, kNumOutputRegisters));
- __ sub(ecx, Immediate(num_saved_registers_));
- // Check whether we have enough room for another set of capture results.
- __ cmp(ecx, Immediate(num_saved_registers_));
- __ j(less, &exit_label_);
-
- __ mov(Operand(ebp, kNumOutputRegisters), ecx);
- // Advance the location for output.
- __ add(Operand(ebp, kRegisterOutput),
- Immediate(num_saved_registers_ * kPointerSize));
-
- // Prepare eax to initialize registers with its value in the next run.
- __ mov(eax, Operand(ebp, kInputStartMinusOne));
-
- if (global_with_zero_length_check()) {
- // Special case for zero-length matches.
- // edx: capture start index
- __ cmp(edi, edx);
- // Not a zero-length match, restart.
- __ j(not_equal, &load_char_start_regexp);
- // edi (offset from the end) is zero if we already reached the end.
- __ test(edi, edi);
- __ j(zero, &exit_label_, Label::kNear);
- // Advance current position after a zero-length match.
- if (mode_ == UC16) {
- __ add(edi, Immediate(2));
- } else {
- __ inc(edi);
- }
- }
-
- __ jmp(&load_char_start_regexp);
- } else {
- __ mov(eax, Immediate(SUCCESS));
- }
- }
-
- __ bind(&exit_label_);
- if (global()) {
- // Return the number of successful captures.
- __ mov(eax, Operand(ebp, kSuccessfulCaptures));
- }
-
- __ bind(&return_eax);
- // Skip esp past regexp registers.
- __ lea(esp, Operand(ebp, kBackup_ebx));
- // Restore callee-save registers.
- __ pop(ebx);
- __ pop(edi);
- __ pop(esi);
- // Exit function frame, restore previous one.
- __ pop(ebp);
- __ ret(0);
-
- // Backtrack code (branch target for conditional backtracks).
- if (backtrack_label_.is_linked()) {
- __ bind(&backtrack_label_);
- Backtrack();
- }
-
- Label exit_with_exception;
-
- // Preempt-code
- if (check_preempt_label_.is_linked()) {
- SafeCallTarget(&check_preempt_label_);
-
- __ push(backtrack_stackpointer());
- __ push(edi);
-
- CallCheckStackGuardState(ebx);
- __ or_(eax, eax);
- // If returning non-zero, we should end execution with the given
- // result as return value.
- __ j(not_zero, &return_eax);
-
- __ pop(edi);
- __ pop(backtrack_stackpointer());
- // String might have moved: Reload esi from frame.
- __ mov(esi, Operand(ebp, kInputEnd));
- SafeReturn();
- }
-
- // Backtrack stack overflow code.
- if (stack_overflow_label_.is_linked()) {
- SafeCallTarget(&stack_overflow_label_);
- // Reached if the backtrack-stack limit has been hit.
-
- Label grow_failed;
- // Save registers before calling C function
- __ push(esi);
- __ push(edi);
-
- // Call GrowStack(backtrack_stackpointer())
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments, ebx);
- __ mov(Operand(esp, 2 * kPointerSize),
- Immediate(ExternalReference::isolate_address(isolate())));
- __ lea(eax, Operand(ebp, kStackHighEnd));
- __ mov(Operand(esp, 1 * kPointerSize), eax);
- __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
- ExternalReference grow_stack =
- ExternalReference::re_grow_stack(isolate());
- __ CallCFunction(grow_stack, num_arguments);
- // If return NULL, we have failed to grow the stack, and
- // must exit with a stack-overflow exception.
- __ or_(eax, eax);
- __ j(equal, &exit_with_exception);
- // Otherwise use return value as new stack pointer.
- __ mov(backtrack_stackpointer(), eax);
- // Restore saved registers and continue.
- __ pop(edi);
- __ pop(esi);
- SafeReturn();
- }
-
- if (exit_with_exception.is_linked()) {
- // If any of the code above needed to exit with an exception.
- __ bind(&exit_with_exception);
- // Exit with Result EXCEPTION(-1) to signal thrown exception.
