rm -Rf .libs
rm -f slirp/*.o slirp/*.d audio/*.o audio/*.d block/*.o block/*.d net/*.o net/*.d fsdev/*.o fsdev/*.d ui/*.o ui/*.d qapi/*.o qapi/*.d qga/*.o qga/*.d
rm -f qemu-img-cmds.h
+ rm -f trace/*.o trace/*.d
rm -f trace.c trace.h trace.c-timestamp trace.h-timestamp
rm -f trace-dtrace.dtrace trace-dtrace.dtrace-timestamp
rm -f trace-dtrace.h trace-dtrace.h-timestamp
rm -rf /tmp/$(FILE)
SYSTEM_TARGETS=$(filter %-softmmu,$(TARGET_DIRS))
-SYSTEM_PROGS=$(patsubst qemu-system-i386,qemu, \
- $(patsubst %-softmmu,qemu-system-%, \
- $(SYSTEM_TARGETS)))
+SYSTEM_PROGS=$(patsubst %-softmmu,qemu-system-%, \
+ $(SYSTEM_TARGETS))
USER_TARGETS=$(filter %-user,$(TARGET_DIRS))
USER_PROGS=$(patsubst %-bsd-user,qemu-%, \
$(call set-vpath, $(SRC_PATH):$(SRC_PATH)/hw)
QEMU_CFLAGS+=-I..
-QEMU_CFLAGS += $(GLIB_CFLAGS)
include $(SRC_PATH)/Makefile.objs
$(call quiet-command,$(LIBTOOL) --mode=compile --tag=CC dtrace -o $@ -G -s $<, " lt GEN trace-dtrace.o")
endif
-simpletrace.o: simpletrace.c $(GENERATED_HEADERS)
+trace/simple.o: trace/simple.c $(GENERATED_HEADERS)
-ifeq ($(TRACE_BACKEND),dtrace)
-trace-obj-y = trace-dtrace.o
-else
+trace-obj-$(CONFIG_TRACE_DTRACE) += trace-dtrace.o
+ifneq ($(TRACE_BACKEND),dtrace)
trace-obj-y = trace.o
-ifeq ($(TRACE_BACKEND),simple)
-trace-obj-y += simpletrace.o
-user-obj-y += qemu-timer-common.o
-endif
endif
+trace-nested-$(CONFIG_TRACE_DEFAULT) += default.o
+
+trace-nested-$(CONFIG_TRACE_SIMPLE) += simple.o
+trace-obj-$(CONFIG_TRACE_SIMPLE) += qemu-timer-common.o
+
+trace-nested-$(CONFIG_TRACE_STDERR) += stderr.o
+
+trace-nested-y += control.o
+
+trace-obj-y += $(addprefix trace/, $(trace-nested-y))
+
######################################################################
# smartcard
QEMU_PROG=qemu-$(TARGET_ARCH2)
else
# system emulator name
-ifeq ($(TARGET_ARCH), i386)
-QEMU_PROG=qemu$(EXESUF)
-else
QEMU_PROG=qemu-system-$(TARGET_ARCH2)$(EXESUF)
endif
-endif
PROGS=$(QEMU_PROG)
STPFILES=
config-target.h: config-target.h-timestamp
config-target.h-timestamp: config-target.mak
-ifdef CONFIG_SYSTEMTAP_TRACE
+ifdef CONFIG_TRACE_SYSTEMTAP
stap: $(QEMU_PROG).stp
ifdef CONFIG_USER_ONLY
obj-y += vhost_net.o
obj-$(CONFIG_VHOST_NET) += vhost.o
obj-$(CONFIG_REALLY_VIRTFS) += 9pfs/virtio-9p-device.o
+obj-y += rwhandler.o
obj-$(CONFIG_KVM) += kvm.o kvm-all.o
obj-$(CONFIG_NO_KVM) += kvm-stub.o
obj-y += memory.o
endif # CONFIG_SOFTMMU
ifndef CONFIG_LINUX_USER
+ifndef CONFIG_BSD_USER
# libcacard needs qemu-thread support, and besides is only needed by devices
-# so not requires with linux-user targets
+# so not requires with linux-user / bsd-user targets
obj-$(CONFIG_SMARTCARD_NSS) += $(addprefix ../libcacard/, $(libcacard-y))
+endif # CONFIG_BSD_USER
endif # CONFIG_LINUX_USER
obj-y += $(addprefix ../, $(trace-obj-y))
obj-$(CONFIG_GDBSTUB_XML) += gdbstub-xml.o
$(QEMU_PROG): $(obj-y) $(obj-$(TARGET_BASE_ARCH)-y)
- $(call LINK,$(obj-y) $(obj-$(TARGET_BASE_ARCH)-y))
+ $(call LINK,$^)
gdbstub-xml.c: $(TARGET_XML_FILES) $(SRC_PATH)/scripts/feature_to_c.sh
rm -f *.o *.a *~ $(PROGS) nwfpe/*.o fpu/*.o
rm -f *.d */*.d tcg/*.o ide/*.o 9pfs/*.o
rm -f hmp-commands.h qmp-commands.h gdbstub-xml.c
-ifdef CONFIG_SYSTEMTAP_TRACE
+ifdef CONFIG_TRACE_SYSTEMTAP
rm -f *.stp
endif
$(STRIP) $(patsubst %,"$(DESTDIR)$(bindir)/%",$(PROGS))
endif
endif
-ifdef CONFIG_SYSTEMTAP_TRACE
+ifdef CONFIG_TRACE_SYSTEMTAP
$(INSTALL_DIR) "$(DESTDIR)$(datadir)/../systemtap/tapset"
$(INSTALL_DATA) $(QEMU_PROG).stp "$(DESTDIR)$(datadir)/../systemtap/tapset"
endif
#define E_FILNMLEN 14 /* # characters in a file name */
#define E_DIMNUM 4 /* # array dimensions in auxiliary entry */
-struct __attribute__((packed)) external_syment
+struct QEMU_PACKED external_syment
{
union {
char e_name[E_SYMNMLEN];
.data1 : { *(.data1) }
.preinit_array :
{
- PROVIDE_HIDDEN (__preinit_array_start = .);
+ PROVIDE (__preinit_array_start = .);
KEEP (*(.preinit_array))
- PROVIDE_HIDDEN (__preinit_array_end = .);
+ PROVIDE (__preinit_array_end = .);
}
.init_array :
{
- PROVIDE_HIDDEN (__init_array_start = .);
+ PROVIDE (__init_array_start = .);
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
- PROVIDE_HIDDEN (__init_array_end = .);
+ PROVIDE (__init_array_end = .);
}
.fini_array :
{
- PROVIDE_HIDDEN (__fini_array_start = .);
+ PROVIDE (__fini_array_start = .);
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
- PROVIDE_HIDDEN (__fini_array_end = .);
+ PROVIDE (__fini_array_end = .);
}
.ctors :
{
return 0;
}
+/**
+ * Set open flags for a given cache mode
+ *
+ * Return 0 on success, -1 if the cache mode was invalid.
+ */
+int bdrv_parse_cache_flags(const char *mode, int *flags)
+{
+ *flags &= ~BDRV_O_CACHE_MASK;
+
+ if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
+ *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
+ } else if (!strcmp(mode, "directsync")) {
+ *flags |= BDRV_O_NOCACHE;
+ } else if (!strcmp(mode, "writeback")) {
+ *flags |= BDRV_O_CACHE_WB;
+ } else if (!strcmp(mode, "unsafe")) {
+ *flags |= BDRV_O_CACHE_WB;
+ *flags |= BDRV_O_NO_FLUSH;
+ } else if (!strcmp(mode, "writethrough")) {
+ /* this is the default */
+ } else {
+ return -1;
+ }
+
+ return 0;
+}
+
/*
* Common part for opening disk images and files
*/
return ret;
}
- /* No flush needed for cache=writethrough, it uses O_DSYNC */
- if ((bs->open_flags & BDRV_O_CACHE_MASK) != 0) {
+ /* No flush needed for cache modes that use O_DSYNC */
+ if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
bdrv_flush(bs);
}
uint8_t end_cyl; /* end cylinder */
uint32_t start_sect; /* starting sector counting from 0 */
uint32_t nr_sects; /* nr of sectors in partition */
-} __attribute__((packed));
+} QEMU_PACKED;
/* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
static int guess_disk_lchs(BlockDriverState *bs,
" wr_bytes=%" PRId64
" rd_operations=%" PRId64
" wr_operations=%" PRId64
+ " flush_operations=%" PRId64
+ " wr_total_time_ns=%" PRId64
+ " rd_total_time_ns=%" PRId64
+ " flush_total_time_ns=%" PRId64
"\n",
qdict_get_int(qdict, "rd_bytes"),
qdict_get_int(qdict, "wr_bytes"),
qdict_get_int(qdict, "rd_operations"),
- qdict_get_int(qdict, "wr_operations"));
+ qdict_get_int(qdict, "wr_operations"),
+ qdict_get_int(qdict, "flush_operations"),
+ qdict_get_int(qdict, "wr_total_time_ns"),
+ qdict_get_int(qdict, "rd_total_time_ns"),
+ qdict_get_int(qdict, "flush_total_time_ns"));
}
void bdrv_stats_print(Monitor *mon, const QObject *data)
"'wr_bytes': %" PRId64 ","
"'rd_operations': %" PRId64 ","
"'wr_operations': %" PRId64 ","
- "'wr_highest_offset': %" PRId64
+ "'wr_highest_offset': %" PRId64 ","
+ "'flush_operations': %" PRId64 ","
+ "'wr_total_time_ns': %" PRId64 ","
+ "'rd_total_time_ns': %" PRId64 ","
+ "'flush_total_time_ns': %" PRId64
"} }",
- bs->rd_bytes, bs->wr_bytes,
- bs->rd_ops, bs->wr_ops,
+ bs->nr_bytes[BDRV_ACCT_READ],
+ bs->nr_bytes[BDRV_ACCT_WRITE],
+ bs->nr_ops[BDRV_ACCT_READ],
+ bs->nr_ops[BDRV_ACCT_WRITE],
bs->wr_highest_sector *
- (uint64_t)BDRV_SECTOR_SIZE);
+ (uint64_t)BDRV_SECTOR_SIZE,
+ bs->nr_ops[BDRV_ACCT_FLUSH],
+ bs->total_time_ns[BDRV_ACCT_WRITE],
+ bs->total_time_ns[BDRV_ACCT_READ],
+ bs->total_time_ns[BDRV_ACCT_FLUSH]);
dict = qobject_to_qdict(res);
if (*bs->device_name) {
return buf;
}
-
/**************************************************************/
/* async I/Os */
BlockDriverCompletionFunc *cb, void *opaque)
{
BlockDriver *drv = bs->drv;
- BlockDriverAIOCB *ret;
trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
if (bdrv_check_request(bs, sector_num, nb_sectors))
return NULL;
- ret = drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
- cb, opaque);
-
- if (ret) {
- /* Update stats even though technically transfer has not happened. */
- bs->rd_bytes += (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
- bs->rd_ops++;
- }
-
- return ret;
+ return drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
+ cb, opaque);
}
typedef struct BlockCompleteData {
cb, opaque);
if (ret) {
- /* Update stats even though technically transfer has not happened. */
- bs->wr_bytes += (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
- bs->wr_ops ++;
if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
bs->wr_highest_sector = sector_num + nb_sectors - 1;
}
return bs->in_use;
}
+void
+bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
+ enum BlockAcctType type)
+{
+ assert(type < BDRV_MAX_IOTYPE);
+
+ cookie->bytes = bytes;
+ cookie->start_time_ns = get_clock();
+ cookie->type = type;
+}
+
+void
+bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
+{
+ assert(cookie->type < BDRV_MAX_IOTYPE);
+
+ bs->nr_bytes[cookie->type] += cookie->bytes;
+ bs->nr_ops[cookie->type]++;
+ bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
+}
+
int bdrv_img_create(const char *filename, const char *fmt,
const char *base_filename, const char *base_fmt,
char *options, uint64_t img_size, int flags)
BlockDriverState *bdrv_new(const char *device_name);
void bdrv_make_anon(BlockDriverState *bs);
void bdrv_delete(BlockDriverState *bs);
+int bdrv_parse_cache_flags(const char *mode, int *flags);
int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags);
int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
BlockDriver *drv);
void bdrv_set_in_use(BlockDriverState *bs, int in_use);
int bdrv_in_use(BlockDriverState *bs);
+enum BlockAcctType {
+ BDRV_ACCT_READ,
+ BDRV_ACCT_WRITE,
+ BDRV_ACCT_FLUSH,
+ BDRV_MAX_IOTYPE,
+};
+
+typedef struct BlockAcctCookie {
+ int64_t bytes;
+ int64_t start_time_ns;
+ enum BlockAcctType type;
+} BlockAcctCookie;
+
+void bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie,
+ int64_t bytes, enum BlockAcctType type);
+void bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie);
+
typedef enum {
BLKDBG_L1_UPDATE,
void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event);
#endif
+
{
CURLState *state = NULL;
curl_easy_getinfo(msg->easy_handle, CURLINFO_PRIVATE, (char**)&state);
+
+ /* ACBs for successful messages get completed in curl_read_cb */
+ if (msg->data.result != CURLE_OK) {
+ int i;
+ for (i = 0; i < CURL_NUM_ACB; i++) {
+ CURLAIOCB *acb = state->acb[i];
+
+ if (acb == NULL) {
+ continue;
+ }
+
+ acb->common.cb(acb->common.opaque, -EIO);
+ qemu_aio_release(acb);
+ state->acb[i] = NULL;
+ }
+ }
+
curl_clean_state(state);
break;
}
curl_easy_setopt(state->curl, CURLOPT_FOLLOWLOCATION, 1);
curl_easy_setopt(state->curl, CURLOPT_NOSIGNAL, 1);
curl_easy_setopt(state->curl, CURLOPT_ERRORBUFFER, state->errmsg);
-
+ curl_easy_setopt(state->curl, CURLOPT_FAILONERROR, 1);
+
#ifdef DEBUG_VERBOSE
curl_easy_setopt(state->curl, CURLOPT_VERBOSE, 1);
#endif
uint32_t catalog_entries;
uint32_t nb_sectors;
char padding[24];
-} __attribute__((packed));
+} QEMU_PACKED;
typedef struct BDRVParallelsState {
goto fail;
bs->backing_file[len] = '\0';
}
+
+ qemu_co_mutex_init(&s->lock);
return 0;
fail:
return -1;
if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
return -1;
-#if 0
- /* test */
- {
- uint8_t in[16];
- uint8_t out[16];
- uint8_t tmp[16];
- for(i=0;i<16;i++)
- in[i] = i;
- AES_encrypt(in, tmp, &s->aes_encrypt_key);
- AES_decrypt(tmp, out, &s->aes_decrypt_key);
- for(i = 0; i < 16; i++)
- printf(" %02x", tmp[i]);
- printf("\n");
- for(i = 0; i < 16; i++)
- printf(" %02x", out[i]);
- printf("\n");
- }
-#endif
return 0;
}
return 0;
}
-#if 0
-
-static int qcow_read(BlockDriverState *bs, int64_t sector_num,
- uint8_t *buf, int nb_sectors)
+static int qcow_co_readv(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov)
{
BDRVQcowState *s = bs->opaque;
- int ret, index_in_cluster, n;
+ int index_in_cluster;
+ int ret = 0, n;
uint64_t cluster_offset;
+ struct iovec hd_iov;
+ QEMUIOVector hd_qiov;
+ uint8_t *buf;
+ void *orig_buf;
+
+ if (qiov->niov > 1) {
+ buf = orig_buf = qemu_blockalign(bs, qiov->size);
+ } else {
+ orig_buf = NULL;
+ buf = (uint8_t *)qiov->iov->iov_base;
+ }
+
+ qemu_co_mutex_lock(&s->lock);
- while (nb_sectors > 0) {
- cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
+ while (nb_sectors != 0) {
+ /* prepare next request */
+ cluster_offset = get_cluster_offset(bs, sector_num << 9,
+ 0, 0, 0, 0);
index_in_cluster = sector_num & (s->cluster_sectors - 1);
n = s->cluster_sectors - index_in_cluster;
- if (n > nb_sectors)
+ if (n > nb_sectors) {
n = nb_sectors;
+ }
+
if (!cluster_offset) {
if (bs->backing_hd) {
/* read from the base image */
- ret = bdrv_read(bs->backing_hd, sector_num, buf, n);
- if (ret < 0)
- return -1;
+ hd_iov.iov_base = (void *)buf;
+ hd_iov.iov_len = n * 512;
+ qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_readv(bs->backing_hd, sector_num,
+ n, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ goto fail;
+ }
} else {
+ /* Note: in this case, no need to wait */
memset(buf, 0, 512 * n);
}
} else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
- if (decompress_cluster(bs, cluster_offset) < 0)
- return -1;
- memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
+ /* add AIO support for compressed blocks ? */
+ if (decompress_cluster(bs, cluster_offset) < 0) {
+ goto fail;
+ }
+ memcpy(buf,
+ s->cluster_cache + index_in_cluster * 512, 512 * n);
} else {
- ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
- if (ret != n * 512)
- return -1;
+ if ((cluster_offset & 511) != 0) {
+ goto fail;
+ }
+ hd_iov.iov_base = (void *)buf;
+ hd_iov.iov_len = n * 512;
+ qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_readv(bs->file,
+ (cluster_offset >> 9) + index_in_cluster,
+ n, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ break;
+ }
if (s->crypt_method) {
- encrypt_sectors(s, sector_num, buf, buf, n, 0,
+ encrypt_sectors(s, sector_num, buf, buf,
+ n, 0,
&s->aes_decrypt_key);
}
}
+ ret = 0;
+
nb_sectors -= n;
sector_num += n;
buf += n * 512;
}
- return 0;
-}
-#endif
-typedef struct QCowAIOCB {
- BlockDriverAIOCB common;
- int64_t sector_num;
- QEMUIOVector *qiov;
- uint8_t *buf;
- void *orig_buf;
- int nb_sectors;
- int n;
- uint64_t cluster_offset;
- uint8_t *cluster_data;
- struct iovec hd_iov;
- bool is_write;
- QEMUBH *bh;
- QEMUIOVector hd_qiov;
- BlockDriverAIOCB *hd_aiocb;
-} QCowAIOCB;
-
-static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
-{
- QCowAIOCB *acb = container_of(blockacb, QCowAIOCB, common);
- if (acb->hd_aiocb)
- bdrv_aio_cancel(acb->hd_aiocb);
- qemu_aio_release(acb);
-}
-
-static AIOPool qcow_aio_pool = {
- .aiocb_size = sizeof(QCowAIOCB),
- .cancel = qcow_aio_cancel,
-};
-
-static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs,
- int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
- int is_write)
-{
- QCowAIOCB *acb;
-
- acb = qemu_aio_get(&qcow_aio_pool, bs, NULL, NULL);
- if (!acb)
- return NULL;
- acb->hd_aiocb = NULL;
- acb->sector_num = sector_num;
- acb->qiov = qiov;
- acb->is_write = is_write;
+done:
+ qemu_co_mutex_unlock(&s->lock);
if (qiov->niov > 1) {
- acb->buf = acb->orig_buf = qemu_blockalign(bs, qiov->size);
- if (is_write)
- qemu_iovec_to_buffer(qiov, acb->buf);
- } else {
- acb->buf = (uint8_t *)qiov->iov->iov_base;
+ qemu_iovec_from_buffer(qiov, orig_buf, qiov->size);
+ qemu_vfree(orig_buf);
}
- acb->nb_sectors = nb_sectors;
- acb->n = 0;
- acb->cluster_offset = 0;
- return acb;
+
+ return ret;
+
+fail:
+ ret = -EIO;
+ goto done;
}
-static int qcow_aio_read_cb(void *opaque)
+static int qcow_co_writev(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov)
{
- QCowAIOCB *acb = opaque;
- BlockDriverState *bs = acb->common.bs;
BDRVQcowState *s = bs->opaque;
int index_in_cluster;
- int ret;
+ uint64_t cluster_offset;
+ const uint8_t *src_buf;
+ int ret = 0, n;
+ uint8_t *cluster_data = NULL;
+ struct iovec hd_iov;
+ QEMUIOVector hd_qiov;
+ uint8_t *buf;
+ void *orig_buf;
- acb->hd_aiocb = NULL;
+ s->cluster_cache_offset = -1; /* disable compressed cache */
- redo:
- /* post process the read buffer */
- if (!acb->cluster_offset) {
- /* nothing to do */
- } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
- /* nothing to do */
+ if (qiov->niov > 1) {
+ buf = orig_buf = qemu_blockalign(bs, qiov->size);
+ qemu_iovec_to_buffer(qiov, buf);
} else {
- if (s->crypt_method) {
- encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
- acb->n, 0,
- &s->aes_decrypt_key);
- }
+ orig_buf = NULL;
+ buf = (uint8_t *)qiov->iov->iov_base;
}
- acb->nb_sectors -= acb->n;
- acb->sector_num += acb->n;
- acb->buf += acb->n * 512;
+ qemu_co_mutex_lock(&s->lock);
- if (acb->nb_sectors == 0) {
- /* request completed */
- return 0;
- }
+ while (nb_sectors != 0) {
- /* prepare next AIO request */
- acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9,
- 0, 0, 0, 0);
- index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
- acb->n = s->cluster_sectors - index_in_cluster;
- if (acb->n > acb->nb_sectors)
- acb->n = acb->nb_sectors;
-
- if (!acb->cluster_offset) {
- if (bs->backing_hd) {
- /* read from the base image */
- acb->hd_iov.iov_base = (void *)acb->buf;
- acb->hd_iov.iov_len = acb->n * 512;
- qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
- qemu_co_mutex_unlock(&s->lock);
- ret = bdrv_co_readv(bs->backing_hd, acb->sector_num,
- acb->n, &acb->hd_qiov);
- qemu_co_mutex_lock(&s->lock);
- if (ret < 0) {
- return -EIO;
- }
- } else {
- /* Note: in this case, no need to wait */
- memset(acb->buf, 0, 512 * acb->n);
- goto redo;
+ index_in_cluster = sector_num & (s->cluster_sectors - 1);
+ n = s->cluster_sectors - index_in_cluster;
+ if (n > nb_sectors) {
+ n = nb_sectors;
}
- } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
- /* add AIO support for compressed blocks ? */
- if (decompress_cluster(bs, acb->cluster_offset) < 0) {
- return -EIO;
+ cluster_offset = get_cluster_offset(bs, sector_num << 9, 1, 0,
+ index_in_cluster,
+ index_in_cluster + n);
+ if (!cluster_offset || (cluster_offset & 511) != 0) {
+ ret = -EIO;
+ break;
}
- memcpy(acb->buf,
- s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
- goto redo;
- } else {
- if ((acb->cluster_offset & 511) != 0) {
- return -EIO;
+ if (s->crypt_method) {
+ if (!cluster_data) {
+ cluster_data = g_malloc0(s->cluster_size);
+ }
+ encrypt_sectors(s, sector_num, cluster_data, buf,
+ n, 1, &s->aes_encrypt_key);
+ src_buf = cluster_data;
+ } else {
+ src_buf = buf;
}
- acb->hd_iov.iov_base = (void *)acb->buf;
- acb->hd_iov.iov_len = acb->n * 512;
- qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
+
+ hd_iov.iov_base = (void *)src_buf;
+ hd_iov.iov_len = n * 512;
+ qemu_iovec_init_external(&hd_qiov, &hd_iov, 1);
qemu_co_mutex_unlock(&s->lock);
- ret = bdrv_co_readv(bs->file,
- (acb->cluster_offset >> 9) + index_in_cluster,
- acb->n, &acb->hd_qiov);
+ ret = bdrv_co_writev(bs->file,
+ (cluster_offset >> 9) + index_in_cluster,
+ n, &hd_qiov);
qemu_co_mutex_lock(&s->lock);
if (ret < 0) {
- return ret;
+ break;
}
- }
-
- return 1;
-}
-
-static int qcow_co_readv(BlockDriverState *bs, int64_t sector_num,
- int nb_sectors, QEMUIOVector *qiov)
-{
- BDRVQcowState *s = bs->opaque;
- QCowAIOCB *acb;
- int ret;
-
- acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, 0);
-
- qemu_co_mutex_lock(&s->lock);
- do {
- ret = qcow_aio_read_cb(acb);
- } while (ret > 0);
- qemu_co_mutex_unlock(&s->lock);
+ ret = 0;
- if (acb->qiov->niov > 1) {
- qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size);
- qemu_vfree(acb->orig_buf);
- }
- qemu_aio_release(acb);
-
- return ret;
-}
-
-static int qcow_aio_write_cb(void *opaque)
-{
- QCowAIOCB *acb = opaque;
- BlockDriverState *bs = acb->common.bs;
- BDRVQcowState *s = bs->opaque;
- int index_in_cluster;
- uint64_t cluster_offset;
- const uint8_t *src_buf;
- int ret;
-
- acb->hd_aiocb = NULL;
-
- acb->nb_sectors -= acb->n;
- acb->sector_num += acb->n;
- acb->buf += acb->n * 512;
-
- if (acb->nb_sectors == 0) {
- /* request completed */
- return 0;
- }
-
- index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
- acb->n = s->cluster_sectors - index_in_cluster;
- if (acb->n > acb->nb_sectors)
- acb->n = acb->nb_sectors;
- cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, 1, 0,
- index_in_cluster,
- index_in_cluster + acb->n);
- if (!cluster_offset || (cluster_offset & 511) != 0) {
- return -EIO;
- }
- if (s->crypt_method) {
- if (!acb->cluster_data) {
- acb->cluster_data = g_malloc0(s->cluster_size);
- }
- encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
- acb->n, 1, &s->aes_encrypt_key);
- src_buf = acb->cluster_data;
- } else {
- src_buf = acb->buf;
- }
-
- acb->hd_iov.iov_base = (void *)src_buf;
- acb->hd_iov.iov_len = acb->n * 512;
- qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
- qemu_co_mutex_unlock(&s->lock);
- ret = bdrv_co_writev(bs->file,
- (cluster_offset >> 9) + index_in_cluster,
- acb->n, &acb->hd_qiov);
- qemu_co_mutex_lock(&s->lock);
- if (ret < 0) {
- return ret;
+ nb_sectors -= n;
+ sector_num += n;
+ buf += n * 512;
}
- return 1;
-}
-
-static int qcow_co_writev(BlockDriverState *bs, int64_t sector_num,
- int nb_sectors, QEMUIOVector *qiov)
-{
- BDRVQcowState *s = bs->opaque;
- QCowAIOCB *acb;
- int ret;
-
- s->cluster_cache_offset = -1; /* disable compressed cache */
-
- acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, 1);
-
- qemu_co_mutex_lock(&s->lock);
- do {
- ret = qcow_aio_write_cb(acb);
- } while (ret > 0);
qemu_co_mutex_unlock(&s->lock);
- if (acb->qiov->niov > 1) {
- qemu_vfree(acb->orig_buf);
+ if (qiov->niov > 1) {
+ qemu_vfree(orig_buf);
}
- qemu_aio_release(acb);
+ free(cluster_data);
return ret;
}
}
#ifdef DEBUG_ALLOC2
- printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
+ fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
#endif
new_l1_size2 = sizeof(uint64_t) * new_l1_size;
* For a given offset of the disk image, find the cluster offset in
* qcow2 file. The offset is stored in *cluster_offset.
*
- * on entry, *num is the number of contiguous clusters we'd like to
+ * on entry, *num is the number of contiguous sectors we'd like to
* access following offset.
*
- * on exit, *num is the number of contiguous clusters we can read.
+ * on exit, *num is the number of contiguous sectors we can read.
*
* Return 0, if the offset is found
* Return -errno, otherwise.
int ret;
#ifdef DEBUG_ALLOC2
- printf("update_refcount: offset=%" PRId64 " size=%" PRId64 " addend=%d\n",
+ fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64 " addend=%d\n",
offset, length, addend);
#endif
if (length < 0) {
}
}
#ifdef DEBUG_ALLOC2
- printf("alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
+ fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
size,
(s->free_cluster_index - nb_clusters) << s->cluster_bits);
#endif
-void qcow2_create_refcount_update(QCowCreateState *s, int64_t offset,
- int64_t size)
-{
- int refcount;
- int64_t start, last, cluster_offset;
- uint16_t *p;
-
- start = offset & ~(s->cluster_size - 1);
- last = (offset + size - 1) & ~(s->cluster_size - 1);
- for(cluster_offset = start; cluster_offset <= last;
- cluster_offset += s->cluster_size) {
- p = &s->refcount_block[cluster_offset >> s->cluster_bits];
- refcount = be16_to_cpu(*p);
- refcount++;
- *p = cpu_to_be16(refcount);
- }
-}
-
/* update the refcounts of snapshots and the copied flag */
int qcow2_update_snapshot_refcount(BlockDriverState *bs,
int64_t l1_table_offset, int l1_size, int addend)
#include "block_int.h"
#include "block/qcow2.h"
-typedef struct __attribute__((packed)) QCowSnapshotHeader {
+typedef struct QEMU_PACKED QCowSnapshotHeader {
/* header is 8 byte aligned */
uint64_t l1_table_offset;
if (qcow2_write_snapshots(bs) < 0)
goto fail;
#ifdef DEBUG_ALLOC
- qcow2_check_refcounts(bs);
+ {
+ BdrvCheckResult result = {0};
+ qcow2_check_refcounts(bs, &result);
+ }
#endif
return 0;
fail:
goto fail;
#ifdef DEBUG_ALLOC
- qcow2_check_refcounts(bs);
+ {
+ BdrvCheckResult result = {0};
+ qcow2_check_refcounts(bs, &result);
+ }
#endif
return 0;
fail:
return ret;
}
#ifdef DEBUG_ALLOC
- qcow2_check_refcounts(bs);
+ {
+ BdrvCheckResult result = {0};
+ qcow2_check_refcounts(bs, &result);
+ }
#endif
return 0;
}
while (offset < end_offset) {
#ifdef DEBUG_EXT
+ BDRVQcowState *s = bs->opaque;
/* Sanity check */
if (offset > s->cluster_size)
printf("qcow2_read_extension: suspicious offset %lu\n", offset);
qemu_co_mutex_init(&s->lock);
#ifdef DEBUG_ALLOC
- qcow2_check_refcounts(bs);
+ {
+ BdrvCheckResult result = {0};
+ qcow2_check_refcounts(bs, &result);
+ }
#endif
return ret;
return n1;
}
-typedef struct QCowAIOCB {
- BlockDriverAIOCB common;
- int64_t sector_num;
- QEMUIOVector *qiov;
- int remaining_sectors;
- int cur_nr_sectors; /* number of sectors in current iteration */
- uint64_t bytes_done;
- uint64_t cluster_offset;
- uint8_t *cluster_data;
- bool is_write;
- QEMUIOVector hd_qiov;
- QEMUBH *bh;
- QCowL2Meta l2meta;
- QLIST_ENTRY(QCowAIOCB) next_depend;
-} QCowAIOCB;
-
-static void qcow2_aio_cancel(BlockDriverAIOCB *blockacb)
-{
- QCowAIOCB *acb = container_of(blockacb, QCowAIOCB, common);
- qemu_aio_release(acb);
-}
-
-static AIOPool qcow2_aio_pool = {
- .aiocb_size = sizeof(QCowAIOCB),
- .cancel = qcow2_aio_cancel,
-};
-
-/*
- * Returns 0 when the request is completed successfully, 1 when there is still
- * a part left to do and -errno in error cases.
- */
-static int qcow2_aio_read_cb(QCowAIOCB *acb)
+static int qcow2_co_readv(BlockDriverState *bs, int64_t sector_num,
+ int remaining_sectors, QEMUIOVector *qiov)
{
- BlockDriverState *bs = acb->common.bs;
BDRVQcowState *s = bs->opaque;
int index_in_cluster, n1;
int ret;
+ int cur_nr_sectors; /* number of sectors in current iteration */
+ uint64_t cluster_offset = 0;
+ uint64_t bytes_done = 0;
+ QEMUIOVector hd_qiov;
+ uint8_t *cluster_data = NULL;
- /* post process the read buffer */
- if (!acb->cluster_offset) {
- /* nothing to do */
- } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
- /* nothing to do */
- } else {
- if (s->crypt_method) {
- qcow2_encrypt_sectors(s, acb->sector_num, acb->cluster_data,
- acb->cluster_data, acb->cur_nr_sectors, 0, &s->aes_decrypt_key);
- qemu_iovec_reset(&acb->hd_qiov);
- qemu_iovec_copy(&acb->hd_qiov, acb->qiov, acb->bytes_done,
- acb->cur_nr_sectors * 512);
- qemu_iovec_from_buffer(&acb->hd_qiov, acb->cluster_data,
- 512 * acb->cur_nr_sectors);
- }
- }
+ qemu_iovec_init(&hd_qiov, qiov->niov);
- acb->remaining_sectors -= acb->cur_nr_sectors;
- acb->sector_num += acb->cur_nr_sectors;
- acb->bytes_done += acb->cur_nr_sectors * 512;
+ qemu_co_mutex_lock(&s->lock);
- if (acb->remaining_sectors == 0) {
- /* request completed */
- return 0;
- }
+ while (remaining_sectors != 0) {
- /* prepare next AIO request */
- acb->cur_nr_sectors = acb->remaining_sectors;
- if (s->crypt_method) {
- acb->cur_nr_sectors = MIN(acb->cur_nr_sectors,
- QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors);
- }
+ /* prepare next request */
+ cur_nr_sectors = remaining_sectors;
+ if (s->crypt_method) {
+ cur_nr_sectors = MIN(cur_nr_sectors,
+ QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors);
+ }
- ret = qcow2_get_cluster_offset(bs, acb->sector_num << 9,
- &acb->cur_nr_sectors, &acb->cluster_offset);
- if (ret < 0) {
- return ret;
- }
+ ret = qcow2_get_cluster_offset(bs, sector_num << 9,
+ &cur_nr_sectors, &cluster_offset);
+ if (ret < 0) {
+ goto fail;
+ }
- index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
-
- qemu_iovec_reset(&acb->hd_qiov);
- qemu_iovec_copy(&acb->hd_qiov, acb->qiov, acb->bytes_done,
- acb->cur_nr_sectors * 512);
-
- if (!acb->cluster_offset) {
-
- if (bs->backing_hd) {
- /* read from the base image */
- n1 = qcow2_backing_read1(bs->backing_hd, &acb->hd_qiov,
- acb->sector_num, acb->cur_nr_sectors);
- if (n1 > 0) {
- BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING_AIO);
- qemu_co_mutex_unlock(&s->lock);
- ret = bdrv_co_readv(bs->backing_hd, acb->sector_num,
- n1, &acb->hd_qiov);
- qemu_co_mutex_lock(&s->lock);
- if (ret < 0) {
- return ret;
+ index_in_cluster = sector_num & (s->cluster_sectors - 1);
+
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_copy(&hd_qiov, qiov, bytes_done,
+ cur_nr_sectors * 512);
+
+ if (!cluster_offset) {
+
+ if (bs->backing_hd) {
+ /* read from the base image */
+ n1 = qcow2_backing_read1(bs->backing_hd, &hd_qiov,
+ sector_num, cur_nr_sectors);
+ if (n1 > 0) {
+ BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING_AIO);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_readv(bs->backing_hd, sector_num,
+ n1, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ goto fail;
+ }
}
+ } else {
+ /* Note: in this case, no need to wait */
+ qemu_iovec_memset(&hd_qiov, 0, 512 * cur_nr_sectors);
+ }
+ } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
+ /* add AIO support for compressed blocks ? */
+ ret = qcow2_decompress_cluster(bs, cluster_offset);
+ if (ret < 0) {
+ goto fail;
}
- return 1;
- } else {
- /* Note: in this case, no need to wait */
- qemu_iovec_memset(&acb->hd_qiov, 0, 512 * acb->cur_nr_sectors);
- return 1;
- }
- } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
- /* add AIO support for compressed blocks ? */
- ret = qcow2_decompress_cluster(bs, acb->cluster_offset);
- if (ret < 0) {
- return ret;
- }
- qemu_iovec_from_buffer(&acb->hd_qiov,
- s->cluster_cache + index_in_cluster * 512,
- 512 * acb->cur_nr_sectors);
+ qemu_iovec_from_buffer(&hd_qiov,
+ s->cluster_cache + index_in_cluster * 512,
+ 512 * cur_nr_sectors);
+ } else {
+ if ((cluster_offset & 511) != 0) {
+ ret = -EIO;
+ goto fail;
+ }
- return 1;
- } else {
- if ((acb->cluster_offset & 511) != 0) {
- return -EIO;
- }
+ if (s->crypt_method) {
+ /*
+ * For encrypted images, read everything into a temporary
+ * contiguous buffer on which the AES functions can work.
+ */
+ if (!cluster_data) {
+ cluster_data =
+ g_malloc0(QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
+ }
- if (s->crypt_method) {
- /*
- * For encrypted images, read everything into a temporary
- * contiguous buffer on which the AES functions can work.
- */
- if (!acb->cluster_data) {
- acb->cluster_data =
- g_malloc0(QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
+ assert(cur_nr_sectors <=
+ QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors);
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_add(&hd_qiov, cluster_data,
+ 512 * cur_nr_sectors);
}
- assert(acb->cur_nr_sectors <=
- QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors);
- qemu_iovec_reset(&acb->hd_qiov);
- qemu_iovec_add(&acb->hd_qiov, acb->cluster_data,
- 512 * acb->cur_nr_sectors);
+ BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_readv(bs->file,
+ (cluster_offset >> 9) + index_in_cluster,
+ cur_nr_sectors, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ goto fail;
+ }
+ if (s->crypt_method) {
+ qcow2_encrypt_sectors(s, sector_num, cluster_data,
+ cluster_data, cur_nr_sectors, 0, &s->aes_decrypt_key);
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_copy(&hd_qiov, qiov, bytes_done,
+ cur_nr_sectors * 512);
+ qemu_iovec_from_buffer(&hd_qiov, cluster_data,
+ 512 * cur_nr_sectors);
+ }
}
- BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
- qemu_co_mutex_unlock(&s->lock);
- ret = bdrv_co_readv(bs->file,
- (acb->cluster_offset >> 9) + index_in_cluster,
- acb->cur_nr_sectors, &acb->hd_qiov);
- qemu_co_mutex_lock(&s->lock);
- if (ret < 0) {
- return ret;
- }
+ remaining_sectors -= cur_nr_sectors;
+ sector_num += cur_nr_sectors;
+ bytes_done += cur_nr_sectors * 512;
}
+ ret = 0;
- return 1;
-}
-
-static QCowAIOCB *qcow2_aio_setup(BlockDriverState *bs, int64_t sector_num,
- QEMUIOVector *qiov, int nb_sectors,
- BlockDriverCompletionFunc *cb,
- void *opaque, int is_write)
-{
- QCowAIOCB *acb;
-
- acb = qemu_aio_get(&qcow2_aio_pool, bs, cb, opaque);
- if (!acb)
- return NULL;
- acb->sector_num = sector_num;
- acb->qiov = qiov;
- acb->is_write = is_write;
-
- qemu_iovec_init(&acb->hd_qiov, qiov->niov);
-
- acb->bytes_done = 0;
- acb->remaining_sectors = nb_sectors;
- acb->cur_nr_sectors = 0;
- acb->cluster_offset = 0;
- acb->l2meta.nb_clusters = 0;
- qemu_co_queue_init(&acb->l2meta.dependent_requests);
- return acb;
-}
-
-static int qcow2_co_readv(BlockDriverState *bs, int64_t sector_num,
- int nb_sectors, QEMUIOVector *qiov)
-{
- BDRVQcowState *s = bs->opaque;
- QCowAIOCB *acb;
- int ret;
-
- acb = qcow2_aio_setup(bs, sector_num, qiov, nb_sectors, NULL, NULL, 0);
-
- qemu_co_mutex_lock(&s->lock);
- do {
- ret = qcow2_aio_read_cb(acb);
- } while (ret > 0);
+fail:
qemu_co_mutex_unlock(&s->lock);
- qemu_iovec_destroy(&acb->hd_qiov);
- qemu_aio_release(acb);
+ qemu_iovec_destroy(&hd_qiov);
+ g_free(cluster_data);
return ret;
}
}
}
-/*
- * Returns 0 when the request is completed successfully, 1 when there is still
- * a part left to do and -errno in error cases.
