#include "conversions-inl.h"
#include "dtoa.h"
+#include "list-inl.h"
#include "strtod.h"
#include "utils.h"
}
-// Validation per 11.1.5 Object Initialiser
-class ObjectLiteralPropertyChecker {
- public:
- ObjectLiteralPropertyChecker(Parser* parser, LanguageMode language_mode) :
- props_(Literal::Match),
- parser_(parser),
- language_mode_(language_mode) {
- }
-
- void CheckProperty(
- ObjectLiteral::Property* property,
- Scanner::Location loc,
- bool* ok);
-
- private:
- enum PropertyKind {
- kGetAccessor = 0x01,
- kSetAccessor = 0x02,
- kAccessor = kGetAccessor | kSetAccessor,
- kData = 0x04
- };
-
- static intptr_t GetPropertyKind(ObjectLiteral::Property* property) {
- switch (property->kind()) {
- case ObjectLiteral::Property::GETTER:
- return kGetAccessor;
- case ObjectLiteral::Property::SETTER:
- return kSetAccessor;
- default:
- return kData;
- }
- }
-
- HashMap props_;
- Parser* parser_;
- LanguageMode language_mode_;
-};
-
-
-void ObjectLiteralPropertyChecker::CheckProperty(
- ObjectLiteral::Property* property,
- Scanner::Location loc,
- bool* ok) {
- ASSERT(property != NULL);
- Literal* literal = property->key();
- HashMap::Entry* entry = props_.Lookup(literal, literal->Hash(), true);
- intptr_t prev = reinterpret_cast<intptr_t> (entry->value);
- intptr_t curr = GetPropertyKind(property);
-
- // Duplicate data properties are illegal in strict or extended mode.
- if (language_mode_ != CLASSIC_MODE && (curr & prev & kData) != 0) {
- parser_->ReportMessageAt(loc, "strict_duplicate_property",
- Vector<const char*>::empty());
- *ok = false;
- return;
- }
- // Data property conflicting with an accessor.
- if (((curr & kData) && (prev & kAccessor)) ||
- ((prev & kData) && (curr & kAccessor))) {
- parser_->ReportMessageAt(loc, "accessor_data_property",
- Vector<const char*>::empty());
- *ok = false;
- return;
- }
- // Two accessors of the same type conflicting
- if ((curr & prev & kAccessor) != 0) {
- parser_->ReportMessageAt(loc, "accessor_get_set",
- Vector<const char*>::empty());
- *ok = false;
- return;
- }
-
- // Update map
- entry->value = reinterpret_cast<void*> (prev | curr);
- *ok = true;
-}
-
-
void Parser::BuildObjectLiteralConstantProperties(
ZoneList<ObjectLiteral::Property*>* properties,
Handle<FixedArray> constant_properties,
}
-ObjectLiteral::Property* Parser::ParseObjectLiteralGetSet(bool is_getter,
- bool* ok) {
- // Special handling of getter and setter syntax:
- // { ... , get foo() { ... }, ... , set foo(v) { ... v ... } , ... }
- // We have already read the "get" or "set" keyword.
- Token::Value next = Next();
- bool is_keyword = Token::IsKeyword(next);
- if (next == Token::IDENTIFIER || next == Token::NUMBER ||
- next == Token::FUTURE_RESERVED_WORD ||
- next == Token::FUTURE_STRICT_RESERVED_WORD ||
- next == Token::STRING || is_keyword) {
- Handle<String> name;
- if (is_keyword) {
- name = isolate_->factory()->InternalizeUtf8String(Token::String(next));
- } else {
- name = GetSymbol();
- }
- FunctionLiteral* value =
- ParseFunctionLiteral(name,
- false, // reserved words are allowed here
- false, // not a generator
- RelocInfo::kNoPosition,
- FunctionLiteral::ANONYMOUS_EXPRESSION,
- CHECK_OK);
- // Allow any number of parameters for compatibilty with JSC.
- // Specification only allows zero parameters for get and one for set.
- return factory()->NewObjectLiteralProperty(is_getter, value);
- } else {
- ReportUnexpectedToken(next);
- *ok = false;
- return NULL;
- }
-}
+// Force instantiation of template instances class.