- __ mov(eax, EXCEPTION);
- __ jmp(&return_eax);
- }
-
- CodeDesc code_desc;
- masm_->GetCode(&code_desc);
- Handle<Code> code =
- isolate()->factory()->NewCode(code_desc,
- Code::ComputeFlags(Code::REGEXP),
- masm_->CodeObject());
- PROFILE(isolate(), RegExpCodeCreateEvent(*code, *source));
- return Handle<HeapObject>::cast(code);
-}
-
-
-void RegExpMacroAssemblerX87::GoTo(Label* to) {
- BranchOrBacktrack(no_condition, to);
-}
-
-
-void RegExpMacroAssemblerX87::IfRegisterGE(int reg,
- int comparand,
- Label* if_ge) {
- __ cmp(register_location(reg), Immediate(comparand));
- BranchOrBacktrack(greater_equal, if_ge);
-}
-
-
-void RegExpMacroAssemblerX87::IfRegisterLT(int reg,
- int comparand,
- Label* if_lt) {
- __ cmp(register_location(reg), Immediate(comparand));
- BranchOrBacktrack(less, if_lt);
-}
-
-
-void RegExpMacroAssemblerX87::IfRegisterEqPos(int reg,
- Label* if_eq) {
- __ cmp(edi, register_location(reg));
- BranchOrBacktrack(equal, if_eq);
-}
-
-
-RegExpMacroAssembler::IrregexpImplementation
- RegExpMacroAssemblerX87::Implementation() {
- return kX87Implementation;
-}
-
-
-void RegExpMacroAssemblerX87::LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds,
- int characters) {
- DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
- DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
- if (check_bounds) {
- CheckPosition(cp_offset + characters - 1, on_end_of_input);
- }
- LoadCurrentCharacterUnchecked(cp_offset, characters);
-}
-
-
-void RegExpMacroAssemblerX87::PopCurrentPosition() {
- Pop(edi);
-}
-
-
-void RegExpMacroAssemblerX87::PopRegister(int register_index) {
- Pop(eax);
- __ mov(register_location(register_index), eax);
-}
-
-
-void RegExpMacroAssemblerX87::PushBacktrack(Label* label) {
- Push(Immediate::CodeRelativeOffset(label));
- CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerX87::PushCurrentPosition() {
- Push(edi);
-}
-
-
-void RegExpMacroAssemblerX87::PushRegister(int register_index,
- StackCheckFlag check_stack_limit) {
- __ mov(eax, register_location(register_index));
- Push(eax);
- if (check_stack_limit) CheckStackLimit();
-}
-
-
-void RegExpMacroAssemblerX87::ReadCurrentPositionFromRegister(int reg) {
- __ mov(edi, register_location(reg));
-}
-
-
-void RegExpMacroAssemblerX87::ReadStackPointerFromRegister(int reg) {
- __ mov(backtrack_stackpointer(), register_location(reg));
- __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
-}
-
-void RegExpMacroAssemblerX87::SetCurrentPositionFromEnd(int by) {
- Label after_position;
- __ cmp(edi, -by * char_size());
- __ j(greater_equal, &after_position, Label::kNear);
- __ mov(edi, -by * char_size());
- // On RegExp code entry (where this operation is used), the character before
- // the current position is expected to be already loaded.
- // We have advanced the position, so it's safe to read backwards.
- LoadCurrentCharacterUnchecked(-1, 1);
- __ bind(&after_position);
-}
-
-
-void RegExpMacroAssemblerX87::SetRegister(int register_index, int to) {
- DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
- __ mov(register_location(register_index), Immediate(to));
-}
-
-
-bool RegExpMacroAssemblerX87::Succeed() {
- __ jmp(&success_label_);
- return global();
-}
-
-
-void RegExpMacroAssemblerX87::WriteCurrentPositionToRegister(int reg,
- int cp_offset) {
- if (cp_offset == 0) {
- __ mov(register_location(reg), edi);
- } else {
- __ lea(eax, Operand(edi, cp_offset * char_size()));
- __ mov(register_location(reg), eax);
- }
-}
-
-
-void RegExpMacroAssemblerX87::ClearRegisters(int reg_from, int reg_to) {
- DCHECK(reg_from <= reg_to);
- __ mov(eax, Operand(ebp, kInputStartMinusOne));
- for (int reg = reg_from; reg <= reg_to; reg++) {
- __ mov(register_location(reg), eax);
- }
-}
-
-
-void RegExpMacroAssemblerX87::WriteStackPointerToRegister(int reg) {
- __ mov(eax, backtrack_stackpointer());
- __ sub(eax, Operand(ebp, kStackHighEnd));
- __ mov(register_location(reg), eax);
-}
-
-
-// Private methods:
-
-void RegExpMacroAssemblerX87::CallCheckStackGuardState(Register scratch) {
- static const int num_arguments = 3;
- __ PrepareCallCFunction(num_arguments, scratch);
- // RegExp code frame pointer.