- */
-static int qcow2_aio_write_cb(QCowAIOCB *acb)
+static int qcow2_co_writev(BlockDriverState *bs,
+ int64_t sector_num,
+ int remaining_sectors,
+ QEMUIOVector *qiov)
{
- BlockDriverState *bs = acb->common.bs;
BDRVQcowState *s = bs->opaque;
int index_in_cluster;
int n_end;
int ret;
+ int cur_nr_sectors; /* number of sectors in current iteration */
+ QCowL2Meta l2meta;
+ uint64_t cluster_offset;
+ QEMUIOVector hd_qiov;
+ uint64_t bytes_done = 0;
+ uint8_t *cluster_data = NULL;
- ret = qcow2_alloc_cluster_link_l2(bs, &acb->l2meta);
+ l2meta.nb_clusters = 0;
+ qemu_co_queue_init(&l2meta.dependent_requests);
- run_dependent_requests(s, &acb->l2meta);
+ qemu_iovec_init(&hd_qiov, qiov->niov);
- if (ret < 0) {
- return ret;
- }
+ s->cluster_cache_offset = -1; /* disable compressed cache */
- acb->remaining_sectors -= acb->cur_nr_sectors;
- acb->sector_num += acb->cur_nr_sectors;
- acb->bytes_done += acb->cur_nr_sectors * 512;
+ qemu_co_mutex_lock(&s->lock);
- if (acb->remaining_sectors == 0) {
- /* request completed */
- return 0;
- }
+ while (remaining_sectors != 0) {
- index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
- n_end = index_in_cluster + acb->remaining_sectors;
- if (s->crypt_method &&
- n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors)
- n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors;
+ index_in_cluster = sector_num & (s->cluster_sectors - 1);
+ n_end = index_in_cluster + remaining_sectors;
+ if (s->crypt_method &&
+ n_end > QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors) {
+ n_end = QCOW_MAX_CRYPT_CLUSTERS * s->cluster_sectors;
+ }
- ret = qcow2_alloc_cluster_offset(bs, acb->sector_num << 9,
- index_in_cluster, n_end, &acb->cur_nr_sectors, &acb->l2meta);
- if (ret < 0) {
- return ret;
- }
+ ret = qcow2_alloc_cluster_offset(bs, sector_num << 9,
+ index_in_cluster, n_end, &cur_nr_sectors, &l2meta);
+ if (ret < 0) {
+ goto fail;
+ }
- acb->cluster_offset = acb->l2meta.cluster_offset;
- assert((acb->cluster_offset & 511) == 0);
+ cluster_offset = l2meta.cluster_offset;
+ assert((cluster_offset & 511) == 0);
- qemu_iovec_reset(&acb->hd_qiov);
- qemu_iovec_copy(&acb->hd_qiov, acb->qiov, acb->bytes_done,
- acb->cur_nr_sectors * 512);
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_copy(&hd_qiov, qiov, bytes_done,
+ cur_nr_sectors * 512);
- if (s->crypt_method) {
- if (!acb->cluster_data) {
- acb->cluster_data = g_malloc0(QCOW_MAX_CRYPT_CLUSTERS *
- s->cluster_size);
- }
+ if (s->crypt_method) {
+ if (!cluster_data) {
+ cluster_data = g_malloc0(QCOW_MAX_CRYPT_CLUSTERS *
+ s->cluster_size);
+ }
- assert(acb->hd_qiov.size <= QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
- qemu_iovec_to_buffer(&acb->hd_qiov, acb->cluster_data);
+ assert(hd_qiov.size <=
+ QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size);
+ qemu_iovec_to_buffer(&hd_qiov, cluster_data);
- qcow2_encrypt_sectors(s, acb->sector_num, acb->cluster_data,
- acb->cluster_data, acb->cur_nr_sectors, 1, &s->aes_encrypt_key);
+ qcow2_encrypt_sectors(s, sector_num, cluster_data,
+ cluster_data, cur_nr_sectors, 1, &s->aes_encrypt_key);
- qemu_iovec_reset(&acb->hd_qiov);
- qemu_iovec_add(&acb->hd_qiov, acb->cluster_data,
- acb->cur_nr_sectors * 512);
- }
+ qemu_iovec_reset(&hd_qiov);
+ qemu_iovec_add(&hd_qiov, cluster_data,
+ cur_nr_sectors * 512);
+ }
- BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
- qemu_co_mutex_unlock(&s->lock);
- ret = bdrv_co_writev(bs->file,
- (acb->cluster_offset >> 9) + index_in_cluster,
- acb->cur_nr_sectors, &acb->hd_qiov);
- qemu_co_mutex_lock(&s->lock);
- if (ret < 0) {
- return ret;
- }
+ BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
+ qemu_co_mutex_unlock(&s->lock);
+ ret = bdrv_co_writev(bs->file,
+ (cluster_offset >> 9) + index_in_cluster,
+ cur_nr_sectors, &hd_qiov);
+ qemu_co_mutex_lock(&s->lock);
+ if (ret < 0) {
+ goto fail;
+ }
- return 1;
-}
+ ret = qcow2_alloc_cluster_link_l2(bs, &l2meta);
-static int qcow2_co_writev(BlockDriverState *bs,
- int64_t sector_num,
- int nb_sectors,
- QEMUIOVector *qiov)
-{
- BDRVQcowState *s = bs->opaque;
- QCowAIOCB *acb;
- int ret;
+ run_dependent_requests(s, &l2meta);
- acb = qcow2_aio_setup(bs, sector_num, qiov, nb_sectors, NULL, NULL, 1);
- s->cluster_cache_offset = -1; /* disable compressed cache */
+ if (ret < 0) {
+ goto fail;
+ }
- qemu_co_mutex_lock(&s->lock);
- do {
- ret = qcow2_aio_write_cb(acb);
- } while (ret > 0);
+ remaining_sectors -= cur_nr_sectors;
+ sector_num += cur_nr_sectors;
+ bytes_done += cur_nr_sectors * 512;
+ }
+ ret = 0;
+
+fail:
qemu_co_mutex_unlock(&s->lock);
- qemu_iovec_destroy(&acb->hd_qiov);
- qemu_aio_release(acb);
+ qemu_iovec_destroy(&hd_qiov);
+ g_free(cluster_data);
return ret;
}
void qcow2_free_any_clusters(BlockDriverState *bs,
uint64_t cluster_offset, int nb_clusters);
-void qcow2_create_refcount_update(QCowCreateState *s, int64_t offset,
- int64_t size);
int qcow2_update_snapshot_refcount(BlockDriverState *bs,
int64_t l1_table_offset, int l1_size, int addend);
int ret;
enum AIOCBState aiocb_type;
- QEMUBH *bh;
+ Coroutine *coroutine;
void (*aio_done_func)(SheepdogAIOCB *);
int canceled;
char *port;
int fd;
+ CoMutex lock;
+ Coroutine *co_send;
+ Coroutine *co_recv;
+
uint32_t aioreq_seq_num;
QLIST_HEAD(outstanding_aio_head, AIOReq) outstanding_aio_head;
} BDRVSheepdogState;
/*
* Sheepdog I/O handling:
*
- * 1. In the sd_aio_readv/writev, read/write requests are added to the
- * QEMU Bottom Halves.
- *
- * 2. In sd_readv_writev_bh_cb, the callbacks of BHs, we send the I/O
- * requests to the server and link the requests to the
- * outstanding_list in the BDRVSheepdogState. we exits the
- * function without waiting for receiving the response.
+ * 1. In sd_co_rw_vector, we send the I/O requests to the server and
+ * link the requests to the outstanding_list in the
+ * BDRVSheepdogState. The function exits without waiting for
+ * receiving the response.
*
- * 3. We receive the response in aio_read_response, the fd handler to
+ * 2. We receive the response in aio_read_response, the fd handler to
* the sheepdog connection. If metadata update is needed, we send
* the write request to the vdi object in sd_write_done, the write
- * completion function. The AIOCB callback is not called until all
- * the requests belonging to the AIOCB are finished.
+ * completion function. We switch back to sd_co_readv/writev after
+ * all the requests belonging to the AIOCB are finished.
*/
static inline AIOReq *alloc_aio_req(BDRVSheepdogState *s, SheepdogAIOCB *acb,
static void sd_finish_aiocb(SheepdogAIOCB *acb)
{
if (!acb->canceled) {
- acb->common.cb(acb->common.opaque, acb->ret);
+ qemu_coroutine_enter(acb->coroutine, NULL);
}
qemu_aio_release(acb);
}
* Sheepdog cannot cancel the requests which are already sent to
* the servers, so we just complete the request with -EIO here.
*/
- acb->common.cb(acb->common.opaque, -EIO);
+ acb->ret = -EIO;
+ qemu_coroutine_enter(acb->coroutine, NULL);
acb->canceled = 1;
}
acb->aio_done_func = NULL;
acb->canceled = 0;
- acb->bh = NULL;
+ acb->coroutine = qemu_coroutine_self();
acb->ret = 0;
QLIST_INIT(&acb->aioreq_head);
return acb;
}
-static int sd_schedule_bh(QEMUBHFunc *cb, SheepdogAIOCB *acb)
-{
- if (acb->bh) {
- error_report("bug: %d %d", acb->aiocb_type, acb->aiocb_type);
- return -EIO;
- }
-
- acb->bh = qemu_bh_new(cb, acb);
- qemu_bh_schedule(acb->bh);
- return 0;
-}
-
#ifdef _WIN32
struct msghdr {
again:
ret = do_send_recv(sockfd, iov, len, iov_offset, write);
if (ret < 0) {
- if (errno == EINTR || errno == EAGAIN) {
+ if (errno == EINTR) {
+ goto again;
+ }
+ if (errno == EAGAIN) {
+ if (qemu_in_coroutine()) {
+ qemu_coroutine_yield();
+ }
goto again;
}
error_report("failed to recv a rsp, %s", strerror(errno));
unsigned long idx;
if (QLIST_EMPTY(&s->outstanding_aio_head)) {
- return;
+ goto out;
}
/* read a header */
ret = do_read(fd, &rsp, sizeof(rsp));
if (ret) {
error_report("failed to get the header, %s", strerror(errno));
- return;
+ goto out;
}
/* find the right aio_req from the outstanding_aio list */
}
if (!aio_req) {
error_report("cannot find aio_req %x", rsp.id);
- return;
+ goto out;
}
acb = aio_req->aiocb;
aio_req->iov_offset);
if (ret) {
error_report("failed to get the data, %s", strerror(errno));
- return;
+ goto out;
}
break;
}
if (!rest) {
/*
* We've finished all requests which belong to the AIOCB, so
- * we can call the callback now.
+ * we can switch back to sd_co_readv/writev now.
*/
acb->aio_done_func(acb);
}
+out:
+ s->co_recv = NULL;
+}
+
+static void co_read_response(void *opaque)
+{
+ BDRVSheepdogState *s = opaque;
+
+ if (!s->co_recv) {
+ s->co_recv = qemu_coroutine_create(aio_read_response);
+ }
+
+ qemu_coroutine_enter(s->co_recv, opaque);
+}
+
+static void co_write_request(void *opaque)
+{
+ BDRVSheepdogState *s = opaque;
+
+ qemu_coroutine_enter(s->co_send, NULL);
}
static int aio_flush_request(void *opaque)
return -1;
}
- qemu_aio_set_fd_handler(fd, aio_read_response, NULL, aio_flush_request,
+ qemu_aio_set_fd_handler(fd, co_read_response, NULL, aio_flush_request,
NULL, s);
return fd;
}
hdr.id = aio_req->id;
+ qemu_co_mutex_lock(&s->lock);
+ s->co_send = qemu_coroutine_self();
+ qemu_aio_set_fd_handler(s->fd, co_read_response, co_write_request,
+ aio_flush_request, NULL, s);
set_cork(s->fd, 1);
/* send a header */
}
set_cork(s->fd, 0);
+ qemu_aio_set_fd_handler(s->fd, co_read_response, NULL,
+ aio_flush_request, NULL, s);
+ qemu_co_mutex_unlock(&s->lock);
return 0;
}
bs->total_sectors = s->inode.vdi_size / SECTOR_SIZE;
strncpy(s->name, vdi, sizeof(s->name));
+ qemu_co_mutex_init(&s->lock);
g_free(buf);
return 0;
out:
/*
* This function is called after writing data objects. If we need to
* update metadata, this sends a write request to the vdi object.
- * Otherwise, this calls the AIOCB callback.
+ * Otherwise, this switches back to sd_co_readv/writev.
*/
static void sd_write_done(SheepdogAIOCB *acb)
{
* waiting the response. The responses are received in the
* `aio_read_response' function which is called from the main loop as
* a fd handler.
+ *
+ * Returns 1 when we need to wait a response, 0 when there is no sent
+ * request and -errno in error cases.
*/
-static void sd_readv_writev_bh_cb(void *p)
+static int sd_co_rw_vector(void *p)
{
SheepdogAIOCB *acb = p;
int ret = 0;
SheepdogInode *inode = &s->inode;
AIOReq *aio_req;
- qemu_bh_delete(acb->bh);
- acb->bh = NULL;
-
if (acb->aiocb_type == AIOCB_WRITE_UDATA && s->is_snapshot) {
/*
* In the case we open the snapshot VDI, Sheepdog creates the
}
out:
if (QLIST_EMPTY(&acb->aioreq_head)) {
- sd_finish_aiocb(acb);
+ return acb->ret;
}
+ return 1;
}
-static BlockDriverAIOCB *sd_aio_writev(BlockDriverState *bs, int64_t sector_num,
- QEMUIOVector *qiov, int nb_sectors,
- BlockDriverCompletionFunc *cb,
- void *opaque)
+static int sd_co_writev(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov)
{
SheepdogAIOCB *acb;
+ int ret;
if (bs->growable && sector_num + nb_sectors > bs->total_sectors) {
/* TODO: shouldn't block here */
if (sd_truncate(bs, (sector_num + nb_sectors) * SECTOR_SIZE) < 0) {
- return NULL;
+ return -EIO;
}
bs->total_sectors = sector_num + nb_sectors;
}
- acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, cb, opaque);
+ acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, NULL, NULL);
acb->aio_done_func = sd_write_done;
acb->aiocb_type = AIOCB_WRITE_UDATA;
- sd_schedule_bh(sd_readv_writev_bh_cb, acb);
- return &acb->common;
+ ret = sd_co_rw_vector(acb);
+ if (ret <= 0) {
+ qemu_aio_release(acb);
+ return ret;
+ }
+
+ qemu_coroutine_yield();
+
+ return acb->ret;
}
-static BlockDriverAIOCB *sd_aio_readv(BlockDriverState *bs, int64_t sector_num,
- QEMUIOVector *qiov, int nb_sectors,
- BlockDriverCompletionFunc *cb,
- void *opaque)
+static int sd_co_readv(BlockDriverState *bs, int64_t sector_num,
+ int nb_sectors, QEMUIOVector *qiov)
{
SheepdogAIOCB *acb;
- int i;
+ int i, ret;
- acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, cb, opaque);
+ acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, NULL, NULL);
acb->aiocb_type = AIOCB_READ_UDATA;
acb->aio_done_func = sd_finish_aiocb;
memset(qiov->iov[i].iov_base, 0, qiov->iov[i].iov_len);
}
- sd_schedule_bh(sd_readv_writev_bh_cb, acb);
- return &acb->common;
+ ret = sd_co_rw_vector(acb);
+ if (ret <= 0) {
+ qemu_aio_release(acb);
+ return ret;
+ }
+
+ qemu_coroutine_yield();
+
+ return acb->ret;
}
static int sd_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info)
.bdrv_getlength = sd_getlength,
.bdrv_truncate = sd_truncate,
- .bdrv_aio_readv = sd_aio_readv,
- .bdrv_aio_writev = sd_aio_writev,
+ .bdrv_co_readv = sd_co_readv,
+ .bdrv_co_writev = sd_co_writev,
.bdrv_snapshot_create = sd_snapshot_create,
.bdrv_snapshot_goto = sd_snapshot_goto,
int64_t grain_offset;
char filler[1];
char check_bytes[4];
-} __attribute__((packed)) VMDK4Header;
+} QEMU_PACKED VMDK4Header;
#define L2_CACHE_SIZE 16
}
/* These structures are used to fake a disk and the VFAT filesystem.
- * For this reason we need to use __attribute__((packed)). */
+ * For this reason we need to use QEMU_PACKED. */
typedef struct bootsector_t {
uint8_t jump[3];
uint8_t signature;
uint32_t id;
uint8_t volume_label[11];
- } __attribute__((packed)) fat16;
+ } QEMU_PACKED fat16;
struct {
uint32_t sectors_per_fat;
uint16_t flags;
uint16_t info_sector;
uint16_t backup_boot_sector;
uint16_t ignored;
- } __attribute__((packed)) fat32;
+ } QEMU_PACKED fat32;
} u;
uint8_t fat_type[8];
uint8_t ignored[0x1c0];
uint8_t magic[2];
-} __attribute__((packed)) bootsector_t;
+} QEMU_PACKED bootsector_t;
typedef struct {
uint8_t head;
mbr_chs_t end_CHS;
uint32_t start_sector_long;
uint32_t length_sector_long;
-} __attribute__((packed)) partition_t;
+} QEMU_PACKED partition_t;
typedef struct mbr_t {
uint8_t ignored[0x1b8];
uint8_t ignored2[2];
partition_t partition[4];
uint8_t magic[2];
-} __attribute__((packed)) mbr_t;
+} QEMU_PACKED mbr_t;
typedef struct direntry_t {
uint8_t name[8];
uint16_t mdate;
uint16_t begin;
uint32_t size;
-} __attribute__((packed)) direntry_t;
+} QEMU_PACKED direntry_t;
/* this structure are used to transparently access the files */
#include "qemu-option.h"
#include "qemu-queue.h"
#include "qemu-coroutine.h"
+#include "qemu-timer.h"
#define BLOCK_FLAG_ENCRYPT 1
#define BLOCK_FLAG_COMPAT6 4
void *sync_aiocb;
/* I/O stats (display with "info blockstats"). */
- uint64_t rd_bytes;
- uint64_t wr_bytes;
- uint64_t rd_ops;
- uint64_t wr_ops;
+ uint64_t nr_bytes[BDRV_MAX_IOTYPE];
+ uint64_t nr_ops[BDRV_MAX_IOTYPE];
+ uint64_t total_time_ns[BDRV_MAX_IOTYPE];
uint64_t wr_highest_sector;
/* Whether the disk can expand beyond total_sectors */
}
if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
- if (!strcmp(buf, "off") || !strcmp(buf, "none")) {
- bdrv_flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
- } else if (!strcmp(buf, "writeback")) {
- bdrv_flags |= BDRV_O_CACHE_WB;
- } else if (!strcmp(buf, "unsafe")) {
- bdrv_flags |= BDRV_O_CACHE_WB;
- bdrv_flags |= BDRV_O_NO_FLUSH;
- } else if (!strcmp(buf, "writethrough")) {
- /* this is the default */
- } else {
- error_report("invalid cache option");
- return NULL;
+ if (bdrv_parse_cache_flags(buf, &bdrv_flags) != 0) {
+ error_report("invalid cache option");
+ return NULL;
}
}
#define QEMU_WARN_UNUSED_RESULT
#endif
+#if defined(_WIN32)
+# define QEMU_PACKED __attribute__((gcc_struct, packed))
+#else
+# define QEMU_PACKED __attribute__((packed))
+#endif
+
#define QEMU_BUILD_BUG_ON(x) \
typedef char qemu_build_bug_on__##__LINE__[(x)?-1:1];
bsd_user="no"
guest_base=""
uname_release=""
-io_thread="no"
mixemu="no"
aix="no"
blobs="yes"
make="${MAKE-gmake}"
install="${INSTALL-ginstall}"
ld="gld"
+ smbd="${SMBD-/usr/sfw/sbin/smbd}"
needs_libsunmath="no"
solarisrev=`uname -r | cut -f2 -d.`
# have to select again, because `uname -m` returns i86pc
: ${make=${MAKE-make}}
: ${install=${INSTALL-install}}
: ${python=${PYTHON-python}}
+: ${smbd=${SMBD-/usr/sbin/smbd}}
if test "$mingw32" = "yes" ; then
EXESUF=".exe"
;;
--python=*) python="$optarg"
;;
+ --smbd=*) smbd="$optarg"
+ ;;
--extra-cflags=*)
;;
--extra-ldflags=*)
;;
--enable-attr) attr="yes"
;;
- --enable-io-thread) io_thread="yes"
- ;;
--disable-blobs) blobs="no"
;;
--with-pkgversion=*) pkgversion=" ($optarg)"
echo " --make=MAKE use specified make [$make]"
echo " --install=INSTALL use specified install [$install]"
echo " --python=PYTHON use specified python [$python]"
+echo " --smbd=SMBD use specified smbd [$smbd]"
echo " --static enable static build [$static]"
echo " --mandir=PATH install man pages in PATH"
echo " --datadir=PATH install firmware in PATH"
if compile_prog "" "" ; then
signalfd=yes
-elif test "$kvm" = "yes" -a "$io_thread" != "yes"; then
- echo
- echo "ERROR: Host kernel lacks signalfd() support,"
- echo "but KVM depends on it when the IO thread is disabled."
- echo
- exit 1
fi
# check if eventfd is supported
echo "make $make"
echo "install $install"
echo "python $python"
+if test "$slirp" = "yes" ; then
+ echo "smbd $smbd"
+fi
echo "host CPU $cpu"
echo "host big endian $bigendian"
echo "target list $target_list"
echo "GUEST_BASE $guest_base"
echo "PIE user targets $user_pie"
echo "vde support $vde"
-echo "IO thread $io_thread"
echo "Linux AIO support $linux_aio"
echo "ATTR/XATTR support $attr"
echo "Install blobs $blobs"
fi
if test "$slirp" = "yes" ; then
echo "CONFIG_SLIRP=y" >> $config_host_mak
+ echo "CONFIG_SMBD_COMMAND=\"$smbd\"" >> $config_host_mak
QEMU_INCLUDES="-I\$(SRC_PATH)/slirp $QEMU_INCLUDES"
fi
if test "$vde" = "yes" ; then
echo "CONFIG_XEN_BACKEND=y" >> $config_host_mak
echo "CONFIG_XEN_CTRL_INTERFACE_VERSION=$xen_ctrl_version" >> $config_host_mak
fi
-if test "$io_thread" = "yes" ; then
- echo "CONFIG_IOTHREAD=y" >> $config_host_mak
-fi
if test "$linux_aio" = "yes" ; then
echo "CONFIG_LINUX_AIO=y" >> $config_host_mak
fi
;;
esac
+# use default implementation for tracing backend-specific routines
+trace_default=yes
echo "TRACE_BACKEND=$trace_backend" >> $config_host_mak
-if test "$trace_backend" = "simple"; then
- echo "CONFIG_SIMPLE_TRACE=y" >> $config_host_mak
+if test "$trace_backend" = "nop"; then
+ echo "CONFIG_TRACE_NOP=y" >> $config_host_mak
fi
-# Set the appropriate trace file.
if test "$trace_backend" = "simple"; then
+ echo "CONFIG_TRACE_SIMPLE=y" >> $config_host_mak
+ trace_default=no
+ # Set the appropriate trace file.
trace_file="\"$trace_file-\" FMT_pid"
fi
-if test "$trace_backend" = "dtrace" -a "$trace_backend_stap" = "yes" ; then
- echo "CONFIG_SYSTEMTAP_TRACE=y" >> $config_host_mak
+if test "$trace_backend" = "stderr"; then
+ echo "CONFIG_TRACE_STDERR=y" >> $config_host_mak
+ trace_default=no
+fi
+if test "$trace_backend" = "ust"; then
+ echo "CONFIG_TRACE_UST=y" >> $config_host_mak
+fi
+if test "$trace_backend" = "dtrace"; then
+ echo "CONFIG_TRACE_DTRACE=y" >> $config_host_mak
+ if test "$trace_backend_stap" = "yes" ; then
+ echo "CONFIG_TRACE_SYSTEMTAP=y" >> $config_host_mak
+ fi
fi
echo "CONFIG_TRACE_FILE=$trace_file" >> $config_host_mak
+if test "$trace_default" = "yes"; then
+ echo "CONFIG_TRACE_DEFAULT=y" >> $config_host_mak
+fi
echo "TOOLS=$tools" >> $config_host_mak
echo "ROMS=$roms" >> $config_host_mak
echo "MAKE=$make" >> $config_host_mak
echo "INSTALL=$install" >> $config_host_mak
-echo "INSTALL_DIR=$install -d -m0755 -p" >> $config_host_mak
-echo "INSTALL_DATA=$install -m0644 -p" >> $config_host_mak
-echo "INSTALL_PROG=$install -m0755 -p" >> $config_host_mak
+echo "INSTALL_DIR=$install -d -m 0755" >> $config_host_mak
+echo "INSTALL_DATA=$install -c -m 0644" >> $config_host_mak
+echo "INSTALL_PROG=$install -c -m 0755" >> $config_host_mak
echo "PYTHON=$python" >> $config_host_mak
echo "CC=$cc" >> $config_host_mak
echo "CC_I386=$cc_i386" >> $config_host_mak
DIRS="$DIRS roms/seabios roms/vgabios"
DIRS="$DIRS fsdev ui"
DIRS="$DIRS qapi"
-DIRS="$DIRS qga"
+DIRS="$DIRS qga trace"
FILES="Makefile tests/Makefile"
FILES="$FILES tests/cris/Makefile tests/cris/.gdbinit"
FILES="$FILES pc-bios/optionrom/Makefile pc-bios/keymaps"
{
gdb_set_stop_cpu(env);
qemu_system_debug_request();
-#ifdef CONFIG_IOTHREAD
env->stopped = 1;
-#endif
}
-#ifdef CONFIG_IOTHREAD
static void cpu_signal(int sig)
{
if (cpu_single_env) {
}
exit_request = 1;
}
-#endif
#ifdef CONFIG_LINUX
static void sigbus_reraise(void)
exit(1);
}
} while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
-
-#ifndef CONFIG_IOTHREAD
- if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
- qemu_notify_event();
- }
-#endif
}
#else /* !CONFIG_LINUX */
int sigfd;
sigset_t set;
-#ifdef CONFIG_IOTHREAD
/* SIGUSR2 used by posix-aio-compat.c */
sigemptyset(&set);
sigaddset(&set, SIGUSR2);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
sigaddset(&set, SIGBUS);
-#else
- sigemptyset(&set);
- sigaddset(&set, SIGBUS);
- if (kvm_enabled()) {
- /*
- * We need to process timer signals synchronously to avoid a race
- * between exit_request check and KVM vcpu entry.
- */
- sigaddset(&set, SIGIO);
- sigaddset(&set, SIGALRM);
- }
-#endif
pthread_sigmask(SIG_BLOCK, &set, NULL);
sigfd = qemu_signalfd(&set);
sigact.sa_handler = dummy_signal;
sigaction(SIG_IPI, &sigact, NULL);
-#ifdef CONFIG_IOTHREAD
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
sigdelset(&set, SIGBUS);
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
exit(1);
}
-#else
- sigemptyset(&set);
- sigaddset(&set, SIG_IPI);
- sigaddset(&set, SIGIO);
- sigaddset(&set, SIGALRM);
- pthread_sigmask(SIG_BLOCK, &set, NULL);
- pthread_sigmask(SIG_BLOCK, NULL, &set);
- sigdelset(&set, SIGIO);
- sigdelset(&set, SIGALRM);
-#endif
sigdelset(&set, SIG_IPI);
sigdelset(&set, SIGBUS);
r = kvm_set_signal_mask(env, &set);
static void qemu_tcg_init_cpu_signals(void)
{
-#ifdef CONFIG_IOTHREAD
sigset_t set;
struct sigaction sigact;
sigemptyset(&set);
sigaddset(&set, SIG_IPI);
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
-#endif
}
#else /* _WIN32 */
}
#endif /* _WIN32 */
-#ifndef CONFIG_IOTHREAD
-int qemu_init_main_loop(void)
-{
- int ret;
-
- ret = qemu_signal_init();
- if (ret) {
- return ret;
- }
-
- qemu_init_sigbus();
-
- return qemu_event_init();
-}
-
-void qemu_main_loop_start(void)
-{
-}
-
-void qemu_init_vcpu(void *_env)
-{
- CPUState *env = _env;
- int r;
-
- env->nr_cores = smp_cores;
- env->nr_threads = smp_threads;
-
- if (kvm_enabled()) {
- r = kvm_init_vcpu(env);
- if (r < 0) {
- fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
- exit(1);
- }
- qemu_kvm_init_cpu_signals(env);
- } else {
- qemu_tcg_init_cpu_signals();
- }
-}
-
-int qemu_cpu_is_self(void *env)
-{
- return 1;
-}
-
-void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
-{
- func(data);
-}
-
-void resume_all_vcpus(void)
-{
-}
-
-void pause_all_vcpus(void)
-{
-}
-
-void qemu_cpu_kick(void *env)
-{
-}
-
-void qemu_cpu_kick_self(void)
-{
-#ifndef _WIN32
- assert(cpu_single_env);
-
- raise(SIG_IPI);
-#else
- abort();
-#endif
-}
-
-void qemu_notify_event(void)
-{
- CPUState *env = cpu_single_env;
-
- qemu_event_increment ();
- if (env) {
- cpu_exit(env);
- }
- if (next_cpu && env != next_cpu) {
- cpu_exit(next_cpu);
- }
- exit_request = 1;
-}
-
-void qemu_mutex_lock_iothread(void) {}
-void qemu_mutex_unlock_iothread(void) {}
-
-void cpu_stop_current(void)
-{
-}
-
-void vm_stop(int reason)
-{
- do_vm_stop(reason);
-}
-
-#else /* CONFIG_IOTHREAD */
-
QemuMutex qemu_global_mutex;
static QemuCond qemu_io_proceeded_cond;
static bool iothread_requesting_mutex;
do_vm_stop(reason);
}
-#endif
-
static int tcg_cpu_exec(CPUState *env)
{
int ret;
qemu_clock_enable(vm_clock,
(env->singlestep_enabled & SSTEP_NOTIMER) == 0);
-#ifndef CONFIG_IOTHREAD
- if (qemu_alarm_pending()) {
- break;
- }
-#endif
if (cpu_can_run(env)) {
if (kvm_enabled()) {
r = kvm_cpu_exec(env);
$(prefix)qmp-marshal.c: command marshal/dispatch functions for each
QMP command defined in the schema. Functions
generated by qapi-visit.py are used to
- convert QObjects recieved from the wire into
+ convert QObjects received from the wire into
function parameters, and uses the same
visitor functions to convert native C return
values to QObjects from transmission back
./configure --trace-backend=simple
make
-2. Enable trace events you are interested in:
+2. Create a file with the events you want to trace:
- $EDITOR trace-events # remove "disable" from events you want
+ echo bdrv_aio_readv > /tmp/events
+ echo bdrv_aio_writev >> /tmp/events
3. Run the virtual machine to produce a trace file:
- qemu ... # your normal QEMU invocation
+ qemu -trace events=/tmp/events ... # your normal QEMU invocation
4. Pretty-print the binary trace file:
source code like this:
#include "trace.h" /* needed for trace event prototype */
-
+
void *qemu_malloc(size_t size)
{
void *ptr;
4. Name trace events after their function. If there are multiple trace events
in one function, append a unique distinguisher at the end of the name.
-5. Declare trace events with the "disable" keyword. Some trace events can
- produce a lot of output and users are typically only interested in a subset
- of trace events. Marking trace events disabled by default saves the user
- from having to manually disable noisy trace events.
+5. If specific trace events are going to be called a huge number of times, this
+ might have a noticeable performance impact even when the trace events are
+ programmatically disabled. In this case you should declare the trace event
+ with the "disable" property, which will effectively disable it at compile
+ time (using the "nop" backend).
+
+== Generic interface and monitor commands ==
+
+You can programmatically query and control the dynamic state of trace events
+through a backend-agnostic interface:
+
+* trace_print_events
+
+* trace_event_set_state
+ Enables or disables trace events at runtime inside QEMU.
+ The function returns "true" if the state of the event has been successfully
+ changed, or "false" otherwise:
+
+ #include "trace/control.h"
+
+ trace_event_set_state("virtio_irq", true); /* enable */
+ [...]
+ trace_event_set_state("virtio_irq", false); /* disable */
+
+Note that some of the backends do not provide an implementation for this
+interface, in which case QEMU will just print a warning.
+
+This functionality is also provided through monitor commands:
+
+* info trace-events
+ View available trace events and their state. State 1 means enabled, state 0
+ means disabled.
+
+* trace-event NAME on|off
+ Enable/disable a given trace event.
+
+The "-trace events=<file>" command line argument can be used to enable the
+events listed in <file> from the very beginning of the program. This file must
+contain one event name per line.
== Trace backends ==
can optimize out trace events completely. This is the default and imposes no
performance penalty.
+Note that regardless of the selected trace backend, events with the "disable"
+property will be generated with the "nop" backend.
+
=== Stderr ===
The "stderr" backend sends trace events directly to standard error. This
flushed and emptied. This means the 'info trace' will display few or no
entries if the buffer has just been flushed.
-* info trace-events
- View available trace events and their state. State 1 means enabled, state 0
- means disabled.
-
-* trace-event NAME on|off
- Enable/disable a given trace event.
-
* trace-file on|off|flush|set <path>
Enable/disable/flush the trace file or set the trace file name.
-==== Enabling/disabling trace events programmatically ====
-
-The st_change_trace_event_state() function can be used to enable or disable trace
-events at runtime inside QEMU:
-
- #include "trace.h"
-
- st_change_trace_event_state("virtio_irq", true); /* enable */
- [...]
- st_change_trace_event_state("virtio_irq", false); /* disable */
-
==== Analyzing trace files ====
The "simple" backend produces binary trace files that can be formatted with the
#if !defined(__DYNGEN_EXEC_H__)
#define __DYNGEN_EXEC_H__
-#include "qemu-common.h"
-
-#ifdef __OpenBSD__
-#include <sys/types.h>
-#endif
-
-/* XXX: This may be wrong for 64-bit ILP32 hosts. */
-typedef void * host_reg_t;
-
#if defined(__i386__)
#define AREG0 "ebp"
#elif defined(__x86_64__)
register CPUState *env asm(AREG0);
-#define xglue(x, y) x ## y
-#define glue(x, y) xglue(x, y)
-#define stringify(s) tostring(s)
-#define tostring(s) #s
-
/* The return address may point to the start of the next instruction.
Subtracting one gets us the call instruction itself. */
#if defined(__s390__) && !defined(__s390x__)
}
/* misc functions */
-float32 uint32_to_float32( unsigned int a STATUS_PARAM )
+float32 uint32_to_float32( uint32 a STATUS_PARAM )
{
return int64_to_float32(a STATUS_VAR);
}
-float64 uint32_to_float64( unsigned int a STATUS_PARAM )
+float64 uint32_to_float64( uint32 a STATUS_PARAM )
{
return int64_to_float64(a STATUS_VAR);
}
-unsigned int float32_to_uint32( float32 a STATUS_PARAM )
+uint32 float32_to_uint32( float32 a STATUS_PARAM )
{
int64_t v;
- unsigned int res;
+ uint32 res;
v = float32_to_int64(a STATUS_VAR);
if (v < 0) {
return res;
}
-unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
+uint32 float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
{
int64_t v;
- unsigned int res;
+ uint32 res;
v = float32_to_int64_round_to_zero(a STATUS_VAR);
if (v < 0) {
return res;
}
-unsigned int float32_to_uint16_round_to_zero( float32 a STATUS_PARAM )
+uint16 float32_to_uint16_round_to_zero( float32 a STATUS_PARAM )
{
int64_t v;
- unsigned int res;
+ uint16 res;
v = float32_to_int64_round_to_zero(a STATUS_VAR);
if (v < 0) {
return res;
}
-unsigned int float64_to_uint32( float64 a STATUS_PARAM )
+uint32 float64_to_uint32( float64 a STATUS_PARAM )
{
int64_t v;
- unsigned int res;
+ uint32 res;
v = float64_to_int64(a STATUS_VAR);
if (v < 0) {
return res;
}
-unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
+uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
{
int64_t v;
- unsigned int res;
+ uint32 res;
v = float64_to_int64_round_to_zero(a STATUS_VAR);
if (v < 0) {
return res;
}
-unsigned int float64_to_uint16_round_to_zero( float64 a STATUS_PARAM )
+uint16 float64_to_uint16_round_to_zero( float64 a STATUS_PARAM )
{
int64_t v;
- unsigned int res;
+ uint16 res;
v = float64_to_int64_round_to_zero(a STATUS_VAR);
if (v < 0) {
*----------------------------------------------------------------------------*/
float32 int32_to_float32( int32 STATUS_PARAM );
float64 int32_to_float64( int32 STATUS_PARAM );
-float32 uint32_to_float32( unsigned int STATUS_PARAM );
-float64 uint32_to_float64( unsigned int STATUS_PARAM );
+float32 uint32_to_float32( uint32 STATUS_PARAM );
+float64 uint32_to_float64( uint32 STATUS_PARAM );
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
float128 int32_to_float128( int32 STATUS_PARAM );
float32 int64_to_float32( int64 STATUS_PARAM );
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
-unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
+uint16 float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
int32 float32_to_int32( float32 STATUS_PARAM );
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
uint32 float32_to_uint32( float32 STATUS_PARAM );
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
-unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
+uint16 float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
int32 float64_to_int32( float64 STATUS_PARAM );
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
uint32 float64_to_uint32( float64 STATUS_PARAM );
Output logs to @var{filename}.
ETEXI
-#ifdef CONFIG_SIMPLE_TRACE
{
.name = "trace-event",
.args_type = "name:s,option:b",
.params = "name on|off",
.help = "changes status of a specific trace event",
- .mhandler.cmd = do_change_trace_event_state,
+ .mhandler.cmd = do_trace_event_set_state,
},
STEXI
changes status of a trace event
ETEXI
+#if defined(CONFIG_SIMPLE_TRACE)
{
.name = "trace-file",
.args_type = "op:s?,arg:F?",
@end table
ETEXI
-#ifdef CONFIG_SIMPLE_TRACE
+#ifdef CONFIG_TRACE_SIMPLE
STEXI
@item info trace
show contents of trace buffer
+ETEXI
+#endif
+
+STEXI
@item info trace-events
show available trace events and their state
ETEXI
-#endif
STEXI
@end table
.sbss2 : { *(.sbss2 .sbss2.* .gnu.linkonce.sb2.*) }
.PARISC.unwind : { *(.PARISC.unwind) }
.eh_frame_hdr : { *(.eh_frame_hdr) }
- .eh_frame : ONLY_IF_RO { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RO { *(.gcc_except_table .gcc_except_table.*) }
/* Adjust the address for the data segment. We want to adjust up to
the same address within the page on the next page up. */
. = ALIGN(0x10000) + (. & (0x10000 - 1));
/* Exception handling */
- .eh_frame : ONLY_IF_RW { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RW { *(.gcc_except_table .gcc_except_table.*) }
+ .eh_frame : { KEEP (*(.eh_frame)) }
+ .gcc_except_table : { *(.gcc_except_table .gcc_except_table.*) }
/* Thread Local Storage sections */
.tdata : { *(.tdata .tdata.* .gnu.linkonce.td.*) }
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) }
.preinit_array :
{
- PROVIDE_HIDDEN (__preinit_array_start = .);
+ PROVIDE (__preinit_array_start = .);
KEEP (*(.preinit_array))
- PROVIDE_HIDDEN (__preinit_array_end = .);
+ PROVIDE (__preinit_array_end = .);
}
.init_array :
{
- PROVIDE_HIDDEN (__init_array_start = .);
+ PROVIDE (__init_array_start = .);
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
- PROVIDE_HIDDEN (__init_array_end = .);
+ PROVIDE (__init_array_end = .);
}
.fini_array :
{
- PROVIDE_HIDDEN (__fini_array_start = .);
+ PROVIDE (__fini_array_start = .);
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
- PROVIDE_HIDDEN (__fini_array_end = .);
+ PROVIDE (__fini_array_end = .);
}
.ctors :
{
uint16_t tag_len;
/* Variable size tag name */
uint8_t tag[0];
-} __attribute__((packed));
+} QEMU_PACKED;
typedef struct V9fsMkState {
V9fsPDU *pdu;
uint32_t oem_revision; /* OEM revision number */
char asl_compiler_id[4]; /* ASL compiler vendor ID */
uint32_t asl_compiler_revision; /* ASL compiler revision number */
-} __attribute__((packed));
+} QEMU_PACKED;
#define ACPI_TABLE_HDR_SIZE sizeof(struct acpi_table_header)
#define ACPI_TABLE_PFX_SIZE sizeof(uint16_t) /* size of the extra prefix */
#include "boards.h"
#include "loader.h"
#include "elf.h"
-#include "exec-memory.h"
#define KERNEL_LOAD_ADDR 0x10000
#define AN5206_MBAR_ADDR 0x10000000
int kernel_size;
uint64_t elf_entry;
target_phys_addr_t entry;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *ram = g_new(MemoryRegion, 1);
- MemoryRegion *sram = g_new(MemoryRegion, 1);
if (!cpu_model)
cpu_model = "m5206";
env->rambar0 = AN5206_RAMBAR_ADDR | 1;
/* DRAM at address zero */
- memory_region_init_ram(ram, NULL, "an5206.ram", ram_size);
- memory_region_add_subregion(address_space_mem, 0, ram);
+ cpu_register_physical_memory(0, ram_size,
+ qemu_ram_alloc(NULL, "an5206.ram", ram_size) | IO_MEM_RAM);
/* Internal SRAM. */
- memory_region_init_ram(sram, NULL, "an5206.sram", 512);
- memory_region_add_subregion(address_space_mem, AN5206_RAMBAR_ADDR, sram);
+ cpu_register_physical_memory(AN5206_RAMBAR_ADDR, 512,
+ qemu_ram_alloc(NULL, "an5206.sram", 512) | IO_MEM_RAM);
mcf5206_init(AN5206_MBAR_ADDR, env);
PCIBus *bus;
MemoryRegion apb_config;
MemoryRegion pci_config;
+ MemoryRegion pci_mmio;
MemoryRegion pci_ioport;
uint32_t iommu[4];
uint32_t pci_control[16];
sysbus_mmio_map(s, 2, special_base + 0x2000000ULL);
d = FROM_SYSBUS(APBState, s);
+ memory_region_init(&d->pci_mmio, "pci-mmio", 0x100000000ULL);
+ memory_region_add_subregion(get_system_memory(), mem_base, &d->pci_mmio);
+
d->bus = pci_register_bus(&d->busdev.qdev, "pci",
- pci_apb_set_irq, pci_pbm_map_irq, d,
- get_system_memory(),
- get_system_io(),
- 0, 32);
- pci_bus_set_mem_base(d->bus, mem_base);
+ pci_apb_set_irq, pci_pbm_map_irq, d,
+ &d->pci_mmio,
+ get_system_io(),
+ 0, 32);
for (i = 0; i < 32; i++) {
sysbus_connect_irq(s, i, pic[i]);
#ifndef ARM_MISC_H
#define ARM_MISC_H 1
-#include "memory.h"
-
/* The CPU is also modeled as an interrupt controller. */
#define ARM_PIC_CPU_IRQ 0
#define ARM_PIC_CPU_FIQ 1
qemu_irq *arm_pic_init_cpu(CPUState *env);
/* armv7m.c */
-qemu_irq *armv7m_init(MemoryRegion *address_space_mem,
- int flash_size, int sram_size,
+qemu_irq *armv7m_init(int flash_size, int sram_size,
const char *kernel_filename, const char *cpu_model);
/* arm_boot.c */
flash_size and sram_size are in kb.