+template void ObjectLiteralChecker<Parser>::CheckProperty(
+ Token::Value property, PropertyKind type, bool* ok);
Expression* Parser::ParseObjectLiteral(bool* ok) {
int number_of_boilerplate_properties = 0;
bool has_function = false;
- ObjectLiteralPropertyChecker checker(this, top_scope_->language_mode());
+ ObjectLiteralChecker<Parser> checker(this, &scanner_,
+ top_scope_->language_mode());
Expect(Token::LBRACE, CHECK_OK);
Literal* key = NULL;
Token::Value next = peek();
- // Location of the property name token
- Scanner::Location loc = scanner().peek_location();
-
switch (next) {
case Token::FUTURE_RESERVED_WORD:
case Token::FUTURE_STRICT_RESERVED_WORD:
if (fni_ != NULL) fni_->PushLiteralName(id);
if ((is_getter || is_setter) && peek() != Token::COLON) {
- // Update loc to point to the identifier
- loc = scanner().peek_location();
- ObjectLiteral::Property* property =
- ParseObjectLiteralGetSet(is_getter, CHECK_OK);
- if (IsBoilerplateProperty(property)) {
- number_of_boilerplate_properties++;
- }
- // Validate the property.
- checker.CheckProperty(property, loc, CHECK_OK);
- properties->Add(property, zone());
- if (peek() != Token::RBRACE) Expect(Token::COMMA, CHECK_OK);
-
- if (fni_ != NULL) {
- fni_->Infer();
- fni_->Leave();
- }
- continue; // restart the while
+ // Special handling of getter and setter syntax:
+ // { ... , get foo() { ... }, ... , set foo(v) { ... v ... } , ... }
+ // We have already read the "get" or "set" keyword.
+ Token::Value next = Next();
+ bool is_keyword = Token::IsKeyword(next);
+ if (next != i::Token::IDENTIFIER &&
+ next != i::Token::FUTURE_RESERVED_WORD &&
+ next != i::Token::FUTURE_STRICT_RESERVED_WORD &&
+ next != i::Token::NUMBER &&
+ next != i::Token::STRING &&
+ !is_keyword) {
+ // Unexpected token.
+ ReportUnexpectedToken(next);
+ *ok = false;
+ return NULL;
+ }
+ // Validate the property.
+ PropertyKind type = is_getter ? kGetterProperty : kSetterProperty;
+ checker.CheckProperty(next, type, CHECK_OK);
+ Handle<String> name = is_keyword
+ ? isolate_->factory()->InternalizeUtf8String(Token::String(next))
+ : GetSymbol();
+ FunctionLiteral* value =
+ ParseFunctionLiteral(name,
+ false, // reserved words are allowed here
+ false, // not a generator
+ RelocInfo::kNoPosition,
+ FunctionLiteral::ANONYMOUS_EXPRESSION,
+ CHECK_OK);
+ // Allow any number of parameters for compatibilty with JSC.
+ // Specification only allows zero parameters for get and one for set.
+ ObjectLiteral::Property* property =
+ factory()->NewObjectLiteralProperty(is_getter, value);
+ if (IsBoilerplateProperty(property)) {
+ number_of_boilerplate_properties++;
+ }
+ properties->Add(property, zone());
+ if (peek() != Token::RBRACE) Expect(Token::COMMA, CHECK_OK);
+
+ if (fni_ != NULL) {
+ fni_->Infer();
+ fni_->Leave();
+ }
+ continue; // restart the while
}
// Failed to parse as get/set property, so it's just a property
// called "get" or "set".
}
}
+ // Validate the property
+ checker.CheckProperty(next, kValueProperty, CHECK_OK);
+
Expect(Token::COLON, CHECK_OK);
Expression* value = ParseAssignmentExpression(true, CHECK_OK);
// Count CONSTANT or COMPUTED properties to maintain the enumeration order.
if (IsBoilerplateProperty(property)) number_of_boilerplate_properties++;
- // Validate the property
- checker.CheckProperty(property, loc, CHECK_OK);
properties->Add(property, zone());
// TODO(1240767): Consider allowing trailing comma.