- __ mov(Operand(esp, 2 * kPointerSize), ebp);
- // Code* of self.
- __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
- // Next address on the stack (will be address of return address).
- __ lea(eax, Operand(esp, -kPointerSize));
- __ mov(Operand(esp, 0 * kPointerSize), eax);
- ExternalReference check_stack_guard =
- ExternalReference::re_check_stack_guard_state(isolate());
- __ CallCFunction(check_stack_guard, num_arguments);
-}
-
-
-// Helper function for reading a value out of a stack frame.
-template <typename T>
-static T& frame_entry(Address re_frame, int frame_offset) {
- return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
-}
-
-
-template <typename T>
-static T* frame_entry_address(Address re_frame, int frame_offset) {
- return reinterpret_cast<T*>(re_frame + frame_offset);
-}
-
-
-int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame) {
- return NativeRegExpMacroAssembler::CheckStackGuardState(
- frame_entry<Isolate*>(re_frame, kIsolate),
- frame_entry<int>(re_frame, kStartIndex),
- frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
- frame_entry_address<String*>(re_frame, kInputString),
- frame_entry_address<const byte*>(re_frame, kInputStart),
- frame_entry_address<const byte*>(re_frame, kInputEnd));
-}
-
-
-Operand RegExpMacroAssemblerX87::register_location(int register_index) {
- DCHECK(register_index < (1<<30));
- if (num_registers_ <= register_index) {
- num_registers_ = register_index + 1;
- }
- return Operand(ebp, kRegisterZero - register_index * kPointerSize);
-}
-
-
-void RegExpMacroAssemblerX87::CheckPosition(int cp_offset,
- Label* on_outside_input) {
- __ cmp(edi, -cp_offset * char_size());
- BranchOrBacktrack(greater_equal, on_outside_input);
-}
-
-
-void RegExpMacroAssemblerX87::BranchOrBacktrack(Condition condition,
- Label* to) {
- if (condition < 0) { // No condition
- if (to == NULL) {
- Backtrack();
- return;
- }
- __ jmp(to);
- return;
- }
- if (to == NULL) {
- __ j(condition, &backtrack_label_);
- return;
- }
- __ j(condition, to);
-}
-
-
-void RegExpMacroAssemblerX87::SafeCall(Label* to) {
- Label return_to;
- __ push(Immediate::CodeRelativeOffset(&return_to));
- __ jmp(to);
- __ bind(&return_to);
-}
-
-
-void RegExpMacroAssemblerX87::SafeReturn() {
- __ pop(ebx);
- __ add(ebx, Immediate(masm_->CodeObject()));
- __ jmp(ebx);
-}
-
-
-void RegExpMacroAssemblerX87::SafeCallTarget(Label* name) {
- __ bind(name);
-}
-
-
-void RegExpMacroAssemblerX87::Push(Register source) {
- DCHECK(!source.is(backtrack_stackpointer()));
- // Notice: This updates flags, unlike normal Push.
- __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
- __ mov(Operand(backtrack_stackpointer(), 0), source);
-}
-
-
-void RegExpMacroAssemblerX87::Push(Immediate value) {
- // Notice: This updates flags, unlike normal Push.
- __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
- __ mov(Operand(backtrack_stackpointer(), 0), value);
-}
-
-
-void RegExpMacroAssemblerX87::Pop(Register target) {
- DCHECK(!target.is(backtrack_stackpointer()));
- __ mov(target, Operand(backtrack_stackpointer(), 0));
- // Notice: This updates flags, unlike normal Pop.
- __ add(backtrack_stackpointer(), Immediate(kPointerSize));
-}
-
-
-void RegExpMacroAssemblerX87::CheckPreemption() {
- // Check for preemption.