Returns the NVIC array. */
-qemu_irq *armv7m_init(MemoryRegion *address_space_mem,
- int flash_size, int sram_size,
+qemu_irq *armv7m_init(int flash_size, int sram_size,
const char *kernel_filename, const char *cpu_model)
{
CPUState *env;
uint64_t lowaddr;
int i;
int big_endian;
- MemoryRegion *sram = g_new(MemoryRegion, 1);
- MemoryRegion *flash = g_new(MemoryRegion, 1);
- MemoryRegion *hack = g_new(MemoryRegion, 1);
flash_size *= 1024;
sram_size *= 1024;
#endif
/* Flash programming is done via the SCU, so pretend it is ROM. */
- memory_region_init_ram(flash, NULL, "armv7m.flash", flash_size);
- memory_region_set_readonly(flash, true);
- memory_region_add_subregion(address_space_mem, 0, flash);
- memory_region_init_ram(sram, NULL, "armv7m.sram", sram_size);
- memory_region_add_subregion(address_space_mem, 0x20000000, sram);
+ cpu_register_physical_memory(0, flash_size,
+ qemu_ram_alloc(NULL, "armv7m.flash",
+ flash_size) | IO_MEM_ROM);
+ cpu_register_physical_memory(0x20000000, sram_size,
+ qemu_ram_alloc(NULL, "armv7m.sram",
+ sram_size) | IO_MEM_RAM);
armv7m_bitband_init();
nvic = qdev_create(NULL, "armv7m_nvic");
/* Hack to map an additional page of ram at the top of the address
space. This stops qemu complaining about executing code outside RAM
when returning from an exception. */
- memory_region_init_ram(hack, NULL, "armv7m.hack", 0x1000);
- memory_region_add_subregion(address_space_mem, 0xfffff000, hack);
+ cpu_register_physical_memory(0xfffff000, 0x1000,
+ qemu_ram_alloc(NULL, "armv7m.hack",
+ 0x1000) | IO_MEM_RAM);
qemu_register_reset(armv7m_reset, env);
return pic;
#include "elf.h"
#include "cris-boot.h"
#include "blockdev.h"
-#include "exec-memory.h"
#define D(x)
#define DNAND(x)
int i;
int nand_regs;
int gpio_regs;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
- MemoryRegion *phys_intmem = g_new(MemoryRegion, 1);
+ ram_addr_t phys_ram;
+ ram_addr_t phys_intmem;
/* init CPUs */
if (cpu_model == NULL) {
env = cpu_init(cpu_model);
/* allocate RAM */
- memory_region_init_ram(phys_ram, NULL, "axisdev88.ram", ram_size);
- memory_region_add_subregion(address_space_mem, 0x40000000, phys_ram);
+ phys_ram = qemu_ram_alloc(NULL, "axisdev88.ram", ram_size);
+ cpu_register_physical_memory(0x40000000, ram_size, phys_ram | IO_MEM_RAM);
/* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the
internal memory. */
- memory_region_init_ram(phys_intmem, NULL, "axisdev88.chipram", INTMEM_SIZE);
- memory_region_add_subregion(address_space_mem, 0x38000000, phys_intmem);
+ phys_intmem = qemu_ram_alloc(NULL, "axisdev88.chipram", INTMEM_SIZE);
+ cpu_register_physical_memory(0x38000000, INTMEM_SIZE,
+ phys_intmem | IO_MEM_RAM);
+
/* Attach a NAND flash to CS1. */
nand = drive_get(IF_MTD, 0, 0);
/* BD Address */
typedef struct {
uint8_t b[6];
-} __attribute__((packed)) bdaddr_t;
+} QEMU_PACKED bdaddr_t;
#define BDADDR_ANY (&(bdaddr_t) {{0, 0, 0, 0, 0, 0}})
#define BDADDR_ALL (&(bdaddr_t) {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}})
uint8_t lap[3];
uint8_t length; /* 1.28s units */
uint8_t num_rsp;
-} __attribute__ ((packed)) inquiry_cp;
+} QEMU_PACKED inquiry_cp;
#define INQUIRY_CP_SIZE 5
typedef struct {
uint8_t status;
bdaddr_t bdaddr;
-} __attribute__ ((packed)) status_bdaddr_rp;
+} QEMU_PACKED status_bdaddr_rp;
#define STATUS_BDADDR_RP_SIZE 7
#define OCF_INQUIRY_CANCEL 0x0002
uint8_t lap[3];
uint8_t length; /* 1.28s units */
uint8_t num_rsp;
-} __attribute__ ((packed)) periodic_inquiry_cp;
+} QEMU_PACKED periodic_inquiry_cp;
#define PERIODIC_INQUIRY_CP_SIZE 9
#define OCF_EXIT_PERIODIC_INQUIRY 0x0004
uint8_t pscan_mode;
uint16_t clock_offset;
uint8_t role_switch;
-} __attribute__ ((packed)) create_conn_cp;
+} QEMU_PACKED create_conn_cp;
#define CREATE_CONN_CP_SIZE 13
#define OCF_DISCONNECT 0x0006
typedef struct {
uint16_t handle;
uint8_t reason;
-} __attribute__ ((packed)) disconnect_cp;
+} QEMU_PACKED disconnect_cp;
#define DISCONNECT_CP_SIZE 3
#define OCF_ADD_SCO 0x0007
typedef struct {
uint16_t handle;
uint16_t pkt_type;
-} __attribute__ ((packed)) add_sco_cp;
+} QEMU_PACKED add_sco_cp;
#define ADD_SCO_CP_SIZE 4
#define OCF_CREATE_CONN_CANCEL 0x0008
typedef struct {
uint8_t status;
bdaddr_t bdaddr;
-} __attribute__ ((packed)) create_conn_cancel_cp;
+} QEMU_PACKED create_conn_cancel_cp;
#define CREATE_CONN_CANCEL_CP_SIZE 6
typedef struct {
uint8_t status;
bdaddr_t bdaddr;
-} __attribute__ ((packed)) create_conn_cancel_rp;
+} QEMU_PACKED create_conn_cancel_rp;
#define CREATE_CONN_CANCEL_RP_SIZE 7
#define OCF_ACCEPT_CONN_REQ 0x0009
typedef struct {
bdaddr_t bdaddr;
uint8_t role;
-} __attribute__ ((packed)) accept_conn_req_cp;
+} QEMU_PACKED accept_conn_req_cp;
#define ACCEPT_CONN_REQ_CP_SIZE 7
#define OCF_REJECT_CONN_REQ 0x000A
typedef struct {
bdaddr_t bdaddr;
uint8_t reason;
-} __attribute__ ((packed)) reject_conn_req_cp;
+} QEMU_PACKED reject_conn_req_cp;
#define REJECT_CONN_REQ_CP_SIZE 7
#define OCF_LINK_KEY_REPLY 0x000B
typedef struct {
bdaddr_t bdaddr;
uint8_t link_key[16];
-} __attribute__ ((packed)) link_key_reply_cp;
+} QEMU_PACKED link_key_reply_cp;
#define LINK_KEY_REPLY_CP_SIZE 22
#define OCF_LINK_KEY_NEG_REPLY 0x000C
bdaddr_t bdaddr;
uint8_t pin_len;
uint8_t pin_code[16];
-} __attribute__ ((packed)) pin_code_reply_cp;
+} QEMU_PACKED pin_code_reply_cp;
#define PIN_CODE_REPLY_CP_SIZE 23
#define OCF_PIN_CODE_NEG_REPLY 0x000E
typedef struct {
uint16_t handle;
uint16_t pkt_type;
-} __attribute__ ((packed)) set_conn_ptype_cp;
+} QEMU_PACKED set_conn_ptype_cp;
#define SET_CONN_PTYPE_CP_SIZE 4
#define OCF_AUTH_REQUESTED 0x0011
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) auth_requested_cp;
+} QEMU_PACKED auth_requested_cp;
#define AUTH_REQUESTED_CP_SIZE 2
#define OCF_SET_CONN_ENCRYPT 0x0013
typedef struct {
uint16_t handle;
uint8_t encrypt;
-} __attribute__ ((packed)) set_conn_encrypt_cp;
+} QEMU_PACKED set_conn_encrypt_cp;
#define SET_CONN_ENCRYPT_CP_SIZE 3
#define OCF_CHANGE_CONN_LINK_KEY 0x0015
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) change_conn_link_key_cp;
+} QEMU_PACKED change_conn_link_key_cp;
#define CHANGE_CONN_LINK_KEY_CP_SIZE 2
#define OCF_MASTER_LINK_KEY 0x0017
typedef struct {
uint8_t key_flag;
-} __attribute__ ((packed)) master_link_key_cp;
+} QEMU_PACKED master_link_key_cp;
#define MASTER_LINK_KEY_CP_SIZE 1
#define OCF_REMOTE_NAME_REQ 0x0019
uint8_t pscan_rep_mode;
uint8_t pscan_mode;
uint16_t clock_offset;
-} __attribute__ ((packed)) remote_name_req_cp;
+} QEMU_PACKED remote_name_req_cp;
#define REMOTE_NAME_REQ_CP_SIZE 10
#define OCF_REMOTE_NAME_REQ_CANCEL 0x001A
typedef struct {
bdaddr_t bdaddr;
-} __attribute__ ((packed)) remote_name_req_cancel_cp;
+} QEMU_PACKED remote_name_req_cancel_cp;
#define REMOTE_NAME_REQ_CANCEL_CP_SIZE 6
typedef struct {
uint8_t status;
bdaddr_t bdaddr;
-} __attribute__ ((packed)) remote_name_req_cancel_rp;
+} QEMU_PACKED remote_name_req_cancel_rp;
#define REMOTE_NAME_REQ_CANCEL_RP_SIZE 7
#define OCF_READ_REMOTE_FEATURES 0x001B
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) read_remote_features_cp;
+} QEMU_PACKED read_remote_features_cp;
#define READ_REMOTE_FEATURES_CP_SIZE 2
#define OCF_READ_REMOTE_EXT_FEATURES 0x001C
typedef struct {
uint16_t handle;
uint8_t page_num;
-} __attribute__ ((packed)) read_remote_ext_features_cp;
+} QEMU_PACKED read_remote_ext_features_cp;
#define READ_REMOTE_EXT_FEATURES_CP_SIZE 3
#define OCF_READ_REMOTE_VERSION 0x001D
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) read_remote_version_cp;
+} QEMU_PACKED read_remote_version_cp;
#define READ_REMOTE_VERSION_CP_SIZE 2
#define OCF_READ_CLOCK_OFFSET 0x001F
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) read_clock_offset_cp;
+} QEMU_PACKED read_clock_offset_cp;
#define READ_CLOCK_OFFSET_CP_SIZE 2
#define OCF_READ_LMP_HANDLE 0x0020
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) read_lmp_handle_cp;
+} QEMU_PACKED read_lmp_handle_cp;
#define READ_LMP_HANDLE_CP_SIZE 2
typedef struct {
uint16_t handle;
uint8_t lmp_handle;
uint32_t reserved;
-} __attribute__ ((packed)) read_lmp_handle_rp;
+} QEMU_PACKED read_lmp_handle_rp;
#define READ_LMP_HANDLE_RP_SIZE 8
#define OCF_SETUP_SYNC_CONN 0x0028
uint16_t voice_setting;
uint8_t retrans_effort;
uint16_t pkt_type;
-} __attribute__ ((packed)) setup_sync_conn_cp;
+} QEMU_PACKED setup_sync_conn_cp;
#define SETUP_SYNC_CONN_CP_SIZE 17
#define OCF_ACCEPT_SYNC_CONN_REQ 0x0029
uint16_t voice_setting;
uint8_t retrans_effort;
uint16_t pkt_type;
-} __attribute__ ((packed)) accept_sync_conn_req_cp;
+} QEMU_PACKED accept_sync_conn_req_cp;
#define ACCEPT_SYNC_CONN_REQ_CP_SIZE 21
#define OCF_REJECT_SYNC_CONN_REQ 0x002A
typedef struct {
bdaddr_t bdaddr;
uint8_t reason;
-} __attribute__ ((packed)) reject_sync_conn_req_cp;
+} QEMU_PACKED reject_sync_conn_req_cp;
#define REJECT_SYNC_CONN_REQ_CP_SIZE 7
/* Link Policy */
uint16_t handle;
uint16_t max_interval;
uint16_t min_interval;
-} __attribute__ ((packed)) hold_mode_cp;
+} QEMU_PACKED hold_mode_cp;
#define HOLD_MODE_CP_SIZE 6
#define OCF_SNIFF_MODE 0x0003
uint16_t min_interval;
uint16_t attempt;
uint16_t timeout;
-} __attribute__ ((packed)) sniff_mode_cp;
+} QEMU_PACKED sniff_mode_cp;
#define SNIFF_MODE_CP_SIZE 10
#define OCF_EXIT_SNIFF_MODE 0x0004
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) exit_sniff_mode_cp;
+} QEMU_PACKED exit_sniff_mode_cp;
#define EXIT_SNIFF_MODE_CP_SIZE 2
#define OCF_PARK_MODE 0x0005
uint16_t handle;
uint16_t max_interval;
uint16_t min_interval;
-} __attribute__ ((packed)) park_mode_cp;
+} QEMU_PACKED park_mode_cp;
#define PARK_MODE_CP_SIZE 6
#define OCF_EXIT_PARK_MODE 0x0006
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) exit_park_mode_cp;
+} QEMU_PACKED exit_park_mode_cp;
#define EXIT_PARK_MODE_CP_SIZE 2
#define OCF_QOS_SETUP 0x0007
uint32_t peak_bandwidth; /* Byte per seconds */
uint32_t latency; /* Microseconds */
uint32_t delay_variation; /* Microseconds */
-} __attribute__ ((packed)) hci_qos;
+} QEMU_PACKED hci_qos;
#define HCI_QOS_CP_SIZE 17
typedef struct {
uint16_t handle;
uint8_t flags; /* Reserved */
hci_qos qos;
-} __attribute__ ((packed)) qos_setup_cp;
+} QEMU_PACKED qos_setup_cp;
#define QOS_SETUP_CP_SIZE (3 + HCI_QOS_CP_SIZE)
#define OCF_ROLE_DISCOVERY 0x0009
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) role_discovery_cp;
+} QEMU_PACKED role_discovery_cp;
#define ROLE_DISCOVERY_CP_SIZE 2
typedef struct {
uint8_t status;
uint16_t handle;
uint8_t role;
-} __attribute__ ((packed)) role_discovery_rp;
+} QEMU_PACKED role_discovery_rp;
#define ROLE_DISCOVERY_RP_SIZE 4
#define OCF_SWITCH_ROLE 0x000B
typedef struct {
bdaddr_t bdaddr;
uint8_t role;
-} __attribute__ ((packed)) switch_role_cp;
+} QEMU_PACKED switch_role_cp;
#define SWITCH_ROLE_CP_SIZE 7
#define OCF_READ_LINK_POLICY 0x000C
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) read_link_policy_cp;
+} QEMU_PACKED read_link_policy_cp;
#define READ_LINK_POLICY_CP_SIZE 2
typedef struct {
uint8_t status;
uint16_t handle;
uint16_t policy;
-} __attribute__ ((packed)) read_link_policy_rp;
+} QEMU_PACKED read_link_policy_rp;
#define READ_LINK_POLICY_RP_SIZE 5
#define OCF_WRITE_LINK_POLICY 0x000D
typedef struct {
uint16_t handle;
uint16_t policy;
-} __attribute__ ((packed)) write_link_policy_cp;
+} QEMU_PACKED write_link_policy_cp;
#define WRITE_LINK_POLICY_CP_SIZE 4
typedef struct {
uint8_t status;
uint16_t handle;
-} __attribute__ ((packed)) write_link_policy_rp;
+} QEMU_PACKED write_link_policy_rp;
#define WRITE_LINK_POLICY_RP_SIZE 3
#define OCF_READ_DEFAULT_LINK_POLICY 0x000E
uint16_t max_local_latency;
uint16_t min_remote_timeout;
uint16_t min_local_timeout;
-} __attribute__ ((packed)) sniff_subrate_cp;
+} QEMU_PACKED sniff_subrate_cp;
#define SNIFF_SUBRATE_CP_SIZE 10
/* Host Controller and Baseband */
#define OCF_SET_EVENT_MASK 0x0001
typedef struct {
uint8_t mask[8];
-} __attribute__ ((packed)) set_event_mask_cp;
+} QEMU_PACKED set_event_mask_cp;
#define SET_EVENT_MASK_CP_SIZE 8
#define OCF_RESET 0x0003
uint8_t flt_type;
uint8_t cond_type;
uint8_t condition[0];
-} __attribute__ ((packed)) set_event_flt_cp;
+} QEMU_PACKED set_event_flt_cp;
#define SET_EVENT_FLT_CP_SIZE 2
enum bt_filter_type {
#define OCF_FLUSH 0x0008
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) flush_cp;
+} QEMU_PACKED flush_cp;
#define FLUSH_CP_SIZE 2
typedef struct {
uint8_t status;
uint16_t handle;
-} __attribute__ ((packed)) flush_rp;
+} QEMU_PACKED flush_rp;
#define FLUSH_RP_SIZE 3
#define OCF_READ_PIN_TYPE 0x0009
typedef struct {
uint8_t status;
uint8_t pin_type;
-} __attribute__ ((packed)) read_pin_type_rp;
+} QEMU_PACKED read_pin_type_rp;
#define READ_PIN_TYPE_RP_SIZE 2
#define OCF_WRITE_PIN_TYPE 0x000A
typedef struct {
uint8_t pin_type;
-} __attribute__ ((packed)) write_pin_type_cp;
+} QEMU_PACKED write_pin_type_cp;
#define WRITE_PIN_TYPE_CP_SIZE 1
#define OCF_CREATE_NEW_UNIT_KEY 0x000B
typedef struct {
bdaddr_t bdaddr;
uint8_t read_all;
-} __attribute__ ((packed)) read_stored_link_key_cp;
+} QEMU_PACKED read_stored_link_key_cp;
#define READ_STORED_LINK_KEY_CP_SIZE 7
typedef struct {
uint8_t status;
uint16_t max_keys;
uint16_t num_keys;
-} __attribute__ ((packed)) read_stored_link_key_rp;
+} QEMU_PACKED read_stored_link_key_rp;
#define READ_STORED_LINK_KEY_RP_SIZE 5
#define OCF_WRITE_STORED_LINK_KEY 0x0011
typedef struct {
uint8_t num_keys;
/* variable length part */
-} __attribute__ ((packed)) write_stored_link_key_cp;
+} QEMU_PACKED write_stored_link_key_cp;
#define WRITE_STORED_LINK_KEY_CP_SIZE 1
typedef struct {
uint8_t status;
uint8_t num_keys;
-} __attribute__ ((packed)) write_stored_link_key_rp;
+} QEMU_PACKED write_stored_link_key_rp;
#define READ_WRITE_LINK_KEY_RP_SIZE 2
#define OCF_DELETE_STORED_LINK_KEY 0x0012
typedef struct {
bdaddr_t bdaddr;
uint8_t delete_all;
-} __attribute__ ((packed)) delete_stored_link_key_cp;
+} QEMU_PACKED delete_stored_link_key_cp;
#define DELETE_STORED_LINK_KEY_CP_SIZE 7
typedef struct {
uint8_t status;
uint16_t num_keys;
-} __attribute__ ((packed)) delete_stored_link_key_rp;
+} QEMU_PACKED delete_stored_link_key_rp;
#define DELETE_STORED_LINK_KEY_RP_SIZE 3
#define OCF_CHANGE_LOCAL_NAME 0x0013
typedef struct {
char name[248];
-} __attribute__ ((packed)) change_local_name_cp;
+} QEMU_PACKED change_local_name_cp;
#define CHANGE_LOCAL_NAME_CP_SIZE 248
#define OCF_READ_LOCAL_NAME 0x0014
typedef struct {
uint8_t status;
char name[248];
-} __attribute__ ((packed)) read_local_name_rp;
+} QEMU_PACKED read_local_name_rp;
#define READ_LOCAL_NAME_RP_SIZE 249
#define OCF_READ_CONN_ACCEPT_TIMEOUT 0x0015
typedef struct {
uint8_t status;
uint16_t timeout;
-} __attribute__ ((packed)) read_conn_accept_timeout_rp;
+} QEMU_PACKED read_conn_accept_timeout_rp;
#define READ_CONN_ACCEPT_TIMEOUT_RP_SIZE 3
#define OCF_WRITE_CONN_ACCEPT_TIMEOUT 0x0016
typedef struct {
uint16_t timeout;
-} __attribute__ ((packed)) write_conn_accept_timeout_cp;
+} QEMU_PACKED write_conn_accept_timeout_cp;
#define WRITE_CONN_ACCEPT_TIMEOUT_CP_SIZE 2
#define OCF_READ_PAGE_TIMEOUT 0x0017
typedef struct {
uint8_t status;
uint16_t timeout;
-} __attribute__ ((packed)) read_page_timeout_rp;
+} QEMU_PACKED read_page_timeout_rp;
#define READ_PAGE_TIMEOUT_RP_SIZE 3
#define OCF_WRITE_PAGE_TIMEOUT 0x0018
typedef struct {
uint16_t timeout;
-} __attribute__ ((packed)) write_page_timeout_cp;
+} QEMU_PACKED write_page_timeout_cp;
#define WRITE_PAGE_TIMEOUT_CP_SIZE 2
#define OCF_READ_SCAN_ENABLE 0x0019
typedef struct {
uint8_t status;
uint8_t enable;
-} __attribute__ ((packed)) read_scan_enable_rp;
+} QEMU_PACKED read_scan_enable_rp;
#define READ_SCAN_ENABLE_RP_SIZE 2
#define OCF_WRITE_SCAN_ENABLE 0x001A
typedef struct {
uint8_t scan_enable;
-} __attribute__ ((packed)) write_scan_enable_cp;
+} QEMU_PACKED write_scan_enable_cp;
#define WRITE_SCAN_ENABLE_CP_SIZE 1
enum scan_enable_bits {
uint8_t status;
uint16_t interval;
uint16_t window;
-} __attribute__ ((packed)) read_page_activity_rp;
+} QEMU_PACKED read_page_activity_rp;
#define READ_PAGE_ACTIVITY_RP_SIZE 5
#define OCF_WRITE_PAGE_ACTIVITY 0x001C
typedef struct {
uint16_t interval;
uint16_t window;
-} __attribute__ ((packed)) write_page_activity_cp;
+} QEMU_PACKED write_page_activity_cp;
#define WRITE_PAGE_ACTIVITY_CP_SIZE 4
#define OCF_READ_INQ_ACTIVITY 0x001D
uint8_t status;
uint16_t interval;
uint16_t window;
-} __attribute__ ((packed)) read_inq_activity_rp;
+} QEMU_PACKED read_inq_activity_rp;
#define READ_INQ_ACTIVITY_RP_SIZE 5
#define OCF_WRITE_INQ_ACTIVITY 0x001E
typedef struct {
uint16_t interval;
uint16_t window;
-} __attribute__ ((packed)) write_inq_activity_cp;
+} QEMU_PACKED write_inq_activity_cp;
#define WRITE_INQ_ACTIVITY_CP_SIZE 4
#define OCF_READ_AUTH_ENABLE 0x001F
typedef struct {
uint8_t status;
uint8_t dev_class[3];
-} __attribute__ ((packed)) read_class_of_dev_rp;
+} QEMU_PACKED read_class_of_dev_rp;
#define READ_CLASS_OF_DEV_RP_SIZE 4
#define OCF_WRITE_CLASS_OF_DEV 0x0024
typedef struct {
uint8_t dev_class[3];
-} __attribute__ ((packed)) write_class_of_dev_cp;
+} QEMU_PACKED write_class_of_dev_cp;
#define WRITE_CLASS_OF_DEV_CP_SIZE 3
#define OCF_READ_VOICE_SETTING 0x0025
typedef struct {
uint8_t status;
uint16_t voice_setting;
-} __attribute__ ((packed)) read_voice_setting_rp;
+} QEMU_PACKED read_voice_setting_rp;
#define READ_VOICE_SETTING_RP_SIZE 3
#define OCF_WRITE_VOICE_SETTING 0x0026
typedef struct {
uint16_t voice_setting;
-} __attribute__ ((packed)) write_voice_setting_cp;
+} QEMU_PACKED write_voice_setting_cp;
#define WRITE_VOICE_SETTING_CP_SIZE 2
#define OCF_READ_AUTOMATIC_FLUSH_TIMEOUT 0x0027
typedef struct {
uint16_t handle;
uint8_t type;
-} __attribute__ ((packed)) read_transmit_power_level_cp;
+} QEMU_PACKED read_transmit_power_level_cp;
#define READ_TRANSMIT_POWER_LEVEL_CP_SIZE 3
typedef struct {
uint8_t status;
uint16_t handle;
int8_t level;
-} __attribute__ ((packed)) read_transmit_power_level_rp;
+} QEMU_PACKED read_transmit_power_level_rp;
#define READ_TRANSMIT_POWER_LEVEL_RP_SIZE 4
#define OCF_HOST_BUFFER_SIZE 0x0033
uint8_t sco_mtu;
uint16_t acl_max_pkt;
uint16_t sco_max_pkt;
-} __attribute__ ((packed)) host_buffer_size_cp;
+} QEMU_PACKED host_buffer_size_cp;
#define HOST_BUFFER_SIZE_CP_SIZE 7
#define OCF_HOST_NUMBER_OF_COMPLETED_PACKETS 0x0035
uint8_t status;
uint16_t handle;
uint16_t link_sup_to;
-} __attribute__ ((packed)) read_link_supervision_timeout_rp;
+} QEMU_PACKED read_link_supervision_timeout_rp;
#define READ_LINK_SUPERVISION_TIMEOUT_RP_SIZE 5
#define OCF_WRITE_LINK_SUPERVISION_TIMEOUT 0x0037
typedef struct {
uint16_t handle;
uint16_t link_sup_to;
-} __attribute__ ((packed)) write_link_supervision_timeout_cp;
+} QEMU_PACKED write_link_supervision_timeout_cp;
#define WRITE_LINK_SUPERVISION_TIMEOUT_CP_SIZE 4
typedef struct {
uint8_t status;
uint16_t handle;
-} __attribute__ ((packed)) write_link_supervision_timeout_rp;
+} QEMU_PACKED write_link_supervision_timeout_rp;
#define WRITE_LINK_SUPERVISION_TIMEOUT_RP_SIZE 3
#define OCF_READ_NUM_SUPPORTED_IAC 0x0038
uint8_t status;
uint8_t num_current_iac;
uint8_t lap[MAX_IAC_LAP][3];
-} __attribute__ ((packed)) read_current_iac_lap_rp;
+} QEMU_PACKED read_current_iac_lap_rp;
#define READ_CURRENT_IAC_LAP_RP_SIZE 2+3*MAX_IAC_LAP
#define OCF_WRITE_CURRENT_IAC_LAP 0x003A
typedef struct {
uint8_t num_current_iac;
uint8_t lap[MAX_IAC_LAP][3];
-} __attribute__ ((packed)) write_current_iac_lap_cp;
+} QEMU_PACKED write_current_iac_lap_cp;
#define WRITE_CURRENT_IAC_LAP_CP_SIZE 1+3*MAX_IAC_LAP
#define OCF_READ_PAGE_SCAN_PERIOD_MODE 0x003B
#define OCF_SET_AFH_CLASSIFICATION 0x003F
typedef struct {
uint8_t map[10];
-} __attribute__ ((packed)) set_afh_classification_cp;
+} QEMU_PACKED set_afh_classification_cp;
#define SET_AFH_CLASSIFICATION_CP_SIZE 10
typedef struct {
uint8_t status;
-} __attribute__ ((packed)) set_afh_classification_rp;
+} QEMU_PACKED set_afh_classification_rp;
#define SET_AFH_CLASSIFICATION_RP_SIZE 1
#define OCF_READ_INQUIRY_SCAN_TYPE 0x0042
typedef struct {
uint8_t status;
uint8_t type;
-} __attribute__ ((packed)) read_inquiry_scan_type_rp;
+} QEMU_PACKED read_inquiry_scan_type_rp;
#define READ_INQUIRY_SCAN_TYPE_RP_SIZE 2
#define OCF_WRITE_INQUIRY_SCAN_TYPE 0x0043
typedef struct {
uint8_t type;
-} __attribute__ ((packed)) write_inquiry_scan_type_cp;
+} QEMU_PACKED write_inquiry_scan_type_cp;
#define WRITE_INQUIRY_SCAN_TYPE_CP_SIZE 1
typedef struct {
uint8_t status;
-} __attribute__ ((packed)) write_inquiry_scan_type_rp;
+} QEMU_PACKED write_inquiry_scan_type_rp;
#define WRITE_INQUIRY_SCAN_TYPE_RP_SIZE 1
#define OCF_READ_INQUIRY_MODE 0x0044
typedef struct {
uint8_t status;
uint8_t mode;
-} __attribute__ ((packed)) read_inquiry_mode_rp;
+} QEMU_PACKED read_inquiry_mode_rp;
#define READ_INQUIRY_MODE_RP_SIZE 2
#define OCF_WRITE_INQUIRY_MODE 0x0045
typedef struct {
uint8_t mode;
-} __attribute__ ((packed)) write_inquiry_mode_cp;
+} QEMU_PACKED write_inquiry_mode_cp;
#define WRITE_INQUIRY_MODE_CP_SIZE 1
typedef struct {
uint8_t status;
-} __attribute__ ((packed)) write_inquiry_mode_rp;
+} QEMU_PACKED write_inquiry_mode_rp;
#define WRITE_INQUIRY_MODE_RP_SIZE 1
#define OCF_READ_PAGE_SCAN_TYPE 0x0046
typedef struct {
uint8_t status;
uint8_t mode;
-} __attribute__ ((packed)) read_afh_mode_rp;
+} QEMU_PACKED read_afh_mode_rp;
#define READ_AFH_MODE_RP_SIZE 2
#define OCF_WRITE_AFH_MODE 0x0049
typedef struct {
uint8_t mode;
-} __attribute__ ((packed)) write_afh_mode_cp;
+} QEMU_PACKED write_afh_mode_cp;
#define WRITE_AFH_MODE_CP_SIZE 1
typedef struct {
uint8_t status;
-} __attribute__ ((packed)) write_afh_mode_rp;
+} QEMU_PACKED write_afh_mode_rp;
#define WRITE_AFH_MODE_RP_SIZE 1
#define OCF_READ_EXT_INQUIRY_RESPONSE 0x0051
uint8_t status;
uint8_t fec;
uint8_t data[240];
-} __attribute__ ((packed)) read_ext_inquiry_response_rp;
+} QEMU_PACKED read_ext_inquiry_response_rp;
#define READ_EXT_INQUIRY_RESPONSE_RP_SIZE 242
#define OCF_WRITE_EXT_INQUIRY_RESPONSE 0x0052
typedef struct {
uint8_t fec;
uint8_t data[240];
-} __attribute__ ((packed)) write_ext_inquiry_response_cp;
+} QEMU_PACKED write_ext_inquiry_response_cp;
#define WRITE_EXT_INQUIRY_RESPONSE_CP_SIZE 241
typedef struct {
uint8_t status;
-} __attribute__ ((packed)) write_ext_inquiry_response_rp;
+} QEMU_PACKED write_ext_inquiry_response_rp;
#define WRITE_EXT_INQUIRY_RESPONSE_RP_SIZE 1
/* Informational Parameters */
uint8_t lmp_ver;
uint16_t manufacturer;
uint16_t lmp_subver;
-} __attribute__ ((packed)) read_local_version_rp;
+} QEMU_PACKED read_local_version_rp;
#define READ_LOCAL_VERSION_RP_SIZE 9
#define OCF_READ_LOCAL_COMMANDS 0x0002
typedef struct {
uint8_t status;
uint8_t commands[64];
-} __attribute__ ((packed)) read_local_commands_rp;
+} QEMU_PACKED read_local_commands_rp;
#define READ_LOCAL_COMMANDS_RP_SIZE 65
#define OCF_READ_LOCAL_FEATURES 0x0003
typedef struct {
uint8_t status;
uint8_t features[8];
-} __attribute__ ((packed)) read_local_features_rp;
+} QEMU_PACKED read_local_features_rp;
#define READ_LOCAL_FEATURES_RP_SIZE 9
#define OCF_READ_LOCAL_EXT_FEATURES 0x0004
typedef struct {
uint8_t page_num;
-} __attribute__ ((packed)) read_local_ext_features_cp;
+} QEMU_PACKED read_local_ext_features_cp;
#define READ_LOCAL_EXT_FEATURES_CP_SIZE 1
typedef struct {
uint8_t status;
uint8_t page_num;
uint8_t max_page_num;
uint8_t features[8];
-} __attribute__ ((packed)) read_local_ext_features_rp;
+} QEMU_PACKED read_local_ext_features_rp;
#define READ_LOCAL_EXT_FEATURES_RP_SIZE 11
#define OCF_READ_BUFFER_SIZE 0x0005
uint8_t sco_mtu;
uint16_t acl_max_pkt;
uint16_t sco_max_pkt;
-} __attribute__ ((packed)) read_buffer_size_rp;
+} QEMU_PACKED read_buffer_size_rp;
#define READ_BUFFER_SIZE_RP_SIZE 8
#define OCF_READ_COUNTRY_CODE 0x0007
typedef struct {
uint8_t status;
uint8_t country_code;
-} __attribute__ ((packed)) read_country_code_rp;
+} QEMU_PACKED read_country_code_rp;
#define READ_COUNTRY_CODE_RP_SIZE 2
#define OCF_READ_BD_ADDR 0x0009
typedef struct {
uint8_t status;
bdaddr_t bdaddr;
-} __attribute__ ((packed)) read_bd_addr_rp;
+} QEMU_PACKED read_bd_addr_rp;
#define READ_BD_ADDR_RP_SIZE 7
/* Status params */
uint8_t status;
uint16_t handle;
uint8_t counter;
-} __attribute__ ((packed)) read_failed_contact_counter_rp;
+} QEMU_PACKED read_failed_contact_counter_rp;
#define READ_FAILED_CONTACT_COUNTER_RP_SIZE 4
#define OCF_RESET_FAILED_CONTACT_COUNTER 0x0002
typedef struct {
uint8_t status;
uint16_t handle;
-} __attribute__ ((packed)) reset_failed_contact_counter_rp;
+} QEMU_PACKED reset_failed_contact_counter_rp;
#define RESET_FAILED_CONTACT_COUNTER_RP_SIZE 4
#define OCF_READ_LINK_QUALITY 0x0003
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) read_link_quality_cp;
+} QEMU_PACKED read_link_quality_cp;
#define READ_LINK_QUALITY_CP_SIZE 4
typedef struct {
uint8_t status;
uint16_t handle;
uint8_t link_quality;
-} __attribute__ ((packed)) read_link_quality_rp;
+} QEMU_PACKED read_link_quality_rp;
#define READ_LINK_QUALITY_RP_SIZE 4
#define OCF_READ_RSSI 0x0005
uint8_t status;
uint16_t handle;
int8_t rssi;
-} __attribute__ ((packed)) read_rssi_rp;
+} QEMU_PACKED read_rssi_rp;
#define READ_RSSI_RP_SIZE 4
#define OCF_READ_AFH_MAP 0x0006
uint16_t handle;
uint8_t mode;
uint8_t map[10];
-} __attribute__ ((packed)) read_afh_map_rp;
+} QEMU_PACKED read_afh_map_rp;
#define READ_AFH_MAP_RP_SIZE 14
#define OCF_READ_CLOCK 0x0007
typedef struct {
uint16_t handle;
uint8_t which_clock;
-} __attribute__ ((packed)) read_clock_cp;
+} QEMU_PACKED read_clock_cp;
#define READ_CLOCK_CP_SIZE 3
typedef struct {
uint8_t status;
uint16_t handle;
uint32_t clock;
uint16_t accuracy;
-} __attribute__ ((packed)) read_clock_rp;
+} QEMU_PACKED read_clock_rp;
#define READ_CLOCK_RP_SIZE 9
/* Testing commands */
uint8_t pscan_mode;
uint8_t dev_class[3];
uint16_t clock_offset;
-} __attribute__ ((packed)) inquiry_info;
+} QEMU_PACKED inquiry_info;
#define INQUIRY_INFO_SIZE 14
#define EVT_CONN_COMPLETE 0x03
bdaddr_t bdaddr;
uint8_t link_type;
uint8_t encr_mode;
-} __attribute__ ((packed)) evt_conn_complete;
+} QEMU_PACKED evt_conn_complete;
#define EVT_CONN_COMPLETE_SIZE 11
#define EVT_CONN_REQUEST 0x04
bdaddr_t bdaddr;
uint8_t dev_class[3];
uint8_t link_type;
-} __attribute__ ((packed)) evt_conn_request;
+} QEMU_PACKED evt_conn_request;
#define EVT_CONN_REQUEST_SIZE 10
#define EVT_DISCONN_COMPLETE 0x05
uint8_t status;
uint16_t handle;
uint8_t reason;
-} __attribute__ ((packed)) evt_disconn_complete;
+} QEMU_PACKED evt_disconn_complete;
#define EVT_DISCONN_COMPLETE_SIZE 4
#define EVT_AUTH_COMPLETE 0x06
typedef struct {
uint8_t status;
uint16_t handle;
-} __attribute__ ((packed)) evt_auth_complete;
+} QEMU_PACKED evt_auth_complete;
#define EVT_AUTH_COMPLETE_SIZE 3
#define EVT_REMOTE_NAME_REQ_COMPLETE 0x07
uint8_t status;
bdaddr_t bdaddr;
char name[248];
-} __attribute__ ((packed)) evt_remote_name_req_complete;
+} QEMU_PACKED evt_remote_name_req_complete;
#define EVT_REMOTE_NAME_REQ_COMPLETE_SIZE 255
#define EVT_ENCRYPT_CHANGE 0x08
uint8_t status;
uint16_t handle;
uint8_t encrypt;
-} __attribute__ ((packed)) evt_encrypt_change;
+} QEMU_PACKED evt_encrypt_change;
#define EVT_ENCRYPT_CHANGE_SIZE 5
#define EVT_CHANGE_CONN_LINK_KEY_COMPLETE 0x09
typedef struct {
uint8_t status;
uint16_t handle;
-} __attribute__ ((packed)) evt_change_conn_link_key_complete;
+} QEMU_PACKED evt_change_conn_link_key_complete;
#define EVT_CHANGE_CONN_LINK_KEY_COMPLETE_SIZE 3
#define EVT_MASTER_LINK_KEY_COMPLETE 0x0A
uint8_t status;
uint16_t handle;
uint8_t key_flag;
-} __attribute__ ((packed)) evt_master_link_key_complete;
+} QEMU_PACKED evt_master_link_key_complete;
#define EVT_MASTER_LINK_KEY_COMPLETE_SIZE 4
#define EVT_READ_REMOTE_FEATURES_COMPLETE 0x0B
uint8_t status;
uint16_t handle;
uint8_t features[8];
-} __attribute__ ((packed)) evt_read_remote_features_complete;
+} QEMU_PACKED evt_read_remote_features_complete;
#define EVT_READ_REMOTE_FEATURES_COMPLETE_SIZE 11
#define EVT_READ_REMOTE_VERSION_COMPLETE 0x0C
uint8_t lmp_ver;
uint16_t manufacturer;
uint16_t lmp_subver;
-} __attribute__ ((packed)) evt_read_remote_version_complete;
+} QEMU_PACKED evt_read_remote_version_complete;
#define EVT_READ_REMOTE_VERSION_COMPLETE_SIZE 8
#define EVT_QOS_SETUP_COMPLETE 0x0D
uint16_t handle;
uint8_t flags; /* Reserved */
hci_qos qos;
-} __attribute__ ((packed)) evt_qos_setup_complete;
+} QEMU_PACKED evt_qos_setup_complete;
#define EVT_QOS_SETUP_COMPLETE_SIZE (4 + HCI_QOS_CP_SIZE)
#define EVT_CMD_COMPLETE 0x0E
typedef struct {
uint8_t ncmd;
uint16_t opcode;
-} __attribute__ ((packed)) evt_cmd_complete;
+} QEMU_PACKED evt_cmd_complete;
#define EVT_CMD_COMPLETE_SIZE 3
#define EVT_CMD_STATUS 0x0F
uint8_t status;
uint8_t ncmd;
uint16_t opcode;
-} __attribute__ ((packed)) evt_cmd_status;
+} QEMU_PACKED evt_cmd_status;
#define EVT_CMD_STATUS_SIZE 4
#define EVT_HARDWARE_ERROR 0x10
typedef struct {
uint8_t code;
-} __attribute__ ((packed)) evt_hardware_error;
+} QEMU_PACKED evt_hardware_error;
#define EVT_HARDWARE_ERROR_SIZE 1
#define EVT_FLUSH_OCCURRED 0x11
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) evt_flush_occurred;
+} QEMU_PACKED evt_flush_occurred;
#define EVT_FLUSH_OCCURRED_SIZE 2
#define EVT_ROLE_CHANGE 0x12
uint8_t status;
bdaddr_t bdaddr;
uint8_t role;
-} __attribute__ ((packed)) evt_role_change;
+} QEMU_PACKED evt_role_change;
#define EVT_ROLE_CHANGE_SIZE 8
#define EVT_NUM_COMP_PKTS 0x13
uint16_t handle;
uint16_t num_packets;
} connection[0];
-} __attribute__ ((packed)) evt_num_comp_pkts;
+} QEMU_PACKED evt_num_comp_pkts;
#define EVT_NUM_COMP_PKTS_SIZE(num_hndl) (1 + 4 * (num_hndl))
#define EVT_MODE_CHANGE 0x14
uint16_t handle;
uint8_t mode;
uint16_t interval;
-} __attribute__ ((packed)) evt_mode_change;
+} QEMU_PACKED evt_mode_change;
#define EVT_MODE_CHANGE_SIZE 6
#define EVT_RETURN_LINK_KEYS 0x15
typedef struct {
uint8_t num_keys;
/* variable length part */
-} __attribute__ ((packed)) evt_return_link_keys;
+} QEMU_PACKED evt_return_link_keys;
#define EVT_RETURN_LINK_KEYS_SIZE 1
#define EVT_PIN_CODE_REQ 0x16
typedef struct {
bdaddr_t bdaddr;
-} __attribute__ ((packed)) evt_pin_code_req;
+} QEMU_PACKED evt_pin_code_req;
#define EVT_PIN_CODE_REQ_SIZE 6
#define EVT_LINK_KEY_REQ 0x17
typedef struct {
bdaddr_t bdaddr;
-} __attribute__ ((packed)) evt_link_key_req;
+} QEMU_PACKED evt_link_key_req;
#define EVT_LINK_KEY_REQ_SIZE 6
#define EVT_LINK_KEY_NOTIFY 0x18
bdaddr_t bdaddr;
uint8_t link_key[16];
uint8_t key_type;
-} __attribute__ ((packed)) evt_link_key_notify;
+} QEMU_PACKED evt_link_key_notify;
#define EVT_LINK_KEY_NOTIFY_SIZE 23
#define EVT_LOOPBACK_COMMAND 0x19
#define EVT_DATA_BUFFER_OVERFLOW 0x1A
typedef struct {
uint8_t link_type;
-} __attribute__ ((packed)) evt_data_buffer_overflow;
+} QEMU_PACKED evt_data_buffer_overflow;
#define EVT_DATA_BUFFER_OVERFLOW_SIZE 1
#define EVT_MAX_SLOTS_CHANGE 0x1B
typedef struct {
uint16_t handle;
uint8_t max_slots;
-} __attribute__ ((packed)) evt_max_slots_change;
+} QEMU_PACKED evt_max_slots_change;
#define EVT_MAX_SLOTS_CHANGE_SIZE 3
#define EVT_READ_CLOCK_OFFSET_COMPLETE 0x1C
uint8_t status;
uint16_t handle;
uint16_t clock_offset;
-} __attribute__ ((packed)) evt_read_clock_offset_complete;
+} QEMU_PACKED evt_read_clock_offset_complete;
#define EVT_READ_CLOCK_OFFSET_COMPLETE_SIZE 5
#define EVT_CONN_PTYPE_CHANGED 0x1D
uint8_t status;
uint16_t handle;
uint16_t ptype;
-} __attribute__ ((packed)) evt_conn_ptype_changed;
+} QEMU_PACKED evt_conn_ptype_changed;
#define EVT_CONN_PTYPE_CHANGED_SIZE 5
#define EVT_QOS_VIOLATION 0x1E
typedef struct {
uint16_t handle;
-} __attribute__ ((packed)) evt_qos_violation;
+} QEMU_PACKED evt_qos_violation;
#define EVT_QOS_VIOLATION_SIZE 2
#define EVT_PSCAN_REP_MODE_CHANGE 0x20
typedef struct {
bdaddr_t bdaddr;
uint8_t pscan_rep_mode;
-} __attribute__ ((packed)) evt_pscan_rep_mode_change;
+} QEMU_PACKED evt_pscan_rep_mode_change;
#define EVT_PSCAN_REP_MODE_CHANGE_SIZE 7
#define EVT_FLOW_SPEC_COMPLETE 0x21
uint8_t flags;
uint8_t direction;
hci_qos qos;
-} __attribute__ ((packed)) evt_flow_spec_complete;
+} QEMU_PACKED evt_flow_spec_complete;
#define EVT_FLOW_SPEC_COMPLETE_SIZE (5 + HCI_QOS_CP_SIZE)
#define EVT_INQUIRY_RESULT_WITH_RSSI 0x22
uint8_t dev_class[3];
uint16_t clock_offset;
int8_t rssi;
-} __attribute__ ((packed)) inquiry_info_with_rssi;
+} QEMU_PACKED inquiry_info_with_rssi;
#define INQUIRY_INFO_WITH_RSSI_SIZE 15
typedef struct {
uint8_t num_responses;
uint8_t dev_class[3];
uint16_t clock_offset;
int8_t rssi;
-} __attribute__ ((packed)) inquiry_info_with_rssi_and_pscan_mode;
+} QEMU_PACKED inquiry_info_with_rssi_and_pscan_mode;
#define INQUIRY_INFO_WITH_RSSI_AND_PSCAN_MODE_SIZE 16
#define EVT_READ_REMOTE_EXT_FEATURES_COMPLETE 0x23
uint8_t page_num;
uint8_t max_page_num;
uint8_t features[8];
-} __attribute__ ((packed)) evt_read_remote_ext_features_complete;
+} QEMU_PACKED evt_read_remote_ext_features_complete;
#define EVT_READ_REMOTE_EXT_FEATURES_COMPLETE_SIZE 13
#define EVT_SYNC_CONN_COMPLETE 0x2C
uint16_t rx_pkt_len;
uint16_t tx_pkt_len;
uint8_t air_mode;
-} __attribute__ ((packed)) evt_sync_conn_complete;
+} QEMU_PACKED evt_sync_conn_complete;
#define EVT_SYNC_CONN_COMPLETE_SIZE 17
#define EVT_SYNC_CONN_CHANGED 0x2D
uint8_t retrans_window;
uint16_t rx_pkt_len;
uint16_t tx_pkt_len;
-} __attribute__ ((packed)) evt_sync_conn_changed;
+} QEMU_PACKED evt_sync_conn_changed;
#define EVT_SYNC_CONN_CHANGED_SIZE 9
#define EVT_SNIFF_SUBRATE 0x2E
uint16_t max_local_latency;
uint16_t min_remote_timeout;
uint16_t min_local_timeout;
-} __attribute__ ((packed)) evt_sniff_subrate;
+} QEMU_PACKED evt_sniff_subrate;
#define EVT_SNIFF_SUBRATE_SIZE 11
#define EVT_EXTENDED_INQUIRY_RESULT 0x2F
uint16_t clock_offset;
int8_t rssi;
uint8_t data[240];
-} __attribute__ ((packed)) extended_inquiry_info;
+} QEMU_PACKED extended_inquiry_info;
#define EXTENDED_INQUIRY_INFO_SIZE 254
#define EVT_TESTING 0xFE
struct hci_command_hdr {
uint16_t opcode; /* OCF & OGF */
uint8_t plen;
-} __attribute__ ((packed));
+} QEMU_PACKED;
struct hci_event_hdr {
uint8_t evt;
uint8_t plen;
-} __attribute__ ((packed));
+} QEMU_PACKED;
struct hci_acl_hdr {
uint16_t handle; /* Handle & Flags(PB, BC) */
uint16_t dlen;
-} __attribute__ ((packed));
+} QEMU_PACKED;
struct hci_sco_hdr {
uint16_t handle;
uint8_t dlen;
-} __attribute__ ((packed));
+} QEMU_PACKED;
/* L2CAP layer defines */
uint16_t len;
uint16_t cid;
uint8_t data[0];
-} __attribute__ ((packed)) l2cap_hdr;
+} QEMU_PACKED l2cap_hdr;
#define L2CAP_HDR_SIZE 4
typedef struct {
uint8_t code;
uint8_t ident;
uint16_t len;
-} __attribute__ ((packed)) l2cap_cmd_hdr;
+} QEMU_PACKED l2cap_cmd_hdr;
#define L2CAP_CMD_HDR_SIZE 4
typedef struct {
uint16_t reason;
-} __attribute__ ((packed)) l2cap_cmd_rej;
+} QEMU_PACKED l2cap_cmd_rej;
#define L2CAP_CMD_REJ_SIZE 2
typedef struct {
uint16_t dcid;
uint16_t scid;
-} __attribute__ ((packed)) l2cap_cmd_rej_cid;
+} QEMU_PACKED l2cap_cmd_rej_cid;
#define L2CAP_CMD_REJ_CID_SIZE 4
/* reject reason */
typedef struct {
uint16_t psm;
uint16_t scid;
-} __attribute__ ((packed)) l2cap_conn_req;
+} QEMU_PACKED l2cap_conn_req;
#define L2CAP_CONN_REQ_SIZE 4
typedef struct {
uint16_t scid;
uint16_t result;
uint16_t status;
-} __attribute__ ((packed)) l2cap_conn_rsp;
+} QEMU_PACKED l2cap_conn_rsp;
#define L2CAP_CONN_RSP_SIZE 8
/* connect result */
uint16_t dcid;
uint16_t flags;
uint8_t data[0];
-} __attribute__ ((packed)) l2cap_conf_req;
+} QEMU_PACKED l2cap_conf_req;
#define L2CAP_CONF_REQ_SIZE(datalen) (4 + (datalen))
typedef struct {
uint16_t flags;
uint16_t result;
uint8_t data[0];
-} __attribute__ ((packed)) l2cap_conf_rsp;
+} QEMU_PACKED l2cap_conf_rsp;
#define L2CAP_CONF_RSP_SIZE(datalen) (6 + datalen)
enum bt_l2cap_conf_res {
uint8_t type;
uint8_t len;
uint8_t val[0];
-} __attribute__ ((packed)) l2cap_conf_opt;
+} QEMU_PACKED l2cap_conf_opt;
#define L2CAP_CONF_OPT_SIZE 2
enum bt_l2cap_conf_val {
uint32_t peak_bandwidth;
uint32_t latency;
uint32_t delay_variation;
-} __attribute__ ((packed)) l2cap_conf_opt_qos;
+} QEMU_PACKED l2cap_conf_opt_qos;
#define L2CAP_CONF_OPT_QOS_SIZE 22
enum bt_l2cap_conf_opt_qos_st {
typedef struct {
uint16_t dcid;
uint16_t scid;
-} __attribute__ ((packed)) l2cap_disconn_req;
+} QEMU_PACKED l2cap_disconn_req;
#define L2CAP_DISCONN_REQ_SIZE 4
typedef struct {
uint16_t dcid;
uint16_t scid;
-} __attribute__ ((packed)) l2cap_disconn_rsp;
+} QEMU_PACKED l2cap_disconn_rsp;
#define L2CAP_DISCONN_RSP_SIZE 4
typedef struct {
uint16_t type;
-} __attribute__ ((packed)) l2cap_info_req;
+} QEMU_PACKED l2cap_info_req;
#define L2CAP_INFO_REQ_SIZE 2
typedef struct {
uint16_t type;
uint16_t result;
uint8_t data[0];
-} __attribute__ ((packed)) l2cap_info_rsp;
+} QEMU_PACKED l2cap_info_rsp;
#define L2CAP_INFO_RSP_SIZE 4
/* info type */
{
unsigned mode;
- memory_region_transaction_begin();
if ((s->vga.sr[0x17] & 0x44) == 0x44) {
goto generic_io;
} else if (s->cirrus_srcptr != s->cirrus_srcptr_end) {
unmap_linear_vram(s);
}
}
- memory_region_transaction_commit();
}
{
StrongARMState *s;
DriveInfo *dinfo;
- MemoryRegion *phys_flash = g_new(MemoryRegion, 2);
+ ram_addr_t phys_flash;
if (!cpu_model) {
cpu_model = "sa1110";
s = sa1110_init(collie_binfo.ram_size, cpu_model);
- memory_region_init_rom_device(&phys_flash[0], &pflash_cfi01_ops_le,
- NULL, "collie.fl1", 0x02000000);
+ phys_flash = qemu_ram_alloc(NULL, "collie.fl1", 0x02000000);
dinfo = drive_get(IF_PFLASH, 0, 0);
- pflash_cfi01_register(SA_CS0, &phys_flash[0],
+ pflash_cfi01_register(SA_CS0, phys_flash,
dinfo ? dinfo->bdrv : NULL, (64 * 1024),
- 512, 4, 0x00, 0x00, 0x00, 0x00);
+ 512, 4, 0x00, 0x00, 0x00, 0x00, 0);
- memory_region_init_rom_device(&phys_flash[1], &pflash_cfi01_ops_le,
- NULL, "collie.fl2", 0x02000000);
+ phys_flash = qemu_ram_alloc(NULL, "collie.fl2", 0x02000000);
dinfo = drive_get(IF_PFLASH, 0, 1);
- pflash_cfi01_register(SA_CS1, &phys_flash[1],
+ pflash_cfi01_register(SA_CS1, phys_flash,
dinfo ? dinfo->bdrv : NULL, (64 * 1024),
- 512, 4, 0x00, 0x00, 0x00, 0x00);
+ 512, 4, 0x00, 0x00, 0x00, 0x00, 0);
sysbus_create_simple("scoop", 0x40800000, NULL);
static int pci_dec_21154_init_device(SysBusDevice *dev)
{
DECState *s;
+ int pci_mem_config, pci_mem_data;
s = FROM_SYSBUS(DECState, dev);
- memory_region_init_io(&s->host_state.conf_mem, &pci_host_conf_le_ops,
- &s->host_state, "pci-conf-idx", 0x1000);
- memory_region_init_io(&s->host_state.data_mem, &pci_host_data_le_ops,
- &s->host_state, "pci-data-idx", 0x1000);
- sysbus_init_mmio_region(dev, &s->host_state.conf_mem);
- sysbus_init_mmio_region(dev, &s->host_state.data_mem);
+ pci_mem_config = pci_host_conf_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ pci_mem_data = pci_host_data_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_config);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_data);
return 0;
}
#include "boards.h"
#include "loader.h"
#include "elf.h"
-#include "exec-memory.h"
#define KERNEL_LOAD_ADDR 0x10000
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *ram = g_new(MemoryRegion, 1);
int kernel_size;
uint64_t elf_entry;
target_phys_addr_t entry;
env->vbr = 0;
/* RAM at address zero */
- memory_region_init_ram(ram, NULL, "dummy_m68k.ram", ram_size);
- memory_region_add_subregion(address_space_mem, 0, ram);
+ cpu_register_physical_memory(0, ram_size,
+ qemu_ram_alloc(NULL, "dummy_m68k.ram", ram_size) | IO_MEM_RAM);
/* Load kernel. */
if (kernel_filename) {
-#include "memory.h"
-
/* NOR flash devices */
typedef struct pflash_t pflash_t;
/* pflash_cfi01.c */
-extern const MemoryRegionOps pflash_cfi01_ops_be;
-extern const MemoryRegionOps pflash_cfi01_ops_le;
-extern const MemoryRegionOps pflash_cfi02_ops_be;
-extern const MemoryRegionOps pflash_cfi02_ops_le;
-
-pflash_t *pflash_cfi01_register(target_phys_addr_t base, MemoryRegion *mem,
+pflash_t *pflash_cfi01_register(target_phys_addr_t base, ram_addr_t off,
BlockDriverState *bs,
uint32_t sector_len, int nb_blocs, int width,
uint16_t id0, uint16_t id1,
- uint16_t id2, uint16_t id3);
+ uint16_t id2, uint16_t id3, int be);
/* pflash_cfi02.c */
-pflash_t *pflash_cfi02_register(target_phys_addr_t base, MemoryRegion *mem,
+pflash_t *pflash_cfi02_register(target_phys_addr_t base, ram_addr_t off,
BlockDriverState *bs, uint32_t sector_len,
int nb_blocs, int nb_mappings, int width,
uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3,
- uint16_t unlock_addr0, uint16_t unlock_addr1);
+ uint16_t unlock_addr0, uint16_t unlock_addr1,
+ int be);
/* nand.c */
DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id);
#define NAND_MFR_MICRON 0x2c
/* onenand.c */
-void onenand_base_update(void *opaque, target_phys_addr_t new);
-void onenand_base_unmap(void *opaque);
-void *onenand_init(BlockDriverState *bdrv,
- uint16_t man_id, uint16_t dev_id, uint16_t ver_id,
- int regshift, qemu_irq irq);
-void *onenand_raw_otp(void *opaque);
+void *onenand_raw_otp(DeviceState *onenand_device);
/* ecc.c */
typedef struct {
FW_CFG_DPRINTF("write %d\n", value);
- if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) {
+ if (s->cur_entry & FW_CFG_WRITE_CHANNEL && e->callback &&
+ s->cur_offset < e->len) {
e->data[s->cur_offset++] = value;
if (s->cur_offset == e->len) {
e->callback(e->callback_opaque, e->data);
/*
* QEMU G364 framebuffer Emulator.