void ReportMessageAt(Scanner::Location loc,
const char* message,
- Vector<const char*> args);
+ Vector<const char*> args = Vector<const char*>::empty());
void ReportMessageAt(Scanner::Location loc,
const char* message,
Vector<Handle<String> > args);
Expression* ParsePrimaryExpression(bool* ok);
Expression* ParseArrayLiteral(bool* ok);
Expression* ParseObjectLiteral(bool* ok);
- ObjectLiteral::Property* ParseObjectLiteralGetSet(bool is_getter, bool* ok);
Expression* ParseRegExpLiteral(bool seen_equal, bool* ok);
// Populate the constant properties fixed array for a materialized object
CompilationInfo* info_;
friend class BlockState;
friend class FunctionState;
+ friend class ObjectLiteralChecker<Parser>;
};
return Expression::Default();
}
-void PreParser::CheckDuplicate(DuplicateFinder* finder,
- i::Token::Value property,
- int type,
- bool* ok) {
- int old_type;
- if (property == i::Token::NUMBER) {
- old_type = finder->AddNumber(scanner_->literal_ascii_string(), type);
- } else if (scanner_->is_literal_ascii()) {
- old_type = finder->AddAsciiSymbol(scanner_->literal_ascii_string(),
- type);
- } else {
- old_type = finder->AddUtf16Symbol(scanner_->literal_utf16_string(), type);
- }
- if (HasConflict(old_type, type)) {
- if (IsDataDataConflict(old_type, type)) {
- // Both are data properties.
- if (is_classic_mode()) return;
- ReportMessageAt(scanner_->location(),
- "strict_duplicate_property", NULL);
- } else if (IsDataAccessorConflict(old_type, type)) {
- // Both a data and an accessor property with the same name.
- ReportMessageAt(scanner_->location(),
- "accessor_data_property", NULL);
- } else {
- ASSERT(IsAccessorAccessorConflict(old_type, type));
- // Both accessors of the same type.
- ReportMessageAt(scanner_->location(),
- "accessor_get_set", NULL);
- }
- *ok = false;
- }
-}
-
PreParser::Expression PreParser::ParseObjectLiteral(bool* ok) {
// ObjectLiteral ::
// | (('get' | 'set') (IdentifierName | String | Number) FunctionLiteral)
// )*[','] '}'
+ i::ObjectLiteralChecker<PreParser> checker(this, scanner_, language_mode());
+
Expect(i::Token::LBRACE, CHECK_OK);
- DuplicateFinder duplicate_finder(scanner_->unicode_cache());
while (peek() != i::Token::RBRACE) {
i::Token::Value next = peek();
switch (next) {
if (!is_keyword) {
LogSymbol();
}
- PropertyType type = is_getter ? kGetterProperty : kSetterProperty;
- CheckDuplicate(&duplicate_finder, name, type, CHECK_OK);
+ i::PropertyKind type = is_getter ? i::kGetterProperty
+ : i::kSetterProperty;
+ checker.CheckProperty(name, type, CHECK_OK);
ParseFunctionLiteral(false, CHECK_OK);
if (peek() != i::Token::RBRACE) {
Expect(i::Token::COMMA, CHECK_OK);
}
continue; // restart the while
}
- CheckDuplicate(&duplicate_finder, next, kValueProperty, CHECK_OK);
+ checker.CheckProperty(next, i::kValueProperty, CHECK_OK);
break;
}
case i::Token::STRING:
Consume(next);
- CheckDuplicate(&duplicate_finder, next, kValueProperty, CHECK_OK);
+ checker.CheckProperty(next, i::kValueProperty, CHECK_OK);
GetStringSymbol();
break;
case i::Token::NUMBER:
Consume(next);
- CheckDuplicate(&duplicate_finder, next, kValueProperty, CHECK_OK);
+ checker.CheckProperty(next, i::kValueProperty, CHECK_OK);
break;
default:
if (i::Token::IsKeyword(next)) {
Consume(next);
- CheckDuplicate(&duplicate_finder, next, kValueProperty, CHECK_OK);
+ checker.CheckProperty(next, i::kValueProperty, CHECK_OK);
} else {
// Unexpected token.
