}
if (!type->IsClass()) return false;
- Handle<Map> map = type->AsClass();
+ Handle<Map> map = type->AsClass()->Map();
switch (map->instance_type()) {
case JS_ARRAY_TYPE:
} else if (representation.IsHeapObject()) {
HeapType* field_type = descriptors->GetFieldType(descriptor);
if (field_type->IsClass()) {
- __ CheckMap(value_reg, scratch1, field_type->AsClass(),
+ __ CheckMap(value_reg, scratch1, field_type->AsClass()->Map(),
miss_label, DO_SMI_CHECK);
} else {
ASSERT(HeapType::Any()->Is(field_type));
} else if (representation.IsHeapObject()) {
HeapType* field_type = lookup->GetFieldType();
if (field_type->IsClass()) {
- __ CheckMap(value_reg, scratch1, field_type->AsClass(),
+ __ CheckMap(value_reg, scratch1, field_type->AsClass()->Map(),
miss_label, DO_SMI_CHECK);
} else {
ASSERT(HeapType::Any()->Is(field_type));
int depth = 0;
Handle<JSObject> current = Handle<JSObject>::null();
- if (type->IsConstant()) current = Handle<JSObject>::cast(type->AsConstant());
+ if (type->IsConstant()) {
+ current = Handle<JSObject>::cast(type->AsConstant()->Value());
+ }
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder->map());
} else if (representation.IsHeapObject()) {
HeapType* field_type = descriptors->GetFieldType(descriptor);
if (field_type->IsClass()) {
- __ CheckMap(value_reg, scratch1, field_type->AsClass(),
+ __ CheckMap(value_reg, scratch1, field_type->AsClass()->Map(),
miss_label, DO_SMI_CHECK);
} else {
ASSERT(HeapType::Any()->Is(field_type));
} else if (representation.IsHeapObject()) {
HeapType* field_type = lookup->GetFieldType();
if (field_type->IsClass()) {
- __ CheckMap(value_reg, scratch1, field_type->AsClass(),
+ __ CheckMap(value_reg, scratch1, field_type->AsClass()->Map(),
miss_label, DO_SMI_CHECK);
} else {
ASSERT(HeapType::Any()->Is(field_type));
Handle<JSObject> current = Handle<JSObject>::null();
if (type->IsConstant()) {
- current = Handle<JSObject>::cast(type->AsConstant());
+ current = Handle<JSObject>::cast(type->AsConstant()->Value());
}
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
if (cell->type()->IsConstant()) {
PropertyCell::AddDependentCompilationInfo(cell, top_info());
- Handle<Object> constant_object = cell->type()->AsConstant();
+ Handle<Object> constant_object = cell->type()->AsConstant()->Value();
if (constant_object->IsConsString()) {
constant_object =
String::Flatten(Handle<String>::cast(constant_object));
static bool CanInlinePropertyAccess(Type* type) {
if (type->Is(Type::NumberOrString())) return true;
if (!type->IsClass()) return false;
- Handle<Map> map = type->AsClass();
+ Handle<Map> map = type->AsClass()->Map();
return map->IsJSObjectMap() &&
!map->is_dictionary_map() &&
!map->has_named_interceptor();
Handle<GlobalObject> global(current_info()->global_object());
Handle<PropertyCell> cell(global->GetPropertyCell(&lookup));
if (cell->type()->IsConstant()) {
- Handle<Object> constant = cell->type()->AsConstant();
+ Handle<Object> constant = cell->type()->AsConstant()->Value();
if (value->IsConstant()) {
HConstant* c_value = HConstant::cast(value);
if (!constant.is_identical_to(c_value->handle(isolate()))) {
HValue* operand_to_check =
left->block()->block_id() < right->block()->block_id() ? left : right;
if (combined_type->IsClass()) {
- Handle<Map> map = combined_type->AsClass();
+ Handle<Map> map = combined_type->AsClass()->Map();
AddCheckMap(operand_to_check, map);
HCompareObjectEqAndBranch* result =
New<HCompareObjectEqAndBranch>(left, right);
context = context->native_context();
return handle(context->string_function()->initial_map());
} else {
- return type_->AsClass();
+ return type_->AsClass()->Map();
}
}
Type* type() const { return type_; }
} else if (representation.IsHeapObject()) {
HeapType* field_type = descriptors->GetFieldType(descriptor);
if (field_type->IsClass()) {
- __ CheckMap(value_reg, field_type->AsClass(), miss_label, DO_SMI_CHECK);
+ __ CheckMap(value_reg, field_type->AsClass()->Map(),
+ miss_label, DO_SMI_CHECK);
} else {
ASSERT(HeapType::Any()->Is(field_type));
__ JumpIfSmi(value_reg, miss_label);
} else if (representation.IsHeapObject()) {
HeapType* field_type = lookup->GetFieldType();
if (field_type->IsClass()) {
- __ CheckMap(value_reg, field_type->AsClass(), miss_label, DO_SMI_CHECK);
+ __ CheckMap(value_reg, field_type->AsClass()->Map(),
+ miss_label, DO_SMI_CHECK);
} else {
ASSERT(HeapType::Any()->Is(field_type));
__ JumpIfSmi(value_reg, miss_label);
int depth = 0;
Handle<JSObject> current = Handle<JSObject>::null();
- if (type->IsConstant()) current = Handle<JSObject>::cast(type->AsConstant());
+ if (type->IsConstant()) current =
+ Handle<JSObject>::cast(type->AsConstant()->Value());
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder->map());
for (int i = 0; i < number_of_types; i++) {
Handle<HeapType> current_type = types.at(i);
- if (current_type->IsClass() && current_type->AsClass()->is_deprecated()) {
+ if (current_type->IsClass() &&
+ current_type->AsClass()->Map()->is_deprecated()) {
// Filter out deprecated maps to ensure their instances get migrated.
++deprecated_types;
} else if (type->NowIs(current_type)) {
} else if (handler_to_overwrite == -1 &&
current_type->IsClass() &&
type->IsClass() &&
- IsTransitionOfMonomorphicTarget(*current_type->AsClass(),
- *type->AsClass())) {
+ IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(),
+ *type->AsClass()->Map())) {
handler_to_overwrite = i;
}
}
return isolate->factory()->heap_number_map();
if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map();
if (type->IsConstant()) {
- return handle(Handle<JSGlobalObject>::cast(type->AsConstant())->map());
+ return handle(
+ Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map());
}
ASSERT(type->IsClass());
- return type->AsClass();
+ return type->AsClass()->Map();
}
if (r.IsHeapObject()) ASSERT(value->IsHeapObject());
HeapType* field_type = descriptors->GetFieldType(i);
if (field_type->IsClass()) {
- Map* map = *field_type->AsClass();
+ Map* map = *field_type->AsClass()->Map();
CHECK(!map->is_stable() || HeapObject::cast(value)->map() == map);
} else if (r.IsNone()) {
CHECK(field_type->Is(HeapType::None()));
}
-#define FIXED_TYPED_ARRAY_CAST_ACCESSOR(type) \
- template<> \
- type* type::cast(Object* object) { \
- SLOW_ASSERT(object->Is##type()); \
- return reinterpret_cast<type*>(object); \
- }
-
#define INT_ACCESSORS(holder, name, offset) \
int holder::name() { return READ_INT_FIELD(this, offset); } \
void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
// check that the global property cell is empty.