*
- * Copyright (c) 2007-2009 Herve Poussineau
+ * Copyright (c) 2007-2011 Herve Poussineau
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
*/
#include "hw.h"
-#include "mips.h"
#include "console.h"
#include "pixel_ops.h"
-
-//#define DEBUG_G364
-
-#ifdef DEBUG_G364
-#define DPRINTF(fmt, ...) \
-do { printf("g364: " fmt , ## __VA_ARGS__); } while (0)
-#else
-#define DPRINTF(fmt, ...) do {} while (0)
-#endif
-#define BADF(fmt, ...) \
-do { fprintf(stderr, "g364 ERROR: " fmt , ## __VA_ARGS__);} while (0)
+#include "trace.h"
+#include "sysbus.h"
typedef struct G364State {
/* hardware */
uint8_t *vram;
- MemoryRegion vram_region;
- int vram_size;
+ uint32_t vram_size;
qemu_irq irq;
+ MemoryRegion mem_vram;
+ MemoryRegion mem_ctrl;
/* registers */
uint8_t color_palette[256][3];
uint8_t cursor_palette[3][3];
int blanked;
} G364State;
-#define REG_ID 0x000000
-#define REG_BOOT 0x080000
-#define REG_DISPLAY 0x080118
-#define REG_VDISPLAY 0x080150
-#define REG_CTLA 0x080300
-#define REG_TOP 0x080400
-#define REG_CURS_PAL 0x080508
-#define REG_CURS_POS 0x080638
-#define REG_CLR_PAL 0x080800
-#define REG_CURS_PAT 0x081000
-#define REG_RESET 0x180000
+#define REG_BOOT 0x000000
+#define REG_DISPLAY 0x000118
+#define REG_VDISPLAY 0x000150
+#define REG_CTLA 0x000300
+#define REG_TOP 0x000400
+#define REG_CURS_PAL 0x000508
+#define REG_CURS_POS 0x000638
+#define REG_CLR_PAL 0x000800
+#define REG_CURS_PAT 0x001000
+#define REG_RESET 0x100000
#define CTLA_FORCE_BLANK 0x00000400
#define CTLA_NO_CURSOR 0x00800000
static inline int check_dirty(G364State *s, ram_addr_t page)
{
- return memory_region_get_dirty(&s->vram_region, page, DIRTY_MEMORY_VGA);
+ return memory_region_get_dirty(&s->mem_vram, page, DIRTY_MEMORY_VGA);
}
static inline void reset_dirty(G364State *s,
ram_addr_t page_min, ram_addr_t page_max)
{
- memory_region_reset_dirty(&s->vram_region, page_min,
- page_max + TARGET_PAGE_SIZE - 1,
+ memory_region_reset_dirty(&s->mem_vram,
+ page_min,
+ page_max + TARGET_PAGE_SIZE - page_min - 1,
DIRTY_MEMORY_VGA);
}
w = 4;
break;
default:
- BADF("unknown host depth %d\n", ds_get_bits_per_pixel(s->ds));
+ hw_error("g364: unknown host depth %d",
+ ds_get_bits_per_pixel(s->ds));
return;
}
} else if (s->depth == 8) {
g364fb_draw_graphic8(s);
} else {
- BADF("unknown guest depth %d\n", s->depth);
+ error_report("g364: unknown guest depth %d", s->depth);
}
qemu_irq_raise(s->irq);
s->blanked = 0;
for (i = 0; i < s->vram_size; i += TARGET_PAGE_SIZE) {
- memory_region_set_dirty(&s->vram_region, i);
+ memory_region_set_dirty(&s->mem_vram, i);
}
}
-static void g364fb_reset(void *opaque)
+static void g364fb_reset(G364State *s)
{
- G364State *s = opaque;
qemu_irq_lower(s->irq);
memset(s->color_palette, 0, sizeof(s->color_palette));
s->top_of_screen = 0;
s->width = s->height = 0;
memset(s->vram, 0, s->vram_size);
- g364fb_invalidate_display(opaque);
+ g364fb_invalidate_display(s);
}
static void g364fb_screen_dump(void *opaque, const char *filename)
FILE *f;
if (s->depth != 8) {
- BADF("unknown guest depth %d\n", s->depth);
+ error_report("g364: unknown guest depth %d", s->depth);
return;
}
}
/* called for accesses to io ports */
-static uint32_t g364fb_ctrl_readl(void *opaque, target_phys_addr_t addr)
+static uint64_t g364fb_ctrl_read(void *opaque,
+ target_phys_addr_t addr,
+ unsigned int size)
{
G364State *s = opaque;
uint32_t val;
val |= ((uint32_t)s->cursor_palette[idx][2] << 0);
} else {
switch (addr) {
- case REG_ID:
- val = 0x10; /* Mips G364 */
- break;
case REG_DISPLAY:
val = s->width / 4;
break;
break;
default:
{
- BADF("invalid read at [" TARGET_FMT_plx "]\n", addr);
+ error_report("g364: invalid read at [" TARGET_FMT_plx "]",
+ addr);
val = 0;
break;
}
}
}
- DPRINTF("read 0x%08x at [" TARGET_FMT_plx "]\n", val, addr);
+ trace_g364fb_read(addr, val);
return val;
}
-static uint32_t g364fb_ctrl_readw(void *opaque, target_phys_addr_t addr)
-{
- uint32_t v = g364fb_ctrl_readl(opaque, addr & ~0x3);
- if (addr & 0x2)
- return v >> 16;
- else
- return v & 0xffff;
-}
-
-static uint32_t g364fb_ctrl_readb(void *opaque, target_phys_addr_t addr)
-{
- uint32_t v = g364fb_ctrl_readl(opaque, addr & ~0x3);
- return (v >> (8 * (addr & 0x3))) & 0xff;
-}
-
static void g364fb_update_depth(G364State *s)
{
static const int depths[8] = { 1, 2, 4, 8, 15, 16, 0 };
end = (ymax + 1) * ds_get_linesize(s->ds);
for (i = start; i < end; i += TARGET_PAGE_SIZE) {
- memory_region_set_dirty(&s->vram_region, i);
+ memory_region_set_dirty(&s->mem_vram, i);
}
}
-static void g364fb_ctrl_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void g364fb_ctrl_write(void *opaque,
+ target_phys_addr_t addr,
+ uint64_t val,
+ unsigned int size)
{
G364State *s = opaque;
- DPRINTF("write 0x%08x at [" TARGET_FMT_plx "]\n", val, addr);
+ trace_g364fb_write(addr, val);
if (addr >= REG_CLR_PAL && addr < REG_CLR_PAL + 0x800) {
/* color palette */
g364fb_invalidate_display(s);
} else {
switch (addr) {
- case REG_ID: /* Card identifier; read-only */
- case REG_BOOT: /* Boot timing */
- case 0x80108: /* Line timing: half sync */
- case 0x80110: /* Line timing: back porch */
- case 0x80120: /* Line timing: short display */
- case 0x80128: /* Frame timing: broad pulse */
- case 0x80130: /* Frame timing: v sync */
- case 0x80138: /* Frame timing: v preequalise */
- case 0x80140: /* Frame timing: v postequalise */
- case 0x80148: /* Frame timing: v blank */
- case 0x80158: /* Line timing: line time */
- case 0x80160: /* Frame store: line start */
- case 0x80168: /* vram cycle: mem init */
- case 0x80170: /* vram cycle: transfer delay */
- case 0x80200: /* vram cycle: mask register */
- /* ignore */
- break;
- case REG_TOP:
- s->top_of_screen = val;
- g364fb_invalidate_display(s);
- break;
- case REG_DISPLAY:
- s->width = val * 4;
- break;
- case REG_VDISPLAY:
- s->height = val / 2;
- break;
- case REG_CTLA:
- s->ctla = val;
- g364fb_update_depth(s);
- g364fb_invalidate_display(s);
- break;
- case REG_CURS_POS:
- g364_invalidate_cursor_position(s);
- s->cursor_position = val;
- g364_invalidate_cursor_position(s);
- break;
- case REG_RESET:
- g364fb_reset(s);
- break;
- default:
- BADF("invalid write of 0x%08x at [" TARGET_FMT_plx "]\n", val, addr);
- break;
+ case REG_BOOT: /* Boot timing */
+ case 0x00108: /* Line timing: half sync */
+ case 0x00110: /* Line timing: back porch */
+ case 0x00120: /* Line timing: short display */
+ case 0x00128: /* Frame timing: broad pulse */
+ case 0x00130: /* Frame timing: v sync */
+ case 0x00138: /* Frame timing: v preequalise */
+ case 0x00140: /* Frame timing: v postequalise */
+ case 0x00148: /* Frame timing: v blank */
+ case 0x00158: /* Line timing: line time */
+ case 0x00160: /* Frame store: line start */
+ case 0x00168: /* vram cycle: mem init */
+ case 0x00170: /* vram cycle: transfer delay */
+ case 0x00200: /* vram cycle: mask register */
+ /* ignore */
+ break;
+ case REG_TOP:
+ s->top_of_screen = val;
+ g364fb_invalidate_display(s);
+ break;
+ case REG_DISPLAY:
+ s->width = val * 4;
+ break;
+ case REG_VDISPLAY:
+ s->height = val / 2;
+ break;
+ case REG_CTLA:
+ s->ctla = val;
+ g364fb_update_depth(s);
+ g364fb_invalidate_display(s);
+ break;
+ case REG_CURS_POS:
+ g364_invalidate_cursor_position(s);
+ s->cursor_position = val;
+ g364_invalidate_cursor_position(s);
+ break;
+ case REG_RESET:
+ g364fb_reset(s);
+ break;
+ default:
+ error_report("g364: invalid write of 0x%" PRIx64
+ " at [" TARGET_FMT_plx "]", val, addr);
+ break;
}
}
qemu_irq_lower(s->irq);
}
-static void g364fb_ctrl_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
-{
- uint32_t old_val = g364fb_ctrl_readl(opaque, addr & ~0x3);
-
- if (addr & 0x2)
- val = (val << 16) | (old_val & 0x0000ffff);
- else
- val = val | (old_val & 0xffff0000);
- g364fb_ctrl_writel(opaque, addr & ~0x3, val);
-}
-
-static void g364fb_ctrl_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
-{
- uint32_t old_val = g364fb_ctrl_readl(opaque, addr & ~0x3);
-
- switch (addr & 3) {
- case 0:
- val = val | (old_val & 0xffffff00);
- break;
- case 1:
- val = (val << 8) | (old_val & 0xffff00ff);
- break;
- case 2:
- val = (val << 16) | (old_val & 0xff00ffff);
- break;
- case 3:
- val = (val << 24) | (old_val & 0x00ffffff);
- break;
- }
- g364fb_ctrl_writel(opaque, addr & ~0x3, val);
-}
-
static const MemoryRegionOps g364fb_ctrl_ops = {
- .old_mmio = {
- .read = {
- g364fb_ctrl_readb,
- g364fb_ctrl_readw,
- g364fb_ctrl_readl,
- },
- .write = {
- g364fb_ctrl_writeb,
- g364fb_ctrl_writew,
- g364fb_ctrl_writel,
- },
- },
- .endianness = DEVICE_NATIVE_ENDIAN,
+ .read = g364fb_ctrl_read,
+ .write = g364fb_ctrl_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .impl.min_access_size = 4,
+ .impl.max_access_size = 4,
};
-static int g364fb_load(QEMUFile *f, void *opaque, int version_id)
+static int g364fb_post_load(void *opaque, int version_id)
{
G364State *s = opaque;
- unsigned int i, vram_size;
-
- if (version_id != 1)
- return -EINVAL;
-
- vram_size = qemu_get_be32(f);
- if (vram_size < s->vram_size)
- return -EINVAL;
- qemu_get_buffer(f, s->vram, s->vram_size);
- for (i = 0; i < 256; i++)
- qemu_get_buffer(f, s->color_palette[i], 3);
- for (i = 0; i < 3; i++)
- qemu_get_buffer(f, s->cursor_palette[i], 3);
- qemu_get_buffer(f, (uint8_t *)s->cursor, sizeof(s->cursor));
- s->cursor_position = qemu_get_be32(f);
- s->ctla = qemu_get_be32(f);
- s->top_of_screen = qemu_get_be32(f);
- s->width = qemu_get_be32(f);
- s->height = qemu_get_be32(f);
/* force refresh */
g364fb_update_depth(s);
return 0;
}
-static void g364fb_save(QEMUFile *f, void *opaque)
-{
- G364State *s = opaque;
- int i;
-
- qemu_put_be32(f, s->vram_size);
- qemu_put_buffer(f, s->vram, s->vram_size);
- for (i = 0; i < 256; i++)
- qemu_put_buffer(f, s->color_palette[i], 3);
- for (i = 0; i < 3; i++)
- qemu_put_buffer(f, s->cursor_palette[i], 3);
- qemu_put_buffer(f, (uint8_t *)s->cursor, sizeof(s->cursor));
- qemu_put_be32(f, s->cursor_position);
- qemu_put_be32(f, s->ctla);
- qemu_put_be32(f, s->top_of_screen);
- qemu_put_be32(f, s->width);
- qemu_put_be32(f, s->height);
-}
+static const VMStateDescription vmstate_g364fb = {
+ .name = "g364fb",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .minimum_version_id_old = 1,
+ .post_load = g364fb_post_load,
+ .fields = (VMStateField[]) {
+ VMSTATE_VBUFFER_UINT32(vram, G364State, 1, NULL, 0, vram_size),
+ VMSTATE_BUFFER_UNSAFE(color_palette, G364State, 0, 256 * 3),
+ VMSTATE_BUFFER_UNSAFE(cursor_palette, G364State, 0, 9),
+ VMSTATE_UINT16_ARRAY(cursor, G364State, 512),
+ VMSTATE_UINT32(cursor_position, G364State),
+ VMSTATE_UINT32(ctla, G364State),
+ VMSTATE_UINT32(top_of_screen, G364State),
+ VMSTATE_UINT32(width, G364State),
+ VMSTATE_UINT32(height, G364State),
+ VMSTATE_END_OF_LIST()
+ }
+};
-int g364fb_mm_init(MemoryRegion *system_memory,
- target_phys_addr_t vram_base,
- target_phys_addr_t ctrl_base, int it_shift,
- qemu_irq irq)
+static void g364fb_init(DeviceState *dev, G364State *s)
{
- G364State *s;
- MemoryRegion *io_ctrl = g_new(MemoryRegion, 1);
-
- s = g_malloc0(sizeof(G364State));
-
- s->vram_size = 8 * 1024 * 1024;
- memory_region_init_ram(&s->vram_region, NULL, "g364fb.vram", s->vram_size);
- s->vram = memory_region_get_ram_ptr(&s->vram_region);
- s->irq = irq;
-
- qemu_register_reset(g364fb_reset, s);
- register_savevm(NULL, "g364fb", 0, 1, g364fb_save, g364fb_load, s);
- g364fb_reset(s);
+ s->vram = g_malloc0(s->vram_size);
s->ds = graphic_console_init(g364fb_update_display,
g364fb_invalidate_display,
g364fb_screen_dump, NULL, s);
- memory_region_add_subregion(system_memory, vram_base, &s->vram_region);
+ memory_region_init_io(&s->mem_ctrl, &g364fb_ctrl_ops, s, "ctrl", 0x180000);
+ memory_region_init_ram_ptr(&s->mem_vram, dev, "vram",
+ s->vram_size, s->vram);
+ memory_region_set_coalescing(&s->mem_vram);
+}
+
+typedef struct {
+ SysBusDevice busdev;
+ G364State g364;
+} G364SysBusState;
- memory_region_init_io(io_ctrl, &g364fb_ctrl_ops, s,
- "g364fb-ctrl", 0x200000);
- memory_region_add_subregion(system_memory, ctrl_base, io_ctrl);
+static int g364fb_sysbus_init(SysBusDevice *dev)
+{
+ G364State *s = &FROM_SYSBUS(G364SysBusState, dev)->g364;
+
+ g364fb_init(&dev->qdev, s);
+ sysbus_init_irq(dev, &s->irq);
+ sysbus_init_mmio_region(dev, &s->mem_ctrl);
+ sysbus_init_mmio_region(dev, &s->mem_vram);
return 0;
}
+
+static void g364fb_sysbus_reset(DeviceState *d)
+{
+ G364SysBusState *s = DO_UPCAST(G364SysBusState, busdev.qdev, d);
+ g364fb_reset(&s->g364);
+}
+
+static SysBusDeviceInfo g364fb_sysbus_info = {
+ .init = g364fb_sysbus_init,
+ .qdev.name = "sysbus-g364",
+ .qdev.desc = "G364 framebuffer",
+ .qdev.size = sizeof(G364SysBusState),
+ .qdev.vmsd = &vmstate_g364fb,
+ .qdev.reset = g364fb_sysbus_reset,
+ .qdev.props = (Property[]) {
+ DEFINE_PROP_HEX32("vram_size", G364SysBusState, g364.vram_size,
+ 8 * 1024 * 1024),
+ DEFINE_PROP_END_OF_LIST(),
+ }
+};
+
+static void g364fb_register(void)
+{
+ sysbus_register_withprop(&g364fb_sysbus_info);
+}
+
+device_init(g364fb_register);
static int pci_grackle_init_device(SysBusDevice *dev)
{
GrackleState *s;
+ int pci_mem_config, pci_mem_data;
s = FROM_SYSBUS(GrackleState, dev);
- memory_region_init_io(&s->host_state.conf_mem, &pci_host_conf_le_ops,
- &s->host_state, "pci-conf-idx", 0x1000);
- memory_region_init_io(&s->host_state.data_mem, &pci_host_data_le_ops,
- &s->host_state, "pci-data-idx", 0x1000);
- sysbus_init_mmio_region(dev, &s->host_state.conf_mem);
- sysbus_init_mmio_region(dev, &s->host_state.data_mem);
+ pci_mem_config = pci_host_conf_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ pci_mem_data = pci_host_data_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_config);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_data);
qemu_register_reset(pci_grackle_reset, &s->host_state);
return 0;
{
PXA2xxState *cpu;
DriveInfo *dinfo;
- const MemoryRegionOps *flash_ops;
- MemoryRegion *flash = g_new(MemoryRegion, 1);
+ int be;
uint32_t connex_rom = 0x01000000;
uint32_t connex_ram = 0x04000000;
}
#ifdef TARGET_WORDS_BIGENDIAN
- flash_ops = &pflash_cfi01_ops_be;
+ be = 1;
#else
- flash_ops = &pflash_cfi01_ops_le;
+ be = 0;
#endif
- memory_region_init_rom_device(flash, flash_ops,
- NULL, "connext.rom", connex_rom);
- if (!pflash_cfi01_register(0x00000000, flash,
+ if (!pflash_cfi01_register(0x00000000, qemu_ram_alloc(NULL, "connext.rom",
+ connex_rom),
dinfo->bdrv, sector_len, connex_rom / sector_len,
- 2, 0, 0, 0, 0)) {
+ 2, 0, 0, 0, 0, be)) {
fprintf(stderr, "qemu: Error registering flash memory.\n");
exit(1);
}
{
PXA2xxState *cpu;
DriveInfo *dinfo;
- MemoryRegion *flash = g_new(MemoryRegion, 1);
- const MemoryRegionOps *flash_ops;
+ int be;
uint32_t verdex_rom = 0x02000000;
uint32_t verdex_ram = 0x10000000;
}
#ifdef TARGET_WORDS_BIGENDIAN
- flash_ops = &pflash_cfi01_ops_be;
+ be = 1;
#else
- flash_ops = &pflash_cfi01_ops_le;
+ be = 0;
#endif
- memory_region_init_rom_device(flash, flash_ops,
- NULL, "verdex.rom", verdex_rom);
- if (!pflash_cfi01_register(0x00000000, flash,
+ if (!pflash_cfi01_register(0x00000000, qemu_ram_alloc(NULL, "verdex.rom",
+ verdex_rom),
dinfo->bdrv, sector_len, verdex_rom / sector_len,
- 2, 0, 0, 0, 0)) {
+ 2, 0, 0, 0, 0, be)) {
fprintf(stderr, "qemu: Error registering flash memory.\n");
exit(1);
}
uint64_t address;
uint16_t min_tick;
uint8_t page_prot;
-} __attribute__ ((packed));
+} QEMU_PACKED;
struct hpet_fw_config
{
uint8_t count;
struct hpet_fw_entry hpet[8];
-} __attribute__ ((packed));
+} QEMU_PACKED;
extern struct hpet_fw_config hpet_cfg;
#endif
DPRINTF(ncq_tfs->drive->port_no, "NCQ transfer tag %d finished\n",
ncq_tfs->tag);
+ bdrv_acct_done(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct);
qemu_sglist_destroy(&ncq_tfs->sglist);
ncq_tfs->used = 0;
}
ncq_tfs->is_read = 1;
DPRINTF(port, "tag %d aio read %ld\n", ncq_tfs->tag, ncq_tfs->lba);
+
+ bdrv_acct_start(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct,
+ (ncq_tfs->sector_count-1) * BDRV_SECTOR_SIZE,
+ BDRV_ACCT_READ);
ncq_tfs->aiocb = dma_bdrv_read(ncq_tfs->drive->port.ifs[0].bs,
&ncq_tfs->sglist, ncq_tfs->lba,
ncq_cb, ncq_tfs);
ncq_tfs->is_read = 0;
DPRINTF(port, "tag %d aio write %ld\n", ncq_tfs->tag, ncq_tfs->lba);
+
+ bdrv_acct_start(ncq_tfs->drive->port.ifs[0].bs, &ncq_tfs->acct,
+ (ncq_tfs->sector_count-1) * BDRV_SECTOR_SIZE,
+ BDRV_ACCT_WRITE);
ncq_tfs->aiocb = dma_bdrv_write(ncq_tfs->drive->port.ifs[0].bs,
&ncq_tfs->sglist, ncq_tfs->lba,
ncq_cb, ncq_tfs);
uint32_t status;
uint64_t tbl_addr;
uint32_t reserved[4];
-} __attribute__ ((packed)) AHCICmdHdr;
+} QEMU_PACKED AHCICmdHdr;
typedef struct AHCI_SG {
uint64_t addr;
uint32_t reserved;
uint32_t flags_size;
-} __attribute__ ((packed)) AHCI_SG;
+} QEMU_PACKED AHCI_SG;
typedef struct AHCIDevice AHCIDevice;
AHCIDevice *drive;
BlockDriverAIOCB *aiocb;
QEMUSGList sglist;
+ BlockAcctCookie acct;
int is_read;
uint16_t sector_count;
uint64_t lba;
uint8_t reserved8;
uint8_t reserved9;
uint8_t reserved10;
-} __attribute__ ((packed)) NCQFrame;
+} QEMU_PACKED NCQFrame;
void ahci_init(AHCIState *s, DeviceState *qdev, int ports);
void ahci_uninit(AHCIState *s);
memset(buf, 0, 288);
}
-static int cd_read_sector(BlockDriverState *bs, int lba, uint8_t *buf,
- int sector_size)
+static int cd_read_sector(IDEState *s, int lba, uint8_t *buf, int sector_size)
{
int ret;
switch(sector_size) {
case 2048:
- ret = bdrv_read(bs, (int64_t)lba << 2, buf, 4);
+ bdrv_acct_start(s->bs, &s->acct, 4 * BDRV_SECTOR_SIZE, BDRV_ACCT_READ);
+ ret = bdrv_read(s->bs, (int64_t)lba << 2, buf, 4);
+ bdrv_acct_done(s->bs, &s->acct);
break;
case 2352:
- ret = bdrv_read(bs, (int64_t)lba << 2, buf + 16, 4);
+ bdrv_acct_start(s->bs, &s->acct, 4 * BDRV_SECTOR_SIZE, BDRV_ACCT_READ);
+ ret = bdrv_read(s->bs, (int64_t)lba << 2, buf + 16, 4);
+ bdrv_acct_done(s->bs, &s->acct);
if (ret < 0)
return ret;
cd_data_to_raw(buf, lba);
} else {
/* see if a new sector must be read */
if (s->lba != -1 && s->io_buffer_index >= s->cd_sector_size) {
- ret = cd_read_sector(s->bs, s->lba, s->io_buffer, s->cd_sector_size);
+ ret = cd_read_sector(s, s->lba, s->io_buffer, s->cd_sector_size);
if (ret < 0) {
ide_transfer_stop(s);
ide_atapi_io_error(s, ret);
s->io_buffer_index = 0;
if (s->atapi_dma) {
+ bdrv_acct_start(s->bs, &s->acct, size, BDRV_ACCT_READ);
s->status = READY_STAT | SEEK_STAT | DRQ_STAT;
s->bus->dma->ops->start_dma(s->bus->dma, s,
ide_atapi_cmd_read_dma_cb);
s->status = READY_STAT | SEEK_STAT;
s->nsector = (s->nsector & ~7) | ATAPI_INT_REASON_IO | ATAPI_INT_REASON_CD;
ide_set_irq(s->bus);
- eot:
- s->bus->dma->ops->add_status(s->bus->dma, BM_STATUS_INT);
- ide_set_inactive(s);
- return;
+ goto eot;
}
s->io_buffer_index = 0;
#ifdef DEBUG_AIO
printf("aio_read_cd: lba=%u n=%d\n", s->lba, n);
#endif
+
s->bus->dma->iov.iov_base = (void *)(s->io_buffer + data_offset);
s->bus->dma->iov.iov_len = n * 4 * 512;
qemu_iovec_init_external(&s->bus->dma->qiov, &s->bus->dma->iov, 1);
+
s->bus->dma->aiocb = bdrv_aio_readv(s->bs, (int64_t)s->lba << 2,
&s->bus->dma->qiov, n * 4,
ide_atapi_cmd_read_dma_cb, s);
ASC_MEDIUM_NOT_PRESENT);
goto eot;
}
+
+ return;
+eot:
+ bdrv_acct_done(s->bs, &s->acct);
+ s->bus->dma->ops->add_status(s->bus->dma, BM_STATUS_INT);
+ ide_set_inactive(s);
}
/* start a CD-CDROM read command with DMA */
s->io_buffer_size = 0;
s->cd_sector_size = sector_size;
+ bdrv_acct_start(s->bs, &s->acct, s->packet_transfer_size, BDRV_ACCT_READ);
+
/* XXX: check if BUSY_STAT should be set */
s->status = READY_STAT | SEEK_STAT | DRQ_STAT | BUSY_STAT;
s->bus->dma->ops->start_dma(s->bus->dma, s,
uint8_t reserved3[2];
uint16_t len;
uint8_t control;
- } __attribute__((packed)) *gesn_cdb;
+ } QEMU_PACKED *gesn_cdb;
struct {
uint16_t len;
uint8_t notification_class;
uint8_t supported_events;
- } __attribute((packed)) *gesn_event_header;
+ } QEMU_PACKED *gesn_event_header;
enum notification_class_request_type {
NCR_RESERVED1 = 1 << 0,
#endif
if (n > s->req_nb_sectors)
n = s->req_nb_sectors;
+
+ bdrv_acct_start(s->bs, &s->acct, n * BDRV_SECTOR_SIZE, BDRV_ACCT_READ);
ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
+ bdrv_acct_done(s->bs, &s->acct);
if (ret != 0) {
if (ide_handle_rw_error(s, -ret,
BM_STATUS_PIO_RETRY | BM_STATUS_RETRY_READ))
return;
eot:
- ide_set_inactive(s);
+ if (s->dma_cmd == IDE_DMA_READ || s->dma_cmd == IDE_DMA_WRITE) {
+ bdrv_acct_done(s->bs, &s->acct);
+ }
+ ide_set_inactive(s);
}
static void ide_sector_start_dma(IDEState *s, enum ide_dma_cmd dma_cmd)
s->io_buffer_index = 0;
s->io_buffer_size = 0;
s->dma_cmd = dma_cmd;
+
+ switch (dma_cmd) {
+ case IDE_DMA_READ:
+ bdrv_acct_start(s->bs, &s->acct, s->nsector * BDRV_SECTOR_SIZE,
+ BDRV_ACCT_READ);
+ break;
+ case IDE_DMA_WRITE:
+ bdrv_acct_start(s->bs, &s->acct, s->nsector * BDRV_SECTOR_SIZE,
+ BDRV_ACCT_WRITE);
+ break;
+ default:
+ break;
+ }
+
s->bus->dma->ops->start_dma(s->bus->dma, s, ide_dma_cb);
}
n = s->nsector;
if (n > s->req_nb_sectors)
n = s->req_nb_sectors;
+
+ bdrv_acct_start(s->bs, &s->acct, n * BDRV_SECTOR_SIZE, BDRV_ACCT_READ);
ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
+ bdrv_acct_done(s->bs, &s->acct);
if (ret != 0) {
if (ide_handle_rw_error(s, -ret, BM_STATUS_PIO_RETRY))
}
}
+ bdrv_acct_done(s->bs, &s->acct);
s->status = READY_STAT | SEEK_STAT;
ide_set_irq(s->bus);
}
return;
}
+ bdrv_acct_start(s->bs, &s->acct, 0, BDRV_ACCT_FLUSH);
acb = bdrv_aio_flush(s->bs, ide_flush_cb, s);
if (acb == NULL) {
ide_flush_cb(s, -EIO);
int lba;
int cd_sector_size;
int atapi_dma; /* true if dma is requested for the packet cmd */
+ BlockAcctCookie acct;
/* ATA DMA state */
int io_buffer_size;
QEMUSGList sg;
m->aiocb = NULL;
qemu_sglist_destroy(&s->sg);
ide_atapi_io_error(s, ret);
- io->dma_end(opaque);
- return;
+ goto done;
}
if (s->io_buffer_size > 0) {
ide_atapi_cmd_ok(s);
if (io->len == 0) {
- io->dma_end(opaque);
- return;
+ goto done;
}
/* launch next transfer */
/* Note: media not present is the most likely case */
ide_atapi_cmd_error(s, SENSE_NOT_READY,
ASC_MEDIUM_NOT_PRESENT);
- io->dma_end(opaque);
- return;
+ goto done;
}
+ return;
+
+done:
+ bdrv_acct_done(s->bs, &s->acct);
+ io->dma_end(opaque);
+ return;
}
static void pmac_ide_transfer_cb(void *opaque, int ret)
m->aiocb = NULL;
qemu_sglist_destroy(&s->sg);
ide_dma_error(s);
- io->dma_end(io);
- return;
+ goto done;
}
sector_num = ide_get_sector(s);
}
/* end of DMA ? */
-
if (io->len == 0) {
- io->dma_end(io);
- return;
+ goto done;
}
/* launch next transfer */
if (!m->aiocb)
pmac_ide_transfer_cb(io, -1);
+ return;
+done:
+ if (s->dma_cmd == IDE_DMA_READ || s->dma_cmd == IDE_DMA_WRITE) {
+ bdrv_acct_done(s->bs, &s->acct);
+ }
+ io->dma_end(io);
}
static void pmac_ide_transfer(DBDMA_io *io)
s->io_buffer_size = 0;
if (s->drive_kind == IDE_CD) {
+ bdrv_acct_start(s->bs, &s->acct, io->len, BDRV_ACCT_READ);
pmac_ide_atapi_transfer_cb(io, 0);
return;
}
+ switch (s->dma_cmd) {
+ case IDE_DMA_READ:
+ bdrv_acct_start(s->bs, &s->acct, io->len, BDRV_ACCT_READ);
+ break;
+ case IDE_DMA_WRITE:
+ bdrv_acct_start(s->bs, &s->acct, io->len, BDRV_ACCT_WRITE);
+ break;
+ default:
+ break;
+ }
+
pmac_ide_transfer_cb(io, 0);
}
#include "boards.h"
#include "arm-misc.h"
#include "net.h"
-#include "exec-memory.h"
typedef struct {
SysBusDevice busdev;
uint32_t memsz;
- MemoryRegion flash;
- bool flash_mapped;
+ uint32_t flash_offset;
uint32_t cm_osc;
uint32_t cm_ctrl;
uint32_t cm_lock;
static void integratorcm_do_remap(integratorcm_state *s, int flash)
{
if (flash) {
- if (s->flash_mapped) {
- sysbus_del_memory(&s->busdev, &s->flash);
- s->flash_mapped = false;
- }
+ cpu_register_physical_memory(0, 0x100000, IO_MEM_RAM);
} else {
- if (!s->flash_mapped) {
- sysbus_add_memory_overlap(&s->busdev, 0, &s->flash, 1);
- s->flash_mapped = true;
- }
+ cpu_register_physical_memory(0, 0x100000, s->flash_offset | IO_MEM_RAM);
}
//??? tlb_flush (cpu_single_env, 1);
}
}
memcpy(integrator_spd + 73, "QEMU-MEMORY", 11);
s->cm_init = 0x00000112;
- memory_region_init_ram(&s->flash, NULL, "integrator.flash", 0x100000);
- s->flash_mapped = false;
+ s->flash_offset = qemu_ram_alloc(NULL, "integrator.flash", 0x100000);
iomemtype = cpu_register_io_memory(integratorcm_readfn,
integratorcm_writefn, s,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *ram = g_new(MemoryRegion, 1);
- MemoryRegion *ram_alias = g_new(MemoryRegion, 1);
+ ram_addr_t ram_offset;
qemu_irq pic[32];
qemu_irq *cpu_pic;
DeviceState *dev;
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
- memory_region_init_ram(ram, NULL, "integrator.ram", ram_size);
+ ram_offset = qemu_ram_alloc(NULL, "integrator.ram", ram_size);
/* ??? On a real system the first 1Mb is mapped as SSRAM or boot flash. */
/* ??? RAM should repeat to fill physical memory space. */
/* SDRAM at address zero*/
- memory_region_add_subregion(address_space_mem, 0, ram);
+ cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
/* And again at address 0x80000000 */
- memory_region_init_alias(ram_alias, "ram.alias", ram, 0, ram_size);
- memory_region_add_subregion(address_space_mem, 0x80000000, ram_alias);
+ cpu_register_physical_memory(0x80000000, ram_size, ram_offset | IO_MEM_RAM);
dev = qdev_create(NULL, "integrator_core");
qdev_prop_set_uint32(dev, "memsz", ram_size >> 20);
#include "loader.h"
#include "elf.h"
#include "trace.h"
-#include "exec-memory.h"
#include "grlib.h"
const char *cpu_model)
{
CPUState *env;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *ram = g_new(MemoryRegion, 1);
- MemoryRegion *prom = g_new(MemoryRegion, 1);
+ ram_addr_t ram_offset, prom_offset;
int ret;
char *filename;
qemu_irq *cpu_irqs = NULL;
exit(1);
}
- memory_region_init_ram(ram, NULL, "leon3.ram", ram_size);
- memory_region_add_subregion(address_space_mem, 0x40000000, ram);
+ ram_offset = qemu_ram_alloc(NULL, "leon3.ram", ram_size);
+ cpu_register_physical_memory(0x40000000, ram_size, ram_offset | IO_MEM_RAM);
/* Allocate BIOS */
prom_size = 8 * 1024 * 1024; /* 8Mb */
- memory_region_init_ram(prom, NULL, "Leon3.bios", prom_size);
- memory_region_set_readonly(prom, true);
- memory_region_add_subregion(address_space_mem, 0x00000000, prom);
+ prom_offset = qemu_ram_alloc(NULL, "Leon3.bios", prom_size);
+ cpu_register_physical_memory(0x00000000, prom_size,
+ prom_offset | IO_MEM_ROM);
/* Load boot prom */
if (bios_name == NULL) {
#include "elf.h"
#include "lm32_hwsetup.h"
#include "lm32.h"
-#include "exec-memory.h"
typedef struct {
CPUState *env;
{
CPUState *env;
DriveInfo *dinfo;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
- MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
+ ram_addr_t phys_ram;
+ ram_addr_t phys_flash;
qemu_irq *cpu_irq, irq[32];
ResetInfo *reset_info;
int i;
reset_info->flash_base = flash_base;
- memory_region_init_ram(phys_ram, NULL, "lm32_evr.sdram", ram_size);
- memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
+ phys_ram = qemu_ram_alloc(NULL, "lm32_evr.sdram", ram_size);
+ cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
- memory_region_init_rom_device(phys_flash, &pflash_cfi02_ops_be,
- NULL, "lm32_evr.flash", flash_size);
+ phys_flash = qemu_ram_alloc(NULL, "lm32_evr.flash", flash_size);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* Spansion S29NS128P */
pflash_cfi02_register(flash_base, phys_flash,
dinfo ? dinfo->bdrv : NULL, flash_sector_size,
flash_size / flash_sector_size, 1, 2,
- 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa);
+ 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
/* create irq lines */
cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
{
CPUState *env;
DriveInfo *dinfo;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
- MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
+ ram_addr_t phys_ram;
+ ram_addr_t phys_flash;
qemu_irq *cpu_irq, irq[32];
HWSetup *hw;
ResetInfo *reset_info;
reset_info->flash_base = flash_base;
- memory_region_init_ram(phys_ram, NULL, "lm32_uclinux.sdram", ram_size);
- memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
+ phys_ram = qemu_ram_alloc(NULL, "lm32_uclinux.sdram", ram_size);
+ cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
- memory_region_init_rom_device(phys_flash, &pflash_cfi01_ops_be,
- NULL, "lm32_uclinux.flash", flash_size);
+ phys_flash = qemu_ram_alloc(NULL, "lm32_uclinux.flash", flash_size);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* Spansion S29NS128P */
pflash_cfi02_register(flash_base, phys_flash,
dinfo ? dinfo->bdrv : NULL, flash_sector_size,
flash_size / flash_sector_size, 1, 2,
- 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa);
+ 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1);
/* create irq lines */
cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
#include "flash.h"
#include "blockdev.h"
#include "sysbus.h"
-#include "exec-memory.h"
/* Device addresses */
#define MST_FPGA_PHYS 0x08000000
.ram_size = 0x04000000,
};
-static void mainstone_common_init(MemoryRegion *address_space_mem,
- ram_addr_t ram_size,
+static void mainstone_common_init(ram_addr_t ram_size,
const char *kernel_filename,
const char *kernel_cmdline, const char *initrd_filename,
const char *cpu_model, enum mainstone_model_e model, int arm_id)
DeviceState *mst_irq;
DriveInfo *dinfo;
int i;
- MemoryRegion *rom = g_new(MemoryRegion, 1);