*ok = false;
Expect(i::Token::LPAREN, CHECK_OK);
int start_position = scanner_->location().beg_pos;
bool done = (peek() == i::Token::RPAREN);
- DuplicateFinder duplicate_finder(scanner_->unicode_cache());
+ i::DuplicateFinder duplicate_finder(scanner_->unicode_cache());
while (!done) {
Identifier id = ParseIdentifier(CHECK_OK);
if (!id.IsValidStrictVariable()) {
next == i::Token::YIELD;
}
-
-int DuplicateFinder::AddAsciiSymbol(i::Vector<const char> key, int value) {
- return AddSymbol(i::Vector<const byte>::cast(key), true, value);
-}
-
-
-int DuplicateFinder::AddUtf16Symbol(i::Vector<const uint16_t> key, int value) {
- return AddSymbol(i::Vector<const byte>::cast(key), false, value);
-}
-
-int DuplicateFinder::AddSymbol(i::Vector<const byte> key,
- bool is_ascii,
- int value) {
- uint32_t hash = Hash(key, is_ascii);
- byte* encoding = BackupKey(key, is_ascii);
- i::HashMap::Entry* entry = map_.Lookup(encoding, hash, true);
- int old_value = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
- entry->value =
- reinterpret_cast<void*>(static_cast<intptr_t>(value | old_value));
- return old_value;
-}
-
-
-int DuplicateFinder::AddNumber(i::Vector<const char> key, int value) {
- ASSERT(key.length() > 0);
- // Quick check for already being in canonical form.
- if (IsNumberCanonical(key)) {
- return AddAsciiSymbol(key, value);
- }
-
- int flags = i::ALLOW_HEX | i::ALLOW_OCTAL | i::ALLOW_IMPLICIT_OCTAL |
- i::ALLOW_BINARY;
- double double_value = StringToDouble(unicode_constants_, key, flags, 0.0);
- int length;
- const char* string;
- if (!std::isfinite(double_value)) {
- string = "Infinity";
- length = 8; // strlen("Infinity");
- } else {
- string = DoubleToCString(double_value,
- i::Vector<char>(number_buffer_, kBufferSize));
- length = i::StrLength(string);
- }
- return AddSymbol(i::Vector<const byte>(reinterpret_cast<const byte*>(string),
- length), true, value);
-}
-
-
-bool DuplicateFinder::IsNumberCanonical(i::Vector<const char> number) {
- // Test for a safe approximation of number literals that are already
- // in canonical form: max 15 digits, no leading zeroes, except an
- // integer part that is a single zero, and no trailing zeros below
- // the decimal point.
- int pos = 0;
- int length = number.length();
- if (number.length() > 15) return false;
- if (number[pos] == '0') {
- pos++;
- } else {
- while (pos < length &&
- static_cast<unsigned>(number[pos] - '0') <= ('9' - '0')) pos++;
- }
- if (length == pos) return true;
- if (number[pos] != '.') return false;
- pos++;
- bool invalid_last_digit = true;
- while (pos < length) {
- byte digit = number[pos] - '0';
- if (digit > '9' - '0') return false;
- invalid_last_digit = (digit == 0);
- pos++;
- }
- return !invalid_last_digit;
-}
-
-
-uint32_t DuplicateFinder::Hash(i::Vector<const byte> key, bool is_ascii) {
- // Primitive hash function, almost identical to the one used
- // for strings (except that it's seeded by the length and ASCII-ness).
- int length = key.length();
- uint32_t hash = (length << 1) | (is_ascii ? 1 : 0) ;
- for (int i = 0; i < length; i++) {
- uint32_t c = key[i];
- hash = (hash + c) * 1025;
- hash ^= (hash >> 6);
- }
- return hash;
-}
-
-
-bool DuplicateFinder::Match(void* first, void* second) {
- // Decode lengths.
- // Length + ASCII-bit is encoded as base 128, most significant heptet first,
- // with a 8th bit being non-zero while there are more heptets.
- // The value encodes the number of bytes following, and whether the original
- // was ASCII.
- byte* s1 = reinterpret_cast<byte*>(first);
- byte* s2 = reinterpret_cast<byte*>(second);
- uint32_t length_ascii_field = 0;
- byte c1;
- do {
- c1 = *s1;
- if (c1 != *s2) return false;
- length_ascii_field = (length_ascii_field << 7) | (c1 & 0x7f);
- s1++;
- s2++;
- } while ((c1 & 0x80) != 0);
- int length = static_cast<int>(length_ascii_field >> 1);
- return memcmp(s1, s2, length) == 0;
-}
-
-
-byte* DuplicateFinder::BackupKey(i::Vector<const byte> bytes,
- bool is_ascii) {
- uint32_t ascii_length = (bytes.length() << 1) | (is_ascii ? 1 : 0);
- backing_store_.StartSequence();
- // Emit ascii_length as base-128 encoded number, with the 7th bit set
- // on the byte of every heptet except the last, least significant, one.
