2012-05-05 Joseph Myers <joseph@codesourcery.com>
+ * sysdeps/i386/fpu/e_expl.c: Move to ...
+ * sysdeps/i386/fpu/e_expl.S: ... here. Write directly in assembly
+ rather than using inline asm.
+ * sysdeps/x86_64/fpu/e_expl.c: Remove file.
+ * sysdeps/x86_64/fpu/e_expl.S: Copy from
+ sysdeps/i386/fpu/e_expl.S, adjusted for x86_64.
+
* sysdeps/unix/sysv/syscalls.list (ftime): Remove.
(nice): Likewise.
(poll): Likewise.
--- /dev/null
+/*
+ * Written by J.T. Conklin <jtc@netbsd.org>.
+ * Public domain.
+ *
+ * Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>.
+ */
+
+/*
+ * The 8087 method for the exponential function is to calculate
+ * exp(x) = 2^(x log2(e))
+ * after separating integer and fractional parts
+ * x log2(e) = i + f, |f| <= .5
+ * 2^i is immediate but f needs to be precise for long double accuracy.
+ * Suppress range reduction error in computing f by the following.
+ * Separate x into integer and fractional parts
+ * x = xi + xf, |xf| <= .5
+ * Separate log2(e) into the sum of an exact number c0 and small part c1.
+ * c0 + c1 = log2(e) to extra precision
+ * Then
+ * f = (c0 xi - i) + c0 xf + c1 x
+ * where c0 xi is exact and so also is (c0 xi - i).
+ * -- moshier@na-net.ornl.gov
+ */
+
+#include <machine/asm.h>
+
+ .section .rodata.cst16,"aM",@progbits,16
+
+ .p2align 4
+ ASM_TYPE_DIRECTIVE(c0,@object)
+c0: .byte 0, 0, 0, 0, 0, 0, 0xaa, 0xb8, 0xff, 0x3f
+ .byte 0, 0, 0, 0, 0, 0
+ ASM_SIZE_DIRECTIVE(c0)
+ ASM_TYPE_DIRECTIVE(c1,@object)
+c1: .byte 0x20, 0xfa, 0xee, 0xc2, 0x5f, 0x70, 0xa5, 0xec, 0xed, 0x3f
+ .byte 0, 0, 0, 0, 0, 0
+ ASM_SIZE_DIRECTIVE(c1)
+
+#ifdef PIC
+# define MO(op) op##@GOTOFF(%ecx)
+#else
+# define MO(op) op
+#endif
+
+ .text
+ENTRY(__ieee754_expl)
+ fldt 4(%esp)
+/* I added the following ugly construct because expl(+-Inf) resulted
+ in NaN. The ugliness results from the bright minds at Intel.
+ For the i686 the code can be written better.
+ -- drepper@cygnus.com. */
+ fxam /* Is NaN or +-Inf? */
+#ifdef PIC
+ LOAD_PIC_REG (cx)
+#endif
+ fstsw %ax
+ movb $0x45, %dh
+ andb %ah, %dh
+ cmpb $0x05, %dh
+ je 1f /* Is +-Inf, jump. */
+ fldl2e /* 1 log2(e) */
+ fmul %st(1), %st /* 1 x log2(e) */
+ frndint /* 1 i */
+ fld %st(1) /* 2 x */
+ frndint /* 2 xi */
+ fld %st(1) /* 3 i */
+ fldt MO(c0) /* 4 c0 */
+ fld %st(2) /* 5 xi */
+ fmul %st(1), %st /* 5 c0 xi */
+ fsubp %st, %st(2) /* 4 f = c0 xi - i */
+ fld %st(4) /* 5 x */
+ fsub %st(3), %st /* 5 xf = x - xi */
+ fmulp %st, %st(1) /* 4 c0 xf */
+ faddp %st, %st(1) /* 3 f = f + c0 xf */
+ fldt MO(c1) /* 4 */
+ fmul %st(4), %st /* 4 c1 * x */
+ faddp %st, %st(1) /* 3 f = f + c1 * x */
+ f2xm1 /* 3 2^(fract(x * log2(e))) - 1 */
+ fld1 /* 4 1.0 */
+ faddp /* 3 2^(fract(x * log2(e))) */
+ fstp %st(1) /* 2 */
+ fscale /* 2 scale factor is st(1); e^x */
+ fstp %st(1) /* 1 */
+ fstp %st(1) /* 0 */
+ jmp 2f
+1: testl $0x200, %eax /* Test sign. */
+ jz 2f /* If positive, jump. */
+ fstp %st
+ fldz /* Set result to 0. */
+2: ret
+END(__ieee754_expl)
+strong_alias (__ieee754_expl, __expl_finite)
+++ /dev/null
-/*
- * Written by J.T. Conklin <jtc@netbsd.org>.