- Label no_preempt;
- ExternalReference stack_limit =
- ExternalReference::address_of_stack_limit(isolate());
- __ cmp(esp, Operand::StaticVariable(stack_limit));
- __ j(above, &no_preempt);
-
- SafeCall(&check_preempt_label_);
-
- __ bind(&no_preempt);
-}
-
-
-void RegExpMacroAssemblerX87::CheckStackLimit() {
- Label no_stack_overflow;
- ExternalReference stack_limit =
- ExternalReference::address_of_regexp_stack_limit(isolate());
- __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
- __ j(above, &no_stack_overflow);
-
- SafeCall(&stack_overflow_label_);
-
- __ bind(&no_stack_overflow);
-}
-
-
-void RegExpMacroAssemblerX87::LoadCurrentCharacterUnchecked(int cp_offset,
- int characters) {
- if (mode_ == LATIN1) {
- if (characters == 4) {
- __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
- } else if (characters == 2) {
- __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
- } else {
- DCHECK(characters == 1);
- __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
- }
- } else {
- DCHECK(mode_ == UC16);
- if (characters == 2) {
- __ mov(current_character(),
- Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
- } else {
- DCHECK(characters == 1);
- __ movzx_w(current_character(),
- Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
- }
- }
-}
-
-
-#undef __
-
-#endif // V8_INTERPRETED_REGEXP
-
-} // namespace internal
-} // namespace v8
-
-#endif // V8_TARGET_ARCH_X87
+++ /dev/null
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef V8_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
-#define V8_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
-
-#include "src/macro-assembler.h"
-#include "src/x87/assembler-x87.h"
-
-namespace v8 {
-namespace internal {
-
-#ifndef V8_INTERPRETED_REGEXP
-class RegExpMacroAssemblerX87: public NativeRegExpMacroAssembler {
- public:
- RegExpMacroAssemblerX87(Isolate* isolate, Zone* zone, Mode mode,
- int registers_to_save);
- virtual ~RegExpMacroAssemblerX87();
- virtual int stack_limit_slack();
- virtual void AdvanceCurrentPosition(int by);
- virtual void AdvanceRegister(int reg, int by);
- virtual void Backtrack();
- virtual void Bind(Label* label);
- virtual void CheckAtStart(Label* on_at_start);
- virtual void CheckCharacter(uint32_t c, Label* on_equal);
- virtual void CheckCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_equal);
- virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
- virtual void CheckCharacterLT(uc16 limit, Label* on_less);
- // A "greedy loop" is a loop that is both greedy and with a simple
- // body. It has a particularly simple implementation.
- virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
- virtual void CheckNotAtStart(Label* on_not_at_start);
- virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
- virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
- Label* on_no_match);
- virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
- virtual void CheckNotCharacterAfterAnd(uint32_t c,
- uint32_t mask,
- Label* on_not_equal);
- virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
- uc16 minus,
- uc16 mask,
- Label* on_not_equal);
- virtual void CheckCharacterInRange(uc16 from,
- uc16 to,
- Label* on_in_range);
- virtual void CheckCharacterNotInRange(uc16 from,
- uc16 to,
- Label* on_not_in_range);
- virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
-
- // Checks whether the given offset from the current position is before
- // the end of the string.
- virtual void CheckPosition(int cp_offset, Label* on_outside_input);
- virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
- virtual void Fail();
- virtual Handle<HeapObject> GetCode(Handle<String> source);
- virtual void GoTo(Label* label);
- virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
- virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
- virtual void IfRegisterEqPos(int reg, Label* if_eq);
- virtual IrregexpImplementation Implementation();
- virtual void LoadCurrentCharacter(int cp_offset,
- Label* on_end_of_input,
- bool check_bounds = true,
- int characters = 1);
- virtual void PopCurrentPosition();
- virtual void PopRegister(int register_index);
- virtual void PushBacktrack(Label* label);
- virtual void PushCurrentPosition();
- virtual void PushRegister(int register_index,
- StackCheckFlag check_stack_limit);
- virtual void ReadCurrentPositionFromRegister(int reg);
- virtual void ReadStackPointerFromRegister(int reg);
- virtual void SetCurrentPositionFromEnd(int by);
- virtual void SetRegister(int register_index, int to);
- virtual bool Succeed();
- virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
- virtual void ClearRegisters(int reg_from, int reg_to);
- virtual void WriteStackPointerToRegister(int reg);
-
- // Called from RegExp if the stack-guard is triggered.