if (last_map->IsJSGlobalObjectMap()) {
Handle<JSGlobalObject> global = last.is_null()
- ? Handle<JSGlobalObject>::cast(type->AsConstant())
+ ? Handle<JSGlobalObject>::cast(type->AsConstant()->Value())
: Handle<JSGlobalObject>::cast(last);
GenerateCheckPropertyCell(masm(), global, name, scratch2(), &miss);
}
namespace v8 {
namespace internal {
+// -------------------------------------------------------------------------- //
+// TypeImpl
+
+template<class Config>
+typename TypeImpl<Config>::template Iterator<i::Map>
+TypeImpl<Config>::Classes() {
+ if (this->IsBitset()) return Iterator<i::Map>();
+ return Iterator<i::Map>(Config::handle(this));
+}
+
+
+template<class Config>
+typename TypeImpl<Config>::template Iterator<i::Object>
+TypeImpl<Config>::Constants() {
+ if (this->IsBitset()) return Iterator<i::Object>();
+ return Iterator<i::Object>(Config::handle(this));
+}
+
+
+template<class Config>
+TypeImpl<Config>* TypeImpl<Config>::cast(typename Config::Base* object) {
+ TypeImpl* t = static_cast<TypeImpl*>(object);
+ ASSERT(t->IsBitset() || t->IsClass() || t->IsConstant() ||
+ t->IsUnion() || t->IsArray() || t->IsFunction());
+ return t;
+}
+
+
template<class Config>
bool TypeImpl<Config>::NowContains(i::Object* value) {
DisallowHeapAllocation no_allocation;
}
+// -------------------------------------------------------------------------- //
+// ZoneTypeConfig
+
// static
-Type* ZoneTypeConfig::handle(Type* type) {
+template<class T>
+T* ZoneTypeConfig::handle(T* type) {
return type;
}
+// static
+template<class T>
+T* ZoneTypeConfig::cast(Type* type) {
+ return static_cast<T*>(type);
+}
+
+
// static
bool ZoneTypeConfig::is_bitset(Type* type) {
return reinterpret_cast<intptr_t>(type) & 1;
// static
-bool ZoneTypeConfig::is_struct(Type* type) {
- return !is_bitset(type);
+bool ZoneTypeConfig::is_struct(Type* type, int tag) {
+ return !is_bitset(type) && struct_tag(as_struct(type)) == tag;
}
// static
bool ZoneTypeConfig::is_class(Type* type) {
- return is_struct(type) && struct_tag(as_struct(type)) == Type::kClassTag;
+ return is_struct(type, Type::StructuralType::kClassTag);
}
// static
bool ZoneTypeConfig::is_constant(Type* type) {
- return is_struct(type) && struct_tag(as_struct(type)) == Type::kConstantTag;
+ return is_struct(type, Type::StructuralType::kConstantTag);
}
// static
ZoneTypeConfig::Struct* ZoneTypeConfig::as_struct(Type* type) {
- ASSERT(is_struct(type));
+ ASSERT(!is_bitset(type));
return reinterpret_cast<Struct*>(type);
}
// static
ZoneTypeConfig::Type* ZoneTypeConfig::from_class(
i::Handle<i::Map> map, int lub, Zone* zone) {
- Struct* structured = struct_create(Type::kClassTag, 2, zone);
+ Struct* structured = struct_create(Type::StructuralType::kClassTag, 2, zone);
structured[2] = from_bitset(lub);
structured[3] = map.location();
return from_struct(structured);
// static
ZoneTypeConfig::Type* ZoneTypeConfig::from_constant(
i::Handle<i::Object> value, int lub, Zone* zone) {
- Struct* structured = struct_create(Type::kConstantTag, 2, zone);
+ Struct* structured =
+ struct_create(Type::StructuralType::kConstantTag, 2, zone);
structured[2] = from_bitset(lub);
structured[3] = value.location();
return from_struct(structured);
return as_bitset(struct_get(as_struct(type), 0));
}
+
// -------------------------------------------------------------------------- //
+// HeapTypeConfig
// static
-i::Handle<HeapTypeConfig::Type> HeapTypeConfig::handle(Type* type) {
+template<class T>
+i::Handle<T> HeapTypeConfig::handle(T* type) {
return i::handle(type, i::HeapObject::cast(type)->GetIsolate());
}
+// static
+template<class T>
+i::Handle<T> HeapTypeConfig::cast(i::Handle<Type> type) {
+ return i::Handle<T>::cast(type);
+}
+
+
// static
bool HeapTypeConfig::is_bitset(Type* type) {
return type->IsSmi();
// static
-bool HeapTypeConfig::is_struct(Type* type) {
- return type->IsFixedArray();
+bool HeapTypeConfig::is_struct(Type* type, int tag) {
+ return type->IsFixedArray() && struct_tag(as_struct(type)) == tag;
}
// static
int HeapTypeConfig::as_bitset(Type* type) {
- return Smi::cast(type)->value();
+ return i::Smi::cast(type)->value();
}
template<class Config>
int TypeImpl<Config>::NumClasses() {
+ DisallowHeapAllocation no_allocation;
if (this->IsClass()) {
return 1;
} else if (this->IsUnion()) {
- StructHandle unioned = this->AsUnion();
+ UnionHandle unioned = handle(this->AsUnion());
int result = 0;
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- if (Config::struct_get(unioned, i)->IsClass()) ++result;
+ for (int i = 0; i < unioned->Length(); ++i) {
+ if (unioned->Get(i)->IsClass()) ++result;
}
return result;
} else {
template<class Config>
int TypeImpl<Config>::NumConstants() {
+ DisallowHeapAllocation no_allocation;
if (this->IsConstant()) {
return 1;
} else if (this->IsUnion()) {
- StructHandle unioned = this->AsUnion();
+ UnionHandle unioned = handle(this->AsUnion());
int result = 0;
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- if (Config::struct_get(unioned, i)->IsConstant()) ++result;
+ for (int i = 0; i < unioned->Length(); ++i) {
+ if (unioned->Get(i)->IsConstant()) ++result;
}
return result;
} else {
typename TypeImpl<Config>::TypeHandle
TypeImpl<Config>::Iterator<T>::get_type() {
ASSERT(!Done());
- return type_->IsUnion()
- ? Config::struct_get(type_->AsUnion(), index_) : type_;
+ return type_->IsUnion() ? type_->AsUnion()->Get(index_) : type_;
}
return type->IsClass();
}
static i::Handle<i::Map> current(typename TypeImpl<Config>::TypeHandle type) {
- return type->AsClass();
+ return type->AsClass()->Map();
}
};
}
static i::Handle<i::Object> current(
typename TypeImpl<Config>::TypeHandle type) {
- return type->AsConstant();
+ return type->AsConstant()->Value();
}
};
template<class Config> template<class T>
void TypeImpl<Config>::Iterator<T>::Advance() {
+ DisallowHeapAllocation no_allocation;
++index_;
if (type_->IsUnion()) {
- StructHandle unioned = type_->AsUnion();
- for (; index_ < Config::struct_length(unioned); ++index_) {
- if (matches(Config::struct_get(unioned, index_))) return;
+ UnionHandle unioned = handle(type_->AsUnion());
+ for (; index_ < unioned->Length(); ++index_) {
+ if (matches(unioned->Get(index_))) return;
}
} else if (index_ == 0 && matches(type_)) {
return;
}
+// Get the largest bitset subsumed by this type.
+template<class Config>
+int TypeImpl<Config>::BitsetType::Glb(TypeImpl* type) {
+ DisallowHeapAllocation no_allocation;
+ if (type->IsBitset()) {
+ return type->AsBitset();
+ } else if (type->IsUnion()) {
+ // All but the first are non-bitsets and thus would yield kNone anyway.
+ return type->AsUnion()->Get(0)->BitsetGlb();
+ } else {
+ return kNone;
+ }
+}
+
+
// Get the smallest bitset subsuming this type.
template<class Config>
-int TypeImpl<Config>::LubBitset() {
- if (this->IsBitset()) {
- return this->AsBitset();
- } else if (this->IsUnion()) {
- StructHandle unioned = this->AsUnion();
+int TypeImpl<Config>::BitsetType::Lub(TypeImpl* type) {
+ DisallowHeapAllocation no_allocation;
+ if (type->IsBitset()) {
+ return type->AsBitset();
+ } else if (type->IsUnion()) {
+ UnionHandle unioned = handle(type->AsUnion());
int bitset = kNone;
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- bitset |= Config::struct_get(unioned, i)->LubBitset();
+ for (int i = 0; i < unioned->Length(); ++i) {
+ bitset |= unioned->Get(i)->BitsetLub();
}
return bitset;
- } else if (this->IsClass()) {
- int bitset = Config::lub_bitset(this);
- return bitset ? bitset : LubBitset(*this->AsClass());
+ } else if (type->IsClass()) {
+ int bitset = Config::lub_bitset(type);
+ return bitset ? bitset : Lub(*type->AsClass()->Map());
+ } else if (type->IsConstant()) {
+ int bitset = Config::lub_bitset(type);
+ return bitset ? bitset : Lub(*type->AsConstant()->Value());
+ } else if (type->IsArray()) {
+ return kArray;
+ } else if (type->IsFunction()) {
+ return kFunction;
} else {
- int bitset = Config::lub_bitset(this);
- return bitset ? bitset : LubBitset(*this->AsConstant());
+ UNREACHABLE();
+ return kNone;
}
}
template<class Config>
-int TypeImpl<Config>::LubBitset(i::Object* value) {
+int TypeImpl<Config>::BitsetType::Lub(i::Object* value) {
+ DisallowHeapAllocation no_allocation;
if (value->IsSmi()) return kSignedSmall & kTaggedInt;
i::Map* map = i::HeapObject::cast(value)->map();
if (map->instance_type() == HEAP_NUMBER_TYPE) {
value->ToInt32(&i) ? (Smi::IsValid(i) ? kSignedSmall : kOtherSigned32) :
value->ToUint32(&u) ? kUnsigned32 : kFloat);
}
- return LubBitset(map);
+ return Lub(map);
}
template<class Config>
-int TypeImpl<Config>::LubBitset(i::Map* map) {
+int TypeImpl<Config>::BitsetType::Lub(i::Map* map) {
+ DisallowHeapAllocation no_allocation;
switch (map->instance_type()) {
case STRING_TYPE:
case ASCII_STRING_TYPE:
}
-// Get the largest bitset subsumed by this type.
-template<class Config>
-int TypeImpl<Config>::GlbBitset() {
- if (this->IsBitset()) {
- return this->AsBitset();
- } else if (this->IsUnion()) {
- // All but the first are non-bitsets and thus would yield kNone anyway.
- return Config::struct_get(this->AsUnion(), 0)->GlbBitset();
- } else {
- return kNone;
- }
-}
-
-
// Most precise _current_ type of a value (usually its class).
template<class Config>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::NowOf(
// Check this <= that.
template<class Config>
bool TypeImpl<Config>::SlowIs(TypeImpl* that) {
+ DisallowHeapAllocation no_allocation;
+
// Fast path for bitsets.
if (this->IsNone()) return true;
if (that->IsBitset()) {
- return (this->LubBitset() | that->AsBitset()) == that->AsBitset();
+ return (BitsetType::Lub(this) | that->AsBitset()) == that->AsBitset();
}
if (that->IsClass()) {
- return this->IsClass() && *this->AsClass() == *that->AsClass();
+ return this->IsClass()
+ && *this->AsClass()->Map() == *that->AsClass()->Map();
}
if (that->IsConstant()) {
- return this->IsConstant() && *this->AsConstant() == *that->AsConstant();
+ return this->IsConstant()
+ && *this->AsConstant()->Value() == *that->AsConstant()->Value();
+ }
+ if (that->IsArray()) {
+ return this->IsArray()
+ && this->AsArray()->Element()->Equals(that->AsArray()->Element());
+ }
+ if (that->IsFunction()) {
+ // We currently do not allow for any variance here, in order to keep
+ // Union and Intersect operations simple.