- MemoryRegion *flashes = g_new(MemoryRegion, 2);
- const MemoryRegionOps *flash_ops;
+ int be;
if (!cpu_model)
cpu_model = "pxa270-c5";
/* Setup CPU & memory */
cpu = pxa270_init(mainstone_binfo.ram_size, cpu_model);
- memory_region_init_ram(rom, NULL, "mainstone.rom", MAINSTONE_ROM);
- memory_region_set_readonly(rom, true);
- memory_region_add_subregion(address_space_mem, 0, rom);
+ cpu_register_physical_memory(0, MAINSTONE_ROM,
+ qemu_ram_alloc(NULL, "mainstone.rom",
+ MAINSTONE_ROM) | IO_MEM_ROM);
#ifdef TARGET_WORDS_BIGENDIAN
- flash_ops = &pflash_cfi01_ops_be;
+ be = 1;
#else
- flash_ops = &pflash_cfi01_ops_le;
+ be = 0;
#endif
/* There are two 32MiB flash devices on the board */
for (i = 0; i < 2; i ++) {
exit(1);
}
- memory_region_init_rom_device(&flashes[i], flash_ops,
- NULL, (i ? "mainstone.flash1"
- : "mainstone.flash0"),
- MAINSTONE_FLASH);
if (!pflash_cfi01_register(mainstone_flash_base[i],
- &flashes[i], dinfo->bdrv, sector_len,
- MAINSTONE_FLASH / sector_len, 4, 0, 0, 0,
- 0)) {
+ qemu_ram_alloc(NULL, i ? "mainstone.flash1" :
+ "mainstone.flash0",
+ MAINSTONE_FLASH),
+ dinfo->bdrv, sector_len,
+ MAINSTONE_FLASH / sector_len, 4, 0, 0, 0, 0,
+ be)) {
fprintf(stderr, "qemu: Error registering flash memory.\n");
exit(1);
}
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
- mainstone_common_init(get_system_memory(), ram_size, kernel_filename,
+ mainstone_common_init(ram_size, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, mainstone, 0x196);
}
#include "boards.h"
#include "loader.h"
#include "elf.h"
-#include "exec-memory.h"
#define SYS_FREQ 66000000
#define PCSR_PRE_MASK 0x0f00
typedef struct {
- MemoryRegion iomem;
qemu_irq irq;
ptimer_state *timer;
uint16_t pcsr;
}
static void m5208_timer_write(void *opaque, target_phys_addr_t offset,
- uint64_t value, unsigned size)
+ uint32_t value)
{
m5208_timer_state *s = (m5208_timer_state *)opaque;
int prescale;
m5208_timer_update(s);
}
-static uint64_t m5208_timer_read(void *opaque, target_phys_addr_t addr,
- unsigned size)
+static uint32_t m5208_timer_read(void *opaque, target_phys_addr_t addr)
{
m5208_timer_state *s = (m5208_timer_state *)opaque;
switch (addr) {
}
}
-static const MemoryRegionOps m5208_timer_ops = {
- .read = m5208_timer_read,
- .write = m5208_timer_write,
- .endianness = DEVICE_NATIVE_ENDIAN,
+static CPUReadMemoryFunc * const m5208_timer_readfn[] = {
+ m5208_timer_read,
+ m5208_timer_read,
+ m5208_timer_read
};
-static uint64_t m5208_sys_read(void *opaque, target_phys_addr_t addr,
- unsigned size)
+static CPUWriteMemoryFunc * const m5208_timer_writefn[] = {
+ m5208_timer_write,
+ m5208_timer_write,
+ m5208_timer_write
+};
+
+static uint32_t m5208_sys_read(void *opaque, target_phys_addr_t addr)
{
switch (addr) {
case 0x110: /* SDCS0 */
}
static void m5208_sys_write(void *opaque, target_phys_addr_t addr,
- uint64_t value, unsigned size)
+ uint32_t value)
{
hw_error("m5208_sys_write: Bad offset 0x%x\n", (int)addr);
}
-static const MemoryRegionOps m5208_sys_ops = {
- .read = m5208_sys_read,
- .write = m5208_sys_write,
- .endianness = DEVICE_NATIVE_ENDIAN,
+static CPUReadMemoryFunc * const m5208_sys_readfn[] = {
+ m5208_sys_read,
+ m5208_sys_read,
+ m5208_sys_read
+};
+
+static CPUWriteMemoryFunc * const m5208_sys_writefn[] = {
+ m5208_sys_write,
+ m5208_sys_write,
+ m5208_sys_write
};
-static void mcf5208_sys_init(MemoryRegion *address_space, qemu_irq *pic)
+static void mcf5208_sys_init(qemu_irq *pic)
{
- MemoryRegion *iomem = g_new(MemoryRegion, 1);
+ int iomemtype;
m5208_timer_state *s;
QEMUBH *bh;
int i;
+ iomemtype = cpu_register_io_memory(m5208_sys_readfn,
+ m5208_sys_writefn, NULL,
+ DEVICE_NATIVE_ENDIAN);
/* SDRAMC. */
- memory_region_init_io(iomem, &m5208_sys_ops, NULL, "m5208-sys", 0x00004000);
- memory_region_add_subregion(address_space, 0xfc0a8000, iomem);
+ cpu_register_physical_memory(0xfc0a8000, 0x00004000, iomemtype);
/* Timers. */
for (i = 0; i < 2; i++) {
s = (m5208_timer_state *)g_malloc0(sizeof(m5208_timer_state));
bh = qemu_bh_new(m5208_timer_trigger, s);
s->timer = ptimer_init(bh);
- memory_region_init_io(&s->iomem, &m5208_timer_ops, s,
- "m5208-timer", 0x00004000);
- memory_region_add_subregion(address_space, 0xfc080000 + 0x4000 * i,
- &s->iomem);
+ iomemtype = cpu_register_io_memory(m5208_timer_readfn,
+ m5208_timer_writefn, s,
+ DEVICE_NATIVE_ENDIAN);
+ cpu_register_physical_memory(0xfc080000 + 0x4000 * i, 0x00004000,
+ iomemtype);
s->irq = pic[4 + i];
}
}
uint64_t elf_entry;
target_phys_addr_t entry;
qemu_irq *pic;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *ram = g_new(MemoryRegion, 1);
- MemoryRegion *sram = g_new(MemoryRegion, 1);
if (!cpu_model)
cpu_model = "m5208";
/* TODO: Configure BARs. */
/* DRAM at 0x40000000 */
- memory_region_init_ram(ram, NULL, "mcf5208.ram", ram_size);
- memory_region_add_subregion(address_space_mem, 0x40000000, ram);
+ cpu_register_physical_memory(0x40000000, ram_size,
+ qemu_ram_alloc(NULL, "mcf5208.ram", ram_size) | IO_MEM_RAM);
/* Internal SRAM. */
- memory_region_init_ram(sram, NULL, "mcf5208.sram", 16384);
- memory_region_add_subregion(address_space_mem, 0x80000000, sram);
+ cpu_register_physical_memory(0x80000000, 16384,
+ qemu_ram_alloc(NULL, "mcf5208.sram", 16384) | IO_MEM_RAM);
/* Internal peripherals. */
pic = mcf_intc_init(0xfc048000, env);
mcf_uart_mm_init(0xfc064000, pic[27], serial_hds[1]);
mcf_uart_mm_init(0xfc068000, pic[28], serial_hds[2]);
- mcf5208_sys_init(address_space_mem, pic);
+ mcf5208_sys_init(pic);
if (nb_nics > 1) {
fprintf(stderr, "Too many NICs\n");
NICConf conf;
char *phy_model;
target_phys_addr_t buffers_base;
- MemoryRegion buffers;
- MemoryRegion regs_region;
qemu_irq rx_irq;
qemu_irq tx_irq;
return size;
}
-static uint64_t
-minimac2_read(void *opaque, target_phys_addr_t addr, unsigned size)
+static uint32_t
+minimac2_read(void *opaque, target_phys_addr_t addr)
{
MilkymistMinimac2State *s = opaque;
uint32_t r = 0;
}
static void
-minimac2_write(void *opaque, target_phys_addr_t addr, uint64_t value,
- unsigned size)
+minimac2_write(void *opaque, target_phys_addr_t addr, uint32_t value)
{
MilkymistMinimac2State *s = opaque;
}
}
-static const MemoryRegionOps minimac2_ops = {
- .read = minimac2_read,
- .write = minimac2_write,
- .valid = {
- .min_access_size = 4,
- .max_access_size = 4,
- },
- .endianness = DEVICE_NATIVE_ENDIAN,
+static CPUReadMemoryFunc * const minimac2_read_fn[] = {
+ NULL,
+ NULL,
+ &minimac2_read,
+};
+
+static CPUWriteMemoryFunc * const minimac2_write_fn[] = {
+ NULL,
+ NULL,
+ &minimac2_write,
};
static int minimac2_can_rx(VLANClientState *nc)
static int milkymist_minimac2_init(SysBusDevice *dev)
{
MilkymistMinimac2State *s = FROM_SYSBUS(typeof(*s), dev);
+ int regs;
+ ram_addr_t buffers;
size_t buffers_size = TARGET_PAGE_ALIGN(3 * MINIMAC2_BUFFER_SIZE);
sysbus_init_irq(dev, &s->rx_irq);
sysbus_init_irq(dev, &s->tx_irq);
- memory_region_init_io(&s->regs_region, &minimac2_ops, s,
- "minimac2-mmio", R_MAX * 4);
- sysbus_init_mmio_region(dev, &s->regs_region);
+ regs = cpu_register_io_memory(minimac2_read_fn, minimac2_write_fn, s,
+ DEVICE_NATIVE_ENDIAN);
+ sysbus_init_mmio(dev, R_MAX * 4, regs);
/* register buffers memory */
- memory_region_init_ram(&s->buffers, NULL, "milkymist_minimac2.buffers",
- buffers_size);
- s->rx0_buf = memory_region_get_ram_ptr(&s->buffers);
+ buffers = qemu_ram_alloc(NULL, "milkymist_minimac2.buffers", buffers_size);
+ s->rx0_buf = qemu_get_ram_ptr(buffers);
s->rx1_buf = s->rx0_buf + MINIMAC2_BUFFER_SIZE;
s->tx_buf = s->rx1_buf + MINIMAC2_BUFFER_SIZE;
- sysbus_add_memory(dev, s->buffers_base, &s->buffers);
+ cpu_register_physical_memory(s->buffers_base, buffers_size,
+ buffers | IO_MEM_RAM);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_milkymist_minimac2_info, &s->conf,
HIDState hid_kbd;
HIDState hid_mouse;
- MemoryRegion regs_region;
- MemoryRegion pmem;
- MemoryRegion dmem;
qemu_irq irq;
/* device properties */
};
typedef struct MilkymistSoftUsbState MilkymistSoftUsbState;
-static uint64_t softusb_read(void *opaque, target_phys_addr_t addr,
- unsigned size)
+static uint32_t softusb_read(void *opaque, target_phys_addr_t addr)
{
MilkymistSoftUsbState *s = opaque;
uint32_t r = 0;
}
static void
-softusb_write(void *opaque, target_phys_addr_t addr, uint64_t value,
- unsigned size)
+softusb_write(void *opaque, target_phys_addr_t addr, uint32_t value)
{
MilkymistSoftUsbState *s = opaque;
}
}
-static const MemoryRegionOps softusb_mmio_ops = {
- .read = softusb_read,
- .write = softusb_write,
- .endianness = DEVICE_NATIVE_ENDIAN,
- .valid = {
- .min_access_size = 4,
- .max_access_size = 4,
- },
+static CPUReadMemoryFunc * const softusb_read_fn[] = {
+ NULL,
+ NULL,
+ &softusb_read,
+};
+
+static CPUWriteMemoryFunc * const softusb_write_fn[] = {
+ NULL,
+ NULL,
+ &softusb_write,
};
static inline void softusb_read_dmem(MilkymistSoftUsbState *s,
static int milkymist_softusb_init(SysBusDevice *dev)
{
MilkymistSoftUsbState *s = FROM_SYSBUS(typeof(*s), dev);
+ int softusb_regs;
+ ram_addr_t pmem_ram;
+ ram_addr_t dmem_ram;
sysbus_init_irq(dev, &s->irq);
- memory_region_init_io(&s->regs_region, &softusb_mmio_ops, s,
- "milkymist-softusb", R_MAX * 4);
- sysbus_init_mmio_region(dev, &s->regs_region);
+ softusb_regs = cpu_register_io_memory(softusb_read_fn, softusb_write_fn, s,
+ DEVICE_NATIVE_ENDIAN);
+ sysbus_init_mmio(dev, R_MAX * 4, softusb_regs);
/* register pmem and dmem */
- memory_region_init_ram(&s->pmem, NULL, "milkymist_softusb.pmem",
- s->pmem_size);
- sysbus_add_memory(dev, s->pmem_base, &s->pmem);
- memory_region_init_ram(&s->dmem, NULL, "milkymist_softusb.dmem",
- s->dmem_size);
- sysbus_add_memory(dev, s->dmem_base, &s->dmem);
+ pmem_ram = qemu_ram_alloc(NULL, "milkymist_softusb.pmem", s->pmem_size);
+ cpu_register_physical_memory(s->pmem_base, s->pmem_size,
+ pmem_ram | IO_MEM_RAM);
+ dmem_ram = qemu_ram_alloc(NULL, "milkymist_softusb.dmem", s->dmem_size);
+ cpu_register_physical_memory(s->dmem_base, s->dmem_size,
+ dmem_ram | IO_MEM_RAM);
hid_init(&s->hid_kbd, HID_KEYBOARD, softusb_kbd_hid_datain);
hid_init(&s->hid_mouse, HID_MOUSE, softusb_mouse_hid_datain);
struct vertex {
int x;
int y;
-} __attribute__((packed));
+} QEMU_PACKED;
struct MilkymistTMU2State {
SysBusDevice busdev;
#include "blockdev.h"
#include "milkymist-hw.h"
#include "lm32.h"
-#include "exec-memory.h"
#define BIOS_FILENAME "mmone-bios.bin"
#define BIOS_OFFSET 0x00860000
CPUState *env;
int kernel_size;
DriveInfo *dinfo;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *phys_sdram = g_new(MemoryRegion, 1);
- MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
+ ram_addr_t phys_sdram;
+ ram_addr_t phys_flash;
qemu_irq irq[32], *cpu_irq;
int i;
char *bios_filename;
cpu_lm32_set_phys_msb_ignore(env, 1);
- memory_region_init_ram(phys_sdram, NULL, "milkymist.sdram", sdram_size);
- memory_region_add_subregion(address_space_mem, sdram_base, phys_sdram);
+ phys_sdram = qemu_ram_alloc(NULL, "milkymist.sdram", sdram_size);
+ cpu_register_physical_memory(sdram_base, sdram_size,
+ phys_sdram | IO_MEM_RAM);
- memory_region_init_rom_device(phys_flash, &pflash_cfi01_ops_be,
- NULL, "milkymist.flash", flash_size);
+ phys_flash = qemu_ram_alloc(NULL, "milkymist.flash", flash_size);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* Numonyx JS28F256J3F105 */
pflash_cfi01_register(flash_base, phys_flash,
dinfo ? dinfo->bdrv : NULL, flash_sector_size,
flash_size / flash_sector_size, 2,
- 0x00, 0x89, 0x00, 0x1d);
+ 0x00, 0x89, 0x00, 0x1d, 1);
/* create irq lines */
cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
#define HW_MIPS_H
/* Definitions for mips board emulation. */
-#include "memory.h"
-
/* gt64xxx.c */
PCIBus *gt64120_register(qemu_irq *pic);
/* bonito.c */
PCIBus *bonito_init(qemu_irq *pic);
-/* g364fb.c */
-int g364fb_mm_init(MemoryRegion *system_memory, target_phys_addr_t vram_base,
- target_phys_addr_t ctrl_base, int it_shift,
- qemu_irq irq);
-
/* mipsnet.c */
void mipsnet_init(int base, qemu_irq irq, NICInfo *nd);
/* Video card */
switch (jazz_model) {
case JAZZ_MAGNUM:
- g364fb_mm_init(get_system_memory(), 0x40000000, 0x60000000, 0,
- rc4030[3]);
+ dev = qdev_create(NULL, "sysbus-g364");
+ qdev_init_nofail(dev);
+ sysbus = sysbus_from_qdev(dev);
+ sysbus_mmio_map(sysbus, 0, 0x60080000);
+ sysbus_mmio_map(sysbus, 1, 0x40000000);
+ sysbus_connect_irq(sysbus, 0, rc4030[3]);
+ {
+ /* Simple ROM, so user doesn't have to provide one */
+ ram_addr_t rom_offset = qemu_ram_alloc(NULL, "g364fb.rom", 0x80000);
+ uint8_t *rom = qemu_get_ram_ptr(rom_offset);
+ cpu_register_physical_memory(0x60000000, 0x80000,
+ rom_offset | IO_MEM_ROM);
+ rom[0] = 0x10; /* Mips G364 */
+ }
break;
case JAZZ_PICA61:
isa_vga_mm_init(0x40000000, 0x60000000, 0, get_system_memory());
#include "elf.h"
#include "mc146818rtc.h"
#include "blockdev.h"
-#include "exec-memory.h"
//#define DEBUG_BOARD_INIT
return kernel_entry;
}
+static void malta_mips_config(CPUState *env)
+{
+ env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
+ ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC);
+}
+
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
if (loaderparams.kernel_filename) {
env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
}
+
+ malta_mips_config(env);
}
static void cpu_request_exit(void *opaque, int irq, int level)
{
char *filename;
ram_addr_t ram_offset;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *bios = g_new(MemoryRegion, 1);
- MemoryRegion *bios_1e0 = g_new(MemoryRegion, 1);
- MemoryRegion *bios_1fc = g_new(MemoryRegion, 1);
+ ram_addr_t bios_offset;
target_long bios_size;
int64_t kernel_entry;
PCIBus *pci_bus;
DriveInfo *fd[MAX_FD];
int fl_idx = 0;
int fl_sectors = 0;
- const MemoryRegionOps *bios_ops;
+ int be;
/* Make sure the first 3 serial ports are associated with a device. */
for(i = 0; i < 3; i++) {
cpu_model = "24Kf";
#endif
}
- env = cpu_init(cpu_model);
- if (!env) {
- fprintf(stderr, "Unable to find CPU definition\n");
- exit(1);
+
+ for (i = 0; i < smp_cpus; i++) {
+ env = cpu_init(cpu_model);
+ if (!env) {
+ fprintf(stderr, "Unable to find CPU definition\n");
+ exit(1);
+ }
+ /* Init internal devices */
+ cpu_mips_irq_init_cpu(env);
+ cpu_mips_clock_init(env);
+ qemu_register_reset(main_cpu_reset, env);
}
- qemu_register_reset(main_cpu_reset, env);
+ env = first_cpu;
/* allocate RAM */
if (ram_size > (256 << 20)) {
((unsigned int)ram_size / (1 << 20)));
exit(1);
}
-#ifdef TARGET_WORDS_BIGENDIAN
- bios_ops = &pflash_cfi01_ops_be;
-#else
- bios_ops = &pflash_cfi01_ops_le;
-#endif
-
ram_offset = qemu_ram_alloc(NULL, "mips_malta.ram", ram_size);
- memory_region_init_rom_device(bios, bios_ops, NULL,
- "mips_malta.bios", BIOS_SIZE);
+ bios_offset = qemu_ram_alloc(NULL, "mips_malta.bios", BIOS_SIZE);
+
cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
/* Map the bios at two physical locations, as on the real board. */
- memory_region_init_alias(bios_1e0, "bios-1e0", bios, 0, BIOS_SIZE);
- memory_region_add_subregion(address_space_mem, 0x1e000000LL, bios_1e0);
- memory_region_init_alias(bios_1fc, "bios-1fc", bios, 0, BIOS_SIZE);
- memory_region_add_subregion(address_space_mem, 0x1fc00000LL, bios_1fc);
+ cpu_register_physical_memory(0x1e000000LL,
+ BIOS_SIZE, bios_offset | IO_MEM_ROM);
+ cpu_register_physical_memory(0x1fc00000LL,
+ BIOS_SIZE, bios_offset | IO_MEM_ROM);
+#ifdef TARGET_WORDS_BIGENDIAN
+ be = 1;
+#else
+ be = 0;
+#endif
/* FPGA */
malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
loaderparams.kernel_cmdline = kernel_cmdline;
loaderparams.initrd_filename = initrd_filename;
kernel_entry = load_kernel();
- write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
+ write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
} else {
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
if (dinfo) {
fl_sectors = bios_size >> 16;
#ifdef DEBUG_BOARD_INIT
printf("Register parallel flash %d size " TARGET_FMT_lx " at "
- "addr %08llx '%s' %x\n",
- fl_idx, bios_size, 0x1e000000LL,
+ "offset %08lx addr %08llx '%s' %x\n",
+ fl_idx, bios_size, bios_offset, 0x1e000000LL,
bdrv_get_device_name(dinfo->bdrv), fl_sectors);
#endif
- pflash_cfi01_register(0x1e000000LL, bios,
+ pflash_cfi01_register(0x1e000000LL, bios_offset,
dinfo->bdrv, 65536, fl_sectors,
- 4, 0x0000, 0x0000, 0x0000, 0x0000);
+ 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
fl_idx++;
} else {
/* Load a BIOS image. */
a neat trick which allows bi-endian firmware. */
#ifndef TARGET_WORDS_BIGENDIAN
{
- uint32_t *addr = memory_region_get_ram_ptr(bios);
+ uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
uint32_t *end = addr + bios_size;
while (addr < end) {
bswap32s(addr);
/* Board ID = 0x420 (Malta Board with CoreLV)
XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
map to the board ID. */
- stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
+ stl_p(qemu_get_ram_ptr(bios_offset) + 0x10, 0x00000420);
/* Init internal devices */
cpu_mips_irq_init_cpu(env);
.name = "malta",
.desc = "MIPS Malta Core LV",
.init = mips_malta_init,
+ .max_cpus = 16,
.is_default = 1,
};
#include "elf.h"
#include "mc146818rtc.h"
#include "blockdev.h"
-#include "exec-memory.h"
#define MAX_IDE_BUS 2
{
char *filename;
ram_addr_t ram_offset;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *bios = g_new(MemoryRegion, 1);
+ ram_addr_t bios_offset;
int bios_size;
CPUState *env;
ResetData *reset_info;
be = 0;
#endif
if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) {
- memory_region_init_ram(bios, NULL, "mips_r4k.bios", BIOS_SIZE);
- memory_region_set_readonly(bios, true);
- memory_region_add_subregion(address_space_mem, 0x1fc00000, bios);
+ bios_offset = qemu_ram_alloc(NULL, "mips_r4k.bios", BIOS_SIZE);
+ cpu_register_physical_memory(0x1fc00000, BIOS_SIZE,
+ bios_offset | IO_MEM_ROM);
+
load_image_targphys(filename, 0x1fc00000, BIOS_SIZE);
} else if ((dinfo = drive_get(IF_PFLASH, 0, 0)) != NULL) {
uint32_t mips_rom = 0x00400000;
- memory_region_init_rom_device(bios,
- (be ? &pflash_cfi01_ops_be
- : &pflash_cfi01_ops_le),
- NULL, "mips_r4k.bios", mips_rom);
- if (!pflash_cfi01_register(0x1fc00000, bios,
+ bios_offset = qemu_ram_alloc(NULL, "mips_r4k.bios", mips_rom);
+ if (!pflash_cfi01_register(0x1fc00000, bios_offset,
dinfo->bdrv, sector_len,
mips_rom / sector_len,
- 4, 0, 0, 0, 0)) {
+ 4, 0, 0, 0, 0, be)) {
fprintf(stderr, "qemu: Error registering flash memory.\n");
}
}
unsigned long flash_size;
DriveInfo *dinfo;
ram_addr_t sram_off;
- MemoryRegion *flash = g_new(MemoryRegion, 1);
if (!cpu_model) {
cpu_model = "arm926";
* image is smaller than 32 MB.
*/
#ifdef TARGET_WORDS_BIGENDIAN
- memory_region_init_rom_device(flash, &pflash_cfi02_ops_be,
- NULL, "musicpal.flash", flash_size);
- pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, flash,
+ pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(NULL,
+ "musicpal.flash", flash_size),
dinfo->bdrv, 0x10000,
(flash_size + 0xffff) >> 16,
MP_FLASH_SIZE_MAX / flash_size,
2, 0x00BF, 0x236D, 0x0000, 0x0000,
- 0x5555, 0x2AAA);
+ 0x5555, 0x2AAA, 1);
#else
- memory_region_init_rom_device(flash, &pflash_cfi02_ops_le,
- NULL, "musicpal.flash", flash_size);
- pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, flash,
+ pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(NULL,
+ "musicpal.flash", flash_size),
dinfo->bdrv, 0x10000,
(flash_size + 0xffff) >> 16,
MP_FLASH_SIZE_MAX / flash_size,
2, 0x00BF, 0x236D, 0x0000, 0x0000,
- 0x5555, 0x2AAA);
+ 0x5555, 0x2AAA, 0);
#endif
}
#include "bt.h"
#include "loader.h"
#include "blockdev.h"
-#include "tusb6010.h"
+#include "sysbus.h"
/* Nokia N8x0 support */
struct n800_s {
int keymap[0x80];
DeviceState *kbd;
- TUSBState *usb;
+ DeviceState *usb;
void *retu;
void *tahvo;
- void *nand;
+ DeviceState *nand;
};
/* GPIO pins */
char *otp_region;
DriveInfo *dinfo;
- dinfo = drive_get(IF_MTD, 0, 0);
+ s->nand = qdev_create(NULL, "onenand");
+ qdev_prop_set_uint16(s->nand, "manufacturer_id", NAND_MFR_SAMSUNG);
/* Either 0x40 or 0x48 are OK for the device ID */
- s->nand = onenand_init(dinfo ? dinfo->bdrv : 0,
- NAND_MFR_SAMSUNG, 0x48, 0, 1,
- qdev_get_gpio_in(s->cpu->gpio, N8X0_ONENAND_GPIO));
- omap_gpmc_attach(s->cpu->gpmc, N8X0_ONENAND_CS, 0, onenand_base_update,
- onenand_base_unmap, s->nand);
+ qdev_prop_set_uint16(s->nand, "device_id", 0x48);
+ qdev_prop_set_uint16(s->nand, "version_id", 0);
+ qdev_prop_set_int32(s->nand, "shift", 1);
+ dinfo = drive_get(IF_MTD, 0, 0);
+ if (dinfo && dinfo->bdrv) {
+ qdev_prop_set_drive_nofail(s->nand, "drive", dinfo->bdrv);
+ }
+ qdev_init_nofail(s->nand);
+ sysbus_connect_irq(sysbus_from_qdev(s->nand), 0,
+ qdev_get_gpio_in(s->cpu->gpio, N8X0_ONENAND_GPIO));
+ omap_gpmc_attach(s->cpu->gpmc, N8X0_ONENAND_CS,
+ sysbus_mmio_get_region(sysbus_from_qdev(s->nand), 0));
otp_region = onenand_raw_otp(s->nand);
memcpy(otp_region + 0x000, n8x0_cal_wlan_mac, sizeof(n8x0_cal_wlan_mac));
omap_uart_attach(s->cpu->uart[BT_UART], radio);
}
-static void n8x0_usb_power_cb(void *opaque, int line, int level)
-{
- struct n800_s *s = opaque;
-
- tusb6010_power(s->usb, level);
-}
-
static void n8x0_usb_setup(struct n800_s *s)
{
- qemu_irq tusb_irq = qdev_get_gpio_in(s->cpu->gpio, N8X0_TUSB_INT_GPIO);
- qemu_irq tusb_pwr = qemu_allocate_irqs(n8x0_usb_power_cb, s, 1)[0];
- TUSBState *tusb = tusb6010_init(tusb_irq);
-
+ SysBusDevice *dev;
+ s->usb = qdev_create(NULL, "tusb6010");
+ dev = sysbus_from_qdev(s->usb);
+ qdev_init_nofail(s->usb);
+ sysbus_connect_irq(dev, 0,
+ qdev_get_gpio_in(s->cpu->gpio, N8X0_TUSB_INT_GPIO));
/* Using the NOR interface */
omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_ASYNC_CS,
- tusb6010_async_io(tusb), NULL, NULL, tusb);
+ sysbus_mmio_get_region(dev, 0));
omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_SYNC_CS,
- tusb6010_sync_io(tusb), NULL, NULL, tusb);
-
- s->usb = tusb;
- qdev_connect_gpio_out(s->cpu->gpio, N8X0_TUSB_ENABLE_GPIO, tusb_pwr);
+ sysbus_mmio_get_region(dev, 1));
+ qdev_connect_gpio_out(s->cpu->gpio, N8X0_TUSB_ENABLE_GPIO,
+ qdev_get_gpio_in(s->usb, 0)); /* tusb_pwr */
}
/* Setup done before the main bootloader starts by some early setup code
/* OMAP2 general purpose memory controller */
struct omap_gpmc_s;
-struct omap_gpmc_s *omap_gpmc_init(target_phys_addr_t base, qemu_irq irq);
+struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
+ target_phys_addr_t base,
+ qemu_irq irq, qemu_irq drq);
void omap_gpmc_reset(struct omap_gpmc_s *s);
-void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem,
- void (*base_upd)(void *opaque, target_phys_addr_t new),
- void (*unmap)(void *opaque), void *opaque);
+void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem);
+void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand);
/*
* Common IRQ numbers for level 1 interrupt handler
# define cpu_is_omap2420(cpu) (cpu->mpu_model == omap2420)
# define cpu_is_omap2430(cpu) (cpu->mpu_model == omap2430)
# define cpu_is_omap3430(cpu) (cpu->mpu_model == omap3430)
+# define cpu_is_omap3630(cpu) (cpu->mpu_model == omap3630)
# define cpu_is_omap15xx(cpu) \
(cpu_is_omap310(cpu) || cpu_is_omap1510(cpu))
# define cpu_class_omap1(cpu) \
(cpu_is_omap15xx(cpu) || cpu_is_omap16xx(cpu))
# define cpu_class_omap2(cpu) cpu_is_omap24xx(cpu)
-# define cpu_class_omap3(cpu) cpu_is_omap3430(cpu)
+# define cpu_class_omap3(cpu) \
+ (cpu_is_omap3430(cpu) || cpu_is_omap3630(cpu))
struct omap_mpu_state_s {
enum omap_mpu_model {
omap2423,
omap2430,
omap3430,
+ omap3630,
} mpu_model;
CPUState *env;
sysbus_mmio_map(busdev, 4, omap_l4_region_base(ta, 5));
s->sdrc = omap_sdrc_init(0x68009000);
- s->gpmc = omap_gpmc_init(0x6800a000, s->irq[0][OMAP_INT_24XX_GPMC_IRQ]);
+ s->gpmc = omap_gpmc_init(s, 0x6800a000, s->irq[0][OMAP_INT_24XX_GPMC_IRQ],
+ s->drq[OMAP24XX_DMA_GPMC]);
dinfo = drive_get(IF_SD, 0, 0);
if (!dinfo) {
/* General-Purpose Memory Controller */
struct omap_gpmc_s {
qemu_irq irq;
+ qemu_irq drq;
MemoryRegion iomem;
+ int accept_256;
+ uint8_t revision;
uint8_t sysconfig;
uint16_t irqst;
uint16_t irqen;
+ uint16_t lastirq;
uint16_t timeout;
uint16_t config;
- uint32_t prefconfig[2];
- int prefcontrol;
- int preffifo;
- int prefcount;
struct omap_gpmc_cs_file_s {
uint32_t config[7];
- target_phys_addr_t base;
- size_t size;
MemoryRegion *iomem;
MemoryRegion container;
- void (*base_update)(void *opaque, target_phys_addr_t new);
- void (*unmap)(void *opaque);
- void *opaque;
+ MemoryRegion nandiomem;
+ DeviceState *dev;
} cs_file[8];
int ecc_cs;
int ecc_ptr;
uint32_t ecc_cfg;
ECCState ecc[9];
+ struct prefetch {
+ uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
+ uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
+ int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
+ int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
+ int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
+ MemoryRegion iomem;
+ uint8_t fifo[64];
+ } prefetch;
};
+#define OMAP_GPMC_8BIT 0
+#define OMAP_GPMC_16BIT 1
+#define OMAP_GPMC_NOR 0
+#define OMAP_GPMC_NAND 2
+
+static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
+{
+ return (f->config[0] >> 10) & 3;
+}
+
+static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
+{
+ /* devsize field is really 2 bits but we ignore the high
+ * bit to ensure consistent behaviour if the guest sets
+ * it (values 2 and 3 are reserved in the TRM)
+ */
+ return (f->config[0] >> 12) & 1;
+}
+
+/* Extract the chip-select value from the prefetch config1 register */
+static int prefetch_cs(uint32_t config1)
+{
+ return (config1 >> 24) & 7;
+}
+
+static int prefetch_threshold(uint32_t config1)
+{
+ return (config1 >> 8) & 0x7f;
+}
+
static void omap_gpmc_int_update(struct omap_gpmc_s *s)
{
- qemu_set_irq(s->irq, s->irqen & s->irqst);
+ /* The TRM is a bit unclear, but it seems to say that
+ * the TERMINALCOUNTSTATUS bit is set only on the
+ * transition when the prefetch engine goes from
+ * active to inactive, whereas the FIFOEVENTSTATUS
+ * bit is held high as long as the fifo has at
+ * least THRESHOLD bytes available.
+ * So we do the latter here, but TERMINALCOUNTSTATUS
+ * is set elsewhere.
+ */
+ if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
+ s->irqst |= 1;
+ }
+ if ((s->irqen & s->irqst) != s->lastirq) {
+ s->lastirq = s->irqen & s->irqst;
+ qemu_set_irq(s->irq, s->lastirq);
+ }
}
-static void omap_gpmc_cs_map(struct omap_gpmc_cs_file_s *f, int base, int mask)
+static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
{
- /* TODO: check for overlapping regions and report access errors */
- if ((mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf) ||
- (base < 0 || base >= 0x40) ||
- (base & 0x0f & ~mask)) {
- fprintf(stderr, "%s: wrong cs address mapping/decoding!\n",
- __FUNCTION__);
+ if (s->prefetch.config1 & 4) {
+ qemu_set_irq(s->drq, value);
+ }
+}
+
+/* Access functions for when a NAND-like device is mapped into memory:
+ * all addresses in the region behave like accesses to the relevant
+ * GPMC_NAND_DATA_i register (which is actually implemented to call these)
+ */
+static uint64_t omap_nand_read(void *opaque, target_phys_addr_t addr,
+ unsigned size)
+{
+ struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
+ uint64_t v;
+ nand_setpins(f->dev, 0, 0, 0, 1, 0);
+ switch (omap_gpmc_devsize(f)) {
+ case OMAP_GPMC_8BIT:
+ v = nand_getio(f->dev);
+ if (size == 1) {
+ return v;
+ }
+ v |= (nand_getio(f->dev) << 8);
+ if (size == 2) {
+ return v;
+ }
+ v |= (nand_getio(f->dev) << 16);
+ v |= (nand_getio(f->dev) << 24);
+ return v;
+ case OMAP_GPMC_16BIT:
+ v = nand_getio(f->dev);
+ if (size == 1) {
+ /* 8 bit read from 16 bit device : probably a guest bug */
+ return v & 0xff;
+ }
+ if (size == 2) {
+ return v;
+ }
+ v |= (nand_getio(f->dev) << 16);
+ return v;
+ default:
+ abort();
+ }
+}
+
+static void omap_nand_setio(DeviceState *dev, uint64_t value,
+ int nandsize, int size)
+{
+ /* Write the specified value to the NAND device, respecting
+ * both size of the NAND device and size of the write access.
+ */
+ switch (nandsize) {
+ case OMAP_GPMC_8BIT:
+ switch (size) {
+ case 1:
+ nand_setio(dev, value & 0xff);
+ break;
+ case 2:
+ nand_setio(dev, value & 0xff);
+ nand_setio(dev, (value >> 8) & 0xff);
+ break;
+ case 4:
+ default:
+ nand_setio(dev, value & 0xff);
+ nand_setio(dev, (value >> 8) & 0xff);
+ nand_setio(dev, (value >> 16) & 0xff);
+ nand_setio(dev, (value >> 24) & 0xff);
+ break;
+ }
+ case OMAP_GPMC_16BIT:
+ switch (size) {
+ case 1:
+ /* writing to a 16bit device with 8bit access is probably a guest
+ * bug; pass the value through anyway.
+ */
+ case 2:
+ nand_setio(dev, value & 0xffff);
+ break;
+ case 4:
+ default:
+ nand_setio(dev, value & 0xffff);
+ nand_setio(dev, (value >> 16) & 0xffff);
+ break;
+ }
+ }
+}
+
+static void omap_nand_write(void *opaque, target_phys_addr_t addr,
+ uint64_t value, unsigned size)
+{
+ struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
+ nand_setpins(f->dev, 0, 0, 0, 1, 0);
+ omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
+}
+
+static const MemoryRegionOps omap_nand_ops = {
+ .read = omap_nand_read,
+ .write = omap_nand_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static void fill_prefetch_fifo(struct omap_gpmc_s *s)
+{
+ /* Fill the prefetch FIFO by reading data from NAND.