- * Public domain.
- *
- * Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>.
- */
-
-/*
- * The 8087 method for the exponential function is to calculate
- * exp(x) = 2^(x log2(e))
- * after separating integer and fractional parts
- * x log2(e) = i + f, |f| <= .5
- * 2^i is immediate but f needs to be precise for long double accuracy.
- * Suppress range reduction error in computing f by the following.
- * Separate x into integer and fractional parts
- * x = xi + xf, |xf| <= .5
- * Separate log2(e) into the sum of an exact number c0 and small part c1.
- * c0 + c1 = log2(e) to extra precision
- * Then
- * f = (c0 xi - i) + c0 xf + c1 x
- * where c0 xi is exact and so also is (c0 xi - i).
- * -- moshier@na-net.ornl.gov
- */
-
-#include <math_private.h>
-
-static const long double c0 = 1.44268798828125L;
-static const long double c1 = 7.05260771340735992468e-6L;
-
-long double
-__ieee754_expl (long double x)
-{
- long double res;
-
-/* I added the following ugly construct because expl(+-Inf) resulted
- in NaN. The ugliness results from the bright minds at Intel.
- For the i686 the code can be written better.
- -- drepper@cygnus.com. */
- asm ("fxam\n\t" /* Is NaN or +-Inf? */
- "fstsw %%ax\n\t"
- "movb $0x45, %%dh\n\t"
- "andb %%ah, %%dh\n\t"
- "cmpb $0x05, %%dh\n\t"
- "je 1f\n\t" /* Is +-Inf, jump. */
- "fldl2e\n\t" /* 1 log2(e) */
- "fmul %%st(1),%%st\n\t" /* 1 x log2(e) */
- "frndint\n\t" /* 1 i */
- "fld %%st(1)\n\t" /* 2 x */
- "frndint\n\t" /* 2 xi */
- "fld %%st(1)\n\t" /* 3 i */
- "fldt %2\n\t" /* 4 c0 */
- "fld %%st(2)\n\t" /* 5 xi */
- "fmul %%st(1),%%st\n\t" /* 5 c0 xi */
- "fsubp %%st,%%st(2)\n\t" /* 4 f = c0 xi - i */
- "fld %%st(4)\n\t" /* 5 x */
- "fsub %%st(3),%%st\n\t" /* 5 xf = x - xi */
- "fmulp %%st,%%st(1)\n\t" /* 4 c0 xf */
- "faddp %%st,%%st(1)\n\t" /* 3 f = f + c0 xf */
- "fldt %3\n\t" /* 4 */
- "fmul %%st(4),%%st\n\t" /* 4 c1 * x */
- "faddp %%st,%%st(1)\n\t" /* 3 f = f + c1 * x */
- "f2xm1\n\t" /* 3 2^(fract(x * log2(e))) - 1 */
- "fld1\n\t" /* 4 1.0 */
- "faddp\n\t" /* 3 2^(fract(x * log2(e))) */
- "fstp %%st(1)\n\t" /* 2 */
- "fscale\n\t" /* 2 scale factor is st(1); e^x */
- "fstp %%st(1)\n\t" /* 1 */
- "fstp %%st(1)\n\t" /* 0 */
- "jmp 2f\n\t"
- "1:\ttestl $0x200, %%eax\n\t" /* Test sign. */
- "jz 2f\n\t" /* If positive, jump. */
- "fstp %%st\n\t"
- "fldz\n\t" /* Set result to 0. */
- "2:\t\n"
- : "=t" (res) : "0" (x), "m" (c0), "m" (c1) : "ax", "dx");
- return res;
-}
-strong_alias (__ieee754_expl, __expl_finite)
--- /dev/null
+/*
+ * Written by J.T. Conklin <jtc@netbsd.org>.