+ if (!this->IsFunction()) return false;
+ FunctionType* this_fun = this->AsFunction();
+ FunctionType* that_fun = that->AsFunction();
+ if (this_fun->Arity() != that_fun->Arity() ||
+ !this_fun->Result()->Equals(that_fun->Result()) ||
+ !that_fun->Receiver()->Equals(this_fun->Receiver())) {
+ return false;
+ }
+ for (int i = 0; i < this_fun->Arity(); ++i) {
+ if (!that_fun->Parameter(i)->Equals(this_fun->Parameter(i))) return false;
+ }
+ return true;
}
// (T1 \/ ... \/ Tn) <= T <=> (T1 <= T) /\ ... /\ (Tn <= T)
if (this->IsUnion()) {
- StructHandle unioned = this->AsUnion();
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- TypeHandle this_i = Config::struct_get(unioned, i);
- if (!this_i->Is(that)) return false;
+ UnionHandle unioned = handle(this->AsUnion());
+ for (int i = 0; i < unioned->Length(); ++i) {
+ if (!unioned->Get(i)->Is(that)) return false;
}
return true;
}
// (iff T is not a union)
ASSERT(!this->IsUnion());
if (that->IsUnion()) {
- StructHandle unioned = that->AsUnion();
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- TypeHandle that_i = Config::struct_get(unioned, i);
- if (this->Is(that_i)) return true;
+ UnionHandle unioned = handle(that->AsUnion());
+ for (int i = 0; i < unioned->Length(); ++i) {
+ if (this->Is(unioned->Get(i))) return true;
if (this->IsBitset()) break; // Fast fail, only first field is a bitset.
}
return false;
template<class Config>
bool TypeImpl<Config>::NowIs(TypeImpl* that) {
+ DisallowHeapAllocation no_allocation;
+
// TODO(rossberg): this is incorrect for
// Union(Constant(V), T)->NowIs(Class(M))
// but fuzzing does not cover that!
- DisallowHeapAllocation no_allocation;
if (this->IsConstant()) {
- i::Object* object = *this->AsConstant();
+ i::Object* object = *this->AsConstant()->Value();
if (object->IsHeapObject()) {
i::Map* map = i::HeapObject::cast(object)->map();
for (Iterator<i::Map> it = that->Classes(); !it.Done(); it.Advance()) {
// Check this overlaps that.
template<class Config>
bool TypeImpl<Config>::Maybe(TypeImpl* that) {
+ DisallowHeapAllocation no_allocation;
+
// (T1 \/ ... \/ Tn) overlaps T <=> (T1 overlaps T) \/ ... \/ (Tn overlaps T)
if (this->IsUnion()) {
- StructHandle unioned = this->AsUnion();
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- TypeHandle this_i = Config::struct_get(unioned, i);
- if (this_i->Maybe(that)) return true;
+ UnionHandle unioned = handle(this->AsUnion());
+ for (int i = 0; i < unioned->Length(); ++i) {
+ if (unioned->Get(i)->Maybe(that)) return true;
}
return false;
}
// T overlaps (T1 \/ ... \/ Tn) <=> (T overlaps T1) \/ ... \/ (T overlaps Tn)
if (that->IsUnion()) {
- StructHandle unioned = that->AsUnion();
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- TypeHandle that_i = Config::struct_get(unioned, i);
- if (this->Maybe(that_i)) return true;
+ UnionHandle unioned = handle(that->AsUnion());
+ for (int i = 0; i < unioned->Length(); ++i) {
+ if (this->Maybe(unioned->Get(i))) return true;
}
return false;
}
ASSERT(!this->IsUnion() && !that->IsUnion());
if (this->IsBitset()) {
- return IsInhabited(this->AsBitset() & that->LubBitset());
+ return BitsetType::IsInhabited(this->AsBitset() & that->BitsetLub());
}
if (that->IsBitset()) {
- return IsInhabited(this->LubBitset() & that->AsBitset());
+ return BitsetType::IsInhabited(this->BitsetLub() & that->AsBitset());
}
-
if (this->IsClass()) {
- return that->IsClass() && *this->AsClass() == *that->AsClass();
+ return that->IsClass()
+ && *this->AsClass()->Map() == *that->AsClass()->Map();
}
if (this->IsConstant()) {
- return that->IsConstant() && *this->AsConstant() == *that->AsConstant();
+ return that->IsConstant()
+ && *this->AsConstant()->Value() == *that->AsConstant()->Value();
+ }
+ if (this->IsArray()) {
+ // There is no variance!
+ return this->Equals(that);
+ }
+ if (this->IsFunction()) {
+ // There is no variance!
+ return this->Equals(that);
}
return false;
template<class Config>
bool TypeImpl<Config>::Contains(i::Object* value) {
+ DisallowHeapAllocation no_allocation;
+
for (Iterator<i::Object> it = this->Constants(); !it.Done(); it.Advance()) {
if (*it.Current() == value) return true;
}
- return Config::from_bitset(LubBitset(value))->Is(this);
+ return BitsetType::New(BitsetType::Lub(value))->Is(this);
}
template<class Config>
-bool TypeImpl<Config>::InUnion(StructHandle unioned, int current_size) {
+bool TypeImpl<Config>::InUnion(UnionHandle unioned, int current_size) {
ASSERT(!this->IsUnion());
for (int i = 0; i < current_size; ++i) {
- TypeHandle type = Config::struct_get(unioned, i);
- if (this->Is(type)) return true;
+ if (this->Is(unioned->Get(i))) return true;
}
return false;
}
// starting at index. Returns updated index.
template<class Config>
int TypeImpl<Config>::ExtendUnion(
- StructHandle result, TypeHandle type, int current_size) {
+ UnionHandle result, TypeHandle type, int current_size) {
int old_size = current_size;
- if (type->IsClass() || type->IsConstant()) {
- if (!type->InUnion(result, old_size)) {
- Config::struct_set(result, current_size++, type);
- }
- } else if (type->IsUnion()) {
- StructHandle unioned = type->AsUnion();
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- TypeHandle type = Config::struct_get(unioned, i);
- ASSERT(i == 0 ||
- !(type->IsBitset() || type->Is(Config::struct_get(unioned, 0))));
+ if (type->IsUnion()) {
+ UnionHandle unioned = handle(type->AsUnion());
+ for (int i = 0; i < unioned->Length(); ++i) {
+ TypeHandle type = unioned->Get(i);
+ ASSERT(i == 0 || !(type->IsBitset() || type->Is(unioned->Get(0))));
if (!type->IsBitset() && !type->InUnion(result, old_size)) {
- Config::struct_set(result, current_size++, type);
+ result->Set(current_size++, type);
}
}
+ } else if (!type->IsBitset()) {
+ // For all structural types, subtyping implies equivalence.
+ ASSERT(type->IsClass() || type->IsConstant() ||
+ type->IsArray() || type->IsFunction());
+ if (!type->InUnion(result, old_size)) {
+ result->Set(current_size++, type);
+ }
}
return current_size;
}
TypeHandle type1, TypeHandle type2, Region* region) {
// Fast case: bit sets.
if (type1->IsBitset() && type2->IsBitset()) {
- return Config::from_bitset(type1->AsBitset() | type2->AsBitset(), region);
+ return BitsetType::New(type1->AsBitset() | type2->AsBitset(), region);
}
// Fast case: top or bottom types.
// Slow case: may need to produce a Unioned object.
int size = 0;
if (!type1->IsBitset()) {
- size += (type1->IsUnion() ? Config::struct_length(type1->AsUnion()) : 1);
+ size += (type1->IsUnion() ? type1->AsUnion()->Length() : 1);
}
if (!type2->IsBitset()) {
- size += (type2->IsUnion() ? Config::struct_length(type2->AsUnion()) : 1);
+ size += (type2->IsUnion() ? type2->AsUnion()->Length() : 1);
}
- int bitset = type1->GlbBitset() | type2->GlbBitset();
- if (bitset != kNone) ++size;
+ int bitset = type1->BitsetGlb() | type2->BitsetGlb();
+ if (bitset != BitsetType::kNone) ++size;
ASSERT(size >= 1);
- StructHandle unioned = Config::struct_create(kUnionTag, size, region);
+ UnionHandle unioned = UnionType::New(size, region);
size = 0;
- if (bitset != kNone) {
- Config::struct_set(unioned, size++, Config::from_bitset(bitset, region));
+ if (bitset != BitsetType::kNone) {
+ unioned->Set(size++, BitsetType::New(bitset, region));
}
size = ExtendUnion(unioned, type1, size);
size = ExtendUnion(unioned, type2, size);
if (size == 1) {
- return Config::struct_get(unioned, 0);
+ return unioned->Get(0);
} else {
- Config::struct_shrink(unioned, size);
- return Config::from_struct(unioned);
+ unioned->Shrink(size);
+ return unioned;
}
}
// starting at index. Returns updated index.
template<class Config>
int TypeImpl<Config>::ExtendIntersection(
- StructHandle result, TypeHandle type, TypeHandle other, int current_size) {
+ UnionHandle result, TypeHandle type, TypeHandle other, int current_size) {
int old_size = current_size;
- if (type->IsClass() || type->IsConstant()) {
- if (type->Is(other) && !type->InUnion(result, old_size)) {
- Config::struct_set(result, current_size++, type);
- }
- } else if (type->IsUnion()) {
- StructHandle unioned = type->AsUnion();
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- TypeHandle type = Config::struct_get(unioned, i);
- ASSERT(i == 0 ||
- !(type->IsBitset() || type->Is(Config::struct_get(unioned, 0))));
+ if (type->IsUnion()) {
+ UnionHandle unioned = handle(type->AsUnion());
+ for (int i = 0; i < unioned->Length(); ++i) {
+ TypeHandle type = unioned->Get(i);
+ ASSERT(i == 0 || !(type->IsBitset() || type->Is(unioned->Get(0))));
if (!type->IsBitset() && type->Is(other) &&
!type->InUnion(result, old_size)) {
- Config::struct_set(result, current_size++, type);
+ result->Set(current_size++, type);
}
}
+ } else if (!type->IsBitset()) {
+ // For all structural types, subtyping implies equivalence.
+ ASSERT(type->IsClass() || type->IsConstant() ||
+ type->IsArray() || type->IsFunction());
+ if (type->Is(other) && !type->InUnion(result, old_size)) {
+ result->Set(current_size++, type);
+ }
}
return current_size;
}
// Intersection is O(1) on simple bit unions, but O(n*m) on structured unions.