+ * We do this synchronously, unlike the hardware which
+ * will do this asynchronously. We refill when the
+ * FIFO has THRESHOLD bytes free, and we always refill
+ * as much data as possible starting at the top end
+ * of the FIFO.
+ * (We have to refill at THRESHOLD rather than waiting
+ * for the FIFO to empty to allow for the case where
+ * the FIFO size isn't an exact multiple of THRESHOLD
+ * and we're doing DMA transfers.)
+ * This means we never need to handle wrap-around in
+ * the fifo-reading code, and the next byte of data
+ * to read is always fifo[63 - fifopointer].
+ */
+ int fptr;
+ int cs = prefetch_cs(s->prefetch.config1);
+ int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
+ int bytes;
+ /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
+ * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
+ * Instead believe the bit that says it is always a byte count.
+ */
+ bytes = 64 - s->prefetch.fifopointer;
+ if (bytes > s->prefetch.count) {
+ bytes = s->prefetch.count;
+ }
+ s->prefetch.count -= bytes;
+ s->prefetch.fifopointer += bytes;
+ fptr = 64 - s->prefetch.fifopointer;
+ /* Move the existing data in the FIFO so it sits just
+ * before what we're about to read in
+ */
+ while (fptr < (64 - bytes)) {
+ s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
+ fptr++;
+ }
+ while (fptr < 64) {
+ if (is16bit) {
+ uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
+ s->prefetch.fifo[fptr++] = v & 0xff;
+ s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
+ } else {
+ s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
+ }
+ }
+ if (s->prefetch.startengine && (s->prefetch.count == 0)) {
+ /* This was the final transfer: raise TERMINALCOUNTSTATUS */
+ s->irqst |= 2;
+ s->prefetch.startengine = 0;
+ }
+ /* If there are any bytes in the FIFO at this point then
+ * we must raise a DMA request (either this is a final part
+ * transfer, or we filled the FIFO in which case we certainly
+ * have THRESHOLD bytes available)
+ */
+ if (s->prefetch.fifopointer != 0) {
+ omap_gpmc_dma_update(s, 1);
+ }
+ omap_gpmc_int_update(s);
+}
+
+/* Access functions for a NAND-like device when the prefetch/postwrite
+ * engine is enabled -- all addresses in the region behave alike:
+ * data is read or written to the FIFO.
+ */
+static uint64_t omap_gpmc_prefetch_read(void *opaque, target_phys_addr_t addr,
+ unsigned size)
+{
+ struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
+ uint32_t data;
+ if (s->prefetch.config1 & 1) {
+ /* The TRM doesn't define the behaviour if you read from the
+ * FIFO when the prefetch engine is in write mode. We choose
+ * to always return zero.
+ */
+ return 0;
+ }
+ /* Note that trying to read an empty fifo repeats the last byte */
+ if (s->prefetch.fifopointer) {
+ s->prefetch.fifopointer--;
+ }
+ data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
+ if (s->prefetch.fifopointer ==
+ (64 - prefetch_threshold(s->prefetch.config1))) {
+ /* We've drained THRESHOLD bytes now. So deassert the
+ * DMA request, then refill the FIFO (which will probably
+ * assert it again.)
+ */
+ omap_gpmc_dma_update(s, 0);
+ fill_prefetch_fifo(s);
+ }
+ omap_gpmc_int_update(s);
+ return data;
+}
+
+static void omap_gpmc_prefetch_write(void *opaque, target_phys_addr_t addr,
+ uint64_t value, unsigned size)
+{
+ struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
+ int cs = prefetch_cs(s->prefetch.config1);
+ if ((s->prefetch.config1 & 1) == 0) {
+ /* The TRM doesn't define the behaviour of writing to the
+ * FIFO when the prefetch engine is in read mode. We
+ * choose to ignore the write.
+ */
+ return;
+ }
+ if (s->prefetch.count == 0) {
+ /* The TRM doesn't define the behaviour of writing to the
+ * FIFO if the transfer is complete. We choose to ignore.
+ */
return;
}
+ /* The only reason we do any data buffering in postwrite
+ * mode is if we are talking to a 16 bit NAND device, in
+ * which case we need to buffer the first byte of the
+ * 16 bit word until the other byte arrives.
+ */
+ int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
+ if (is16bit) {
+ /* fifopointer alternates between 64 (waiting for first
+ * byte of word) and 63 (waiting for second byte)
+ */
+ if (s->prefetch.fifopointer == 64) {
+ s->prefetch.fifo[0] = value;
+ s->prefetch.fifopointer--;
+ } else {
+ value = (value << 8) | s->prefetch.fifo[0];
+ omap_nand_write(&s->cs_file[cs], 0, value, 2);
+ s->prefetch.count--;
+ s->prefetch.fifopointer = 64;
+ }
+ } else {
+ /* Just write the byte : fifopointer remains 64 at all times */
+ omap_nand_write(&s->cs_file[cs], 0, value, 1);
+ s->prefetch.count--;
+ }
+ if (s->prefetch.count == 0) {
+ /* Final transfer: raise TERMINALCOUNTSTATUS */
+ s->irqst |= 2;
+ s->prefetch.startengine = 0;
+ }
+ omap_gpmc_int_update(s);
+}
+
+static const MemoryRegionOps omap_prefetch_ops = {
+ .read = omap_gpmc_prefetch_read,
+ .write = omap_gpmc_prefetch_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+ .impl.min_access_size = 1,
+ .impl.max_access_size = 1,
+};
- if (!f->opaque)
+static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
+{
+ /* Return the MemoryRegion* to map/unmap for this chipselect */
+ struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
+ if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
+ return f->iomem;
+ }
+ if ((s->prefetch.config1 & 0x80) &&
+ (prefetch_cs(s->prefetch.config1) == cs)) {
+ /* The prefetch engine is enabled for this CS: map the FIFO */
+ return &s->prefetch.iomem;
+ }
+ return &f->nandiomem;
+}
+
+static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
+{
+ struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
+ uint32_t mask = (f->config[6] >> 8) & 0xf;
+ uint32_t base = f->config[6] & 0x3f;
+ uint32_t size;
+
+ if (!f->iomem && !f->dev) {
+ return;
+ }
+
+ if (!(f->config[6] & (1 << 6))) {
+ /* Do nothing unless CSVALID */
return;
+ }
- f->base = base << 24;
- f->size = (0x0fffffff & ~(mask << 24)) + 1;
+ /* TODO: check for overlapping regions and report access errors */
+ if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
+ && !(s->accept_256 && !mask)) {
+ fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
+ __func__, mask);
+ }
+
+ base <<= 24;
+ size = (0x0fffffff & ~(mask << 24)) + 1;
/* TODO: rather than setting the size of the mapping (which should be
* constant), the mask should cause wrapping of the address space, so
* that the same memory becomes accessible at every <i>size</i> bytes
* starting from <i>base</i>. */
- if (f->iomem) {
- memory_region_init(&f->container, "omap-gpmc-file", f->size);
- memory_region_add_subregion(&f->container, 0, f->iomem);
- memory_region_add_subregion(get_system_memory(), f->base,
- &f->container);
- }
-
- if (f->base_update)
- f->base_update(f->opaque, f->base);
+ memory_region_init(&f->container, "omap-gpmc-file", size);
+ memory_region_add_subregion(&f->container, 0,
+ omap_gpmc_cs_memregion(s, cs));
+ memory_region_add_subregion(get_system_memory(), base,
+ &f->container);
}
-static void omap_gpmc_cs_unmap(struct omap_gpmc_cs_file_s *f)
+static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
{
- if (f->size) {
- if (f->unmap)
- f->unmap(f->opaque);
- if (f->iomem) {
- memory_region_del_subregion(get_system_memory(), &f->container);
- memory_region_del_subregion(&f->container, f->iomem);
- memory_region_destroy(&f->container);
- }
- f->base = 0;
- f->size = 0;
+ struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
+ if (!(f->config[6] & (1 << 6))) {
+ /* Do nothing unless CSVALID */
+ return;
+ }
+ if (!f->iomem && !f->dev) {
+ return;
}
+ memory_region_del_subregion(get_system_memory(), &f->container);
+ memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
+ memory_region_destroy(&f->container);
}
void omap_gpmc_reset(struct omap_gpmc_s *s)
omap_gpmc_int_update(s);
s->timeout = 0;
s->config = 0xa00;
- s->prefconfig[0] = 0x00004000;
- s->prefconfig[1] = 0x00000000;
- s->prefcontrol = 0;
- s->preffifo = 0;
- s->prefcount = 0;
+ s->prefetch.config1 = 0x00004000;
+ s->prefetch.transfercount = 0x00000000;
+ s->prefetch.startengine = 0;
+ s->prefetch.fifopointer = 0;
+ s->prefetch.count = 0;
for (i = 0; i < 8; i ++) {
- if (s->cs_file[i].config[6] & (1 << 6)) /* CSVALID */
- omap_gpmc_cs_unmap(s->cs_file + i);
- s->cs_file[i].config[0] = i ? 1 << 12 : 0;
+ omap_gpmc_cs_unmap(s, i);
s->cs_file[i].config[1] = 0x101001;
s->cs_file[i].config[2] = 0x020201;
s->cs_file[i].config[3] = 0x10031003;
s->cs_file[i].config[4] = 0x10f1111;
s->cs_file[i].config[5] = 0;
s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6);
- if (s->cs_file[i].config[6] & (1 << 6)) /* CSVALID */
- omap_gpmc_cs_map(&s->cs_file[i],
- s->cs_file[i].config[6] & 0x1f, /* MASKADDR */
- (s->cs_file[i].config[6] >> 8 & 0xf)); /* BASEADDR */
+
+ s->cs_file[i].config[6] = 0xf00;
+ /* In theory we could probe attached devices for some CFG1
+ * bits here, but we just retain them across resets as they
+ * were set initially by omap_gpmc_attach().
+ */
+ if (i == 0) {
+ s->cs_file[i].config[0] &= 0x00433e00;
+ s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
+ omap_gpmc_cs_map(s, i);
+ } else {
+ s->cs_file[i].config[0] &= 0x00403c00;
+ }
}
s->ecc_cs = 0;
s->ecc_ptr = 0;
ecc_reset(&s->ecc[i]);
}
+static int gpmc_wordaccess_only(target_phys_addr_t addr)
+{
+ /* Return true if the register offset is to a register that
+ * only permits word width accesses.
+ * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
+ * for any chipselect.
+ */
+ if (addr >= 0x60 && addr <= 0x1d4) {
+ int cs = (addr - 0x60) / 0x30;
+ addr -= cs * 0x30;
+ if (addr >= 0x7c && addr < 0x88) {
+ /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
+ return 0;
+ }
+ }
+ return 1;
+}
+
static uint64_t omap_gpmc_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
int cs;
struct omap_gpmc_cs_file_s *f;
- if (size != 4) {
+ if (size != 4 && gpmc_wordaccess_only(addr)) {
return omap_badwidth_read32(opaque, addr);
}
switch (addr) {
case 0x000: /* GPMC_REVISION */
- return 0x20;
+ return s->revision;
case 0x010: /* GPMC_SYSCONFIG */
return s->sysconfig;
addr -= cs * 0x30;
f = s->cs_file + cs;
switch (addr) {
- case 0x60: /* GPMC_CONFIG1 */
- return f->config[0];
- case 0x64: /* GPMC_CONFIG2 */
- return f->config[1];
- case 0x68: /* GPMC_CONFIG3 */
- return f->config[2];
- case 0x6c: /* GPMC_CONFIG4 */
- return f->config[3];
- case 0x70: /* GPMC_CONFIG5 */
- return f->config[4];
- case 0x74: /* GPMC_CONFIG6 */
- return f->config[5];
- case 0x78: /* GPMC_CONFIG7 */
- return f->config[6];
- case 0x84: /* GPMC_NAND_DATA */
- return 0;
+ case 0x60: /* GPMC_CONFIG1 */
+ return f->config[0];
+ case 0x64: /* GPMC_CONFIG2 */
+ return f->config[1];
+ case 0x68: /* GPMC_CONFIG3 */
+ return f->config[2];
+ case 0x6c: /* GPMC_CONFIG4 */
+ return f->config[3];
+ case 0x70: /* GPMC_CONFIG5 */
+ return f->config[4];
+ case 0x74: /* GPMC_CONFIG6 */
+ return f->config[5];
+ case 0x78: /* GPMC_CONFIG7 */
+ return f->config[6];
+ case 0x84 ... 0x87: /* GPMC_NAND_DATA */
+ if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
+ return omap_nand_read(f, 0, size);
+ }
+ return 0;
}
break;
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
- return s->prefconfig[0];
+ return s->prefetch.config1;
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
- return s->prefconfig[1];
+ return s->prefetch.transfercount;
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
- return s->prefcontrol;
+ return s->prefetch.startengine;
case 0x1f0: /* GPMC_PREFETCH_STATUS */
- return (s->preffifo << 24) |
- ((s->preffifo >
- ((s->prefconfig[0] >> 8) & 0x7f) ? 1 : 0) << 16) |
- s->prefcount;
+ return (s->prefetch.fifopointer << 24) |
+ ((s->prefetch.fifopointer >=
+ ((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
+ s->prefetch.count;
case 0x1f4: /* GPMC_ECC_CONFIG */
return s->ecc_cs;
int cs;
struct omap_gpmc_cs_file_s *f;
- if (size != 4) {
+ if (size != 4 && gpmc_wordaccess_only(addr)) {
return omap_badwidth_write32(opaque, addr, value);
}
break;
case 0x018: /* GPMC_IRQSTATUS */
- s->irqen = ~value;
+ s->irqen &= ~value;
omap_gpmc_int_update(s);
break;
addr -= cs * 0x30;
f = s->cs_file + cs;
switch (addr) {
- case 0x60: /* GPMC_CONFIG1 */
- f->config[0] = value & 0xffef3e13;
- break;
- case 0x64: /* GPMC_CONFIG2 */
- f->config[1] = value & 0x001f1f8f;
- break;
- case 0x68: /* GPMC_CONFIG3 */
- f->config[2] = value & 0x001f1f8f;
- break;
- case 0x6c: /* GPMC_CONFIG4 */
- f->config[3] = value & 0x1f8f1f8f;
- break;
- case 0x70: /* GPMC_CONFIG5 */
- f->config[4] = value & 0x0f1f1f1f;
- break;
- case 0x74: /* GPMC_CONFIG6 */
- f->config[5] = value & 0x00000fcf;
- break;
- case 0x78: /* GPMC_CONFIG7 */
- if ((f->config[6] ^ value) & 0xf7f) {
- if (f->config[6] & (1 << 6)) /* CSVALID */
- omap_gpmc_cs_unmap(f);
- if (value & (1 << 6)) /* CSVALID */
- omap_gpmc_cs_map(f, value & 0x1f, /* MASKADDR */
- (value >> 8 & 0xf)); /* BASEADDR */
- }
+ case 0x60: /* GPMC_CONFIG1 */
+ f->config[0] = value & 0xffef3e13;
+ break;
+ case 0x64: /* GPMC_CONFIG2 */
+ f->config[1] = value & 0x001f1f8f;
+ break;
+ case 0x68: /* GPMC_CONFIG3 */
+ f->config[2] = value & 0x001f1f8f;
+ break;
+ case 0x6c: /* GPMC_CONFIG4 */
+ f->config[3] = value & 0x1f8f1f8f;
+ break;
+ case 0x70: /* GPMC_CONFIG5 */
+ f->config[4] = value & 0x0f1f1f1f;
+ break;
+ case 0x74: /* GPMC_CONFIG6 */
+ f->config[5] = value & 0x00000fcf;
+ break;
+ case 0x78: /* GPMC_CONFIG7 */
+ if ((f->config[6] ^ value) & 0xf7f) {
+ omap_gpmc_cs_unmap(s, cs);
f->config[6] = value & 0x00000f7f;
- break;
- case 0x7c: /* GPMC_NAND_COMMAND */
- case 0x80: /* GPMC_NAND_ADDRESS */
- case 0x84: /* GPMC_NAND_DATA */
- break;
-
- default:
- goto bad_reg;
+ omap_gpmc_cs_map(s, cs);
+ }
+ break;
+ case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
+ if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
+ nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
+ omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
+ }
+ break;
+ case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
+ if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
+ nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
+ omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
+ }
+ break;
+ case 0x84 ... 0x87: /* GPMC_NAND_DATA */
+ if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
+ omap_nand_write(f, 0, value, size);
+ }
+ break;
+ default:
+ goto bad_reg;
}
break;
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
- s->prefconfig[0] = value & 0x7f8f7fbf;
- /* TODO: update interrupts, fifos, dmas */
+ if (!s->prefetch.startengine) {
+ uint32_t oldconfig1 = s->prefetch.config1;
+ uint32_t changed;
+ s->prefetch.config1 = value & 0x7f8f7fbf;
+ changed = oldconfig1 ^ s->prefetch.config1;
+ if (changed & (0x80 | 0x7000000)) {
+ /* Turning the engine on or off, or mapping it somewhere else.
+ * cs_map() and cs_unmap() check the prefetch config and
+ * overall CSVALID bits, so it is sufficient to unmap-and-map
+ * both the old cs and the new one.
+ */
+ int oldcs = prefetch_cs(oldconfig1);
+ int newcs = prefetch_cs(s->prefetch.config1);
+ omap_gpmc_cs_unmap(s, oldcs);
+ omap_gpmc_cs_map(s, oldcs);
+ if (newcs != oldcs) {
+ omap_gpmc_cs_unmap(s, newcs);
+ omap_gpmc_cs_map(s, newcs);
+ }
+ }
+ }
break;
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
- s->prefconfig[1] = value & 0x3fff;
+ if (!s->prefetch.startengine) {
+ s->prefetch.transfercount = value & 0x3fff;
+ }
break;
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
- s->prefcontrol = value & 1;
- if (s->prefcontrol) {
- if (s->prefconfig[0] & 1)
- s->preffifo = 0x40;
- else
- s->preffifo = 0x00;
+ if (s->prefetch.startengine != (value & 1)) {
+ s->prefetch.startengine = value & 1;
+ if (s->prefetch.startengine) {
+ /* Prefetch engine start */
+ s->prefetch.count = s->prefetch.transfercount;
+ if (s->prefetch.config1 & 1) {
+ /* Write */
+ s->prefetch.fifopointer = 64;
+ } else {
+ /* Read */
+ s->prefetch.fifopointer = 0;
+ fill_prefetch_fifo(s);
+ }
+ } else {
+ /* Prefetch engine forcibly stopped. The TRM
+ * doesn't define the behaviour if you do this.
+ * We clear the prefetch count, which means that
+ * we permit no more writes, and don't read any
+ * more data from NAND. The CPU can still drain
+ * the FIFO of unread data.
+ */
+ s->prefetch.count = 0;
+ }
+ omap_gpmc_int_update(s);
}
- /* TODO: start */
break;
case 0x1f4: /* GPMC_ECC_CONFIG */
.endianness = DEVICE_NATIVE_ENDIAN,
};
-struct omap_gpmc_s *omap_gpmc_init(target_phys_addr_t base, qemu_irq irq)
+struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
+ target_phys_addr_t base,
+ qemu_irq irq, qemu_irq drq)
{
+ int cs;
struct omap_gpmc_s *s = (struct omap_gpmc_s *)
g_malloc0(sizeof(struct omap_gpmc_s));
- omap_gpmc_reset(s);
-
memory_region_init_io(&s->iomem, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
memory_region_add_subregion(get_system_memory(), base, &s->iomem);
+ s->irq = irq;
+ s->drq = drq;
+ s->accept_256 = cpu_is_omap3630(mpu);
+ s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
+ s->lastirq = 0;
+ omap_gpmc_reset(s);
+
+ /* We have to register a different IO memory handler for each
+ * chip select region in case a NAND device is mapped there. We
+ * make the region the worst-case size of 256MB and rely on the
+ * container memory region in cs_map to chop it down to the actual
+ * guest-requested size.
+ */
+ for (cs = 0; cs < 8; cs++) {
+ memory_region_init_io(&s->cs_file[cs].nandiomem,
+ &omap_nand_ops,
+ &s->cs_file[cs],
+ "omap-nand",
+ 256 * 1024 * 1024);
+ }
+
+ memory_region_init_io(&s->prefetch.iomem, &omap_prefetch_ops, s,
+ "omap-gpmc-prefetch", 256 * 1024 * 1024);
return s;
}
-void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem,
- void (*base_upd)(void *opaque, target_phys_addr_t new),
- void (*unmap)(void *opaque), void *opaque)
+void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
{
struct omap_gpmc_cs_file_s *f;
+ assert(iomem);
if (cs < 0 || cs >= 8) {
fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
}
f = &s->cs_file[cs];
+ omap_gpmc_cs_unmap(s, cs);
+ f->config[0] &= ~(0xf << 10);
f->iomem = iomem;
- f->base_update = base_upd;
- f->unmap = unmap;
- f->opaque = opaque;
+ omap_gpmc_cs_map(s, cs);
+}
- if (f->config[6] & (1 << 6)) /* CSVALID */
- omap_gpmc_cs_map(f, f->config[6] & 0x1f, /* MASKADDR */
- (f->config[6] >> 8 & 0xf)); /* BASEADDR */
+void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
+{
+ struct omap_gpmc_cs_file_s *f;
+ assert(nand);
+
+ if (cs < 0 || cs >= 8) {
+ fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
+ exit(-1);
+ }
+ f = &s->cs_file[cs];
+
+ omap_gpmc_cs_unmap(s, cs);
+ f->config[0] &= ~(0xf << 10);
+ f->config[0] |= (OMAP_GPMC_NAND << 10);
+ f->dev = nand;
+ if (nand_getbuswidth(f->dev) == 16) {
+ f->config[0] |= OMAP_GPMC_16BIT << 12;
+ }
+ omap_gpmc_cs_map(s, cs);
}
DriveInfo *dinfo;
int fl_idx;
uint32_t flash_size = flash0_size;
- const MemoryRegionOps *flash_ops;
- MemoryRegion *flash = g_new(MemoryRegion, 2);
+ int be;
if (version == 2) {
flash_size = flash2_size;
fl_idx = 0;
#ifdef TARGET_WORDS_BIGENDIAN
- flash_ops = &pflash_cfi01_ops_be;
+ be = 1;
#else
- flash_ops = &pflash_cfi01_ops_le;
+ be = 0;
#endif
if ((dinfo = drive_get(IF_PFLASH, 0, fl_idx)) != NULL) {
- memory_region_init_rom_device(&flash[0], flash_ops,
- NULL, "omap_sx1.flash0-1", flash_size);
- if (!pflash_cfi01_register(OMAP_CS0_BASE, &flash[0],
+ if (!pflash_cfi01_register(OMAP_CS0_BASE, qemu_ram_alloc(NULL,
+ "omap_sx1.flash0-1", flash_size),
dinfo->bdrv, sector_size,
flash_size / sector_size,
- 4, 0, 0, 0, 0)) {
+ 4, 0, 0, 0, 0, be)) {
fprintf(stderr, "qemu: Error registering flash memory %d.\n",
fl_idx);
}
cpu_register_physical_memory(OMAP_CS1_BASE + flash1_size,
OMAP_CS1_SIZE - flash1_size, io);
- memory_region_init_rom_device(&flash[1], flash_ops,
- NULL, "omap_sx1.flash1-1", flash1_size);
- if (!pflash_cfi01_register(OMAP_CS1_BASE, &flash[1],
+ if (!pflash_cfi01_register(OMAP_CS1_BASE, qemu_ram_alloc(NULL,
+ "omap_sx1.flash1-1", flash1_size),
dinfo->bdrv, sector_size,
flash1_size / sector_size,
- 4, 0, 0, 0, 0)) {
+ 4, 0, 0, 0, 0, be)) {
fprintf(stderr, "qemu: Error registering flash memory %d.\n",
fl_idx);
}
#include "blockdev.h"
#include "memory.h"
#include "exec-memory.h"
+#include "sysbus.h"
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
#define PAGE_SHIFT 11
#define BLOCK_SHIFT (PAGE_SHIFT + 6)
typedef struct {
+ SysBusDevice busdev;
struct {
uint16_t man;
uint16_t dev;
uint8_t *current;
MemoryRegion ram;
MemoryRegion mapped_ram;
+ uint8_t current_direction;
uint8_t *boot[2];
uint8_t *data[2][2];
MemoryRegion iomem;
1);
}
-void onenand_base_update(void *opaque, target_phys_addr_t new)
+static void onenand_intr_update(OneNANDState *s)
{
- OneNANDState *s = (OneNANDState *) opaque;
-
- s->base = new;
-
- memory_region_add_subregion(get_system_memory(), s->base, &s->container);
+ qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
}
-void onenand_base_unmap(void *opaque)
+static void onenand_pre_save(void *opaque)
{
- OneNANDState *s = (OneNANDState *) opaque;
-
- memory_region_del_subregion(get_system_memory(), &s->container);
+ OneNANDState *s = opaque;
+ if (s->current == s->otp) {
+ s->current_direction = 1;
+ } else if (s->current == s->image) {
+ s->current_direction = 2;
+ } else {
+ s->current_direction = 0;
+ }
}
-static void onenand_intr_update(OneNANDState *s)
+static int onenand_post_load(void *opaque, int version_id)
{
- qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
+ OneNANDState *s = opaque;
+ switch (s->current_direction) {
+ case 0:
+ break;
+ case 1:
+ s->current = s->otp;
+ break;
+ case 2:
+ s->current = s->image;
+ break;
+ default:
+ return -1;
+ }
+ onenand_intr_update(s);
+ return 0;
}
+static const VMStateDescription vmstate_onenand = {
+ .name = "onenand",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .minimum_version_id_old = 1,
+ .pre_save = onenand_pre_save,
+ .post_load = onenand_post_load,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT8(current_direction, OneNANDState),
+ VMSTATE_INT32(cycle, OneNANDState),
+ VMSTATE_INT32(otpmode, OneNANDState),
+ VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
+ VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
+ VMSTATE_INT32(bufaddr, OneNANDState),
+ VMSTATE_INT32(count, OneNANDState),
+ VMSTATE_UINT16(command, OneNANDState),
+ VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
+ VMSTATE_UINT16(status, OneNANDState),
+ VMSTATE_UINT16(intstatus, OneNANDState),
+ VMSTATE_UINT16(wpstatus, OneNANDState),
+ VMSTATE_INT32(secs_cur, OneNANDState),
+ VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
+ VMSTATE_UINT8(ecc.cp, OneNANDState),
+ VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
+ VMSTATE_UINT16(ecc.count, OneNANDState),
+ VMSTATE_BUFFER_UNSAFE(otp, OneNANDState, 0, ((64 + 2) << PAGE_SHIFT)),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
static void onenand_reset(OneNANDState *s, int cold)
{
/* Lock the whole flash */
memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
- if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
- hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
+ if (s->bdrv_cur && bdrv_read(s->bdrv_cur, 0, s->boot[0], 8) < 0) {
+ hw_error("%s: Loading the BootRAM failed.\n", __func__);
+ }
}
}
+static void onenand_system_reset(DeviceState *dev)
+{
+ onenand_reset(FROM_SYSBUS(OneNANDState, sysbus_from_qdev(dev)), 1);
+}
+
static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
void *dest)
{
int result = 0;
if (secn > 0) {
- uint32_t size = (uint32_t) secn * 512;
- const uint8_t *sp = (const uint8_t *) src;
+ uint32_t size = (uint32_t)secn * 512;
+ const uint8_t *sp = (const uint8_t *)src;
uint8_t *dp = 0;
if (s->bdrv_cur) {
dp = g_malloc(size);
if (sec + secn > s->secs_cur) {
result = 1;
} else {
- dp = (uint8_t *) s->current + (sec << 9);
+ dp = (uint8_t *)s->current + (sec << 9);
}
}
if (!result) {
{
int result = 0;
if (secn > 0) {
- const uint8_t *sp = (const uint8_t *) src;
+ const uint8_t *sp = (const uint8_t *)src;
uint8_t *dp = 0, *dpp = 0;
if (s->bdrv_cur) {
dp = g_malloc(512);
if (!dp || bdrv_read(s->bdrv_cur,
- s->secs_cur + (sec >> 5),
- dp, 1) < 0) {
+ s->secs_cur + (sec >> 5),
+ dp, 1) < 0) {
result = 1;
} else {
dpp = dp + ((sec & 31) << 4);
}
if (s->bdrv_cur) {
result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
- dp, 1) < 0;
+ dp, 1) < 0;
}
}
if (dp) {
return 1;
}
-static void onenand_command(OneNANDState *s, int cmd)
+static void onenand_command(OneNANDState *s)
{
int b;
int sec;
s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
buf += (s->bufaddr & 3) << 4;
- switch (cmd) {
+ switch (s->command) {
case 0x00: /* Load single/multiple sector data unit into buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
s->status |= ONEN_ERR_CMD;
s->intstatus |= ONEN_INT;
fprintf(stderr, "%s: unknown OneNAND command %x\n",
- __FUNCTION__, cmd);
+ __func__, s->command);
}
onenand_intr_update(s);
if (s->intstatus & (1 << 15))
break;
s->command = value;
- onenand_command(s, s->command);
+ onenand_command(s);
break;
case 0xf221: /* System Configuration 1 */
s->config[0] = value;
.endianness = DEVICE_NATIVE_ENDIAN,
};
-void *onenand_init(BlockDriverState *bdrv,
- uint16_t man_id, uint16_t dev_id, uint16_t ver_id,
- int regshift, qemu_irq irq)
+static int onenand_initfn(SysBusDevice *dev)
{
- OneNANDState *s = (OneNANDState *) g_malloc0(sizeof(*s));
- uint32_t size = 1 << (24 + ((dev_id >> 4) & 7));
+ OneNANDState *s = (OneNANDState *)dev;
+ uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
void *ram;
-
- s->shift = regshift;
- s->intr = irq;
+ s->base = (target_phys_addr_t)-1;
s->rdy = NULL;
- s->id.man = man_id;
- s->id.dev = dev_id;
- s->id.ver = ver_id;
s->blocks = size >> BLOCK_SHIFT;
s->secs = size >> 9;
s->blockwp = g_malloc(s->blocks);
- s->density_mask = (dev_id & 0x08) ? (1 << (6 + ((dev_id >> 4) & 7))) : 0;
+ s->density_mask = (s->id.dev & 0x08)
+ ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
memory_region_init_io(&s->iomem, &onenand_ops, s, "onenand",
0x10000 << s->shift);
- s->bdrv = bdrv;
if (!s->bdrv) {
s->image = memset(g_malloc(size + (size >> 5)),
- 0xff, size + (size >> 5));
+ 0xff, size + (size >> 5));
+ } else {
+ s->bdrv_cur = s->bdrv;
}
s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
0xff, (64 + 2) << PAGE_SHIFT);
s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
onenand_mem_setup(s);
+ sysbus_init_irq(dev, &s->intr);
+ sysbus_init_mmio_region(dev, &s->container);
+ vmstate_register(&dev->qdev,
+ ((s->shift & 0x7f) << 24)
+ | ((s->id.man & 0xff) << 16)
+ | ((s->id.dev & 0xff) << 8)
+ | (s->id.ver & 0xff),
+ &vmstate_onenand, s);
+ return 0;
+}
- onenand_reset(s, 1);
+static SysBusDeviceInfo onenand_info = {
+ .init = onenand_initfn,
+ .qdev.name = "onenand",
+ .qdev.size = sizeof(OneNANDState),
+ .qdev.reset = onenand_system_reset,
+ .qdev.props = (Property[]) {
+ DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
+ DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
+ DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
+ DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
+ DEFINE_PROP_DRIVE("drive", OneNANDState, bdrv),
+ DEFINE_PROP_END_OF_LIST()
+ }
+};
- return s;
+static void onenand_register_device(void)
+{
+ sysbus_register_withprop(&onenand_info);
}
-void *onenand_raw_otp(void *opaque)
+void *onenand_raw_otp(DeviceState *onenand_device)
{
- OneNANDState *s = (OneNANDState *) opaque;
-
- return s->otp;
+ return FROM_SYSBUS(OneNANDState, sysbus_from_qdev(onenand_device))->otp;
}
+
+device_init(onenand_register_device)
uint64_t address;
uint64_t length;
uint32_t type;
-} __attribute((__packed__, __aligned__(4)));
+} QEMU_PACKED __attribute((__aligned__(4)));
struct e820_table {
uint32_t count;
struct e820_entry entry[E820_NR_ENTRIES];
-} __attribute((__packed__, __aligned__(4)));
+} QEMU_PACKED __attribute((__aligned__(4)));
static struct e820_table e820_table;
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
/*
- * PCI stubs for plathome that doesn't support pci bus.
+ * PCI stubs for platforms that don't support pci bus.
*
* Copyright (c) 2010 Isaku Yamahata <yamahata at valinux co jp>
* VA Linux Systems Japan K.K.
return next;
}
+static uint8_t pci_find_capability_at_offset(PCIDevice *pdev, uint8_t offset)
+{
+ uint8_t next, prev, found = 0;
+
+ if (!(pdev->used[offset])) {
+ return 0;
+ }
+
+ assert(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST);
+
+ for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]);
+ prev = next + PCI_CAP_LIST_NEXT) {
+ if (next <= offset && next > found) {
+ found = next;
+ }
+ }
+ return found;
+}
+
/* Patch the PCI vendor and device ids in a PCI rom image if necessary.
This is needed for an option rom which is used for more than one device. */
static void pci_patch_ids(PCIDevice *pdev, uint8_t *ptr, int size)
uint8_t offset, uint8_t size)
{
uint8_t *config;
+ int i, overlapping_cap;
+
if (!offset) {
offset = pci_find_space(pdev, size);
if (!offset) {
return -ENOSPC;
}
+ } else {
+ /* Verify that capabilities don't overlap. Note: device assignment
+ * depends on this check to verify that the device is not broken.
+ * Should never trigger for emulated devices, but it's helpful
+ * for debugging these. */
+ for (i = offset; i < offset + size; i++) {
+ overlapping_cap = pci_find_capability_at_offset(pdev, i);
+ if (overlapping_cap) {
+ fprintf(stderr, "ERROR: %04x:%02x:%02x.%x "
+ "Attempt to add PCI capability %x at offset "
+ "%x overlaps existing capability %x at offset %x\n",
+ pci_find_domain(pdev->bus), pci_bus_num(pdev->bus),
+ PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
+ cap_id, offset, overlapping_cap, i);
+ return -EINVAL;
+ }
+ }
}
config = pdev->config + offset;
return val;
}
-static void pci_host_config_write(void *opaque, target_phys_addr_t addr,
- uint64_t val, unsigned len)
+static void pci_host_config_write(ReadWriteHandler *handler,
+ pcibus_t addr, uint32_t val, int len)
{
- PCIHostState *s = opaque;
+ PCIHostState *s = container_of(handler, PCIHostState, conf_handler);
- PCI_DPRINTF("%s addr " TARGET_FMT_plx " len %d val %"PRIx64"\n",
+ PCI_DPRINTF("%s addr %" FMT_PCIBUS " %d val %"PRIx32"\n",
__func__, addr, len, val);
s->config_reg = val;
}
-static uint64_t pci_host_config_read(void *opaque, target_phys_addr_t addr,
- unsigned len)
+static uint32_t pci_host_config_read(ReadWriteHandler *handler,
+ pcibus_t addr, int len)
{
- PCIHostState *s = opaque;
+ PCIHostState *s = container_of(handler, PCIHostState, conf_handler);
uint32_t val = s->config_reg;
- PCI_DPRINTF("%s addr " TARGET_FMT_plx " len %d val %"PRIx32"\n",
+ PCI_DPRINTF("%s addr %" FMT_PCIBUS " len %d val %"PRIx32"\n",
__func__, addr, len, val);
return val;
}
-static void pci_host_data_write(void *opaque, target_phys_addr_t addr,
- uint64_t val, unsigned len)
+static void pci_host_data_write(ReadWriteHandler *handler,
+ pcibus_t addr, uint32_t val, int len)
{
- PCIHostState *s = opaque;
- PCI_DPRINTF("write addr " TARGET_FMT_plx " len %d val %x\n",
- addr, len, (unsigned)val);
+ PCIHostState *s = container_of(handler, PCIHostState, data_handler);
+ PCI_DPRINTF("write addr %" FMT_PCIBUS " len %d val %x\n",
+ addr, len, val);
if (s->config_reg & (1u << 31))
pci_data_write(s->bus, s->config_reg | (addr & 3), val, len);
}
-static uint64_t pci_host_data_read(void *opaque,
- target_phys_addr_t addr, unsigned len)
+static uint32_t pci_host_data_read(ReadWriteHandler *handler,
+ pcibus_t addr, int len)
{
- PCIHostState *s = opaque;
+ PCIHostState *s = container_of(handler, PCIHostState, data_handler);
uint32_t val;
if (!(s->config_reg & (1 << 31)))
return 0xffffffff;
val = pci_data_read(s->bus, s->config_reg | (addr & 3), len);
- PCI_DPRINTF("read addr " TARGET_FMT_plx " len %d val %x\n",
+ PCI_DPRINTF("read addr %" FMT_PCIBUS " len %d val %x\n",
addr, len, val);
return val;
}
-const MemoryRegionOps pci_host_conf_le_ops = {
- .read = pci_host_config_read,
- .write = pci_host_config_write,
- .endianness = DEVICE_LITTLE_ENDIAN,
-};
-
-const MemoryRegionOps pci_host_conf_be_ops = {
- .read = pci_host_config_read,
- .write = pci_host_config_write,
- .endianness = DEVICE_BIG_ENDIAN,
-};
+static void pci_host_init(PCIHostState *s)
+{
+ s->conf_handler.write = pci_host_config_write;
+ s->conf_handler.read = pci_host_config_read;
+ s->data_handler.write = pci_host_data_write;
+ s->data_handler.read = pci_host_data_read;
+}
-const MemoryRegionOps pci_host_data_le_ops = {
- .read = pci_host_data_read,
- .write = pci_host_data_write,
- .endianness = DEVICE_LITTLE_ENDIAN,
-};
+int pci_host_conf_register_mmio(PCIHostState *s, int endian)
+{
+ pci_host_init(s);
+ return cpu_register_io_memory_simple(&s->conf_handler, endian);
+}
-const MemoryRegionOps pci_host_data_be_ops = {
- .read = pci_host_data_read,
- .write = pci_host_data_write,
- .endianness = DEVICE_BIG_ENDIAN,
-};
+void pci_host_conf_register_ioport(pio_addr_t ioport, PCIHostState *s)
+{
+ pci_host_init(s);
+ register_ioport_simple(&s->conf_handler, ioport, 4, 4);
+ sysbus_init_ioports(&s->busdev, ioport, 4);
+}
+int pci_host_data_register_mmio(PCIHostState *s, int endian)
+{
+ pci_host_init(s);
+ return cpu_register_io_memory_simple(&s->data_handler, endian);
+}
+void pci_host_data_register_ioport(pio_addr_t ioport, PCIHostState *s)
+{
+ pci_host_init(s);
+ register_ioport_simple(&s->data_handler, ioport, 4, 1);
+ register_ioport_simple(&s->data_handler, ioport, 4, 2);
+ register_ioport_simple(&s->data_handler, ioport, 4, 4);
+ sysbus_init_ioports(&s->busdev, ioport, 4);
+}
#define PCI_HOST_H
#include "sysbus.h"
+#include "rwhandler.h"
struct PCIHostState {
SysBusDevice busdev;
- MemoryRegion conf_mem;
- MemoryRegion data_mem;
+ ReadWriteHandler conf_handler;
+ ReadWriteHandler data_handler;
MemoryRegion *address_space;
uint32_t config_reg;
PCIBus *bus;
void pci_data_write(PCIBus *s, uint32_t addr, uint32_t val, int len);
uint32_t pci_data_read(PCIBus *s, uint32_t addr, int len);
-extern const MemoryRegionOps pci_host_conf_le_ops;
-extern const MemoryRegionOps pci_host_conf_be_ops;
-extern const MemoryRegionOps pci_host_data_le_ops;
-extern const MemoryRegionOps pci_host_data_be_ops;
+/* for mmio */
+int pci_host_conf_register_mmio(PCIHostState *s, int endian);
+int pci_host_data_register_mmio(PCIHostState *s, int endian);
+
+/* for ioio */
+void pci_host_conf_register_ioport(pio_addr_t ioport, PCIHostState *s);
+void pci_host_data_register_ioport(pio_addr_t ioport, PCIHostState *s);
#endif /* PCI_HOST_H */
}
}
+static void hotplug_event_clear(PCIDevice *dev)
+{
+ hotplug_event_update_event_status(dev);
+ if (!msix_enabled(dev) && !msi_enabled(dev) && !dev->exp.hpev_notified) {
+ qemu_set_irq(dev->irq[dev->exp.hpev_intx], 0);
+ }
+}
+
/*
* A PCI Express Hot-Plug Event has occurred, so update slot status register
* and notify OS of the event if necessary.
uint8_t *exp_cap = dev->config + pos;
uint16_t sltsta = pci_get_word(exp_cap + PCI_EXP_SLTSTA);
+ if (ranges_overlap(addr, len, pos + PCI_EXP_SLTSTA, 2)) {
+ hotplug_event_clear(dev);
+ }
+
if (!ranges_overlap(addr, len, pos + PCI_EXP_SLTCTL, 2)) {
return;
}
int i;
assert(err->status);
- assert(err->status & (err->status - 1));
+ assert(!(err->status & (err->status - 1)));
errcap &= ~(PCI_ERR_CAP_FEP_MASK | PCI_ERR_CAP_TLP);
errcap |= PCI_ERR_CAP_FEP(first_bit);
int fep = PCI_ERR_CAP_FEP(errcap);
assert(err->status);
- assert(err->status & (err->status - 1));
+ assert(!(err->status & (err->status - 1)));
if (errcap & PCI_ERR_CAP_MHRE &&
(pci_get_long(aer_cap + PCI_ERR_UNCOR_STATUS) & (1U << fep))) {
if (pcie_aer_parse_error_string(error_name, &error_status, &correctable)) {
char *e = NULL;
error_status = strtoul(error_name, &e, 0);
- correctable = !!qdict_get_int(qdict, "correctable");
+ correctable = qdict_get_try_bool(qdict, "correctable", 0);
if (!e || *e != '\0') {
monitor_printf(mon, "invalid error status value. \"%s\"",
error_name);
return -EINVAL;
}
}
+ err.status = error_status;
err.source_id = (pci_bus_num(dev->bus) << 8) | dev->devfn;
err.flags = 0;
if (correctable) {
err.flags |= PCIE_AER_ERR_IS_CORRECTABLE;
}
- if (qdict_get_int(qdict, "advisory_non_fatal")) {
+ if (qdict_get_try_bool(qdict, "advisory_non_fatal", 0)) {
err.flags |= PCIE_AER_ERR_MAYBE_ADVISORY;
}
if (qdict_haskey(qdict, "header0")) {
target_phys_addr_t ddr_base = MEMORY_BASEADDR;
ram_addr_t phys_lmb_bram;
ram_addr_t phys_ram;
- MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
+ ram_addr_t phys_flash;
qemu_irq irq[32], *cpu_irq;
/* init CPUs */
phys_ram = qemu_ram_alloc(NULL, "petalogix_ml605.ram", ram_size);
cpu_register_physical_memory(ddr_base, ram_size, phys_ram | IO_MEM_RAM);
- memory_region_init_rom_device(phys_flash, &pflash_cfi01_ops_le,
- NULL, "petalogix_ml605.flash", FLASH_SIZE);
+ phys_flash = qemu_ram_alloc(NULL, "petalogix_ml605.flash", FLASH_SIZE);
dinfo = drive_get(IF_PFLASH, 0, 0);
/* 5th parameter 2 means bank-width
* 10th paremeter 0 means little-endian */
pflash_cfi01_register(FLASH_BASEADDR, phys_flash,
dinfo ? dinfo->bdrv : NULL, (64 * 1024),
FLASH_SIZE >> 16,
- 2, 0x89, 0x18, 0x0000, 0x0);
+ 2, 0x89, 0x18, 0x0000, 0x0, 0);
cpu_irq = microblaze_pic_init_cpu(env);
target_phys_addr_t ddr_base = 0x90000000;
ram_addr_t phys_lmb_bram;
ram_addr_t phys_ram;
- MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
+ ram_addr_t phys_flash;
qemu_irq irq[32], *cpu_irq;
/* init CPUs */
phys_ram = qemu_ram_alloc(NULL, "petalogix_s3adsp1800.ram", ram_size);
cpu_register_physical_memory(ddr_base, ram_size, phys_ram | IO_MEM_RAM);
- memory_region_init_rom_device(phys_flash, &pflash_cfi01_ops_be,
- NULL, "petalogix_s3adsp1800.flash",
- FLASH_SIZE);
+ phys_flash = qemu_ram_alloc(NULL, "petalogix_s3adsp1800.flash", FLASH_SIZE);
dinfo = drive_get(IF_PFLASH, 0, 0);
pflash_cfi01_register(0xa0000000, phys_flash,
dinfo ? dinfo->bdrv : NULL, (64 * 1024),
FLASH_SIZE >> 16,
- 1, 0x89, 0x18, 0x0000, 0x0);
+ 1, 0x89, 0x18, 0x0000, 0x0, 1);
cpu_irq = microblaze_pic_init_cpu(env);
dev = xilinx_intc_create(0x81800000, cpu_irq[0], 2);
#include "flash.h"
#include "block.h"
#include "qemu-timer.h"
-#include "exec-memory.h"
#define PFLASH_BUG(fmt, ...) \
do { \
target_phys_addr_t counter;
unsigned int writeblock_size;
QEMUTimer *timer;
- MemoryRegion *mem;
+ ram_addr_t off;
+ int fl_mem;
void *storage;
};
if (pfl->bypass) {
pfl->wcycle = 2;
} else {
- memory_region_rom_device_set_readable(pfl->mem, true);
+ cpu_register_physical_memory(pfl->base, pfl->total_len,
+ pfl->off | IO_MEM_ROMD | pfl->fl_mem);
pfl->wcycle = 0;
}
pfl->cmd = 0;
if (!pfl->wcycle) {
/* Set the device in I/O access mode */
- memory_region_rom_device_set_readable(pfl->mem, false);
+ cpu_register_physical_memory(pfl->base, pfl->total_len, pfl->fl_mem);
}
switch (pfl->wcycle) {
__func__, offset, pfl->wcycle, pfl->cmd, value);
reset_flash:
- memory_region_rom_device_set_readable(pfl->mem, true);
+ cpu_register_physical_memory(pfl->base, pfl->total_len,
+ pfl->off | IO_MEM_ROMD | pfl->fl_mem);
pfl->bypass = 0;
pfl->wcycle = 0;
pflash_write(pfl, addr, value, 4, 0);
}
-const MemoryRegionOps pflash_cfi01_ops_be = {
- .old_mmio = {
- .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
- .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
- },
- .endianness = DEVICE_NATIVE_ENDIAN,
+static CPUWriteMemoryFunc * const pflash_write_ops_be[] = {
+ &pflash_writeb_be,
+ &pflash_writew_be,
+ &pflash_writel_be,
};
-const MemoryRegionOps pflash_cfi01_ops_le = {
- .old_mmio = {
- .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
- .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
- },
- .endianness = DEVICE_NATIVE_ENDIAN,
+static CPUReadMemoryFunc * const pflash_read_ops_be[] = {
+ &pflash_readb_be,
+ &pflash_readw_be,
+ &pflash_readl_be,
+};
+
+static CPUWriteMemoryFunc * const pflash_write_ops_le[] = {
+ &pflash_writeb_le,
+ &pflash_writew_le,
+ &pflash_writel_le,
+};
+
+static CPUReadMemoryFunc * const pflash_read_ops_le[] = {
+ &pflash_readb_le,
+ &pflash_readw_le,
+ &pflash_readl_le,
};
/* Count trailing zeroes of a 32 bits quantity */
return ret;
}
-pflash_t *pflash_cfi01_register(target_phys_addr_t base, MemoryRegion *mem,
+pflash_t *pflash_cfi01_register(target_phys_addr_t base, ram_addr_t off,
BlockDriverState *bs, uint32_t sector_len,
int nb_blocs, int width,
uint16_t id0, uint16_t id1,
- uint16_t id2, uint16_t id3)
+ uint16_t id2, uint16_t id3,
+ int be)
{
pflash_t *pfl;
target_phys_addr_t total_len;
pfl = g_malloc0(sizeof(pflash_t));
/* FIXME: Allocate ram ourselves. */
- pfl->storage = memory_region_get_ram_ptr(mem);
- pfl->mem = mem;
- memory_region_add_subregion(get_system_memory(), base, mem);
+ pfl->storage = qemu_get_ram_ptr(off);
+ if (be) {
+ pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_be,
+ pflash_write_ops_be, pfl,
+ DEVICE_NATIVE_ENDIAN);
+ } else {
+ pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_le,
+ pflash_write_ops_le, pfl,
+ DEVICE_NATIVE_ENDIAN);
+ }
+ pfl->off = off;
+ cpu_register_physical_memory(base, total_len,
+ off | pfl->fl_mem | IO_MEM_ROMD);
pfl->bs = bs;
if (pfl->bs) {
/* read the initial flash content */
ret = bdrv_read(pfl->bs, 0, pfl->storage, total_len >> 9);
if (ret < 0) {
- memory_region_del_subregion(get_system_memory(), mem);
+ cpu_unregister_io_memory(pfl->fl_mem);
g_free(pfl);
return NULL;
}
#include "flash.h"
#include "qemu-timer.h"
#include "block.h"
-#include "exec-memory.h"
//#define PFLASH_DEBUG
#ifdef PFLASH_DEBUG
uint8_t cfi_len;
uint8_t cfi_table[0x52];
QEMUTimer *timer;
- /* The device replicates the flash memory across its memory space. Emulate
- * that by having a container (.mem) filled with an array of aliases
- * (.mem_mappings) pointing to the flash memory (.orig_mem).