+ * Public domain.
+ *
+ * Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>.
+ */
+
+/*
+ * The 8087 method for the exponential function is to calculate
+ * exp(x) = 2^(x log2(e))
+ * after separating integer and fractional parts
+ * x log2(e) = i + f, |f| <= .5
+ * 2^i is immediate but f needs to be precise for long double accuracy.
+ * Suppress range reduction error in computing f by the following.
+ * Separate x into integer and fractional parts
+ * x = xi + xf, |xf| <= .5
+ * Separate log2(e) into the sum of an exact number c0 and small part c1.
+ * c0 + c1 = log2(e) to extra precision
+ * Then
+ * f = (c0 xi - i) + c0 xf + c1 x
+ * where c0 xi is exact and so also is (c0 xi - i).
+ * -- moshier@na-net.ornl.gov
+ */
+
+#include <machine/asm.h>
+
+ .section .rodata.cst16,"aM",@progbits,16
+
+ .p2align 4
+ ASM_TYPE_DIRECTIVE(c0,@object)
+c0: .byte 0, 0, 0, 0, 0, 0, 0xaa, 0xb8, 0xff, 0x3f
+ .byte 0, 0, 0, 0, 0, 0
+ ASM_SIZE_DIRECTIVE(c0)
+ ASM_TYPE_DIRECTIVE(c1,@object)
+c1: .byte 0x20, 0xfa, 0xee, 0xc2, 0x5f, 0x70, 0xa5, 0xec, 0xed, 0x3f
+ .byte 0, 0, 0, 0, 0, 0
+ ASM_SIZE_DIRECTIVE(c1)
+
+#ifdef PIC
+# define MO(op) op##(%rip)
+#else
+# define MO(op) op
+#endif
+
+ .text
+ENTRY(__ieee754_expl)
+ fldt 8(%rsp)
+/* I added the following ugly construct because expl(+-Inf) resulted
+ in NaN. The ugliness results from the bright minds at Intel.
+ For the i686 the code can be written better.
+ -- drepper@cygnus.com. */
+ fxam /* Is NaN or +-Inf? */
+ fstsw %ax
+ movb $0x45, %dh
+ andb %ah, %dh
+ cmpb $0x05, %dh
+ je 1f /* Is +-Inf, jump. */
+ fldl2e /* 1 log2(e) */
+ fmul %st(1), %st /* 1 x log2(e) */
+ frndint /* 1 i */
+ fld %st(1) /* 2 x */
+ frndint /* 2 xi */
+ fld %st(1) /* 3 i */
+ fldt MO(c0) /* 4 c0 */
+ fld %st(2) /* 5 xi */
+ fmul %st(1), %st /* 5 c0 xi */
+ fsubp %st, %st(2) /* 4 f = c0 xi - i */
+ fld %st(4) /* 5 x */
+ fsub %st(3), %st /* 5 xf = x - xi */
+ fmulp %st, %st(1) /* 4 c0 xf */
+ faddp %st, %st(1) /* 3 f = f + c0 xf */
+ fldt MO(c1) /* 4 */
+ fmul %st(4), %st /* 4 c1 * x */
+ faddp %st, %st(1) /* 3 f = f + c1 * x */
+ f2xm1 /* 3 2^(fract(x * log2(e))) - 1 */
+ fld1 /* 4 1.0 */
+ faddp /* 3 2^(fract(x * log2(e))) */
+ fstp %st(1) /* 2 */
+ fscale /* 2 scale factor is st(1); e^x */
+ fstp %st(1) /* 1 */
+ fstp %st(1) /* 0 */
+ jmp 2f
+1: testl $0x200, %eax /* Test sign. */
+ jz 2f /* If positive, jump. */
+ fstp %st
+ fldz /* Set result to 0. */
+2: ret
+END(__ieee754_expl)
+strong_alias (__ieee754_expl, __expl_finite)
+++ /dev/null
-#include "sysdeps/i386/fpu/e_expl.c"