-// TODO(rossberg): Should we use object sets somehow? Is it worth it?
template<class Config>
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Intersect(
TypeHandle type1, TypeHandle type2, Region* region) {
// Fast case: bit sets.
if (type1->IsBitset() && type2->IsBitset()) {
- return Config::from_bitset(type1->AsBitset() & type2->AsBitset(), region);
+ return BitsetType::New(type1->AsBitset() & type2->AsBitset(), region);
}
// Fast case: top or bottom types.
// Slow case: may need to produce a Unioned object.
int size = 0;
if (!type1->IsBitset()) {
- size += (type1->IsUnion() ? Config::struct_length(type1->AsUnion()) : 1);
+ size += (type1->IsUnion() ? type1->AsUnion()->Length() : 1);
}
if (!type2->IsBitset()) {
- size += (type2->IsUnion() ? Config::struct_length(type2->AsUnion()) : 1);
+ size += (type2->IsUnion() ? type2->AsUnion()->Length() : 1);
}
- int bitset = type1->GlbBitset() & type2->GlbBitset();
- if (bitset != kNone) ++size;
+ int bitset = type1->BitsetGlb() & type2->BitsetGlb();
+ if (bitset != BitsetType::kNone) ++size;
ASSERT(size >= 1);
- StructHandle unioned = Config::struct_create(kUnionTag, size, region);
+ UnionHandle unioned = UnionType::New(size, region);
size = 0;
- if (bitset != kNone) {
- Config::struct_set(unioned, size++, Config::from_bitset(bitset, region));
+ if (bitset != BitsetType::kNone) {
+ unioned->Set(size++, BitsetType::New(bitset, region));
}
size = ExtendIntersection(unioned, type1, type2, size);
size = ExtendIntersection(unioned, type2, type1, size);
if (size == 0) {
return None(region);
} else if (size == 1) {
- return Config::struct_get(unioned, 0);
+ return unioned->Get(0);
} else {
- Config::struct_shrink(unioned, size);
- return Config::from_struct(unioned);
+ unioned->Shrink(size);
+ return unioned;
}
}
typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Convert(
typename OtherType::TypeHandle type, Region* region) {
if (type->IsBitset()) {
- return Config::from_bitset(type->AsBitset(), region);
+ return BitsetType::New(type->AsBitset(), region);
} else if (type->IsClass()) {
- return Config::from_class(type->AsClass(), type->LubBitset(), region);
+ return ClassType::New(type->AsClass()->Map(), region);
} else if (type->IsConstant()) {
- return Config::from_constant(type->AsConstant(), type->LubBitset(), region);
- } else {
- ASSERT(type->IsUnion());
- typename OtherType::StructHandle unioned = type->AsUnion();
- int length = OtherType::StructLength(unioned);
- StructHandle new_unioned = Config::struct_create(kUnionTag, length, region);
+ return ConstantType::New(type->AsConstant()->Value(), region);
+ } else if (type->IsUnion()) {
+ int length = type->AsUnion()->Length();
+ UnionHandle unioned = UnionType::New(length, region);
for (int i = 0; i < length; ++i) {
- Config::struct_set(new_unioned, i,
- Convert<OtherType>(OtherType::StructGet(unioned, i), region));
+ unioned->Set(i, Convert<OtherType>(type->AsUnion()->Get(i), region));
+ }
+ return unioned;
+ } else if (type->IsArray()) {
+ return ArrayType::New(
+ Convert<OtherType>(type->AsArray()->Element(), region), region);
+ } else if (type->IsFunction()) {
+ FunctionHandle function = FunctionType::New(
+ Convert<OtherType>(type->AsFunction()->Result(), region),
+ Convert<OtherType>(type->AsFunction()->Receiver(), region),
+ type->AsFunction()->Arity(), region);
+ for (int i = 0; i < function->Arity(); ++i) {
+ function->InitParameter(i,
+ Convert<OtherType>(type->AsFunction()->Parameter(i), region));
}
- return Config::from_struct(new_unioned);
+ return function;
+ } else {
+ UNREACHABLE();
+ return None(region);
}
}
// TODO(rossberg): this does not belong here.
Representation Representation::FromType(Type* type) {
+ DisallowHeapAllocation no_allocation;
if (type->Is(Type::None())) return Representation::None();
if (type->Is(Type::SignedSmall())) return Representation::Smi();
if (type->Is(Type::Signed32())) return Representation::Integer32();
template<class Config>
-const char* TypeImpl<Config>::bitset_name(int bitset) {
+const char* TypeImpl<Config>::BitsetType::Name(int bitset) {
switch (bitset) {
case kAny & kRepresentation: return "Any";
#define PRINT_COMPOSED_TYPE(type, value) \
template<class Config>
-void TypeImpl<Config>::BitsetTypePrint(FILE* out, int bitset) {
- const char* name = bitset_name(bitset);
+void TypeImpl<Config>::BitsetType::BitsetTypePrint(FILE* out, int bitset) {
+ DisallowHeapAllocation no_allocation;
+ const char* name = Name(bitset);
if (name != NULL) {
PrintF(out, "%s", name);
} else {
if ((bitset & subset) == subset) {
if (!is_first) PrintF(out, " | ");
is_first = false;
- PrintF(out, "%s", bitset_name(subset));
+ PrintF(out, "%s", Name(subset));
bitset -= subset;
}
}
template<class Config>
void TypeImpl<Config>::TypePrint(FILE* out, PrintDimension dim) {
+ DisallowHeapAllocation no_allocation;
if (this->IsBitset()) {
int bitset = this->AsBitset();
switch (dim) {
case BOTH_DIMS:
- BitsetTypePrint(out, bitset & kSemantic);
+ BitsetType::BitsetTypePrint(out, bitset & BitsetType::kSemantic);
PrintF(out, "/");
- BitsetTypePrint(out, bitset & kRepresentation);
+ BitsetType::BitsetTypePrint(out, bitset & BitsetType::kRepresentation);
break;
case SEMANTIC_DIM:
- BitsetTypePrint(out, bitset & kSemantic);
+ BitsetType::BitsetTypePrint(out, bitset & BitsetType::kSemantic);
break;
case REPRESENTATION_DIM:
- BitsetTypePrint(out, bitset & kRepresentation);
+ BitsetType::BitsetTypePrint(out, bitset & BitsetType::kRepresentation);
break;
}
} else if (this->IsConstant()) {
- PrintF(out, "Constant(%p : ", static_cast<void*>(*this->AsConstant()));
- Config::from_bitset(this->LubBitset())->TypePrint(out, dim);
+ PrintF(out, "Constant(%p : ",
+ static_cast<void*>(*this->AsConstant()->Value()));
+ BitsetType::New(BitsetType::Lub(this))->TypePrint(out, dim);
PrintF(out, ")");
} else if (this->IsClass()) {
- PrintF(out, "Class(%p < ", static_cast<void*>(*this->AsClass()));
- Config::from_bitset(this->LubBitset())->TypePrint(out, dim);
+ PrintF(out, "Class(%p < ", static_cast<void*>(*this->AsClass()->Map()));
+ BitsetType::New(BitsetType::Lub(this))->TypePrint(out, dim);
PrintF(out, ")");
} else if (this->IsUnion()) {
PrintF(out, "(");
- StructHandle unioned = this->AsUnion();
- for (int i = 0; i < Config::struct_length(unioned); ++i) {
- TypeHandle type_i = Config::struct_get(unioned, i);
+ UnionHandle unioned = handle(this->AsUnion());
+ for (int i = 0; i < unioned->Length(); ++i) {
+ TypeHandle type_i = unioned->Get(i);
if (i > 0) PrintF(out, " | ");
type_i->TypePrint(out, dim);
}
PrintF(out, ")");
+ } else if (this->IsArray()) {
+ PrintF(out, "[");
+ AsArray()->Element()->TypePrint(out, dim);
+ PrintF(out, "]");
+ } else if (this->IsFunction()) {
+ if (!this->AsFunction()->Receiver()->IsAny()) {
+ this->AsFunction()->Receiver()->TypePrint(out, dim);
+ PrintF(out, ".");
+ }
+ PrintF(out, "(");
+ for (int i = 0; i < this->AsFunction()->Arity(); ++i) {
+ if (i > 0) PrintF(out, ", ");
+ this->AsFunction()->Parameter(i)->TypePrint(out, dim);
+ }
+ PrintF(out, ")->");
+ this->AsFunction()->Result()->TypePrint(out, dim);
+ } else {
+ UNREACHABLE();
}
}
//
// Class(map) < T iff instance_type(map) < T
// Constant(x) < T iff instance_type(map(x)) < T
+// Array(T) < Array
+// Function(R, S, T0, T1, ...) < Function
//
+// Both structural Array and Function types are invariant in all parameters.
+// Relaxing this would make Union and Intersect operations more involved.
// Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
-// Consequently, do not use pointer equality for type tests, always use Is!
+// Consequently, do not normally use Equals for type tests, always use Is!
//
// The NowIs operator implements state-sensitive subtying, as described above.
// Any compilation decision based on such temporary properties requires runtime
// struct Config {
+// typedef TypeImpl<Config> Type;
// typedef Base;
// typedef Struct;
// typedef Region;
// template<class> struct Handle { typedef type; } // No template typedefs...