- */
- MemoryRegion mem;
- MemoryRegion *mem_mappings; /* array; one per mapping */
- MemoryRegion *orig_mem;
+ ram_addr_t off;
+ int fl_mem;
int rom_mode;
int read_counter; /* used for lazy switch-back to rom mode */
void *storage;
};
-/*
- * Set up replicated mappings of the same region.
- */
-static void pflash_setup_mappings(pflash_t *pfl, MemoryRegion *mem)
-{
- unsigned i;
- target_phys_addr_t size = memory_region_size(mem);
-
- pfl->orig_mem = mem;
- memory_region_init(&pfl->mem, "pflash", pfl->mappings * size);
- pfl->mem_mappings = g_new(MemoryRegion, pfl->mappings);
- for (i = 0; i < pfl->mappings; ++i) {
- memory_region_init_alias(&pfl->mem_mappings[i], "pflash-alias", mem,
- 0, size);
- memory_region_add_subregion(&pfl->mem, i * size, &pfl->mem_mappings[i]);
- }
-}
-
static void pflash_register_memory(pflash_t *pfl, int rom_mode)
{
- memory_region_rom_device_set_readable(pfl->orig_mem, rom_mode);
+ unsigned long phys_offset = pfl->fl_mem;
+ int i;
+
+ if (rom_mode)
+ phys_offset |= pfl->off | IO_MEM_ROMD;
+ pfl->rom_mode = rom_mode;
+
+ for (i = 0; i < pfl->mappings; i++)
+ cpu_register_physical_memory(pfl->base + i * pfl->chip_len,
+ pfl->chip_len, phys_offset);
}
static void pflash_timer (void *opaque)
pflash_write(pfl, addr, value, 4, 0);
}
-const MemoryRegionOps pflash_cfi02_ops_be = {
- .old_mmio = {
- .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
- .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
- },
- .endianness = DEVICE_NATIVE_ENDIAN,
+static CPUWriteMemoryFunc * const pflash_write_ops_be[] = {
+ &pflash_writeb_be,
+ &pflash_writew_be,
+ &pflash_writel_be,
+};
+
+static CPUReadMemoryFunc * const pflash_read_ops_be[] = {
+ &pflash_readb_be,
+ &pflash_readw_be,
+ &pflash_readl_be,
};
-const MemoryRegionOps pflash_cfi02_ops_le = {
- .old_mmio = {
- .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
- .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
- },
- .endianness = DEVICE_NATIVE_ENDIAN,
+static CPUWriteMemoryFunc * const pflash_write_ops_le[] = {
+ &pflash_writeb_le,
+ &pflash_writew_le,
+ &pflash_writel_le,
+};
+
+static CPUReadMemoryFunc * const pflash_read_ops_le[] = {
+ &pflash_readb_le,
+ &pflash_readw_le,
+ &pflash_readl_le,
};
/* Count trailing zeroes of a 32 bits quantity */
return ret;
}
-pflash_t *pflash_cfi02_register(target_phys_addr_t base, MemoryRegion *mem,
+pflash_t *pflash_cfi02_register(target_phys_addr_t base, ram_addr_t off,
BlockDriverState *bs, uint32_t sector_len,
int nb_blocs, int nb_mappings, int width,
uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3,
- uint16_t unlock_addr0, uint16_t unlock_addr1)
+ uint16_t unlock_addr0, uint16_t unlock_addr1,
+ int be)
{
pflash_t *pfl;
int32_t chip_len;
#endif
pfl = g_malloc0(sizeof(pflash_t));
/* FIXME: Allocate ram ourselves. */
- pfl->storage = memory_region_get_ram_ptr(mem);
+ pfl->storage = qemu_get_ram_ptr(off);
+ if (be) {
+ pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_be,
+ pflash_write_ops_be,
+ pfl, DEVICE_NATIVE_ENDIAN);
+ } else {
+ pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_le,
+ pflash_write_ops_le,
+ pfl, DEVICE_NATIVE_ENDIAN);
+ }
+ pfl->off = off;
pfl->base = base;
pfl->chip_len = chip_len;
pfl->mappings = nb_mappings;
+ pflash_register_memory(pfl, 1);
pfl->bs = bs;
if (pfl->bs) {
/* read the initial flash content */
ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
if (ret < 0) {
+ cpu_unregister_io_memory(pfl->fl_mem);
g_free(pfl);
return NULL;
}
}
- pflash_setup_mappings(pfl, mem);
- pfl->rom_mode = 1;
- memory_region_add_subregion(get_system_memory(), pfl->base, &pfl->mem);
#if 0 /* XXX: there should be a bit to set up read-only,
* the same way the hardware does (with WP pin).
*/
int i, r;
uint32_t smram;
- memory_region_transaction_begin();
update_pam(d, 0xf0000, 0x100000, (d->dev.config[I440FX_PAM] >> 4) & 3,
&d->pam_regions[0]);
for(i = 0; i < 12; i++) {
d->smram_enabled = false;
}
}
- memory_region_transaction_commit();
}
static void i440fx_set_smm(int val, void *arg)
{
I440FXState *s = FROM_SYSBUS(I440FXState, dev);
- memory_region_init_io(&s->conf_mem, &pci_host_conf_le_ops, s,
- "pci-conf-idx", 4);
- sysbus_add_io(dev, 0xcf8, &s->conf_mem);
- sysbus_init_ioports(&s->busdev, 0xcf8, 4);
-
- memory_region_init_io(&s->data_mem, &pci_host_data_le_ops, s,
- "pci-conf-data", 4);
- sysbus_add_io(dev, 0xcfc, &s->data_mem);
- sysbus_init_ioports(&s->busdev, 0xcfc, 4);
+ pci_host_conf_register_ioport(0xcf8, s);
+ pci_host_data_register_ioport(0xcfc, s);
return 0;
}
#include "qemu-log.h"
#include "loader.h"
#include "blockdev.h"
-#include "exec-memory.h"
#define BIOS_FILENAME "ppc405_rom.bin"
#define BIOS_SIZE (2048 * 1024)
ppc4xx_bd_info_t bd;
CPUPPCState *env;
qemu_irq *pic;
- ram_addr_t sram_offset, bdloc;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *bios = g_new(MemoryRegion, 1);
+ ram_addr_t sram_offset, bios_offset, bdloc;
MemoryRegion *ram_memories = g_malloc(2 * sizeof(*ram_memories));
target_phys_addr_t ram_bases[2], ram_sizes[2];
target_ulong sram_size;
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
if (dinfo) {
bios_size = bdrv_getlength(dinfo->bdrv);
- memory_region_init_rom_device(bios, &pflash_cfi02_ops_be,
- NULL, "ef405ep.bios", bios_size);
+ bios_offset = qemu_ram_alloc(NULL, "ef405ep.bios", bios_size);
fl_sectors = (bios_size + 65535) >> 16;
#ifdef DEBUG_BOARD_INIT
printf("Register parallel flash %d size %lx"
- " at addr %lx '%s' %d\n",
- fl_idx, bios_size, -bios_size,
+ " at offset %08lx addr %lx '%s' %d\n",
+ fl_idx, bios_size, bios_offset, -bios_size,
bdrv_get_device_name(dinfo->bdrv), fl_sectors);
#endif
- pflash_cfi02_register((uint32_t)(-bios_size), bios,
+ pflash_cfi02_register((uint32_t)(-bios_size), bios_offset,
dinfo->bdrv, 65536, fl_sectors, 1,
- 2, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA);
+ 2, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA,
+ 1);
fl_idx++;
} else
#endif
#ifdef DEBUG_BOARD_INIT
printf("Load BIOS from file\n");
#endif
- memory_region_init_ram(bios, NULL, "ef405ep.bios", BIOS_SIZE);
+ bios_offset = qemu_ram_alloc(NULL, "ef405ep.bios", BIOS_SIZE);
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
- bios_size = load_image(filename, memory_region_get_ram_ptr(bios));
+ bios_size = load_image(filename, qemu_get_ram_ptr(bios_offset));
g_free(filename);
} else {
bios_size = -1;
exit(1);
}
bios_size = (bios_size + 0xfff) & ~0xfff;
- memory_region_set_readonly(bios, true);
- memory_region_add_subregion(address_space_mem, (uint32_t)(-bios_size),
- bios);
+ cpu_register_physical_memory((uint32_t)(-bios_size),
+ bios_size, bios_offset | IO_MEM_ROM);
}
/* Register FPGA */
#ifdef DEBUG_BOARD_INIT
{
char *filename;
qemu_irq *pic;
- MemoryRegion *address_space_mem = get_system_memory();
- MemoryRegion *bios = g_new(MemoryRegion, 1);
- MemoryRegion *flash = g_new(MemoryRegion, 1);
+ ram_addr_t bios_offset;
MemoryRegion *ram_memories = g_malloc(2 * sizeof(*ram_memories));
target_phys_addr_t ram_bases[2], ram_sizes[2];
long bios_size;
/* XXX: should check that size is 2MB */
// bios_size = 2 * 1024 * 1024;
fl_sectors = (bios_size + 65535) >> 16;
- memory_region_init_rom_device(bios, &pflash_cfi02_ops_be,
- NULL, "taihu_405ep.bios", bios_size);
+ bios_offset = qemu_ram_alloc(NULL, "taihu_405ep.bios", bios_size);
#ifdef DEBUG_BOARD_INIT
printf("Register parallel flash %d size %lx"
- " at addr %lx '%s' %d\n",
- fl_idx, bios_size, -bios_size,
+ " at offset %08lx addr %lx '%s' %d\n",
+ fl_idx, bios_size, bios_offset, -bios_size,
bdrv_get_device_name(dinfo->bdrv), fl_sectors);
#endif
- pflash_cfi02_register((uint32_t)(-bios_size), bios,
+ pflash_cfi02_register((uint32_t)(-bios_size), bios_offset,
dinfo->bdrv, 65536, fl_sectors, 1,
- 4, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA);
+ 4, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA,
+ 1);
fl_idx++;
} else
#endif
#endif
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
- memory_region_init_ram(bios, NULL, "taihu_405ep.bios", BIOS_SIZE);
+ bios_offset = qemu_ram_alloc(NULL, "taihu_405ep.bios", BIOS_SIZE);
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
- bios_size = load_image(filename, memory_region_get_ram_ptr(bios));
+ bios_size = load_image(filename, qemu_get_ram_ptr(bios_offset));
g_free(filename);
} else {
bios_size = -1;
exit(1);
}
bios_size = (bios_size + 0xfff) & ~0xfff;
- memory_region_set_readonly(bios, true);
- memory_region_add_subregion(address_space_mem,
- (uint32_t)(-bios_size), bios);
+ cpu_register_physical_memory((uint32_t)(-bios_size),
+ bios_size, bios_offset | IO_MEM_ROM);
}
/* Register Linux flash */
dinfo = drive_get(IF_PFLASH, 0, fl_idx);
fl_sectors = (bios_size + 65535) >> 16;
#ifdef DEBUG_BOARD_INIT
printf("Register parallel flash %d size %lx"
- " at addr " TARGET_FMT_lx " '%s'\n",
- fl_idx, bios_size, (target_ulong)0xfc000000,
+ " at offset %08lx addr " TARGET_FMT_lx " '%s'\n",
+ fl_idx, bios_size, bios_offset, (target_ulong)0xfc000000,
bdrv_get_device_name(dinfo->bdrv));
#endif
- memory_region_init_rom_device(flash, &pflash_cfi02_ops_be,
- NULL, "taihu_405ep.flash", bios_size);
- pflash_cfi02_register(0xfc000000, flash,
+ bios_offset = qemu_ram_alloc(NULL, "taihu_405ep.flash", bios_size);
+ pflash_cfi02_register(0xfc000000, bios_offset,
dinfo->bdrv, 65536, fl_sectors, 1,
- 4, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA);
+ 4, 0x0001, 0x22DA, 0x0000, 0x0000, 0x555, 0x2AA,
+ 1);
fl_idx++;
}
/* Register CLPD & LCD display */
cpu_register_physical_memory(config_space + PCIC0_CFGADDR, 4, index);
/* CFGDATA */
- memory_region_init_io(&controller->pci_state.data_mem,
- &pci_host_data_be_ops,
- &controller->pci_state, "pci-conf-data", 4);
- memory_region_add_subregion(get_system_memory(),
- config_space + PCIC0_CFGDATA,
- &controller->pci_state.data_mem);
+ index = pci_host_data_register_mmio(&controller->pci_state, 1);
+ if (index < 0)
+ goto free;
+ cpu_register_physical_memory(config_space + PCIC0_CFGDATA, 4, index);
/* Internal registers */
index = cpu_register_io_memory(pci_reg_read, pci_reg_write, controller,
uint32_t gasket_time;
qemu_irq irq[4];
/* mmio maps */
+ int cfgaddr;
+ int cfgdata;
int reg;
};
PCIHostState *h = FROM_SYSBUS(PCIHostState, sysbus_from_qdev(dev));
PPCE500PCIState *s = DO_UPCAST(PPCE500PCIState, pci_state, h);
- sysbus_add_memory(dev, base + PCIE500_CFGADDR, &h->conf_mem);
- sysbus_add_memory(dev, base + PCIE500_CFGDATA, &h->data_mem);
+ cpu_register_physical_memory(base + PCIE500_CFGADDR, 4, s->cfgaddr);
+ cpu_register_physical_memory(base + PCIE500_CFGDATA, 4, s->cfgdata);
cpu_register_physical_memory(base + PCIE500_REG_BASE, PCIE500_REG_SIZE,
s->reg);
}
static void e500_pci_unmap(SysBusDevice *dev, target_phys_addr_t base)
{
- PCIHostState *h = FROM_SYSBUS(PCIHostState, sysbus_from_qdev(dev));
-
- sysbus_del_memory(dev, &h->conf_mem);
- sysbus_del_memory(dev, &h->data_mem);
+ cpu_register_physical_memory(base + PCIE500_CFGADDR, 4,
+ IO_MEM_UNASSIGNED);
+ cpu_register_physical_memory(base + PCIE500_CFGDATA, 4,
+ IO_MEM_UNASSIGNED);
cpu_register_physical_memory(base + PCIE500_REG_BASE, PCIE500_REG_SIZE,
IO_MEM_UNASSIGNED);
}
pci_create_simple(b, 0, "e500-host-bridge");
- memory_region_init_io(&h->conf_mem, &pci_host_conf_be_ops, h,
- "pci-conf-idx", 4);
- memory_region_init_io(&h->data_mem, &pci_host_data_le_ops, h,
- "pci-conf-data", 4);
+ s->cfgaddr = pci_host_conf_register_mmio(&s->pci_state, DEVICE_BIG_ENDIAN);
+ s->cfgdata = pci_host_data_register_mmio(&s->pci_state,
+ DEVICE_LITTLE_ENDIAN);
s->reg = cpu_register_io_memory(e500_pci_reg_read, e500_pci_reg_write, s,
DEVICE_BIG_ENDIAN);
sysbus_init_mmio_cb2(dev, e500_pci_map, e500_pci_unmap);
address_space_io,
0, 4);
- memory_region_init_io(&s->conf_mem, &pci_host_conf_be_ops, s,
- "pci-conf-idx", 1);
- memory_region_add_subregion(address_space_io, 0xcf8, &s->conf_mem);
- sysbus_init_ioports(&s->busdev, 0xcf8, 1);
-
- memory_region_init_io(&s->conf_mem, &pci_host_data_be_ops, s,
- "pci-conf-data", 1);
- memory_region_add_subregion(address_space_io, 0xcfc, &s->data_mem);
- sysbus_init_ioports(&s->busdev, 0xcfc, 1);
+ pci_host_conf_register_ioport(0xcf8, s);
+
+ pci_host_data_register_ioport(0xcfc, s);
PPC_io_memory = cpu_register_io_memory(PPC_PCIIO_read,
PPC_PCIIO_write, s,
int orientation;
};
-typedef struct __attribute__ ((__packed__)) {
+typedef struct QEMU_PACKED {
uint32_t fdaddr;
uint32_t fsaddr;
uint32_t fidr;
dprint(d, 1, "%s: pipe creation failed\n", __FUNCTION__);
return;
}
-#ifdef CONFIG_IOTHREAD
fcntl(d->pipe[0], F_SETFL, O_NONBLOCK);
-#else
- fcntl(d->pipe[0], F_SETFL, O_NONBLOCK /* | O_ASYNC */);
-#endif
fcntl(d->pipe[1], F_SETFL, O_NONBLOCK);
fcntl(d->pipe[0], F_SETOWN, getpid());
env->pc = s->vector;
}
-static struct __attribute__((__packed__))
+static struct QEMU_PACKED
{
int mount_root_rdonly;
int ramdisk_flags;
qemu_irq *irq;
DriveInfo *dinfo;
int i;
- MemoryRegion *flash = g_new(MemoryRegion, 1);
if (!cpu_model)
cpu_model = "SH7751R";
/* onboard flash memory */
dinfo = drive_get(IF_PFLASH, 0, 0);
- memory_region_init_rom_device(flash, &pflash_cfi02_ops_le,
- NULL, "r2d.flash", FLASH_SIZE);
- pflash_cfi02_register(0x0, flash,
+ pflash_cfi02_register(0x0, qemu_ram_alloc(NULL, "r2d.flash", FLASH_SIZE),
dinfo ? dinfo->bdrv : NULL, (16 * 1024),
FLASH_SIZE >> 16,
1, 4, 0x0000, 0x0000, 0x0000, 0x0000,
- 0x555, 0x2aa);
+ 0x555, 0x2aa, 0);
/* NIC: rtl8139 on-board, and 2 slots. */
for (i = 0; i < nb_nics; i++)
typedef struct dma_pagetable_entry {
int32_t frame;
int32_t owner;
-} __attribute__((packed)) dma_pagetable_entry;
+} QEMU_PACKED dma_pagetable_entry;
#define DMA_PAGESIZE 4096
#define DMA_REG_ENABLE 1
struct iovec iov;
QEMUIOVector qiov;
uint32_t status;
+ BlockAcctCookie acct;
} SCSIDiskReq;
struct SCSIDiskState
static void scsi_read_complete(void * opaque, int ret)
{
SCSIDiskReq *r = (SCSIDiskReq *)opaque;
+ SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, r->req.dev);
int n;
r->req.aiocb = NULL;
+ bdrv_acct_done(s->bs, &r->acct);
+
if (ret) {
if (scsi_handle_rw_error(r, -ret, SCSI_REQ_STATUS_RETRY_READ)) {
return;
r->iov.iov_len = n * 512;
qemu_iovec_init_external(&r->qiov, &r->iov, 1);
+
+ bdrv_acct_start(s->bs, &r->acct, n * BDRV_SECTOR_SIZE, BDRV_ACCT_READ);
r->req.aiocb = bdrv_aio_readv(s->bs, r->sector, &r->qiov, n,
scsi_read_complete, r);
if (r->req.aiocb == NULL) {
static void scsi_write_complete(void * opaque, int ret)
{
SCSIDiskReq *r = (SCSIDiskReq *)opaque;
+ SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, r->req.dev);
uint32_t len;
uint32_t n;
r->req.aiocb = NULL;
+ bdrv_acct_done(s->bs, &r->acct);
+
if (ret) {
if (scsi_handle_rw_error(r, -ret, SCSI_REQ_STATUS_RETRY_WRITE)) {
return;
n = r->iov.iov_len / 512;
if (n) {
qemu_iovec_init_external(&r->qiov, &r->iov, 1);
+
+ bdrv_acct_start(s->bs, &r->acct, n * BDRV_SECTOR_SIZE, BDRV_ACCT_WRITE);
r->req.aiocb = bdrv_aio_writev(s->bs, r->sector, &r->qiov, n,
scsi_write_complete, r);
if (r->req.aiocb == NULL) {
buflen = 8;
break;
case SYNCHRONIZE_CACHE:
+ {
+ BlockAcctCookie acct;
+
+ bdrv_acct_start(s->bs, &acct, 0, BDRV_ACCT_FLUSH);
ret = bdrv_flush(s->bs);
+ bdrv_acct_done(s->bs, &acct);
if (ret < 0) {
if (scsi_handle_rw_error(r, -ret, SCSI_REQ_STATUS_RETRY_FLUSH)) {
return -1;
}
}
break;
+ }
case GET_CONFIGURATION:
memset(outbuf, 0, 8);
/* ??? This should probably return much more information. For now
PCI_DEVFN(0, 0), 4);
memory_region_init_io(&s->memconfig_p4, &sh_pci_reg_ops, s,
"sh_pci", 0x224);
- memory_region_init_alias(&s->memconfig_a7, "sh_pci.2", &s->memconfig_a7,
+ memory_region_init_alias(&s->memconfig_a7, "sh_pci.2", &s->memconfig_p4,
0, 0x224);
isa_mmio_setup(&s->isa, 0x40000);
sysbus_init_mmio_cb2(dev, sh_pci_map, sh_pci_unmap);
struct smbios_header {
uint16_t length;
uint8_t type;
-} __attribute__((__packed__));
+} QEMU_PACKED;
struct smbios_field {
struct smbios_header header;
uint8_t type;
uint16_t offset;
uint8_t data[];
-} __attribute__((__packed__));
+} QEMU_PACKED;
struct smbios_table {
struct smbios_header header;
uint8_t data[];
-} __attribute__((__packed__));
+} QEMU_PACKED;
#define SMBIOS_FIELD_ENTRY 0
#define SMBIOS_TABLE_ENTRY 1
uint8_t type;
uint8_t length;
uint16_t handle;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 0 - BIOS Information */
struct smbios_type_0 {
uint8_t system_bios_minor_release;
uint8_t embedded_controller_major_release;
uint8_t embedded_controller_minor_release;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 1 - System Information */
struct smbios_type_1 {
uint8_t wake_up_type;
uint8_t sku_number_str;
uint8_t family_str;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 3 - System Enclosure (v2.3) */
struct smbios_type_3 {
uint8_t number_of_power_cords;
uint8_t contained_element_count;
// contained elements follow
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 4 - Processor Information (v2.0) */
struct smbios_type_4 {
uint16_t l1_cache_handle;
uint16_t l2_cache_handle;
uint16_t l3_cache_handle;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 16 - Physical Memory Array
* Associated with one type 17 (Memory Device).
uint32_t maximum_capacity;
uint16_t memory_error_information_handle;
uint16_t number_of_memory_devices;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 17 - Memory Device
* Associated with one type 19
*/
uint8_t bank_locator_str;
uint8_t memory_type;
uint16_t type_detail;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 19 - Memory Array Mapped Address */
struct smbios_type_19 {
uint32_t ending_address;
uint16_t memory_array_handle;
uint8_t partition_width;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 20 - Memory Device Mapped Address */
struct smbios_type_20 {
uint8_t partition_row_position;
uint8_t interleave_position;
uint8_t interleaved_data_depth;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 32 - System Boot Information */
struct smbios_type_32 {
struct smbios_structure_header header;
uint8_t reserved[6];
uint8_t boot_status;
-} __attribute__((__packed__));
+} QEMU_PACKED;
/* SMBIOS type 127 -- End-of-table */
struct smbios_type_127 {
struct smbios_structure_header header;
-} __attribute__((__packed__));
+} QEMU_PACKED;
#endif /*QEMU_SMBIOS_H */
struct srp_direct_buf table_desc;
uint32_t len;
struct srp_direct_buf desc_list[0];
-} __attribute__((packed));
+} QEMU_PACKED;
enum {
SRP_MULTICHAN_SINGLE = 0,
uint16_t buf_fmt;
uint8_t rsp_flags;
uint8_t reserved2[25];
-} __attribute__((packed));
+} QEMU_PACKED;
struct srp_login_rej {
uint8_t opcode;
uint8_t reserved1[6];
uint64_t tag;
uint8_t reserved2[4];
- uint64_t lun __attribute__((packed));
+ uint64_t lun QEMU_PACKED;
uint8_t reserved3[2];
uint8_t tsk_mgmt_func;
uint8_t reserved4;
uint8_t data_in_desc_cnt;
uint64_t tag;
uint8_t reserved2[4];
- uint64_t lun __attribute__((packed));
+ uint64_t lun QEMU_PACKED;
uint8_t reserved3;
uint8_t task_attr;
uint8_t reserved4;
uint32_t sense_data_len;
uint32_t resp_data_len;
uint8_t data[0];
-} __attribute__((packed));
+} QEMU_PACKED;
#endif /* SCSI_SRP_H */
#include "i2c.h"
#include "net.h"
#include "boards.h"
-#include "exec-memory.h"
#define GPIO_A 0
#define GPIO_B 1
0x40024000, 0x40025000, 0x40026000};
static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
- MemoryRegion *address_space_mem = get_system_memory();
qemu_irq *pic;
DeviceState *gpio_dev[7];
qemu_irq gpio_in[7][8];
flash_size = ((board->dc0 & 0xffff) + 1) << 1;
sram_size = (board->dc0 >> 18) + 1;
- pic = armv7m_init(address_space_mem,
- flash_size, sram_size, kernel_filename, cpu_model);
+ pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
if (board->dc1 & (1 << 16)) {
dev = sysbus_create_varargs("stellaris-adc", 0x40038000,
NICState *nic;
NICConf conf;
qemu_irq irq;
- MemoryRegion mmio;
+ int mmio_index;
} stellaris_enet_state;
static void stellaris_enet_update(stellaris_enet_state *s)
return (s->np < 31);
}
-static uint64_t stellaris_enet_read(void *opaque, target_phys_addr_t offset,
- unsigned size)
+static uint32_t stellaris_enet_read(void *opaque, target_phys_addr_t offset)
{
stellaris_enet_state *s = (stellaris_enet_state *)opaque;
uint32_t val;
}
static void stellaris_enet_write(void *opaque, target_phys_addr_t offset,
- uint64_t value, unsigned size)
+ uint32_t value)
{
stellaris_enet_state *s = (stellaris_enet_state *)opaque;
}
}
-static const MemoryRegionOps stellaris_enet_ops = {
- .read = stellaris_enet_read,
- .write = stellaris_enet_write,
- .endianness = DEVICE_NATIVE_ENDIAN,
+static CPUReadMemoryFunc * const stellaris_enet_readfn[] = {
+ stellaris_enet_read,
+ stellaris_enet_read,
+ stellaris_enet_read
};
+static CPUWriteMemoryFunc * const stellaris_enet_writefn[] = {
+ stellaris_enet_write,
+ stellaris_enet_write,
+ stellaris_enet_write
+};
static void stellaris_enet_reset(stellaris_enet_state *s)
{
s->mdv = 0x80;
unregister_savevm(&s->busdev.qdev, "stellaris_enet", s);
- memory_region_destroy(&s->mmio);
+ cpu_unregister_io_memory(s->mmio_index);
g_free(s);
}
{
stellaris_enet_state *s = FROM_SYSBUS(stellaris_enet_state, dev);
- memory_region_init_io(&s->mmio, &stellaris_enet_ops, s, "stellaris_enet",
- 0x1000);
- sysbus_init_mmio_region(dev, &s->mmio);
+ s->mmio_index = cpu_register_io_memory(stellaris_enet_readfn,
+ stellaris_enet_writefn, s,
+ DEVICE_NATIVE_ENDIAN);
+ sysbus_init_mmio(dev, 0x1000, s->mmio_index);
sysbus_init_irq(dev, &s->irq);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
pil |= 1 << 14;
}
- if (!pil) {
+ /* The bit corresponding to psrpil is (1<< psrpil), the next bit
+ is (2 << psrpil). */
+ if (pil < (2 << env->psrpil)){
if (env->interrupt_request & CPU_INTERRUPT_HARD) {
CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
env->interrupt_index);
break;
}
}
- } else {
+ } else if (env->interrupt_request & CPU_INTERRUPT_HARD) {
CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
"current interrupt %x\n",
pil, env->pil_in, env->softint, env->interrupt_index);
+ env->interrupt_index = 0;
+ cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
dev->mmio[n].memory = memory;
}
+MemoryRegion *sysbus_mmio_get_region(SysBusDevice *dev, int n)
+{
+ return dev->mmio[n].memory;
+}
+
void sysbus_init_ioports(SysBusDevice *dev, pio_addr_t ioport, pio_addr_t size)
{
pio_addr_t i;
return strdup(path);
}
-
-void sysbus_add_memory(SysBusDevice *dev, target_phys_addr_t addr,
- MemoryRegion *mem)
-{
- memory_region_add_subregion(get_system_memory(), addr, mem);
-}
-
-void sysbus_add_memory_overlap(SysBusDevice *dev, target_phys_addr_t addr,
- MemoryRegion *mem, unsigned priority)
-{
- memory_region_add_subregion_overlap(get_system_memory(), addr, mem,
- priority);
-}
-
-void sysbus_del_memory(SysBusDevice *dev, MemoryRegion *mem)
-{
- memory_region_del_subregion(get_system_memory(), mem);
-}
-
-void sysbus_add_io(SysBusDevice *dev, target_phys_addr_t addr,
- MemoryRegion *mem)
-{
- memory_region_add_subregion(get_system_io(), addr, mem);
-}
-
-void sysbus_del_io(SysBusDevice *dev, MemoryRegion *mem)
-{
- memory_region_del_subregion(get_system_io(), mem);
-}
void sysbus_init_mmio_cb2(SysBusDevice *dev,
mmio_mapfunc cb, mmio_mapfunc unmap);
void sysbus_init_mmio_region(SysBusDevice *dev, MemoryRegion *memory);
+MemoryRegion *sysbus_mmio_get_region(SysBusDevice *dev, int n);
void sysbus_init_irq(SysBusDevice *dev, qemu_irq *p);
void sysbus_pass_irq(SysBusDevice *dev, SysBusDevice *target);
void sysbus_init_ioports(SysBusDevice *dev, pio_addr_t ioport, pio_addr_t size);
void sysbus_connect_irq(SysBusDevice *dev, int n, qemu_irq irq);
void sysbus_mmio_map(SysBusDevice *dev, int n, target_phys_addr_t addr);
-void sysbus_add_memory(SysBusDevice *dev, target_phys_addr_t addr,
- MemoryRegion *mem);
-void sysbus_add_memory_overlap(SysBusDevice *dev, target_phys_addr_t addr,
- MemoryRegion *mem, unsigned priority);
-void sysbus_del_memory(SysBusDevice *dev, MemoryRegion *mem);
-void sysbus_add_io(SysBusDevice *dev, target_phys_addr_t addr,
- MemoryRegion *mem);
-void sysbus_del_io(SysBusDevice *dev, MemoryRegion *mem);
/* Legacy helper function for creating devices. */
DeviceState *sysbus_create_varargs(const char *name,
#include "usb.h"
#include "omap.h"
#include "irq.h"
-#include "tusb6010.h"
+#include "devices.h"
+#include "sysbus.h"
-struct TUSBState {
+typedef struct TUSBState {
+ SysBusDevice busdev;
MemoryRegion iomem[2];
qemu_irq irq;
MUSBState *musb;
uint32_t pullup[2];
uint32_t control_config;
uint32_t otg_timer_val;
-};
+} TUSBState;
#define TUSB_DEVCLOCK 60000000 /* 60 MHz */
#define TUSB_EP_CONFIG_XFR_SIZE(v) ((v) & 0x7fffffff)
#define TUSB_PROD_TEST_RESET_VAL 0xa596
-MemoryRegion *tusb6010_sync_io(TUSBState *s)
-{
- return &s->iomem[0];
-}
-
-MemoryRegion *tusb6010_async_io(TUSBState *s)
-{
- return &s->iomem[1];
-}
-
static void tusb_intr_update(TUSBState *s)
{
if (s->control_config & TUSB_INT_CTRL_CONF_INT_POLARITY)
}
}
-TUSBState *tusb6010_init(qemu_irq intr)
+static void tusb6010_power(TUSBState *s, int on)
{
- TUSBState *s = g_malloc0(sizeof(*s));
+ if (!on) {
+ s->power = 0;
+ } else if (!s->power && on) {
+ s->power = 1;
+ /* Pull the interrupt down after TUSB6010 comes up. */
+ s->intr_ok = 0;
+ tusb_intr_update(s);
+ qemu_mod_timer(s->pwr_timer,
+ qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 2);
+ }
+}
+
+static void tusb6010_irq(void *opaque, int source, int level)
+{
+ if (source) {
+ tusb_musb_core_intr(opaque, source - 1, level);
+ } else {
+ tusb6010_power(opaque, level);
+ }
+}
+
+static void tusb6010_reset(DeviceState *dev)
+{
+ TUSBState *s = FROM_SYSBUS(TUSBState, sysbus_from_qdev(dev));
+ int i;
s->test_reset = TUSB_PROD_TEST_RESET_VAL;
s->host_mode = 0;
s->mask = 0xffffffff;
s->intr = 0x00000000;
s->otg_timer_val = 0;
- memory_region_init_io(&s->iomem[1], &tusb_async_ops, s, "tusb-async",
- UINT32_MAX);
- s->irq = intr;
+ s->scratch = 0;
+ s->prcm_config = 0;
+ s->prcm_mngmt = 0;
+ s->intr_ok = 0;
+ s->usbip_intr = 0;
+ s->usbip_mask = 0;
+ s->gpio_intr = 0;
+ s->gpio_mask = 0;
+ s->gpio_config = 0;
+ s->dma_intr = 0;
+ s->dma_mask = 0;
+ s->dma_map = 0;
+ s->dma_config = 0;
+ s->ep0_config = 0;
+ s->wkup_mask = 0;
+ s->pullup[0] = s->pullup[1] = 0;
+ s->control_config = 0;
+ for (i = 0; i < 15; i++) {
+ s->rx_config[i] = s->tx_config[i] = 0;
+ }
+}
+
+static int tusb6010_init(SysBusDevice *dev)
+{
+ TUSBState *s = FROM_SYSBUS(TUSBState, dev);
+ qemu_irq *musb_irqs;
+ int i;
s->otg_timer = qemu_new_timer_ns(vm_clock, tusb_otg_tick, s);
s->pwr_timer = qemu_new_timer_ns(vm_clock, tusb_power_tick, s);
- s->musb = musb_init(qemu_allocate_irqs(tusb_musb_core_intr, s,
- __musb_irq_max));
-
- return s;
+ memory_region_init_io(&s->iomem[1], &tusb_async_ops, s, "tusb-async",
+ UINT32_MAX);
+ sysbus_init_mmio_region(dev, &s->iomem[0]);
+ sysbus_init_mmio_region(dev, &s->iomem[1]);
+ sysbus_init_irq(dev, &s->irq);
+ qdev_init_gpio_in(&dev->qdev, tusb6010_irq, __musb_irq_max + 1);
+ musb_irqs = g_new0(qemu_irq, __musb_irq_max);
+ for (i = 0; i < __musb_irq_max; i++) {
+ musb_irqs[i] = qdev_get_gpio_in(&dev->qdev, i + 1);
+ }
+ s->musb = musb_init(musb_irqs);
+ return 0;
}
-void tusb6010_power(TUSBState *s, int on)
-{
- if (!on)
- s->power = 0;
- else if (!s->power && on) {
- s->power = 1;
+static SysBusDeviceInfo tusb6010_info = {
+ .init = tusb6010_init,
+ .qdev.name = "tusb6010",
+ .qdev.size = sizeof(TUSBState),
+ .qdev.reset = tusb6010_reset,
+};
- /* Pull the interrupt down after TUSB6010 comes up. */
- s->intr_ok = 0;
- tusb_intr_update(s);
- qemu_mod_timer(s->pwr_timer,
- qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 2);
- }
+static void tusb6010_register_device(void)
+{
+ sysbus_register_withprop(&tusb6010_info);
}
+
+device_init(tusb6010_register_device)
+++ /dev/null
-/*
- * tusb6010 interfaces
- *
- * Copyright 2011 Red Hat, Inc. and/or its affiliates
- *
- * Authors:
- * Avi Kivity <avi@redhat.com>
- *
- * Derived from hw/devices.h.
- *
- * This work is licensed under the terms of the GNU GPL, version 2. See
- * the COPYING file in the top-level directory.