- if (ascii_length >= (1 << 7)) {
- if (ascii_length >= (1 << 14)) {
- if (ascii_length >= (1 << 21)) {
- if (ascii_length >= (1 << 28)) {
- backing_store_.Add(static_cast<byte>((ascii_length >> 28) | 0x80));
- }
- backing_store_.Add(static_cast<byte>((ascii_length >> 21) | 0x80u));
- }
- backing_store_.Add(static_cast<byte>((ascii_length >> 14) | 0x80u));
- }
- backing_store_.Add(static_cast<byte>((ascii_length >> 7) | 0x80u));
- }
- backing_store_.Add(static_cast<byte>(ascii_length & 0x7f));
-
- backing_store_.AddBlock(bytes);
- return backing_store_.EndSequence().start();
-}
} } // v8::preparser
namespace v8 {
namespace internal {
-class UnicodeCache;
+
+// Used to detect duplicates in object literals. Each of the values
+// kGetterProperty, kSetterProperty and kValueProperty represents
+// a type of object literal property. When parsing a property, its
+// type value is stored in the DuplicateFinder for the property name.
+// Values are chosen so that having intersection bits means the there is
+// an incompatibility.
+// I.e., you can add a getter to a property that already has a setter, since
+// kGetterProperty and kSetterProperty doesn't intersect, but not if it
+// already has a getter or a value. Adding the getter to an existing
+// setter will store the value (kGetterProperty | kSetterProperty), which
+// is incompatible with adding any further properties.
+enum PropertyKind {
+ kNone = 0,
+ // Bit patterns representing different object literal property types.
+ kGetterProperty = 1,
+ kSetterProperty = 2,
+ kValueProperty = 7,
+ // Helper constants.
+ kValueFlag = 4
+};
+
+
+// Validation per 11.1.5 Object Initialiser
+template<typename P>
+class ObjectLiteralChecker {
+ public:
+ ObjectLiteralChecker(P* parser, Scanner* scanner, LanguageMode mode)
+ : parser_(parser),
+ scanner_(scanner),
+ finder_(scanner->unicode_cache()),
+ language_mode_(mode) { }
+
+ void CheckProperty(Token::Value property, PropertyKind type, bool* ok);
+
+ private:
+ // Checks the type of conflict based on values coming from PropertyType.
+ bool HasConflict(PropertyKind type1, PropertyKind type2) {
+ return (type1 & type2) != 0;
+ }
+ bool IsDataDataConflict(PropertyKind type1, PropertyKind type2) {
+ return ((type1 & type2) & kValueFlag) != 0;
+ }
+ bool IsDataAccessorConflict(PropertyKind type1, PropertyKind type2) {
+ return ((type1 ^ type2) & kValueFlag) != 0;
+ }
+ bool IsAccessorAccessorConflict(PropertyKind type1, PropertyKind type2) {
+ return ((type1 | type2) & kValueFlag) == 0;
+ }
+
+ P* parser_;
+ Scanner* scanner_;
+ DuplicateFinder finder_;
+ LanguageMode language_mode_;
+};
+
+
+template<typename P>
+void ObjectLiteralChecker<P>::CheckProperty(Token::Value property,
+ PropertyKind type,
+ bool* ok) {
+ int old;
+ if (property == Token::NUMBER) {
+ old = finder_.AddNumber(scanner_->literal_ascii_string(), type);
+ } else if (scanner_->is_literal_ascii()) {
+ old = finder_.AddAsciiSymbol(scanner_->literal_ascii_string(), type);
+ } else {
+ old = finder_.AddUtf16Symbol(scanner_->literal_utf16_string(), type);
+ }
+ PropertyKind old_type = static_cast<PropertyKind>(old);
+ if (HasConflict(old_type, type)) {
+ if (IsDataDataConflict(old_type, type)) {
+ // Both are data properties.
+ if (language_mode_ == CLASSIC_MODE) return;
+ parser_->ReportMessageAt(scanner_->location(),
+ "strict_duplicate_property");
+ } else if (IsDataAccessorConflict(old_type, type)) {
+ // Both a data and an accessor property with the same name.
+ parser_->ReportMessageAt(scanner_->location(),
+ "accessor_data_property");
+ } else {
+ ASSERT(IsAccessorAccessorConflict(old_type, type));
+ // Both accessors of the same type.