-// static Handle<Type>::type handle(Type* type); // !is_bitset(type)
+// template<class T> static Handle<T>::type handle(T* t); // !is_bitset(t)
+// template<class T> static Handle<T>::type cast(Handle<Type>::type);
// static bool is_bitset(Type*);
// static bool is_class(Type*);
// static bool is_constant(Type*);
-// static bool is_struct(Type*);
+// static bool is_struct(Type*, int tag);
// static int as_bitset(Type*);
// static i::Handle<i::Map> as_class(Type*);
// static i::Handle<i::Object> as_constant(Type*);
// static Handle<Type>::type from_bitset(int bitset, Region*);
// static Handle<Type>::type from_class(i::Handle<Map>, int lub, Region*);
// static Handle<Type>::type from_constant(i::Handle<Object>, int, Region*);
-// static Handle<Type>::type from_struct(Handle<Struct>::type);
+// static Handle<Type>::type from_struct(Handle<Struct>::type, int tag);
// static Handle<Struct>::type struct_create(int tag, int length, Region*);
// static void struct_shrink(Handle<Struct>::type, int length);
// static int struct_tag(Handle<Struct>::type);
template<class Config>
class TypeImpl : public Config::Base {
public:
+ class BitsetType; // Internal
+ class StructuralType; // Internal
+ class UnionType; // Internal
+
+ class ClassType;
+ class ConstantType;
+ class ArrayType;
+ class FunctionType;
+
typedef typename Config::template Handle<TypeImpl>::type TypeHandle;
+ typedef typename Config::template Handle<ClassType>::type ClassHandle;
+ typedef typename Config::template Handle<ConstantType>::type ConstantHandle;
+ typedef typename Config::template Handle<ArrayType>::type ArrayHandle;
+ typedef typename Config::template Handle<FunctionType>::type FunctionHandle;
+ typedef typename Config::template Handle<UnionType>::type UnionHandle;
typedef typename Config::Region Region;
- #define DEFINE_TYPE_CONSTRUCTOR(type, value) \
- static TypeImpl* type() { return Config::from_bitset(k##type); } \
- static TypeHandle type(Region* region) { \
- return Config::from_bitset(k##type, region); \
+ #define DEFINE_TYPE_CONSTRUCTOR(type, value) \
+ static TypeImpl* type() { return BitsetType::New(BitsetType::k##type); } \
+ static TypeHandle type(Region* region) { \
+ return BitsetType::New(BitsetType::k##type, region); \
}
BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
#undef DEFINE_TYPE_CONSTRUCTOR
static TypeHandle Class(i::Handle<i::Map> map, Region* region) {
- return Config::from_class(map, LubBitset(*map), region);
+ return ClassType::New(map, region);
}
static TypeHandle Constant(i::Handle<i::Object> value, Region* region) {
- return Config::from_constant(value, LubBitset(*value), region);
+ return ConstantType::New(value, region);
+ }
+ static TypeHandle Array(TypeHandle element, Region* region) {
+ return ArrayType::New(element, region);
+ }
+ static FunctionHandle Function(
+ TypeHandle result, TypeHandle receiver, int arity, Region* region) {
+ return FunctionType::New(result, receiver, arity, region);
+ }
+ static TypeHandle Function(TypeHandle result, Region* region) {
+ return Function(result, Any(region), 0, region);
+ }
+ static TypeHandle Function(
+ TypeHandle result, TypeHandle param0, Region* region) {
+ FunctionHandle function = Function(result, Any(region), 1, region);
+ function->InitParameter(0, param0);
+ return function;
+ }
+ static TypeHandle Function(
+ TypeHandle result, TypeHandle param0, TypeHandle param1, Region* region) {
+ FunctionHandle function = Function(result, Any(region), 2, region);
+ function->InitParameter(0, param0);
+ function->InitParameter(1, param1);
+ return function;
}
static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg);
static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg);
static TypeHandle Of(i::Object* value, Region* region) {
- return Config::from_bitset(LubBitset(value), region);
+ return Config::from_bitset(BitsetType::Lub(value), region);
}
static TypeHandle Of(i::Handle<i::Object> value, Region* region) {
return Of(*value, region);
}
bool IsInhabited() {
- return !this->IsBitset() || IsInhabited(this->AsBitset());
+ return !this->IsBitset() || BitsetType::IsInhabited(this->AsBitset());
}
bool Is(TypeImpl* that) { return this == that || this->SlowIs(that); }
template<class TypeHandle>
bool Maybe(TypeHandle that) { return this->Maybe(*that); }
+ bool Equals(TypeImpl* that) { return this->Is(that) && that->Is(this); }
+ template<class TypeHandle>
+ bool Equals(TypeHandle that) { return this->Equals(*that); }
+
// Equivalent to Constant(value)->Is(this), but avoiding allocation.
bool Contains(i::Object* val);
bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); }
bool IsClass() { return Config::is_class(this); }
bool IsConstant() { return Config::is_constant(this); }
- i::Handle<i::Map> AsClass() { return Config::as_class(this); }
- i::Handle<i::Object> AsConstant() { return Config::as_constant(this); }
+ bool IsArray() { return Config::is_struct(this, StructuralType::kArrayTag); }
+ bool IsFunction() {
+ return Config::is_struct(this, StructuralType::kFunctionTag);
+ }
+
+ ClassType* AsClass() { return ClassType::cast(this); }
+ ConstantType* AsConstant() { return ConstantType::cast(this); }
+ ArrayType* AsArray() { return ArrayType::cast(this); }
+ FunctionType* AsFunction() { return FunctionType::cast(this); }
int NumClasses();
int NumConstants();
+ template<class T> class Iterator;
+ inline Iterator<i::Map> Classes();
+ inline Iterator<i::Object> Constants();
+
+ static inline TypeImpl* cast(typename Config::Base* object);
+
+ template<class OtherTypeImpl>
+ static TypeHandle Convert(
+ typename OtherTypeImpl::TypeHandle type, Region* region);
+
+ enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
+ void TypePrint(PrintDimension = BOTH_DIMS);
+ void TypePrint(FILE* out, PrintDimension = BOTH_DIMS);
+
+ protected:
+ template<class> friend class Iterator;
+ template<class> friend class TypeImpl;
+
template<class T>
- class Iterator {
- public:
- bool Done() const { return index_ < 0; }
- i::Handle<T> Current();
- void Advance();
-
- private:
- template<class> friend class TypeImpl;
-
- Iterator() : index_(-1) {}
- explicit Iterator(TypeHandle type) : type_(type), index_(-1) {
- Advance();
- }
+ static typename Config::template Handle<T>::type handle(T* type) {
+ return Config::handle(type);
+ }
+
+ bool IsNone() { return this == None(); }
+ bool IsAny() { return this == Any(); }
+ bool IsBitset() { return Config::is_bitset(this); }
+ bool IsUnion() { return Config::is_struct(this, StructuralType::kUnionTag); }
+
+ int AsBitset() {
+ ASSERT(this->IsBitset());
+ return static_cast<BitsetType*>(this)->Bitset();
+ }
+ UnionType* AsUnion() { return UnionType::cast(this); }
+
+ bool SlowIs(TypeImpl* that);
- inline bool matches(TypeHandle type);
- inline TypeHandle get_type();
+ bool InUnion(UnionHandle unioned, int current_size);
+ static int ExtendUnion(
+ UnionHandle unioned, TypeHandle t, int current_size);
+ static int ExtendIntersection(
+ UnionHandle unioned, TypeHandle t, TypeHandle other, int current_size);
+
+ int BitsetGlb() { return BitsetType::Glb(this); }
+ int BitsetLub() { return BitsetType::Lub(this); }
+};
+
+
+template<class Config>
+class TypeImpl<Config>::BitsetType : public TypeImpl<Config> {
+ private:
+ friend class TypeImpl<Config>;
- TypeHandle type_;
- int index_;
+ enum {
+ #define DECLARE_TYPE(type, value) k##type = (value),
+ BITSET_TYPE_LIST(DECLARE_TYPE)
+ #undef DECLARE_TYPE
+ kUnusedEOL = 0
};
- Iterator<i::Map> Classes() {
- if (this->IsBitset()) return Iterator<i::Map>();
- return Iterator<i::Map>(Config::handle(this));
+ int Bitset() { return Config::as_bitset(this); }
+
+ static BitsetType* New(int bitset) {
+ return static_cast<BitsetType*>(Config::from_bitset(bitset));
}
- Iterator<i::Object> Constants() {
- if (this->IsBitset()) return Iterator<i::Object>();
- return Iterator<i::Object>(Config::handle(this));
+ static TypeHandle New(int bitset, Region* region) {
+ return Config::from_bitset(bitset, region);
}
- static TypeImpl* cast(typename Config::Base* object) {
- TypeImpl* t = static_cast<TypeImpl*>(object);
- ASSERT(t->IsBitset() || t->IsClass() || t->IsConstant() || t->IsUnion());
- return t;
+ static bool IsInhabited(int bitset) {
+ return (bitset & kRepresentation) && (bitset & kSemantic);
}
- template<class OtherTypeImpl>
- static TypeHandle Convert(
- typename OtherTypeImpl::TypeHandle type, Region* region);
+ static int Glb(TypeImpl* type); // greatest lower bound that's a bitset
+ static int Lub(TypeImpl* type); // least upper bound that's a bitset
+ static int Lub(i::Object* value);
+ static int Lub(i::Map* map);
- enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
- void TypePrint(PrintDimension = BOTH_DIMS);
- void TypePrint(FILE* out, PrintDimension = BOTH_DIMS);
+ static const char* Name(int bitset);
+ static void BitsetTypePrint(FILE* out, int bitset);
+};
- private:
- template<class> friend class Iterator;
+
+// Internal
+// A structured type contains a tag and a variable number of type fields.
+template<class Config>
+class TypeImpl<Config>::StructuralType : public TypeImpl<Config> {
+ protected:
template<class> friend class TypeImpl;
- friend struct ZoneTypeConfig;
+ friend struct ZoneTypeConfig; // For tags.
friend struct HeapTypeConfig;
enum Tag {
kClassTag,
kConstantTag,
+ kArrayTag,
+ kFunctionTag,
kUnionTag
};
- // A structured type contains a tag an a variable number of type fields.