- // If the code object is relocated, the return address is fixed before
- // returning.
- static int CheckStackGuardState(Address* return_address,
- Code* re_code,
- Address re_frame);
-
- private:
- // Offsets from ebp of function parameters and stored registers.
- static const int kFramePointer = 0;
- // Above the frame pointer - function parameters and return address.
- static const int kReturn_eip = kFramePointer + kPointerSize;
- static const int kFrameAlign = kReturn_eip + kPointerSize;
- // Parameters.
- static const int kInputString = kFrameAlign;
- static const int kStartIndex = kInputString + kPointerSize;
- static const int kInputStart = kStartIndex + kPointerSize;
- static const int kInputEnd = kInputStart + kPointerSize;
- static const int kRegisterOutput = kInputEnd + kPointerSize;
- // For the case of global regular expression, we have room to store at least
- // one set of capture results. For the case of non-global regexp, we ignore
- // this value.
- static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
- static const int kStackHighEnd = kNumOutputRegisters + kPointerSize;
- static const int kDirectCall = kStackHighEnd + kPointerSize;
- static const int kIsolate = kDirectCall + kPointerSize;
- // Below the frame pointer - local stack variables.
- // When adding local variables remember to push space for them in
- // the frame in GetCode.
- static const int kBackup_esi = kFramePointer - kPointerSize;
- static const int kBackup_edi = kBackup_esi - kPointerSize;
- static const int kBackup_ebx = kBackup_edi - kPointerSize;
- static const int kSuccessfulCaptures = kBackup_ebx - kPointerSize;
- static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize;
- // First register address. Following registers are below it on the stack.
- static const int kRegisterZero = kInputStartMinusOne - kPointerSize;
-
- // Initial size of code buffer.
- static const size_t kRegExpCodeSize = 1024;
-
- // Load a number of characters at the given offset from the
- // current position, into the current-character register.
- void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
-
- // Check whether preemption has been requested.
- void CheckPreemption();
-
- // Check whether we are exceeding the stack limit on the backtrack stack.
- void CheckStackLimit();
-
- // Generate a call to CheckStackGuardState.
- void CallCheckStackGuardState(Register scratch);
-
- // The ebp-relative location of a regexp register.
- Operand register_location(int register_index);
-
- // The register containing the current character after LoadCurrentCharacter.
- inline Register current_character() { return edx; }
-
- // The register containing the backtrack stack top. Provides a meaningful
- // name to the register.
- inline Register backtrack_stackpointer() { return ecx; }
-
- // Byte size of chars in the string to match (decided by the Mode argument)
- inline int char_size() { return static_cast<int>(mode_); }
-
- // Equivalent to a conditional branch to the label, unless the label
- // is NULL, in which case it is a conditional Backtrack.
- void BranchOrBacktrack(Condition condition, Label* to);
-
- // Call and return internally in the generated code in a way that
- // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
- inline void SafeCall(Label* to);
- inline void SafeReturn();
- inline void SafeCallTarget(Label* name);
-
- // Pushes the value of a register on the backtrack stack. Decrements the
- // stack pointer (ecx) by a word size and stores the register's value there.
- inline void Push(Register source);
-
- // Pushes a value on the backtrack stack. Decrements the stack pointer (ecx)
- // by a word size and stores the value there.
- inline void Push(Immediate value);
-
- // Pops a value from the backtrack stack. Reads the word at the stack pointer
- // (ecx) and increments it by a word size.
- inline void Pop(Register target);
-
- Isolate* isolate() const { return masm_->isolate(); }
-
- MacroAssembler* masm_;
-
- // Which mode to generate code for (LATIN1 or UC16).
- Mode mode_;
-
- // One greater than maximal register index actually used.
- int num_registers_;
-
- // Number of registers to output at the end (the saved registers
- // are always 0..num_saved_registers_-1)
- int num_saved_registers_;
-
- // Labels used internally.