+ parser_->ReportMessageAt(scanner_->location(),
+ "accessor_get_set");
+ }
+ *ok = false;
+ }
}
+} // v8::internal
+
namespace preparser {
typedef uint8_t byte;
namespace i = v8::internal;
-class DuplicateFinder {
- public:
- explicit DuplicateFinder(i::UnicodeCache* constants)
- : unicode_constants_(constants),
- backing_store_(16),
- map_(&Match) { }
-
- int AddAsciiSymbol(i::Vector<const char> key, int value);
- int AddUtf16Symbol(i::Vector<const uint16_t> key, int value);
- // Add a a number literal by converting it (if necessary)
- // to the string that ToString(ToNumber(literal)) would generate.
- // and then adding that string with AddAsciiSymbol.
- // This string is the actual value used as key in an object literal,
- // and the one that must be different from the other keys.
- int AddNumber(i::Vector<const char> key, int value);
-
- private:
- int AddSymbol(i::Vector<const byte> key, bool is_ascii, int value);
- // Backs up the key and its length in the backing store.
- // The backup is stored with a base 127 encoding of the
- // length (plus a bit saying whether the string is ASCII),
- // followed by the bytes of the key.
- byte* BackupKey(i::Vector<const byte> key, bool is_ascii);
-
- // Compare two encoded keys (both pointing into the backing store)
- // for having the same base-127 encoded lengths and ASCII-ness,
- // and then having the same 'length' bytes following.
- static bool Match(void* first, void* second);
- // Creates a hash from a sequence of bytes.
- static uint32_t Hash(i::Vector<const byte> key, bool is_ascii);
- // Checks whether a string containing a JS number is its canonical
- // form.
- static bool IsNumberCanonical(i::Vector<const char> key);
-
- // Size of buffer. Sufficient for using it to call DoubleToCString in
- // from conversions.h.
- static const int kBufferSize = 100;
-
- i::UnicodeCache* unicode_constants_;
- // Backing store used to store strings used as hashmap keys.
- i::SequenceCollector<unsigned char> backing_store_;
- i::HashMap map_;
- // Buffer used for string->number->canonical string conversions.
- char number_buffer_[kBufferSize];
-};
-
-
class PreParser {
public:
enum PreParseResult {
i::ParserRecorder* log);
private:
- // Used to detect duplicates in object literals. Each of the values
- // kGetterProperty, kSetterProperty and kValueProperty represents
- // a type of object literal property. When parsing a property, its
- // type value is stored in the DuplicateFinder for the property name.
- // Values are chosen so that having intersection bits means the there is
- // an incompatibility.
- // I.e., you can add a getter to a property that already has a setter, since
- // kGetterProperty and kSetterProperty doesn't intersect, but not if it
- // already has a getter or a value. Adding the getter to an existing
- // setter will store the value (kGetterProperty | kSetterProperty), which
- // is incompatible with adding any further properties.
- enum PropertyType {
- kNone = 0,
- // Bit patterns representing different object literal property types.
- kGetterProperty = 1,
- kSetterProperty = 2,
- kValueProperty = 7,
- // Helper constants.
- kValueFlag = 4
- };
-
- // Checks the type of conflict based on values coming from PropertyType.
- bool HasConflict(int type1, int type2) { return (type1 & type2) != 0; }
- bool IsDataDataConflict(int type1, int type2) {
- return ((type1 & type2) & kValueFlag) != 0;
- }
- bool IsDataAccessorConflict(int type1, int type2) {
- return ((type1 ^ type2) & kValueFlag) != 0;
- }
- bool IsAccessorAccessorConflict(int type1, int type2) {
- return ((type1 | type2) & kValueFlag) == 0;
- }
-
-
- void CheckDuplicate(DuplicateFinder* finder,
- i::Token::Value property,
- int type,
- bool* ok);
-
// These types form an algebra over syntactic categories that is just
// rich enough to let us recognize and propagate the constructs that
// are either being counted in the preparser data, or is important
void ReportUnexpectedToken(i::Token::Value token);
void ReportMessageAt(i::Scanner::Location location,
const char* type,
- const char* name_opt) {
+ const char* name_opt = NULL) {
log_->LogMessage(location.beg_pos, location.end_pos, type, name_opt);
}
void ReportMessageAt(int start_pos,
bool allow_generators_;
bool allow_for_of_;
bool parenthesized_function_;
+
+ friend class i::ObjectLiteralChecker<PreParser>;
};
+
} } // v8::preparser
#endif // V8_PREPARSER_H
// Features shared by parsing and pre-parsing scanners.