- // A union is a structured type with the following invariants:
- // - its length is at least 2
- // - at most one field is a bitset, and it must go into index 0
- // - no field is a union
- typedef typename Config::Struct Struct;
- typedef typename Config::template Handle<Struct>::type StructHandle;
+ int Length() {
+ return Config::struct_length(Config::as_struct(this));
+ }
+ TypeHandle Get(int i) {
+ return Config::struct_get(Config::as_struct(this), i);
+ }
+ void Set(int i, TypeHandle type) {
+ Config::struct_set(Config::as_struct(this), i, type);
+ }
+ void Shrink(int length) {
+ Config::struct_shrink(Config::as_struct(this), length);
+ }
+
+ static TypeHandle New(Tag tag, int length, Region* region) {
+ return Config::from_struct(Config::struct_create(tag, length, region));
+ }
+};
- enum {
- #define DECLARE_TYPE(type, value) k##type = (value),
- BITSET_TYPE_LIST(DECLARE_TYPE)
- #undef DECLARE_TYPE
- kUnusedEOL = 0
- };
- bool IsNone() { return this == None(); }
- bool IsAny() { return this == Any(); }
- bool IsBitset() { return Config::is_bitset(this); }
- bool IsStruct(Tag tag) {
- return Config::is_struct(this)
- && Config::struct_tag(Config::as_struct(this)) == tag;
+template<class Config>
+class TypeImpl<Config>::ClassType : public TypeImpl<Config> {
+ public:
+ i::Handle<i::Map> Map() { return Config::as_class(this); }
+
+ static ClassHandle New(i::Handle<i::Map> map, Region* region) {
+ return Config::template cast<ClassType>(
+ Config::from_class(map, BitsetType::Lub(*map), region));
}
- bool IsUnion() { return IsStruct(kUnionTag); }
- int AsBitset() { return Config::as_bitset(this); }
- StructHandle AsStruct(Tag tag) {
- ASSERT(IsStruct(tag));
- return Config::as_struct(this);
+ static ClassType* cast(TypeImpl* type) {
+ ASSERT(type->IsClass());
+ return static_cast<ClassType*>(type);
}
- StructHandle AsUnion() { return AsStruct(kUnionTag); }
+};
+
- static int StructLength(StructHandle structured) {
- return Config::struct_length(structured);
+template<class Config>
+class TypeImpl<Config>::ConstantType : public TypeImpl<Config> {
+ public:
+ i::Handle<i::Object> Value() { return Config::as_constant(this); }
+
+ static ConstantHandle New(i::Handle<i::Object> value, Region* region) {
+ return Config::template cast<ConstantType>(
+ Config::from_constant(value, BitsetType::Lub(*value), region));
}
- static TypeHandle StructGet(StructHandle structured, int i) {
- return Config::struct_get(structured, i);
+
+ static ConstantType* cast(TypeImpl* type) {
+ ASSERT(type->IsConstant());
+ return static_cast<ConstantType*>(type);
}
+};
- bool SlowIs(TypeImpl* that);
- static bool IsInhabited(int bitset) {
- return (bitset & kRepresentation) && (bitset & kSemantic);
+// Internal
+// A union is a structured type with the following invariants:
+// - its length is at least 2
+// - at most one field is a bitset, and it must go into index 0
+// - no field is a union
+template<class Config>
+class TypeImpl<Config>::UnionType : public StructuralType {
+ public:
+ static UnionHandle New(int length, Region* region) {
+ return Config::template cast<UnionType>(
+ StructuralType::New(StructuralType::kUnionTag, length, region));
}
- int LubBitset(); // least upper bound that's a bitset
- int GlbBitset(); // greatest lower bound that's a bitset
+ static UnionType* cast(TypeImpl* type) {
+ ASSERT(type->IsUnion());
+ return static_cast<UnionType*>(type);
+ }
+};
- static int LubBitset(i::Object* value);
- static int LubBitset(i::Map* map);
- bool InUnion(StructHandle unioned, int current_size);
- static int ExtendUnion(
- StructHandle unioned, TypeHandle t, int current_size);
- static int ExtendIntersection(
- StructHandle unioned, TypeHandle t, TypeHandle other, int current_size);
+template<class Config>
+class TypeImpl<Config>::ArrayType : public StructuralType {
+ public:
+ TypeHandle Element() { return this->Get(0); }
- static const char* bitset_name(int bitset);
- static void BitsetTypePrint(FILE* out, int bitset);
+ static ArrayHandle New(TypeHandle element, Region* region) {
+ ArrayHandle type = Config::template cast<ArrayType>(
+ StructuralType::New(StructuralType::kArrayTag, 1, region));
+ type->Set(0, element);
+ return type;
+ }
+
+ static ArrayType* cast(TypeImpl* type) {
+ ASSERT(type->IsArray());
+ return static_cast<ArrayType*>(type);
+ }
+};
+
+
+template<class Config>
+class TypeImpl<Config>::FunctionType : public StructuralType {
+ public:
+ int Arity() { return this->Length() - 2; }
+ TypeHandle Result() { return this->Get(0); }
+ TypeHandle Receiver() { return this->Get(1); }
+ TypeHandle Parameter(int i) { return this->Get(2 + i); }
+
+ void InitParameter(int i, TypeHandle type) { this->Set(2 + i, type); }
+
+ static FunctionHandle New(
+ TypeHandle result, TypeHandle receiver, int arity, Region* region) {
+ FunctionHandle type = Config::template cast<FunctionType>(
+ StructuralType::New(StructuralType::kFunctionTag, 2 + arity, region));
+ type->Set(0, result);
+ type->Set(1, receiver);
+ return type;
+ }
+
+ static FunctionType* cast(TypeImpl* type) {
+ ASSERT(type->IsFunction());
+ return static_cast<FunctionType*>(type);
+ }
+};
+
+
+template<class Config> template<class T>
+class TypeImpl<Config>::Iterator {
+ public:
+ bool Done() const { return index_ < 0; }
+ i::Handle<T> Current();
+ void Advance();
+
+ private:
+ template<class> friend class TypeImpl;
+
+ Iterator() : index_(-1) {}
+ explicit Iterator(TypeHandle type) : type_(type), index_(-1) {
+ Advance();
+ }
+
+ inline bool matches(TypeHandle type);
+ inline TypeHandle get_type();
+
+ TypeHandle type_;
+ int index_;
};
typedef i::Zone Region;
template<class T> struct Handle { typedef T* type; };
- static inline Type* handle(Type* type);
+ template<class T> static inline T* handle(T* type);
+ template<class T> static inline T* cast(Type* type);
+
static inline bool is_bitset(Type* type);
static inline bool is_class(Type* type);
static inline bool is_constant(Type* type);
- static inline bool is_struct(Type* type);
+ static inline bool is_struct(Type* type, int tag);
+
static inline int as_bitset(Type* type);
static inline Struct* as_struct(Type* type);
static inline i::Handle<i::Map> as_class(Type* type);
static inline i::Handle<i::Object> as_constant(Type* type);
+
static inline Type* from_bitset(int bitset);
static inline Type* from_bitset(int bitset, Zone* zone);
static inline Type* from_struct(Struct* structured);
static inline Type* from_class(i::Handle<i::Map> map, int lub, Zone* zone);
static inline Type* from_constant(
i::Handle<i::Object> value, int lub, Zone* zone);
+
static inline Struct* struct_create(int tag, int length, Zone* zone);
static inline void struct_shrink(Struct* structured, int length);
static inline int struct_tag(Struct* structured);
static inline int struct_length(Struct* structured);
static inline Type* struct_get(Struct* structured, int i);
static inline void struct_set(Struct* structured, int i, Type* type);
+
static inline int lub_bitset(Type* type);
};
typedef i::Isolate Region;
template<class T> struct Handle { typedef i::Handle<T> type; };
- static inline i::Handle<Type> handle(Type* type);
+ template<class T> static inline i::Handle<T> handle(T* type);
+ template<class T> static inline i::Handle<T> cast(i::Handle<Type> type);
+
static inline bool is_bitset(Type* type);
static inline bool is_class(Type* type);
static inline bool is_constant(Type* type);
- static inline bool is_struct(Type* type);
+ static inline bool is_struct(Type* type, int tag);
+
static inline int as_bitset(Type* type);
static inline i::Handle<i::Map> as_class(Type* type);
static inline i::Handle<i::Object> as_constant(Type* type);
static inline i::Handle<Struct> as_struct(Type* type);
+
static inline Type* from_bitset(int bitset);
static inline i::Handle<Type> from_bitset(int bitset, Isolate* isolate);
static inline i::Handle<Type> from_class(
static inline i::Handle<Type> from_constant(
i::Handle<i::Object> value, int lub, Isolate* isolate);
static inline i::Handle<Type> from_struct(i::Handle<Struct> structured);
+
static inline i::Handle<Struct> struct_create(
int tag, int length, Isolate* isolate);