- Label entry_label_;
- Label start_label_;
- Label success_label_;
- Label backtrack_label_;
- Label exit_label_;
- Label check_preempt_label_;
- Label stack_overflow_label_;
-};
-#endif // V8_INTERPRETED_REGEXP
-
-}} // namespace v8::internal
-
-#endif // V8_X87_REGEXP_MACRO_ASSEMBLER_X87_H_
#include "src/ast.h"
#include "src/char-predicates-inl.h"
-#include "src/jsregexp.h"
#include "src/ostreams.h"
#include "src/parser.h"
-#include "src/regexp-macro-assembler.h"
-#include "src/regexp-macro-assembler-irregexp.h"
+#include "src/regexp/jsregexp.h"
+#include "src/regexp/regexp-macro-assembler.h"
+#include "src/regexp/regexp-macro-assembler-irregexp.h"
#include "src/splay-tree-inl.h"
#include "src/string-stream.h"
#ifdef V8_INTERPRETED_REGEXP
-#include "src/interpreter-irregexp.h"
+#include "src/regexp/interpreter-irregexp.h"
#else // V8_INTERPRETED_REGEXP
#include "src/macro-assembler.h"
#if V8_TARGET_ARCH_ARM
#include "src/arm/assembler-arm.h" // NOLINT
#include "src/arm/macro-assembler-arm.h"
-#include "src/arm/regexp-macro-assembler-arm.h"
+#include "src/regexp/arm/regexp-macro-assembler-arm.h"
#endif
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/assembler-arm64.h"
#include "src/arm64/macro-assembler-arm64.h"
-#include "src/arm64/regexp-macro-assembler-arm64.h"
+#include "src/regexp/arm64/regexp-macro-assembler-arm64.h"
#endif
#if V8_TARGET_ARCH_PPC
#include "src/ppc/assembler-ppc.h"
#include "src/ppc/macro-assembler-ppc.h"
-#include "src/ppc/regexp-macro-assembler-ppc.h"
+#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
#endif
#if V8_TARGET_ARCH_MIPS
#include "src/mips/assembler-mips.h"
#include "src/mips/macro-assembler-mips.h"
-#include "src/mips/regexp-macro-assembler-mips.h"
+#include "src/regexp/mips/regexp-macro-assembler-mips.h"
#endif
#if V8_TARGET_ARCH_MIPS64
#include "src/mips64/assembler-mips64.h"
#include "src/mips64/macro-assembler-mips64.h"
-#include "src/mips64/regexp-macro-assembler-mips64.h"
+#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
#endif
#if V8_TARGET_ARCH_X64
+#include "src/regexp/x64/regexp-macro-assembler-x64.h"
#include "src/x64/assembler-x64.h"
#include "src/x64/macro-assembler-x64.h"
-#include "src/x64/regexp-macro-assembler-x64.h"
#endif
#if V8_TARGET_ARCH_IA32
#include "src/ia32/assembler-ia32.h"
#include "src/ia32/macro-assembler-ia32.h"
-#include "src/ia32/regexp-macro-assembler-ia32.h"
+#include "src/regexp/ia32/regexp-macro-assembler-ia32.h"
#endif
#if V8_TARGET_ARCH_X87
+#include "src/regexp/x87/regexp-macro-assembler-x87.h"
#include "src/x87/assembler-x87.h"
#include "src/x87/macro-assembler-x87.h"
-#include "src/x87/regexp-macro-assembler-x87.h"
#endif
#endif // V8_INTERPRETED_REGEXP
#include "test/cctest/cctest.h"
'../../src/bootstrapper.h',
'../../src/builtins.cc',
'../../src/builtins.h',
- '../../src/bytecodes-irregexp.h',
'../../src/cached-powers.cc',
'../../src/cached-powers.h',
'../../src/cancelable-task.cc',
'../../src/ic/ic-compiler.h',
'../../src/interface-descriptors.cc',
'../../src/interface-descriptors.h',
- '../../src/interpreter-irregexp.cc',
- '../../src/interpreter-irregexp.h',
'../../src/interpreter/bytecodes.cc',
'../../src/interpreter/bytecodes.h',
'../../src/interpreter/bytecode-array-builder.cc',
