return dividend / divisor;
}
+/**
+ * div64_s64 - signed 64bit divide with 64bit divisor
+ */
+static inline s64 div64_s64(s64 dividend, s64 divisor)
+{
+ return dividend / divisor;
+}
+
#elif BITS_PER_LONG == 32
#ifndef div_u64_rem
extern u64 div64_u64(u64 dividend, u64 divisor);
#endif
+#ifndef div64_s64
+extern s64 div64_s64(s64 dividend, s64 divisor);
+#endif
+
#endif /* BITS_PER_LONG */
/**
EXPORT_SYMBOL(div_s64_rem);
#endif
-/* 64bit divisor, dividend and result. dynamic precision */
+/**
+ * div64_u64 - unsigned 64bit divide with 64bit divisor
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ *
+ * This implementation is a modified version of the algorithm proposed
+ * by the book 'Hacker's Delight'. The original source and full proof
+ * can be found here and is available for use without restriction.
+ *
+ * 'http://www.hackersdelight.org/HDcode/newCode/divDouble.c'
+ */
#ifndef div64_u64
u64 div64_u64(u64 dividend, u64 divisor)
{
- u32 high, d;
+ u32 high = divisor >> 32;
+ u64 quot;
- high = divisor >> 32;
- if (high) {
- unsigned int shift = fls(high);
+ if (high == 0) {
+ quot = div_u64(dividend, divisor);
+ } else {
+ int n = 1 + fls(high);
+ quot = div_u64(dividend >> n, divisor >> n);
- d = divisor >> shift;
- dividend >>= shift;
- } else
- d = divisor;
+ if (quot != 0)
+ quot--;
+ if ((dividend - quot * divisor) >= divisor)
+ quot++;
+ }
- return div_u64(dividend, d);
+ return quot;
}
EXPORT_SYMBOL(div64_u64);
#endif
+/**
+ * div64_s64 - signed 64bit divide with 64bit divisor
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ */
+#ifndef div64_s64
+s64 div64_s64(s64 dividend, s64 divisor)
+{
+ s64 quot, t;
+
+ quot = div64_u64(abs64(dividend), abs64(divisor));
+ t = (dividend ^ divisor) >> 63;
+
+ return (quot ^ t) - t;
+}
+EXPORT_SYMBOL(div64_s64);
+#endif
+
#endif /* BITS_PER_LONG == 32 */
/*