static inline void struct_shrink(i::Handle<Struct> structured, int length);
static inline i::Handle<Type> struct_get(i::Handle<Struct> structured, int i);
static inline void struct_set(
i::Handle<Struct> structured, int i, i::Handle<Type> type);
+
static inline int lub_bitset(Type* type);
};
} else if (representation.IsHeapObject()) {
HeapType* field_type = descriptors->GetFieldType(descriptor);
if (field_type->IsClass()) {
- __ CheckMap(value_reg, field_type->AsClass(), miss_label, DO_SMI_CHECK);
+ __ CheckMap(value_reg, field_type->AsClass()->Map(),
+ miss_label, DO_SMI_CHECK);
} else {
ASSERT(HeapType::Any()->Is(field_type));
__ JumpIfSmi(value_reg, miss_label);
} else if (representation.IsHeapObject()) {
HeapType* field_type = lookup->GetFieldType();
if (field_type->IsClass()) {
- __ CheckMap(value_reg, field_type->AsClass(), miss_label, DO_SMI_CHECK);
+ __ CheckMap(value_reg, field_type->AsClass()->Map(),
+ miss_label, DO_SMI_CHECK);
} else {
ASSERT(HeapType::Any()->Is(field_type));
__ JumpIfSmi(value_reg, miss_label);
int depth = 0;
Handle<JSObject> current = Handle<JSObject>::null();
- if (type->IsConstant()) current = Handle<JSObject>::cast(type->AsConstant());
+ if (type->IsConstant()) {
+ current = Handle<JSObject>::cast(type->AsConstant()->Value());
+ }
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder->map());
static bool IsBitset(Type* t) { return reinterpret_cast<intptr_t>(t) & 1; }
static bool IsClass(Type* t) { return IsStruct(t, 0); }
static bool IsConstant(Type* t) { return IsStruct(t, 1); }
- static bool IsUnion(Type* t) { return IsStruct(t, 2); }
+ static bool IsArray(Type* t) { return IsStruct(t, 2); }
+ static bool IsFunction(Type* t) { return IsStruct(t, 3); }
+ static bool IsUnion(Type* t) { return IsStruct(t, 4); }
static Struct* AsStruct(Type* t) {
return reinterpret_cast<Struct*>(t);
static bool IsBitset(Handle<HeapType> t) { return t->IsSmi(); }
static bool IsClass(Handle<HeapType> t) { return t->IsMap(); }
static bool IsConstant(Handle<HeapType> t) { return t->IsBox(); }
- static bool IsUnion(Handle<HeapType> t) { return IsStruct(t, 2); }
+ static bool IsArray(Handle<HeapType> t) { return IsStruct(t, 2); }
+ static bool IsFunction(Handle<HeapType> t) { return IsStruct(t, 3); }
+ static bool IsUnion(Handle<HeapType> t) { return IsStruct(t, 4); }
static Struct* AsStruct(Handle<HeapType> t) { return FixedArray::cast(*t); }
static int AsBitset(Handle<HeapType> t) { return Smi::cast(*t)->value(); }
types.push_back(Type::Constant(*it, region));
}
+ FloatArray = Type::Array(Float, region);
+ StringArray = Type::Array(String, region);
+ AnyArray = Type::Array(Any, region);
+
+ SignedFunction1 = Type::Function(SignedSmall, SignedSmall, region);
+ NumberFunction1 = Type::Function(Number, Number, region);
+ NumberFunction2 = Type::Function(Number, Number, Number, region);
+ MethodFunction = Type::Function(String, Object, 0, region);
+
for (int i = 0; i < 50; ++i) {
types.push_back(Fuzz());
}
}
+ Handle<i::Map> object_map;
+ Handle<i::Map> array_map;
+ Handle<i::Map> uninitialized_map;
+
+ Handle<i::Smi> smi;
+ Handle<i::HeapNumber> signed32;
+ Handle<i::JSObject> object1;
+ Handle<i::JSObject> object2;
+ Handle<i::JSArray> array;
+ Handle<i::Oddball> uninitialized;
+
#define DECLARE_TYPE(name, value) TypeHandle name;
BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
TypeHandle ArrayConstant;
TypeHandle UninitializedConstant;
- Handle<i::Map> object_map;
- Handle<i::Map> array_map;
- Handle<i::Map> uninitialized_map;
+ TypeHandle FloatArray;
+ TypeHandle StringArray;
+ TypeHandle AnyArray;
- Handle<i::Smi> smi;
- Handle<i::HeapNumber> signed32;
- Handle<i::JSObject> object1;
- Handle<i::JSObject> object2;
- Handle<i::JSArray> array;
- Handle<i::Oddball> uninitialized;
+ TypeHandle SignedFunction1;
+ TypeHandle NumberFunction1;
+ TypeHandle NumberFunction2;
+ TypeHandle MethodFunction;
typedef std::vector<TypeHandle> TypeVector;
typedef std::vector<Handle<i::Map> > MapVector;
return Type::Class(map, region_);
}
+ TypeHandle Array1(TypeHandle element) {
+ return Type::Array(element, region_);
+ }
+
+ TypeHandle Function0(TypeHandle result, TypeHandle receiver) {
+ return Type::Function(result, receiver, 0, region_);
+ }
+
+ TypeHandle Function1(TypeHandle result, TypeHandle receiver, TypeHandle arg) {
+ TypeHandle type = Type::Function(result, receiver, 1, region_);
+ type->AsFunction()->InitParameter(0, arg);
+ return type;
+ }
+
+ TypeHandle Function2(TypeHandle result, TypeHandle arg1, TypeHandle arg2) {
+ return Type::Function(result, arg1, arg2, region_);
+ }
+
TypeHandle Union(TypeHandle t1, TypeHandle t2) {
return Type::Union(t1, t2, region_);
}
return Type::template Convert<Type2>(t, region_);
}
+ TypeHandle Random() {
+ return types[rng_.NextInt(static_cast<int>(types.size()))];
+ }
+
TypeHandle Fuzz(int depth = 5) {
switch (rng_.NextInt(depth == 0 ? 3 : 20)) {
case 0: { // bitset
int i = rng_.NextInt(static_cast<int>(values.size()));
return Type::Constant(values[i], region_);
}
+ case 3: // array
+ return Type::Array(Fuzz(depth / 2), region_);
+ case 4:
+ case 5:
+ case 6: { // function
+ TypeHandle type = Type::Function(
+ Fuzz(depth / 2), Fuzz(depth / 2), rand() % 3, region_);
+ for (int i = 0; i < type->AsFunction()->Arity(); ++i) {
+ type->AsFunction()->InitParameter(i, Fuzz(depth - 1));
+ }
+ }
default: { // union
int n = rng_.NextInt(10);
TypeHandle type = None;
for (MapIterator mt = T.maps.begin(); mt != T.maps.end(); ++mt) {
Handle<i::Map> map = *mt;
TypeHandle type = T.Class(map);
- CHECK(*map == *type->AsClass());
+ CHECK(*map == *type->AsClass()->Map());
}
// Functionality & Injectivity: Class(M1) = Class(M2) iff M1 = M2
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
Handle<i::Object> value = *vt;
TypeHandle type = T.Constant(value);
- CHECK(*value == *type->AsConstant());
+ CHECK(*value == *type->AsConstant()->Value());
}
- // Functionality & Injectivity: Constant(V1) = Constant(v2) iff V1 = V2
+ // Functionality & Injectivity: Constant(V1) = Constant(V2) iff V1 = V2
for (ValueIterator vt1 = T.values.begin(); vt1 != T.values.end(); ++vt1) {
for (ValueIterator vt2 = T.values.begin(); vt2 != T.values.end(); ++vt2) {
Handle<i::Object> value1 = *vt1;
}
}
+ void Array() {
+ // Constructor
+ for (int i = 0; i < 20; ++i) {
+ TypeHandle type = T.Random();
+ TypeHandle array = T.Array1(type);
+ CHECK(this->IsArray(array));
+ }
+
+ // Attributes
+ for (int i = 0; i < 20; ++i) {
+ TypeHandle type = T.Random();
+ TypeHandle array = T.Array1(type);
+ CheckEqual(type, array->AsArray()->Element());
+ }
+
+ // Functionality & Injectivity: Array(T1) = Array(T2) iff T1 = T2
+ for (int i = 0; i < 20; ++i) {
+ for (int j = 0; j < 20; ++j) {
+ TypeHandle type1 = T.Random();
+ TypeHandle type2 = T.Random();
+ TypeHandle array1 = T.Array1(type1);
+ TypeHandle array2 = T.Array1(type2);
+ CHECK(Equal(array1, array2) == Equal(type1, type2));
+ }
+ }
+ }
+
+ void Function() {
+ // Constructors
+ for (int i = 0; i < 20; ++i) {
+ for (int j = 0; j < 20; ++j) {
+ for (int k = 0; k < 20; ++k) {
+ TypeHandle type1 = T.Random();
+ TypeHandle type2 = T.Random();
+ TypeHandle type3 = T.Random();
+ TypeHandle function0 = T.Function0(type1, type2);
+ TypeHandle function1 = T.Function1(type1, type2, type3);
+ TypeHandle function2 = T.Function2(type1, type2, type3);
+ CHECK(function0->IsFunction());
+ CHECK(function1->IsFunction());
+ CHECK(function2->IsFunction());
+ }
+ }
+ }
+
+ // Attributes
+ for (int i = 0; i < 20; ++i) {
+ for (int j = 0; j < 20; ++j) {
+ for (int k = 0; k < 20; ++k) {
+ TypeHandle type1 = T.Random();
+ TypeHandle type2 = T.Random();
+ TypeHandle type3 = T.Random();
+ TypeHandle function0 = T.Function0(type1, type2);
+ TypeHandle function1 = T.Function1(type1, type2, type3);
+ TypeHandle function2 = T.Function2(type1, type2, type3);
+ CHECK_EQ(0, function0->AsFunction()->Arity());
+ CHECK_EQ(1, function1->AsFunction()->Arity());
+ CHECK_EQ(2, function2->AsFunction()->Arity());
+ CheckEqual(type1, function0->AsFunction()->Result());
+ CheckEqual(type1, function1->AsFunction()->Result());
+ CheckEqual(type1, function2->AsFunction()->Result());