'../../src/isolate.h',
'../../src/json-parser.h',
'../../src/json-stringifier.h',
- '../../src/jsregexp-inl.h',
- '../../src/jsregexp.cc',
- '../../src/jsregexp.h',
'../../src/layout-descriptor-inl.h',
'../../src/layout-descriptor.cc',
'../../src/layout-descriptor.h',
'../../src/property.cc',
'../../src/property.h',
'../../src/prototype.h',
- '../../src/regexp-macro-assembler-irregexp-inl.h',
- '../../src/regexp-macro-assembler-irregexp.cc',
- '../../src/regexp-macro-assembler-irregexp.h',
- '../../src/regexp-macro-assembler-tracer.cc',
- '../../src/regexp-macro-assembler-tracer.h',
- '../../src/regexp-macro-assembler.cc',
- '../../src/regexp-macro-assembler.h',
- '../../src/regexp-stack.cc',
- '../../src/regexp-stack.h',
+ '../../src/regexp/bytecodes-irregexp.h',
+ '../../src/regexp/interpreter-irregexp.cc',
+ '../../src/regexp/interpreter-irregexp.h',
+ '../../src/regexp/jsregexp-inl.h',
+ '../../src/regexp/jsregexp.cc',
+ '../../src/regexp/jsregexp.h',
+ '../../src/regexp/regexp-macro-assembler-irregexp-inl.h',
+ '../../src/regexp/regexp-macro-assembler-irregexp.cc',
+ '../../src/regexp/regexp-macro-assembler-irregexp.h',
+ '../../src/regexp/regexp-macro-assembler-tracer.cc',
+ '../../src/regexp/regexp-macro-assembler-tracer.h',
+ '../../src/regexp/regexp-macro-assembler.cc',
+ '../../src/regexp/regexp-macro-assembler.h',
+ '../../src/regexp/regexp-stack.cc',
+ '../../src/regexp/regexp-stack.h',
'../../src/rewriter.cc',
'../../src/rewriter.h',
'../../src/runtime-profiler.cc',
'../../src/arm/lithium-gap-resolver-arm.h',
'../../src/arm/macro-assembler-arm.cc',
'../../src/arm/macro-assembler-arm.h',
- '../../src/arm/regexp-macro-assembler-arm.cc',
- '../../src/arm/regexp-macro-assembler-arm.h',
'../../src/arm/simulator-arm.cc',
'../../src/arm/simulator-arm.h',
'../../src/compiler/arm/code-generator-arm.cc',
'../../src/ic/arm/ic-arm.cc',
'../../src/ic/arm/ic-compiler-arm.cc',
'../../src/ic/arm/stub-cache-arm.cc',
+ '../../src/regexp/arm/regexp-macro-assembler-arm.cc',
+ '../../src/regexp/arm/regexp-macro-assembler-arm.h',
],
}],
['v8_target_arch=="arm64"', {
'../../src/arm64/macro-assembler-arm64.cc',
'../../src/arm64/macro-assembler-arm64.h',
'../../src/arm64/macro-assembler-arm64-inl.h',
- '../../src/arm64/regexp-macro-assembler-arm64.cc',
- '../../src/arm64/regexp-macro-assembler-arm64.h',
'../../src/arm64/simulator-arm64.cc',
'../../src/arm64/simulator-arm64.h',
'../../src/arm64/utils-arm64.cc',
'../../src/ic/arm64/ic-arm64.cc',
'../../src/ic/arm64/ic-compiler-arm64.cc',
'../../src/ic/arm64/stub-cache-arm64.cc',
+ '../../src/regexp/arm64/regexp-macro-assembler-arm64.cc',
+ '../../src/regexp/arm64/regexp-macro-assembler-arm64.h',
],
}],
['v8_target_arch=="ia32"', {
'../../src/ia32/lithium-ia32.h',
'../../src/ia32/macro-assembler-ia32.cc',
'../../src/ia32/macro-assembler-ia32.h',
- '../../src/ia32/regexp-macro-assembler-ia32.cc',
- '../../src/ia32/regexp-macro-assembler-ia32.h',
'../../src/compiler/ia32/code-generator-ia32.cc',
'../../src/compiler/ia32/instruction-codes-ia32.h',
'../../src/compiler/ia32/instruction-selector-ia32.cc',
'../../src/ic/ia32/ic-ia32.cc',
'../../src/ic/ia32/ic-compiler-ia32.cc',
'../../src/ic/ia32/stub-cache-ia32.cc',