+#include <cmath>
+
#include "scanner.h"
#include "../include/v8stdint.h"
#include "char-predicates-inl.h"
+#include "conversions-inl.h"
+#include "list-inl.h"
namespace v8 {
namespace internal {
return true;
}
+
+int DuplicateFinder::AddAsciiSymbol(Vector<const char> key, int value) {
+ return AddSymbol(Vector<const byte>::cast(key), true, value);
+}
+
+
+int DuplicateFinder::AddUtf16Symbol(Vector<const uint16_t> key, int value) {
+ return AddSymbol(Vector<const byte>::cast(key), false, value);
+}
+
+
+int DuplicateFinder::AddSymbol(Vector<const byte> key,
+ bool is_ascii,
+ int value) {
+ uint32_t hash = Hash(key, is_ascii);
+ byte* encoding = BackupKey(key, is_ascii);
+ HashMap::Entry* entry = map_.Lookup(encoding, hash, true);
+ int old_value = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
+ entry->value =
+ reinterpret_cast<void*>(static_cast<intptr_t>(value | old_value));
+ return old_value;
+}
+
+
+int DuplicateFinder::AddNumber(Vector<const char> key, int value) {
+ ASSERT(key.length() > 0);
+ // Quick check for already being in canonical form.
+ if (IsNumberCanonical(key)) {
+ return AddAsciiSymbol(key, value);
+ }
+
+ int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY;
+ double double_value = StringToDouble(unicode_constants_, key, flags, 0.0);
+ int length;
+ const char* string;
+ if (!std::isfinite(double_value)) {
+ string = "Infinity";
+ length = 8; // strlen("Infinity");
+ } else {
+ string = DoubleToCString(double_value,
+ Vector<char>(number_buffer_, kBufferSize));
+ length = StrLength(string);
+ }
+ return AddSymbol(Vector<const byte>(reinterpret_cast<const byte*>(string),
+ length), true, value);
+}
+
+
+bool DuplicateFinder::IsNumberCanonical(Vector<const char> number) {
+ // Test for a safe approximation of number literals that are already
+ // in canonical form: max 15 digits, no leading zeroes, except an
+ // integer part that is a single zero, and no trailing zeros below
+ // the decimal point.
+ int pos = 0;
+ int length = number.length();
+ if (number.length() > 15) return false;
+ if (number[pos] == '0') {
+ pos++;
+ } else {
+ while (pos < length &&
+ static_cast<unsigned>(number[pos] - '0') <= ('9' - '0')) pos++;
+ }
+ if (length == pos) return true;
+ if (number[pos] != '.') return false;
+ pos++;
+ bool invalid_last_digit = true;
+ while (pos < length) {
+ byte digit = number[pos] - '0';
+ if (digit > '9' - '0') return false;
+ invalid_last_digit = (digit == 0);
+ pos++;
+ }
+ return !invalid_last_digit;
+}
+
+
+uint32_t DuplicateFinder::Hash(Vector<const byte> key, bool is_ascii) {
+ // Primitive hash function, almost identical to the one used
+ // for strings (except that it's seeded by the length and ASCII-ness).
+ int length = key.length();
+ uint32_t hash = (length << 1) | (is_ascii ? 1 : 0) ;
+ for (int i = 0; i < length; i++) {
+ uint32_t c = key[i];
+ hash = (hash + c) * 1025;
+ hash ^= (hash >> 6);
+ }
+ return hash;
+}
+
+
+bool DuplicateFinder::Match(void* first, void* second) {
+ // Decode lengths.
+ // Length + ASCII-bit is encoded as base 128, most significant heptet first,
+ // with a 8th bit being non-zero while there are more heptets.
+ // The value encodes the number of bytes following, and whether the original
+ // was ASCII.
+ byte* s1 = reinterpret_cast<byte*>(first);
+ byte* s2 = reinterpret_cast<byte*>(second);
+ uint32_t length_ascii_field = 0;
+ byte c1;
+ do {
+ c1 = *s1;
+ if (c1 != *s2) return false;
+ length_ascii_field = (length_ascii_field << 7) | (c1 & 0x7f);
+ s1++;
+ s2++;
+ } while ((c1 & 0x80) != 0);
+ int length = static_cast<int>(length_ascii_field >> 1);
+ return memcmp(s1, s2, length) == 0;
+}
+
+
+byte* DuplicateFinder::BackupKey(Vector<const byte> bytes,
+ bool is_ascii) {
+ uint32_t ascii_length = (bytes.length() << 1) | (is_ascii ? 1 : 0);
+ backing_store_.StartSequence();
+ // Emit ascii_length as base-128 encoded number, with the 7th bit set
+ // on the byte of every heptet except the last, least significant, one.