+ CheckEqual(type2, function0->AsFunction()->Receiver());
+ CheckEqual(type2, function1->AsFunction()->Receiver());
+ CheckEqual(T.Any, function2->AsFunction()->Receiver());
+ CheckEqual(type3, function1->AsFunction()->Parameter(0));
+ CheckEqual(type2, function2->AsFunction()->Parameter(0));
+ CheckEqual(type3, function2->AsFunction()->Parameter(1));
+ }
+ }
+ }
+
+ // Functionality & Injectivity: Function(Ts1) = Function(Ts2) iff Ts1 = Ts2
+ for (int i = 0; i < 20; ++i) {
+ for (int j = 0; j < 20; ++j) {
+ for (int k = 0; k < 20; ++k) {
+ TypeHandle type1 = T.Random();
+ TypeHandle type2 = T.Random();
+ TypeHandle type3 = T.Random();
+ TypeHandle function01 = T.Function0(type1, type2);
+ TypeHandle function02 = T.Function0(type1, type3);
+ TypeHandle function03 = T.Function0(type3, type2);
+ TypeHandle function11 = T.Function1(type1, type2, type2);
+ TypeHandle function12 = T.Function1(type1, type2, type3);
+ TypeHandle function21 = T.Function2(type1, type2, type2);
+ TypeHandle function22 = T.Function2(type1, type2, type3);
+ TypeHandle function23 = T.Function2(type1, type3, type2);
+ CHECK(Equal(function01, function02) == Equal(type2, type3));
+ CHECK(Equal(function01, function03) == Equal(type1, type3));
+ CHECK(Equal(function11, function12) == Equal(type2, type3));
+ CHECK(Equal(function21, function22) == Equal(type2, type3));
+ CHECK(Equal(function21, function23) == Equal(type2, type3));
+ }
+ }
+ }
+ }
+
void Of() {
// Constant(V)->Is(Of(V))
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
// Structural types
CheckSub(T.ObjectClass, T.Object);
CheckSub(T.ArrayClass, T.Object);
+ CheckSub(T.ArrayClass, T.Array);
CheckSub(T.UninitializedClass, T.Internal);
CheckUnordered(T.ObjectClass, T.ArrayClass);
CheckUnordered(T.UninitializedClass, T.Null);
CheckUnordered(T.ObjectConstant1, T.ArrayClass);
CheckUnordered(T.ObjectConstant2, T.ArrayClass);
CheckUnordered(T.ArrayConstant, T.ObjectClass);
+
+ CheckSub(T.FloatArray, T.Array);
+ CheckSub(T.FloatArray, T.Object);
+ CheckUnordered(T.StringArray, T.AnyArray);
+
+ CheckSub(T.MethodFunction, T.Function);
+ CheckSub(T.NumberFunction1, T.Object);
+ CheckUnordered(T.SignedFunction1, T.NumberFunction1);
+ CheckUnordered(T.NumberFunction1, T.NumberFunction2);
}
void NowIs() {
CheckDisjoint(T.ObjectConstant1, T.ArrayClass, T.Semantic);
CheckDisjoint(T.ObjectConstant2, T.ArrayClass, T.Semantic);
CheckDisjoint(T.ArrayConstant, T.ObjectClass, T.Semantic);
+
+ CheckOverlap(T.FloatArray, T.Array, T.Semantic);
+ CheckDisjoint(T.FloatArray, T.AnyArray, T.Semantic);
+ CheckDisjoint(T.FloatArray, T.StringArray, T.Semantic);
+
+ CheckOverlap(T.MethodFunction, T.Function, T.Semantic);
+ CheckDisjoint(T.SignedFunction1, T.NumberFunction1, T.Semantic);
+ CheckDisjoint(T.SignedFunction1, T.NumberFunction2, T.Semantic);
+ CheckDisjoint(T.NumberFunction1, T.NumberFunction2, T.Semantic);
+ CheckDisjoint(T.SignedFunction1, T.MethodFunction, T.Semantic);
}
- void Union() {
+ void Union1() {
// Identity: Union(T, None) = T
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (type1->Is(type2)) CheckEqual(union12, type2);
}
}
+ }
+ void Union2() {
// Monotonicity: T1->Is(T2) implies Union(T1, T3)->Is(Union(T2, T3))
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
CheckDisjoint(
T.Union(T.ObjectConstant1, T.ArrayConstant), T.ObjectClass, T.Semantic);
+ // Bitset-array
+ CHECK(this->IsBitset(T.Union(T.AnyArray, T.Array)));
+ CHECK(this->IsUnion(T.Union(T.FloatArray, T.Number)));
+
+ CheckEqual(T.Union(T.AnyArray, T.Array), T.Array);
+ CheckSub(T.None, T.Union(T.FloatArray, T.Number));
+ CheckSub(T.Union(T.FloatArray, T.Number), T.Any);
+ CheckUnordered(T.Union(T.AnyArray, T.String), T.Array);
+ CheckOverlap(T.Union(T.FloatArray, T.String), T.Object, T.Semantic);
+ CheckDisjoint(T.Union(T.FloatArray, T.String), T.Number, T.Semantic);
+
+ // Bitset-function
+ CHECK(this->IsBitset(T.Union(T.MethodFunction, T.Function)));
+ CHECK(this->IsUnion(T.Union(T.NumberFunction1, T.Number)));
+
+ CheckEqual(T.Union(T.MethodFunction, T.Function), T.Function);
+ CheckSub(T.None, T.Union(T.MethodFunction, T.Number));
+ CheckSub(T.Union(T.MethodFunction, T.Number), T.Any);
+ CheckUnordered(T.Union(T.NumberFunction1, T.String), T.Function);
+ CheckOverlap(T.Union(T.NumberFunction2, T.String), T.Object, T.Semantic);
+ CheckDisjoint(T.Union(T.NumberFunction1, T.String), T.Number, T.Semantic);
+
// Bitset-class
CheckSub(
T.Union(T.ObjectClass, T.SignedSmall), T.Union(T.Object, T.Number));
T.Union(
T.ObjectConstant2, T.Union(T.ArrayConstant, T.ObjectConstant1)));
+ // Array-union
+ CheckEqual(
+ T.Union(T.AnyArray, T.Union(T.FloatArray, T.AnyArray)),
+ T.Union(T.AnyArray, T.FloatArray));
+ CheckSub(T.Union(T.AnyArray, T.FloatArray), T.Array);
+
+ // Function-union
+ CheckEqual(
+ T.Union(T.NumberFunction1, T.NumberFunction2),
+ T.Union(T.NumberFunction2, T.NumberFunction1));
+ CheckSub(T.Union(T.SignedFunction1, T.MethodFunction), T.Function);
+
// Union-union
CheckEqual(
T.Union(
T.Union(T.Number, T.Array));
}
- void Intersect() {
+ void Intersect1() {
// Identity: Intersect(T, Any) = T
for (TypeIterator it = T.types.begin(); it != T.types.end(); ++it) {
TypeHandle type = *it;
if (type1->Is(type2)) CheckEqual(intersect12, type1);
}
}
+ }
+ void Intersect2() {
// Monotonicity: T1->Is(T2) implies Intersect(T1, T3)->Is(Intersect(T2, T3))
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
CheckSub(T.Intersect(T.ObjectClass, T.Array), T.Representation);
CheckSub(T.Intersect(T.ObjectClass, T.Number), T.Representation);
- // Class-constant
- CheckEqual(T.Intersect(T.ObjectConstant1, T.ObjectClass), T.None);
- CheckEqual(T.Intersect(T.ArrayClass, T.ObjectConstant2), T.None);
+ // Bitset-array
+ CheckEqual(T.Intersect(T.FloatArray, T.Object), T.FloatArray);
+ CheckSub(T.Intersect(T.AnyArray, T.Function), T.Representation);
+
+ // Bitset-function
+ CheckEqual(T.Intersect(T.MethodFunction, T.Object), T.MethodFunction);
+ CheckSub(T.Intersect(T.NumberFunction1, T.Array), T.Representation);
// Bitset-union
CheckEqual(
T.Intersect(T.Union(T.ArrayClass, T.ObjectConstant1), T.Number),
T.None);
+ // Class-constant
+ CheckEqual(T.Intersect(T.ObjectConstant1, T.ObjectClass), T.None);
+ CheckEqual(T.Intersect(T.ArrayClass, T.ObjectConstant2), T.None);
+
+ // Array-union
+ CheckEqual(
+ T.Intersect(T.FloatArray, T.Union(T.FloatArray, T.ArrayClass)),
+ T.FloatArray);
+ CheckEqual(
+ T.Intersect(T.AnyArray, T.Union(T.Object, T.SmiConstant)),
+ T.AnyArray);
+ CheckEqual(
+ T.Intersect(T.Union(T.AnyArray, T.ArrayConstant), T.FloatArray),
+ T.None);
+
+ // Function-union
+ CheckEqual(
+ T.Intersect(T.MethodFunction, T.Union(T.String, T.MethodFunction)),
+ T.MethodFunction);
+ CheckEqual(
+ T.Intersect(T.NumberFunction1, T.Union(T.Object, T.SmiConstant)),
+ T.NumberFunction1);
+ CheckEqual(
+ T.Intersect(T.Union(T.MethodFunction, T.Name), T.NumberFunction2),
+ T.None);
+
// Class-union
CheckEqual(
T.Intersect(T.ArrayClass, T.Union(T.ObjectConstant2, T.ArrayClass)),
typedef Tests<HeapType, Handle<HeapType>, Isolate, HeapRep> HeapTests;
-TEST(Bitset) {
+TEST(BitsetType) {
CcTest::InitializeVM();
ZoneTests().Bitset();
HeapTests().Bitset();
}
-TEST(Class) {
+TEST(ClassType) {
CcTest::InitializeVM();
ZoneTests().Class();
HeapTests().Class();
}
-TEST(Constant) {
+TEST(ConstantType) {
CcTest::InitializeVM();
ZoneTests().Constant();
HeapTests().Constant();
}
+TEST(ArrayType) {
+ CcTest::InitializeVM();
+ ZoneTests().Array();
+ HeapTests().Array();
+}
+
+
+TEST(FunctionType) {
+ CcTest::InitializeVM();
+ ZoneTests().Function();
+ HeapTests().Function();
+}
+
+
TEST(Of) {
CcTest::InitializeVM();
ZoneTests().Of();
}
-TEST(Union) {
+TEST(Union1) {
+ CcTest::InitializeVM();
+ ZoneTests().Union1();
+ HeapTests().Union1();
+}
+
+
+TEST(Union2) {
+ CcTest::InitializeVM();
+ ZoneTests().Union2();
+ HeapTests().Union2();
+}
+
+
+TEST(Intersect1) {
CcTest::InitializeVM();
- ZoneTests().Union();
- HeapTests().Union();
+ ZoneTests().Intersect1();
+ HeapTests().Intersect1();
}
-TEST(Intersect) {
+TEST(Intersect2) {
CcTest::InitializeVM();
- ZoneTests().Intersect();
- HeapTests().Intersect();
+ ZoneTests().Intersect2();
+ HeapTests().Intersect2();
}