#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include <iostream>
+#include "opencl_kernels_dnn.hpp"
namespace cv
{
}
}
+#ifdef HAVE_OPENCL
+ bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
+ {
+ std::vector<UMat> inputs;
+ std::vector<UMat> outputs;
+
+ inps.getUMatVector(inputs);
+ outs.getUMatVector(outputs);
+
+ if (useSoftmaxTree) { // Yolo 9000
+ CV_Error(cv::Error::StsNotImplemented, "Yolo9000 is not implemented");
+ return false;
+ }
+
+ CV_Assert(inputs.size() >= 1);
+ int const cell_size = classes + coords + 1;
+ UMat blob_umat = blobs[0].getUMat(ACCESS_READ);
+
+ for (size_t ii = 0; ii < outputs.size(); ii++)
+ {
+ UMat& inpBlob = inputs[ii];
+ UMat& outBlob = outputs[ii];
+
+ int rows = inpBlob.size[1];
+ int cols = inpBlob.size[2];
+
+ ocl::Kernel logistic_kernel("logistic_activ", ocl::dnn::region_oclsrc);
+ size_t global = rows*cols*anchors;
+ logistic_kernel.set(0, (int)global);
+ logistic_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
+ logistic_kernel.set(2, (int)cell_size);
+ logistic_kernel.set(3, ocl::KernelArg::PtrWriteOnly(outBlob));
+ logistic_kernel.run(1, &global, NULL, false);
+
+ if (useSoftmax)
+ {
+ // Yolo v2
+ // softmax activation for Probability, for each grid cell (X x Y x Anchor-index)
+ ocl::Kernel softmax_kernel("softmax_activ", ocl::dnn::region_oclsrc);
+ size_t nthreads = rows*cols*anchors;
+ softmax_kernel.set(0, (int)nthreads);
+ softmax_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
+ softmax_kernel.set(2, ocl::KernelArg::PtrReadOnly(blob_umat));
+ softmax_kernel.set(3, (int)cell_size);
+ softmax_kernel.set(4, (int)classes);
+ softmax_kernel.set(5, (int)classfix);
+ softmax_kernel.set(6, (int)rows);
+ softmax_kernel.set(7, (int)cols);
+ softmax_kernel.set(8, (int)anchors);
+ softmax_kernel.set(9, (float)thresh);
+ softmax_kernel.set(10, ocl::KernelArg::PtrWriteOnly(outBlob));
+ if (!softmax_kernel.run(1, &nthreads, NULL, false))
+ return false;
+ }
+
+ if (nmsThreshold > 0) {
+ Mat mat = outBlob.getMat(ACCESS_WRITE);
+ float *dstData = mat.ptr<float>();
+ do_nms_sort(dstData, rows*cols*anchors, nmsThreshold);
+ //do_nms(dstData, rows*cols*anchors, nmsThreshold);
+ }
+
+ }
+
+ return true;
+ }
+#endif
+
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
+ CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
+ OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
+ forward_ocl(inputs_arr, outputs_arr, internals_arr))
+
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}
--- /dev/null
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// License Agreement
+// For Open Source Computer Vision Library
+//
+// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of the copyright holders may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#define Dtype float
+
+__kernel void logistic_activ(const int count,
+ __global const Dtype* src,
+ const int cell_size,
+ __global Dtype* dst)
+{
+ for (int i = get_global_id(0); i < count; i += get_global_size(0))
+ {
+ int index = cell_size * i;
+ Dtype x = src[index + 4];
+ dst[index + 4] = 1.f / (1.f + exp(-x));
+ }
+}
+
+__kernel void softmax_activ(const int count,
+ __global const Dtype* src,
+ __global const Dtype* biasData,
+ const int cell_size,
+ const int classes,
+ const int classfix,
+ const int rows,
+ const int cols,
+ const int anchors,
+ const float thresh,
+ __global Dtype* dst)
+{
+ for (int index = get_global_id(0); index < count; index += get_global_size(0))
+ {
+ int box_index = index * cell_size;
+ float largest = -FLT_MAX;
+ __global const Dtype *input = src + box_index + 5;
+ __global Dtype *output = dst + box_index + 5;
+
+ for (int i = 0; i < classes; ++i)
+ largest = fmax(largest, input[i]);
+
+ float sum = 0;
+ for (int i = 0; i < classes; ++i)
+ {
+ float e = exp((input[i] - largest));
+ sum += e;
+ output[i] = e;
+ }
+
+ int y = index / anchors / cols;
+ int x = index / anchors % cols;
+ int a = index - anchors * (x + y * cols);
+ float scale = dst[box_index + 4];
+ if (classfix == -1 && scale < .5) scale = 0;
+
+ float v1 = src[box_index + 0];
+ float v2 = src[box_index + 1];
+ float l1 = 1.f / (1.f + exp(-v1));
+ float l2 = 1.f / (1.f + exp(-v2));
+
+ dst[box_index + 0] = (x + l1) / cols;
+ dst[box_index + 1] = (y + l2) / rows;
+ dst[box_index + 2] = exp(src[box_index + 2]) * biasData[2 * a] / cols;
+ dst[box_index + 3] = exp(src[box_index + 3]) * biasData[2 * a + 1] / rows;
+
+ for (int i = 0; i < classes; ++i)
+ {
+ float prob = scale * output[i] / sum;
+ output[i] = (prob > thresh) ? prob : 0;
+ }
+ }
+}