+ '../../src/regexp/ia32/regexp-macro-assembler-ia32.cc',
+ '../../src/regexp/ia32/regexp-macro-assembler-ia32.h',
],
}],
['v8_target_arch=="x87"', {
'../../src/x87/lithium-x87.h',
'../../src/x87/macro-assembler-x87.cc',
'../../src/x87/macro-assembler-x87.h',
- '../../src/x87/regexp-macro-assembler-x87.cc',
- '../../src/x87/regexp-macro-assembler-x87.h',
'../../src/compiler/x87/code-generator-x87.cc',
'../../src/compiler/x87/instruction-codes-x87.h',
'../../src/compiler/x87/instruction-selector-x87.cc',
'../../src/ic/x87/ic-x87.cc',
'../../src/ic/x87/ic-compiler-x87.cc',
'../../src/ic/x87/stub-cache-x87.cc',
+ '../../src/regexp/x87/regexp-macro-assembler-x87.cc',
+ '../../src/regexp/x87/regexp-macro-assembler-x87.h',
],
}],
['v8_target_arch=="mips" or v8_target_arch=="mipsel"', {
'../../src/mips/lithium-mips.h',
'../../src/mips/macro-assembler-mips.cc',
'../../src/mips/macro-assembler-mips.h',
- '../../src/mips/regexp-macro-assembler-mips.cc',
- '../../src/mips/regexp-macro-assembler-mips.h',
'../../src/mips/simulator-mips.cc',
'../../src/mips/simulator-mips.h',
'../../src/compiler/mips/code-generator-mips.cc',
'../../src/ic/mips/ic-mips.cc',
'../../src/ic/mips/ic-compiler-mips.cc',
'../../src/ic/mips/stub-cache-mips.cc',
+ '../../src/regexp/mips/regexp-macro-assembler-mips.cc',
+ '../../src/regexp/mips/regexp-macro-assembler-mips.h',
],
}],
['v8_target_arch=="mips64el"', {
'../../src/mips64/lithium-mips64.h',
'../../src/mips64/macro-assembler-mips64.cc',
'../../src/mips64/macro-assembler-mips64.h',
- '../../src/mips64/regexp-macro-assembler-mips64.cc',
- '../../src/mips64/regexp-macro-assembler-mips64.h',
'../../src/mips64/simulator-mips64.cc',
'../../src/mips64/simulator-mips64.h',
'../../src/compiler/mips64/code-generator-mips64.cc',
'../../src/ic/mips64/ic-mips64.cc',
'../../src/ic/mips64/ic-compiler-mips64.cc',
'../../src/ic/mips64/stub-cache-mips64.cc',
+ '../../src/regexp/mips64/regexp-macro-assembler-mips64.cc',
+ '../../src/regexp/mips64/regexp-macro-assembler-mips64.h',
],
}],
['v8_target_arch=="x64" or v8_target_arch=="x32"', {
'../../src/x64/lithium-x64.h',
'../../src/x64/macro-assembler-x64.cc',
'../../src/x64/macro-assembler-x64.h',
- '../../src/x64/regexp-macro-assembler-x64.cc',
- '../../src/x64/regexp-macro-assembler-x64.h',
'../../src/debug/x64/debug-x64.cc',
'../../src/full-codegen/x64/full-codegen-x64.cc',
'../../src/ic/x64/access-compiler-x64.cc',
'../../src/ic/x64/ic-x64.cc',
'../../src/ic/x64/ic-compiler-x64.cc',
'../../src/ic/x64/stub-cache-x64.cc',
+ '../../src/regexp/x64/regexp-macro-assembler-x64.cc',
+ '../../src/regexp/x64/regexp-macro-assembler-x64.h',
],
}],
['v8_target_arch=="x64"', {
'../../src/ppc/lithium-gap-resolver-ppc.h',
'../../src/ppc/macro-assembler-ppc.cc',
'../../src/ppc/macro-assembler-ppc.h',
- '../../src/ppc/regexp-macro-assembler-ppc.cc',
- '../../src/ppc/regexp-macro-assembler-ppc.h',
'../../src/ppc/simulator-ppc.cc',
'../../src/ppc/simulator-ppc.h',
'../../src/compiler/ppc/code-generator-ppc.cc',
'../../src/ic/ppc/ic-ppc.cc',
'../../src/ic/ppc/ic-compiler-ppc.cc',
'../../src/ic/ppc/stub-cache-ppc.cc',
+ '../../src/regexp/ppc/regexp-macro-assembler-ppc.cc',
+ '../../src/regexp/ppc/regexp-macro-assembler-ppc.h',
],
}],
['OS=="win"', {