+ if (ascii_length >= (1 << 7)) {
+ if (ascii_length >= (1 << 14)) {
+ if (ascii_length >= (1 << 21)) {
+ if (ascii_length >= (1 << 28)) {
+ backing_store_.Add(static_cast<byte>((ascii_length >> 28) | 0x80));
+ }
+ backing_store_.Add(static_cast<byte>((ascii_length >> 21) | 0x80u));
+ }
+ backing_store_.Add(static_cast<byte>((ascii_length >> 14) | 0x80u));
+ }
+ backing_store_.Add(static_cast<byte>((ascii_length >> 7) | 0x80u));
+ }
+ backing_store_.Add(static_cast<byte>(ascii_length & 0x7f));
+
+ backing_store_.AddBlock(bytes);
+ return backing_store_.EndSequence().start();
+}
+
} } // namespace v8::internal
#include "char-predicates.h"
#include "checks.h"
#include "globals.h"
+#include "hashmap.h"
+#include "list.h"
#include "token.h"
#include "unicode-inl.h"
#include "utils.h"
};
-class UnicodeCache {
// ---------------------------------------------------------------------
// Caching predicates used by scanners.
+
+class UnicodeCache {
public:
UnicodeCache() {}
typedef unibrow::Utf8Decoder<512> Utf8Decoder;
};
+// ---------------------------------------------------------------------
+// DuplicateFinder discovers duplicate symbols.
+
+class DuplicateFinder {
+ public:
+ explicit DuplicateFinder(UnicodeCache* constants)
+ : unicode_constants_(constants),
+ backing_store_(16),
+ map_(&Match) { }
+
+ int AddAsciiSymbol(Vector<const char> key, int value);
+ int AddUtf16Symbol(Vector<const uint16_t> key, int value);
+ // Add a a number literal by converting it (if necessary)
+ // to the string that ToString(ToNumber(literal)) would generate.
+ // and then adding that string with AddAsciiSymbol.
+ // This string is the actual value used as key in an object literal,
+ // and the one that must be different from the other keys.
+ int AddNumber(Vector<const char> key, int value);
+
+ private:
+ int AddSymbol(Vector<const byte> key, bool is_ascii, int value);
+ // Backs up the key and its length in the backing store.
+ // The backup is stored with a base 127 encoding of the
+ // length (plus a bit saying whether the string is ASCII),
+ // followed by the bytes of the key.
+ byte* BackupKey(Vector<const byte> key, bool is_ascii);
+
+ // Compare two encoded keys (both pointing into the backing store)
+ // for having the same base-127 encoded lengths and ASCII-ness,
+ // and then having the same 'length' bytes following.
+ static bool Match(void* first, void* second);
+ // Creates a hash from a sequence of bytes.
+ static uint32_t Hash(Vector<const byte> key, bool is_ascii);
+ // Checks whether a string containing a JS number is its canonical
+ // form.
+ static bool IsNumberCanonical(Vector<const char> key);
+
+ // Size of buffer. Sufficient for using it to call DoubleToCString in
+ // from conversions.h.
+ static const int kBufferSize = 100;
+
+ UnicodeCache* unicode_constants_;
+ // Backing store used to store strings used as hashmap keys.
+ SequenceCollector<unsigned char> backing_store_;
+ HashMap map_;
+ // Buffer used for string->number->canonical string conversions.
+ char number_buffer_[kBufferSize];
+};
+
+
// ----------------------------------------------------------------------------
// LiteralBuffer - Collector of chars of literals.
--- /dev/null
+// Copyright 2013 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Should throw, not crash.
+assertThrows("var o = { get /*space*/ () {} }");
[
[ALWAYS, {
- # TODO(mstarzinger): Uhm, this is kind of embarrassing, but our parser
- # does not catch some syntax errors with duplicate properties in object
- # literals that our preparser actually caught. I will fix this glitch in a
- # follow-up change.
- 'duplicate-property/*': [SKIP],
-
# TODO(mstarzinger): This script parses but throws a TypeError when run.
'non-alphanum': [FAIL],