- *
- */
-
-#ifndef TUSB6010_H
-#define TUSB6010_H
-
-#include "targphys.h"
-#include "memory.h"
-
-typedef struct TUSBState TUSBState;
-TUSBState *tusb6010_init(qemu_irq intr);
-MemoryRegion *tusb6010_sync_io(TUSBState *s);
-MemoryRegion *tusb6010_async_io(TUSBState *s);
-void tusb6010_power(TUSBState *s, int on);
-
-#endif
typedef struct UNINState {
SysBusDevice busdev;
PCIHostState host_state;
+ ReadWriteHandler data_handler;
} UNINState;
static int pci_unin_map_irq(PCIDevice *pci_dev, int irq_num)
return retval;
}
-static void unin_data_write(void *opaque, target_phys_addr_t addr,
- uint64_t val, unsigned len)
+static void unin_data_write(ReadWriteHandler *handler,
+ pcibus_t addr, uint32_t val, int len)
{
- UNINState *s = opaque;
- UNIN_DPRINTF("write addr %" TARGET_FMT_plx " len %d val %"PRIx64"\n",
- addr, len, val);
+ UNINState *s = container_of(handler, UNINState, data_handler);
+ UNIN_DPRINTF("write addr %" FMT_PCIBUS " len %d val %x\n", addr, len, val);
pci_data_write(s->host_state.bus,
unin_get_config_reg(s->host_state.config_reg, addr),
val, len);
}
-static uint64_t unin_data_read(void *opaque, target_phys_addr_t addr,
- unsigned len)
+static uint32_t unin_data_read(ReadWriteHandler *handler,
+ pcibus_t addr, int len)
{
- UNINState *s = opaque;
+ UNINState *s = container_of(handler, UNINState, data_handler);
uint32_t val;
val = pci_data_read(s->host_state.bus,
unin_get_config_reg(s->host_state.config_reg, addr),
len);
- UNIN_DPRINTF("read addr %" TARGET_FMT_plx " len %d val %x\n",
- addr, len, val);
+ UNIN_DPRINTF("read addr %" FMT_PCIBUS " len %d val %x\n", addr, len, val);
return val;
}
-static const MemoryRegionOps unin_data_ops = {
- .read = unin_data_read,
- .write = unin_data_write,
- .endianness = DEVICE_LITTLE_ENDIAN,
-};
-
static int pci_unin_main_init_device(SysBusDevice *dev)
{
UNINState *s;
+ int pci_mem_config, pci_mem_data;
/* Use values found on a real PowerMac */
/* Uninorth main bus */
s = FROM_SYSBUS(UNINState, dev);
- memory_region_init_io(&s->host_state.conf_mem, &pci_host_conf_le_ops,
- &s->host_state, "pci-conf-idx", 0x1000);
- memory_region_init_io(&s->host_state.data_mem, &unin_data_ops, s,
- "pci-conf-data", 0x1000);
- sysbus_init_mmio_region(dev, &s->host_state.conf_mem);
- sysbus_init_mmio_region(dev, &s->host_state.data_mem);
+ pci_mem_config = pci_host_conf_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ s->data_handler.read = unin_data_read;
+ s->data_handler.write = unin_data_write;
+ pci_mem_data = cpu_register_io_memory_simple(&s->data_handler,
+ DEVICE_LITTLE_ENDIAN);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_config);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_data);
qemu_register_reset(pci_unin_reset, &s->host_state);
return 0;
}
-
static int pci_u3_agp_init_device(SysBusDevice *dev)
{
UNINState *s;
+ int pci_mem_config, pci_mem_data;
/* Uninorth U3 AGP bus */
s = FROM_SYSBUS(UNINState, dev);
- memory_region_init_io(&s->host_state.conf_mem, &pci_host_conf_le_ops,
- &s->host_state, "pci-conf-idx", 0x1000);
- memory_region_init_io(&s->host_state.data_mem, &unin_data_ops, s,
- "pci-conf-data", 0x1000);
- sysbus_init_mmio_region(dev, &s->host_state.conf_mem);
- sysbus_init_mmio_region(dev, &s->host_state.data_mem);
+ pci_mem_config = pci_host_conf_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ s->data_handler.read = unin_data_read;
+ s->data_handler.write = unin_data_write;
+ pci_mem_data = cpu_register_io_memory_simple(&s->data_handler,
+ DEVICE_LITTLE_ENDIAN);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_config);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_data);
qemu_register_reset(pci_unin_reset, &s->host_state);
static int pci_unin_agp_init_device(SysBusDevice *dev)
{
UNINState *s;
+ int pci_mem_config, pci_mem_data;
/* Uninorth AGP bus */
s = FROM_SYSBUS(UNINState, dev);
- memory_region_init_io(&s->host_state.conf_mem, &pci_host_conf_le_ops,
- &s->host_state, "pci-conf-idx", 0x1000);
- memory_region_init_io(&s->host_state.data_mem, &pci_host_data_le_ops,
- &s->host_state, "pci-conf-data", 0x1000);
- sysbus_init_mmio_region(dev, &s->host_state.conf_mem);
- sysbus_init_mmio_region(dev, &s->host_state.data_mem);
+ pci_mem_config = pci_host_conf_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ pci_mem_data = pci_host_data_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_config);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_data);
return 0;
}
static int pci_unin_internal_init_device(SysBusDevice *dev)
{
UNINState *s;
+ int pci_mem_config, pci_mem_data;
/* Uninorth internal bus */
s = FROM_SYSBUS(UNINState, dev);
- memory_region_init_io(&s->host_state.conf_mem, &pci_host_conf_le_ops,
- &s->host_state, "pci-conf-idx", 0x1000);
- memory_region_init_io(&s->host_state.data_mem, &pci_host_data_le_ops,
- &s->host_state, "pci-conf-data", 0x1000);
- sysbus_init_mmio_region(dev, &s->host_state.conf_mem);
- sysbus_init_mmio_region(dev, &s->host_state.data_mem);
+ pci_mem_config = pci_host_conf_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ pci_mem_data = pci_host_data_register_mmio(&s->host_state,
+ DEVICE_LITTLE_ENDIAN);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_config);
+ sysbus_init_mmio(dev, 0x1000, pci_mem_data);
return 0;
}
*/
};
-typedef struct __attribute__ ((__packed__)) CCID_Header {
+typedef struct QEMU_PACKED CCID_Header {
uint8_t bMessageType;
uint32_t dwLength;
uint8_t bSlot;
uint8_t bSeq;
} CCID_Header;
-typedef struct __attribute__ ((__packed__)) CCID_BULK_IN {
+typedef struct QEMU_PACKED CCID_BULK_IN {
CCID_Header hdr;
uint8_t bStatus; /* Only used in BULK_IN */
uint8_t bError; /* Only used in BULK_IN */
} CCID_BULK_IN;
-typedef struct __attribute__ ((__packed__)) CCID_SlotStatus {
+typedef struct QEMU_PACKED CCID_SlotStatus {
CCID_BULK_IN b;
uint8_t bClockStatus;
} CCID_SlotStatus;
-typedef struct __attribute__ ((__packed__)) CCID_Parameter {
+typedef struct QEMU_PACKED CCID_Parameter {
CCID_BULK_IN b;
uint8_t bProtocolNum;
uint8_t abProtocolDataStructure[0];
} CCID_Parameter;
-typedef struct __attribute__ ((__packed__)) CCID_DataBlock {
+typedef struct QEMU_PACKED CCID_DataBlock {
CCID_BULK_IN b;
uint8_t bChainParameter;
uint8_t abData[0];
} CCID_DataBlock;
/* 6.1.4 PC_to_RDR_XfrBlock */
-typedef struct __attribute__ ((__packed__)) CCID_XferBlock {
+typedef struct QEMU_PACKED CCID_XferBlock {
CCID_Header hdr;
uint8_t bBWI; /* Block Waiting Timeout */
uint16_t wLevelParameter; /* XXX currently unused */
uint8_t abData[0];
} CCID_XferBlock;
-typedef struct __attribute__ ((__packed__)) CCID_IccPowerOn {
+typedef struct QEMU_PACKED CCID_IccPowerOn {
CCID_Header hdr;
uint8_t bPowerSelect;
uint16_t abRFU;
} CCID_IccPowerOn;
-typedef struct __attribute__ ((__packed__)) CCID_IccPowerOff {
+typedef struct QEMU_PACKED CCID_IccPowerOff {
CCID_Header hdr;
uint16_t abRFU;
} CCID_IccPowerOff;
-typedef struct __attribute__ ((__packed__)) CCID_SetParameters {
+typedef struct QEMU_PACKED CCID_SetParameters {
CCID_Header hdr;
uint8_t bProtocolNum;
uint16_t abRFU;
size = 0x8000;
break;
case 3:
+ default:
base = 0xb8000;
size = 0x8000;
break;
};
struct VirtQueue *vvq = virtio_get_queue(vdev, idx);
- if (!vdev->binding->set_host_notifier) {
- fprintf(stderr, "binding does not support host notifiers\n");
- return -ENOSYS;
- }
-
vq->num = state.num = virtio_queue_get_num(vdev, idx);
r = ioctl(dev->control, VHOST_SET_VRING_NUM, &state);
if (r) {
r = -errno;
goto fail_alloc;
}
- r = vdev->binding->set_host_notifier(vdev->binding_opaque, idx, true);
- if (r < 0) {
- fprintf(stderr, "Error binding host notifier: %d\n", -r);
- goto fail_host_notifier;
- }
-
file.fd = event_notifier_get_fd(virtio_queue_get_host_notifier(vvq));
r = ioctl(dev->control, VHOST_SET_VRING_KICK, &file);
if (r) {
fail_call:
fail_kick:
- vdev->binding->set_host_notifier(vdev->binding_opaque, idx, false);
-fail_host_notifier:
fail_alloc:
cpu_physical_memory_unmap(vq->ring, virtio_queue_get_ring_size(vdev, idx),
0, 0);
.index = idx,
};
int r;
- r = vdev->binding->set_host_notifier(vdev->binding_opaque, idx, false);
- if (r < 0) {
- fprintf(stderr, "vhost VQ %d host cleanup failed: %d\n", idx, r);
- fflush(stderr);
- }
- assert (r >= 0);
r = ioctl(dev->control, VHOST_GET_VRING_BASE, &state);
if (r < 0) {
fprintf(stderr, "vhost VQ %d ring restore failed: %d\n", idx, r);
hdev->force;
}
+/* Stop processing guest IO notifications in qemu.
+ * Start processing them in vhost in kernel.
+ */
+int vhost_dev_enable_notifiers(struct vhost_dev *hdev, VirtIODevice *vdev)
+{
+ int i, r;
+ if (!vdev->binding->set_host_notifier) {
+ fprintf(stderr, "binding does not support host notifiers\n");
+ r = -ENOSYS;
+ goto fail;
+ }
+
+ for (i = 0; i < hdev->nvqs; ++i) {
+ r = vdev->binding->set_host_notifier(vdev->binding_opaque, i, true);
+ if (r < 0) {
+ fprintf(stderr, "vhost VQ %d notifier binding failed: %d\n", i, -r);
+ goto fail_vq;
+ }
+ }
+
+ return 0;
+fail_vq:
+ while (--i >= 0) {
+ r = vdev->binding->set_host_notifier(vdev->binding_opaque, i, false);
+ if (r < 0) {
+ fprintf(stderr, "vhost VQ %d notifier cleanup error: %d\n", i, -r);
+ fflush(stderr);
+ }
+ assert (r >= 0);
+ }
+fail:
+ return r;
+}
+
+/* Stop processing guest IO notifications in vhost.
+ * Start processing them in qemu.
+ * This might actually run the qemu handlers right away,
+ * so virtio in qemu must be completely setup when this is called.
+ */
+void vhost_dev_disable_notifiers(struct vhost_dev *hdev, VirtIODevice *vdev)
+{
+ int i, r;
+
+ for (i = 0; i < hdev->nvqs; ++i) {
+ r = vdev->binding->set_host_notifier(vdev->binding_opaque, i, false);
+ if (r < 0) {
+ fprintf(stderr, "vhost VQ %d notifier cleanup failed: %d\n", i, -r);
+ fflush(stderr);
+ }
+ assert (r >= 0);
+ }
+}
+
+/* Host notifiers must be enabled at this point. */
int vhost_dev_start(struct vhost_dev *hdev, VirtIODevice *vdev)
{
int i, r;
return r;
}
+/* Host notifiers must be enabled at this point. */
void vhost_dev_stop(struct vhost_dev *hdev, VirtIODevice *vdev)
{
int i, r;
bool vhost_dev_query(struct vhost_dev *hdev, VirtIODevice *vdev);
int vhost_dev_start(struct vhost_dev *hdev, VirtIODevice *vdev);
void vhost_dev_stop(struct vhost_dev *hdev, VirtIODevice *vdev);
+int vhost_dev_enable_notifiers(struct vhost_dev *hdev, VirtIODevice *vdev);
+void vhost_dev_disable_notifiers(struct vhost_dev *hdev, VirtIODevice *vdev);
#endif
{
struct vhost_vring_file file = { };
int r;
+
+ net->dev.nvqs = 2;
+ net->dev.vqs = net->vqs;
+
+ r = vhost_dev_enable_notifiers(&net->dev, dev);
+ if (r < 0) {
+ goto fail_notifiers;
+ }
if (net->dev.acked_features & (1 << VIRTIO_NET_F_MRG_RXBUF)) {
tap_set_vnet_hdr_len(net->vc,
sizeof(struct virtio_net_hdr_mrg_rxbuf));
}
- net->dev.nvqs = 2;
- net->dev.vqs = net->vqs;
r = vhost_dev_start(&net->dev, dev);
if (r < 0) {
- return r;
+ goto fail_start;
}
net->vc->info->poll(net->vc, false);
if (net->dev.acked_features & (1 << VIRTIO_NET_F_MRG_RXBUF)) {
tap_set_vnet_hdr_len(net->vc, sizeof(struct virtio_net_hdr));
}
+fail_start:
+ vhost_dev_disable_notifiers(&net->dev, dev);
+fail_notifiers:
return r;
}
if (net->dev.acked_features & (1 << VIRTIO_NET_F_MRG_RXBUF)) {
tap_set_vnet_hdr_len(net->vc, sizeof(struct virtio_net_hdr));
}
+ vhost_dev_disable_notifiers(&net->dev, dev);
}
void vhost_net_cleanup(struct vhost_net *net)
target_phys_addr_t ram_base = 0;
DriveInfo *dinfo;
ram_addr_t phys_ram;
- MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
+ ram_addr_t phys_flash;
qemu_irq irq[32], *cpu_irq;
clk_setup_t clk_setup[7];
int kernel_size;
phys_ram = qemu_ram_alloc(NULL, "ram", ram_size);
cpu_register_physical_memory(ram_base, ram_size, phys_ram | IO_MEM_RAM);
- memory_region_init_rom_device(phys_flash, &pflash_cfi01_ops_be,
- NULL, "virtex.flash", FLASH_SIZE);
+ phys_flash = qemu_ram_alloc(NULL, "virtex.flash", FLASH_SIZE);
dinfo = drive_get(IF_PFLASH, 0, 0);
pflash_cfi01_register(0xfc000000, phys_flash,
dinfo ? dinfo->bdrv : NULL, (64 * 1024),
FLASH_SIZE >> 16,
- 1, 0x89, 0x18, 0x0000, 0x0);
+ 1, 0x89, 0x18, 0x0000, 0x0, 1);
cpu_irq = (qemu_irq *) &env->irq_inputs[PPC40x_INPUT_INT];
dev = xilinx_intc_create(0x81800000, cpu_irq[0], 0);
typedef struct VirtIOBalloonStat {
uint16_t tag;
uint64_t val;
-} __attribute__((packed)) VirtIOBalloonStat;
+} QEMU_PACKED VirtIOBalloonStat;
#endif
struct virtio_scsi_inhdr *scsi;
QEMUIOVector qiov;
struct VirtIOBlockReq *next;
+ BlockAcctCookie acct;
} VirtIOBlockReq;
static void virtio_blk_req_complete(VirtIOBlockReq *req, int status)
stb_p(&req->in->status, status);
virtqueue_push(s->vq, &req->elem, req->qiov.size + sizeof(*req->in));
virtio_notify(&s->vdev, s->vq);
-
- g_free(req);
}
static int virtio_blk_handle_rw_error(VirtIOBlockReq *req, int error,
vm_stop(VMSTOP_DISKFULL);
} else {
virtio_blk_req_complete(req, VIRTIO_BLK_S_IOERR);
+ bdrv_acct_done(s->bs, &req->acct);
+ g_free(req);
bdrv_mon_event(s->bs, BDRV_ACTION_REPORT, is_read);
}
}
virtio_blk_req_complete(req, VIRTIO_BLK_S_OK);
+ bdrv_acct_done(req->dev->bs, &req->acct);
+ g_free(req);
}
static void virtio_blk_flush_complete(void *opaque, int ret)
}
virtio_blk_req_complete(req, VIRTIO_BLK_S_OK);
+ bdrv_acct_done(req->dev->bs, &req->acct);
+ g_free(req);
}
static VirtIOBlockReq *virtio_blk_alloc_request(VirtIOBlock *s)
*/
if (req->elem.out_num < 2 || req->elem.in_num < 3) {
virtio_blk_req_complete(req, VIRTIO_BLK_S_IOERR);
+ g_free(req);
return;
}
*/
if (req->elem.out_num > 2 && req->elem.in_num > 3) {
virtio_blk_req_complete(req, VIRTIO_BLK_S_UNSUPP);
+ g_free(req);
return;
}
stl_p(&req->scsi->data_len, hdr.dxfer_len);
virtio_blk_req_complete(req, status);
+ g_free(req);
}
#else
static void virtio_blk_handle_scsi(VirtIOBlockReq *req)
{
virtio_blk_req_complete(req, VIRTIO_BLK_S_UNSUPP);
+ g_free(req);
}
#endif /* __linux__ */
{
BlockDriverAIOCB *acb;
+ bdrv_acct_start(req->dev->bs, &req->acct, 0, BDRV_ACCT_FLUSH);
+
/*
* Make sure all outstanding writes are posted to the backing device.
*/
sector = ldq_p(&req->out->sector);
+ bdrv_acct_start(req->dev->bs, &req->acct, req->qiov.size, BDRV_ACCT_WRITE);
+
trace_virtio_blk_handle_write(req, sector, req->qiov.size / 512);
if (sector & req->dev->sector_mask) {
sector = ldq_p(&req->out->sector);
+ bdrv_acct_start(req->dev->bs, &req->acct, req->qiov.size, BDRV_ACCT_READ);
+
if (sector & req->dev->sector_mask) {
virtio_blk_rw_complete(req, -EIO);
return;
s->serial ? s->serial : "",
MIN(req->elem.in_sg[0].iov_len, VIRTIO_BLK_ID_BYTES));
virtio_blk_req_complete(req, VIRTIO_BLK_S_OK);
+ g_free(req);
} else if (type & VIRTIO_BLK_T_OUT) {
qemu_iovec_init_external(&req->qiov, &req->elem.out_sg[1],
req->elem.out_num - 1);
uint8_t alignment_offset;
uint16_t min_io_size;
uint32_t opt_io_size;
-} __attribute__((packed));
+} QEMU_PACKED;
/* These two define direction. */
#define VIRTIO_BLK_T_IN 0
uint8_t mac[ETH_ALEN];
/* See VIRTIO_NET_F_STATUS and VIRTIO_NET_S_* above */
uint16_t status;
-} __attribute__((packed));
+} QEMU_PACKED;
/* This is the first element of the scatter-gather list. If you don't
* specify GSO or CSUM features, you can simply ignore the header. */
uint16_t rows;
uint32_t max_nr_ports;
-} __attribute__((packed));
+} QEMU_PACKED;
struct virtio_console_control {
uint32_t id; /* Port number */
union {
uint32_t *fifo;
- struct __attribute__((__packed__)) {
+ struct QEMU_PACKED {
uint32_t min;
uint32_t max;
uint32_t next_cmd;
struct XenBlkDev *blkdev;
QLIST_ENTRY(ioreq) list;
+ BlockAcctCookie acct;
};
struct XenBlkDev {
ioreq->status = ioreq->aio_errors ? BLKIF_RSP_ERROR : BLKIF_RSP_OKAY;
ioreq_unmap(ioreq);
ioreq_finish(ioreq);
+ bdrv_acct_done(ioreq->blkdev->bs, &ioreq->acct);
qemu_bh_schedule(ioreq->blkdev->bh);
}
switch (ioreq->req.operation) {
case BLKIF_OP_READ:
+ bdrv_acct_start(blkdev->bs, &ioreq->acct, ioreq->v.size, BDRV_ACCT_READ);
ioreq->aio_inflight++;
bdrv_aio_readv(blkdev->bs, ioreq->start / BLOCK_SIZE,
&ioreq->v, ioreq->v.size / BLOCK_SIZE,
if (!ioreq->req.nr_segments) {
break;
}
+
+ bdrv_acct_start(blkdev->bs, &ioreq->acct, ioreq->v.size, BDRV_ACCT_WRITE);
ioreq->aio_inflight++;
bdrv_aio_writev(blkdev->bs, ioreq->start / BLOCK_SIZE,
&ioreq->v, ioreq->v.size / BLOCK_SIZE,
struct xlx_ethlite
{
SysBusDevice busdev;
+ MemoryRegion mmio;
qemu_irq irq;
NICState *nic;
NICConf conf;
}
}
-static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
+static uint64_t
+eth_read(void *opaque, target_phys_addr_t addr, unsigned int size)
{
struct xlx_ethlite *s = opaque;
uint32_t r = 0;
}
static void
-eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
+eth_write(void *opaque, target_phys_addr_t addr,
+ uint64_t val64, unsigned int size)
{
struct xlx_ethlite *s = opaque;
unsigned int base = 0;
+ uint32_t value = val64;
addr >>= 2;
switch (addr)
}
}
-static CPUReadMemoryFunc * const eth_read[] = {
- NULL, NULL, ð_readl,
-};
-
-static CPUWriteMemoryFunc * const eth_write[] = {
- NULL, NULL, ð_writel,
+static const MemoryRegionOps eth_ops = {
+ .read = eth_read,
+ .write = eth_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+ .valid = {
+ .min_access_size = 4,
+ .max_access_size = 4
+ }
};
static int eth_can_rx(VLANClientState *nc)
static int xilinx_ethlite_init(SysBusDevice *dev)
{
struct xlx_ethlite *s = FROM_SYSBUS(typeof (*s), dev);
- int regs;
sysbus_init_irq(dev, &s->irq);
s->rxbuf = 0;
- regs = cpu_register_io_memory(eth_read, eth_write, s, DEVICE_NATIVE_ENDIAN);
- sysbus_init_mmio(dev, R_MAX * 4, regs);
+ memory_region_init_io(&s->mmio, ð_ops, s, "xilinx-ethlite", R_MAX * 4);
+ sysbus_init_mmio_region(dev, &s->mmio);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_xilinx_ethlite_info, &s->conf,
struct xlx_pic
{
SysBusDevice busdev;
+ MemoryRegion mmio;
qemu_irq parent_irq;
/* Configuration reg chosen at synthesis-time. QEMU populates
}
}
-static uint32_t pic_readl (void *opaque, target_phys_addr_t addr)
+static uint64_t
+pic_read(void *opaque, target_phys_addr_t addr, unsigned int size)
{
struct xlx_pic *p = opaque;
uint32_t r = 0;
}
static void
-pic_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
+pic_write(void *opaque, target_phys_addr_t addr,
+ uint64_t val64, unsigned int size)
{
struct xlx_pic *p = opaque;
+ uint32_t value = val64;
addr >>= 2;
D(qemu_log("%s addr=%x val=%x\n", __func__, addr * 4, value));
update_irq(p);
}
-static CPUReadMemoryFunc * const pic_read[] = {
- NULL, NULL,
- &pic_readl,
-};
-
-static CPUWriteMemoryFunc * const pic_write[] = {
- NULL, NULL,
- &pic_writel,
+static const MemoryRegionOps pic_ops = {
+ .read = pic_read,
+ .write = pic_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+ .valid = {
+ .min_access_size = 4,
+ .max_access_size = 4
+ }
};
static void irq_handler(void *opaque, int irq, int level)
static int xilinx_intc_init(SysBusDevice *dev)
{
struct xlx_pic *p = FROM_SYSBUS(typeof (*p), dev);
- int pic_regs;
qdev_init_gpio_in(&dev->qdev, irq_handler, 32);
sysbus_init_irq(dev, &p->parent_irq);
- pic_regs = cpu_register_io_memory(pic_read, pic_write, p, DEVICE_NATIVE_ENDIAN);
- sysbus_init_mmio(dev, R_MAX * 4, pic_regs);
+ memory_region_init_io(&p->mmio, &pic_ops, p, "xilinx-pic", R_MAX * 4);
+ sysbus_init_mmio_region(dev, &p->mmio);
return 0;
}
struct timerblock
{
SysBusDevice busdev;
+ MemoryRegion mmio;
qemu_irq irq;
uint32_t nr_timers;
uint32_t freq_hz;
qemu_set_irq(t->irq, !!irq);
}
-static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
+static uint64_t
+timer_read(void *opaque, target_phys_addr_t addr, unsigned int size)
{
struct timerblock *t = opaque;
struct xlx_timer *xt;
}
static void
-timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
+timer_write(void *opaque, target_phys_addr_t addr,
+ uint64_t val64, unsigned int size)
{
struct timerblock *t = opaque;
struct xlx_timer *xt;
unsigned int timer;
+ uint32_t value = val64;
addr >>= 2;
timer = timer_from_addr(addr);
timer_update_irq(t);
}
-static CPUReadMemoryFunc * const timer_read[] = {
- NULL, NULL,
- &timer_readl,
-};
-
-static CPUWriteMemoryFunc * const timer_write[] = {
- NULL, NULL,
- &timer_writel,
+static const MemoryRegionOps timer_ops = {
+ .read = timer_read,
+ .write = timer_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+ .valid = {
+ .min_access_size = 4,
+ .max_access_size = 4
+ }
};
static void timer_hit(void *opaque)
{
struct timerblock *t = FROM_SYSBUS(typeof (*t), dev);
unsigned int i;
- int timer_regs;
/* All timers share a single irq line. */
sysbus_init_irq(dev, &t->irq);
ptimer_set_freq(xt->ptimer, t->freq_hz);
}
- timer_regs = cpu_register_io_memory(timer_read, timer_write, t,
- DEVICE_NATIVE_ENDIAN);
- sysbus_init_mmio(dev, R_MAX * 4 * t->nr_timers, timer_regs);
+ memory_region_init_io(&t->mmio, &timer_ops, t, "xilinx-timer",
+ R_MAX * 4 * t->nr_timers);
+ sysbus_init_mmio_region(dev, &t->mmio);
return 0;
}
struct xlx_uartlite
{
SysBusDevice busdev;
+ MemoryRegion mmio;
CharDriverState *chr;
qemu_irq irq;
s->regs[R_STATUS] = r;
}
-static uint32_t uart_readl (void *opaque, target_phys_addr_t addr)
+static uint64_t
+uart_read(void *opaque, target_phys_addr_t addr, unsigned int size)
{
struct xlx_uartlite *s = opaque;
uint32_t r = 0;
}
static void
-uart_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
+uart_write(void *opaque, target_phys_addr_t addr,
+ uint64_t val64, unsigned int size)
{
struct xlx_uartlite *s = opaque;
+ uint32_t value = val64;
unsigned char ch = value;
addr >>= 2;
uart_update_irq(s);
}
-static CPUReadMemoryFunc * const uart_read[] = {
- &uart_readl,
- &uart_readl,
- &uart_readl,
-};
-
-static CPUWriteMemoryFunc * const uart_write[] = {
- &uart_writel,
- &uart_writel,
- &uart_writel,
+static const MemoryRegionOps uart_ops = {
+ .read = uart_read,
+ .write = uart_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+ .valid = {
+ .min_access_size = 1,
+ .max_access_size = 4
+ }
};
static void uart_rx(void *opaque, const uint8_t *buf, int size)
static int xilinx_uartlite_init(SysBusDevice *dev)
{
struct xlx_uartlite *s = FROM_SYSBUS(typeof (*s), dev);
- int uart_regs;
sysbus_init_irq(dev, &s->irq);
uart_update_status(s);
- uart_regs = cpu_register_io_memory(uart_read, uart_write, s,
- DEVICE_NATIVE_ENDIAN);
- sysbus_init_mmio(dev, R_MAX * 4, uart_regs);
+ memory_region_init_io(&s->mmio, &uart_ops, s, "xilinx-uartlite", R_MAX * 4);
+ sysbus_init_mmio_region(dev, &s->mmio);
s->chr = qdev_init_chardev(&dev->qdev);
if (s->chr)
uint32_t sector_len = 0x10000;
PXA2xxState *cpu;
DriveInfo *dinfo;
- const MemoryRegionOps *flash_ops;
+ int be;
void *z2_lcd;
i2c_bus *bus;
DeviceState *wm;
- MemoryRegion *flash = g_new(MemoryRegion, 1);
if (!cpu_model) {
cpu_model = "pxa270-c5";
cpu = pxa270_init(z2_binfo.ram_size, cpu_model);
#ifdef TARGET_WORDS_BIGENDIAN
- flash_ops = &pflash_cfi01_ops_be;
+ be = 1;
#else
- flash_ops = &pflash_cfi01_ops_le;
+ be = 0;
#endif
dinfo = drive_get(IF_PFLASH, 0, 0);
if (!dinfo) {
exit(1);
}
- memory_region_init_rom_device(flash, flash_ops,
- NULL, "z2.flash0", Z2_FLASH_SIZE);
- if (!pflash_cfi01_register(Z2_FLASH_BASE, flash,
+ if (!pflash_cfi01_register(Z2_FLASH_BASE,
+ qemu_ram_alloc(NULL, "z2.flash0", Z2_FLASH_SIZE),
dinfo->bdrv, sector_len,
- Z2_FLASH_SIZE / sector_len, 4, 0, 0, 0, 0)) {
+ Z2_FLASH_SIZE / sector_len, 4, 0, 0, 0, 0,
+ be)) {
fprintf(stderr, "qemu: Error registering flash memory.\n");
exit(1);
}
#define MAGIC_CHG(a, b, c, d) ((d << 24) | (c << 16) | (b << 8) | a)
-static struct __attribute__ ((__packed__)) sl_param_info {
+static struct QEMU_PACKED sl_param_info {
uint32_t comadj_keyword;
int32_t comadj;
.rel.plt :
{
*(.rel.plt)
- PROVIDE_HIDDEN (__rel_iplt_start = .);
+ PROVIDE (__rel_iplt_start = .);
*(.rel.iplt)
- PROVIDE_HIDDEN (__rel_iplt_end = .);
+ PROVIDE (__rel_iplt_end = .);
}
.rela.plt :
{
*(.rela.plt)
- PROVIDE_HIDDEN (__rela_iplt_start = .);
+ PROVIDE (__rela_iplt_start = .);
*(.rela.iplt)
- PROVIDE_HIDDEN (__rela_iplt_end = .);
+ PROVIDE (__rela_iplt_end = .);
}
.init : { *(.init) } =0x47ff041f
.text :
return 0;
}
+typedef struct IOTrampoline
+{
+ GIOChannel *chan;
+ IOHandler *fd_read;
+ IOHandler *fd_write;
+ void *opaque;
+ guint tag;
+} IOTrampoline;
+
+static gboolean fd_trampoline(GIOChannel *chan, GIOCondition cond, gpointer opaque)
+{
+ IOTrampoline *tramp = opaque;
+
+ if ((cond & G_IO_IN) && tramp->fd_read) {
+ tramp->fd_read(tramp->opaque);
+ }
+
+ if ((cond & G_IO_OUT) && tramp->fd_write) {
+ tramp->fd_write(tramp->opaque);
+ }
+
+ return TRUE;
+}
+
int qemu_set_fd_handler(int fd,
IOHandler *fd_read,
IOHandler *fd_write,
void *opaque)
{
- return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
+ static IOTrampoline fd_trampolines[FD_SETSIZE];
+ IOTrampoline *tramp = &fd_trampolines[fd];
+
+ if (tramp->tag != 0) {
+ g_io_channel_unref(tramp->chan);
+ g_source_remove(tramp->tag);
+ tramp->tag = 0;
+ }
+
+ if (fd_read || fd_write || opaque) {
+ GIOCondition cond = 0;
+
+ tramp->fd_read = fd_read;
+ tramp->fd_write = fd_write;
+ tramp->opaque = opaque;
+
+ if (fd_read) {
+ cond |= G_IO_IN | G_IO_ERR;
+ }
+
+ if (fd_write) {
+ cond |= G_IO_OUT | G_IO_ERR;
+ }
+
+ tramp->chan = g_io_channel_unix_new(fd);
+ tramp->tag = g_io_add_watch(tramp->chan, cond, fd_trampoline, tramp);
+ }
+
+ return 0;
}
void qemu_iohandler_fill(int *pnfds, fd_set *readfds, fd_set *writefds, fd_set *xfds)
* Older kernels have a 6 device limit on the KVM io bus. Find out so we
* can avoid creating too many ioeventfds.
*/
-#if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
+#if defined(CONFIG_EVENTFD)
int ioeventfds[7];
int i, ret = 0;
for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
libcacard.lib-y=$(addsuffix .lo,$(basename $(libcacard-y)))
vscclient: $(libcacard-y) $(QEMU_OBJS) vscclient.o
- $(call quiet-command,$(CC) -o $@ $^ $(libcacard_libs) $(LIBS) -lrt," LINK $@")
+ $(call quiet-command,$(CC) -o $@ $^ $(libcacard_libs) $(LIBS)," LINK $@")
clean:
rm -f *.o */*.o *.d */*.d *.a */*.a *~ */*~ vscclient *.lo .libs/* *.la *.pc
@echo "libtool is missing, please install and rerun configure"; exit 1
else
libcacard.la: $(libcacard.lib-y) $(QEMU_OBJS_LIB)
- $(call quiet-command,$(LIBTOOL) --mode=link --quiet --tag=CC $(CC) -rpath $(libdir) -o $@ $^ $(libcacard_libs) -lrt," lt LINK $@")
+ $(call quiet-command,$(LIBTOOL) --mode=link --quiet --tag=CC $(CC) -rpath $(libdir) -o $@ $^ $(libcacard_libs)," lt LINK $@")
libcacard.pc: $(libcacard_srcpath)/libcacard.pc.in
sed -e 's|@LIBDIR@|$(libdir)|' \
printf(" recv APDU: ");
print_byte_array(pbSendBuffer, mhHeader.length);
}
- /* Transmit recieved APDU */
+ /* Transmit received APDU */
dwSendLength = mhHeader.length;
dwRecvLength = sizeof(pbRecvBuffer);
reader = vreader_get_reader_by_id(mhHeader.reader_id);
goto give_sigsegv;
/* Set up registers for signal handler */
- regs->gregs[15] = (unsigned long) frame;
+ regs->gregs[15] = frame_addr;
regs->gregs[4] = signal; /* Arg for signal handler */
regs->gregs[5] = 0;
- regs->gregs[6] = (unsigned long) &frame->sc;
+ regs->gregs[6] = frame_addr += offsetof(typeof(*frame), sc);
regs->pc = (unsigned long) ka->_sa_handler;
unlock_user_struct(frame, frame_addr, 1);
goto give_sigsegv;
/* Set up registers for signal handler */
- regs->gregs[15] = (unsigned long) frame;
+ regs->gregs[15] = frame_addr;
regs->gregs[4] = signal; /* Arg for signal handler */
- regs->gregs[5] = (unsigned long) &frame->info;
- regs->gregs[6] = (unsigned long) &frame->uc;
+ regs->gregs[5] = frame_addr + offsetof(typeof(*frame), info);
+ regs->gregs[6] = frame_addr + offsetof(typeof(*frame), uc);
regs->pc = (unsigned long) ka->_sa_handler;
unlock_user_struct(frame, frame_addr, 1);
goto badframe;
/* Set up registers for signal handler */
- env->regs[1] = (unsigned long) frame;
+ env->regs[1] = frame_addr;
/* Signal handler args: */
env->regs[5] = sig; /* Arg 0: signum */
env->regs[6] = 0;
- env->regs[7] = (unsigned long) &frame->uc; /* arg 1: sigcontext */
+ /* arg 1: sigcontext */
+ env->regs[7] = frame_addr += offsetof(typeof(*frame), uc);
/* Offset of 4 to handle microblaze rtid r14, 0 */
env->sregs[SR_PC] = (unsigned long)ka->_sa_handler;
setup_sigcontext(&frame->sc, env);
/* Move the stack and setup the arguments for the handler. */
- env->regs[R_SP] = (uint32_t) (unsigned long) frame;
+ env->regs[R_SP] = frame_addr;
env->regs[10] = sig;
env->pc = (unsigned long) ka->_sa_handler;
/* Link SRP so the guest returns through the trampoline. */
- env->pregs[PR_SRP] = (uint32_t) (unsigned long) &frame->retcode[0];
+ env->pregs[PR_SRP] = frame_addr + offsetof(typeof(*frame), retcode);
unlock_user_struct(frame, frame_addr, 1);
return;
}
/* Set up registers for signal handler */
- env->regs[15] = (target_ulong)(unsigned long) frame;
+ env->regs[15] = frame_addr;
env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE;
env->regs[2] = sig; //map_signal(sig);
- env->regs[3] = (target_ulong)(unsigned long) &frame->sc;
+ env->regs[3] = frame_addr += offsetof(typeof(*frame), sc);
/* We forgot to include these in the sigcontext.
To avoid breaking binary compatibility, they are passed as args. */
}
/* Set up registers for signal handler */
- env->regs[15] = (target_ulong)(unsigned long) frame;
+ env->regs[15] = frame_addr;
env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE;
env->regs[2] = sig; //map_signal(sig);
- env->regs[3] = (target_ulong)(unsigned long) &frame->info;
- env->regs[4] = (target_ulong)(unsigned long) &frame->uc;
+ env->regs[3] = frame_addr + offsetof(typeof(*frame), info);
+ env->regs[4] = frame_addr + offsetof(typeof(*frame), uc);
return;
give_sigsegv:
abi_ulong __pad7; /* will be high 32 bits of ctime someday */
unsigned long long st_ino;
-} __attribute__((packed));
+} QEMU_PACKED;
#ifdef TARGET_ARM
struct target_eabi_stat64 {
abi_ulong target_st_ctime_nsec;
unsigned long long st_ino;
-} __attribute__ ((packed));
+} QEMU_PACKED;
#endif
#elif defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#endif
};
-struct __attribute__((__packed__)) target_stat64 {
+struct QEMU_PACKED target_stat64 {
unsigned long long st_dev;
unsigned long long st_ino;
unsigned int st_mode;
};
/* FIXME: Microblaze no-mmu user-space has a difference stat64 layout... */
-struct __attribute__((__packed__)) target_stat64 {
+struct QEMU_PACKED target_stat64 {
uint64_t st_dev;
#define TARGET_STAT64_HAS_BROKEN_ST_INO 1
uint32_t pad0;
abi_ulong target_st_ctime_nsec;
unsigned long long st_ino;
-} __attribute__((packed));
+} QEMU_PACKED;
#elif defined(TARGET_ABI_MIPSN64)
/* This matches struct stat64 in glibc2.1, hence the absolutely
* insane amounts of padding around dev_t's.
*/
-struct __attribute__((__packed__)) target_stat64 {
+struct QEMU_PACKED target_stat64 {
unsigned long long st_dev;
unsigned char __pad0[4];
unsigned long long l_start;
unsigned long long l_len;
int l_pid;
-}__attribute__((packed));
+} QEMU_PACKED;
#ifdef TARGET_ARM
struct target_eabi_flock64 {
unsigned long long l_start;
unsigned long long l_len;
int l_pid;
-}__attribute__((packed));
+} QEMU_PACKED;
#endif
/* soundcard defines */
gdb_time_t gdb_st_atime; /* time of last access */
gdb_time_t gdb_st_mtime; /* time of last modification */
gdb_time_t gdb_st_ctime; /* time of last change */
-} __attribute__((packed));
+} QEMU_PACKED;
struct gdb_timeval {
gdb_time_t tv_sec; /* second */
uint64_t tv_usec; /* microsecond */
-} __attribute__((packed));
+} QEMU_PACKED;
#define GDB_O_RDONLY 0x0
#define GDB_O_WRONLY 0x1
}
if (!fr->readable) {
- phys_offset &= TARGET_PAGE_MASK;
+ phys_offset &= ~TARGET_PAGE_MASK & ~IO_MEM_ROMD;
}
cpu_register_physical_memory_log(fr->addr.start,
void memory_region_init_rom_device(MemoryRegion *mr,
const MemoryRegionOps *ops,
+ void *opaque,
DeviceState *dev,
const char *name,
uint64_t size)
{
memory_region_init(mr, name, size);
+ mr->ops = ops;
+ mr->opaque = opaque;
mr->terminates = true;
mr->destructor = memory_region_destructor_rom_device;
mr->ram_addr = qemu_ram_alloc(dev, name, size);
assert(mr->terminates);
- return qemu_get_ram_ptr(mr->ram_addr);
+ return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
}
static void memory_region_update_coalesced_range(MemoryRegion *mr)
*/
void memory_region_init_rom_device(MemoryRegion *mr,
const MemoryRegionOps *ops,
+ void *opaque,
DeviceState *dev, /* FIXME: layering violation */
const char *name,
uint64_t size);
}
.sbss2 : { *(.sbss2 .sbss2.* .gnu.linkonce.sb2.*) }
.eh_frame_hdr : { *(.eh_frame_hdr) }
- .eh_frame : ONLY_IF_RO { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RO { *(.gcc_except_table .gcc_except_table.*) }
/* Adjust the address for the data segment. We want to adjust up to
the same address within the page on the next page up. */
. = ALIGN (0x40000) - ((0x40000 - .) & (0x40000 - 1)); . = DATA_SEGMENT_ALIGN (0x40000, 0x1000);
/* Exception handling */
- .eh_frame : ONLY_IF_RW { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RW { *(.gcc_except_table .gcc_except_table.*) }
+ .eh_frame : { KEEP (*(.eh_frame)) }
+ .gcc_except_table : { *(.gcc_except_table .gcc_except_table.*) }
/* Thread Local Storage sections */
.tdata : { *(.tdata .tdata.* .gnu.linkonce.td.*) }
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) }
.preinit_array :
{
- PROVIDE_HIDDEN (__preinit_array_start = .);
+ PROVIDE (__preinit_array_start = .);
KEEP (*(.preinit_array))
- PROVIDE_HIDDEN (__preinit_array_end = .);
+ PROVIDE (__preinit_array_end = .);
}
.init_array :
{
- PROVIDE_HIDDEN (__init_array_start = .);
+ PROVIDE (__init_array_start = .);
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
- PROVIDE_HIDDEN (__init_array_end = .);
+ PROVIDE (__init_array_end = .);
}
.fini_array :
{
- PROVIDE_HIDDEN (__fini_array_start = .);
+ PROVIDE (__fini_array_start = .);
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
- PROVIDE_HIDDEN (__fini_array_end = .);
+ PROVIDE (__fini_array_end = .);
}
.ctors :
{
#include "json-parser.h"
#include "osdep.h"
#include "cpu.h"
-#ifdef CONFIG_SIMPLE_TRACE
-#include "trace.h"
+#include "trace/control.h"
+#ifdef CONFIG_TRACE_SIMPLE
+#include "trace/simple.h"
#endif
+#include "trace/control.h"
#include "ui/qemu-spice.h"
//#define DEBUG
help_cmd(mon, qdict_get_try_str(qdict, "name"));
}
-#ifdef CONFIG_SIMPLE_TRACE
-static void do_change_trace_event_state(Monitor *mon, const QDict *qdict)
+static void do_trace_event_set_state(Monitor *mon, const QDict *qdict)
{
const char *tp_name = qdict_get_str(qdict, "name");
bool new_state = qdict_get_bool(qdict, "option");
- int ret = st_change_trace_event_state(tp_name, new_state);
+ int ret = trace_event_set_state(tp_name, new_state);
if (!ret) {
monitor_printf(mon, "unknown event name \"%s\"\n", tp_name);
}
}
+#ifdef CONFIG_SIMPLE_TRACE
static void do_trace_file(Monitor *mon, const QDict *qdict)
{
const char *op = qdict_get_try_str(qdict, "op");
}
#endif
-#if defined(CONFIG_SIMPLE_TRACE)
+#if defined(CONFIG_TRACE_SIMPLE)
static void do_info_trace(Monitor *mon)
{
st_print_trace((FILE *)mon, &monitor_fprintf);
}
+#endif
-static void do_info_trace_events(Monitor *mon)
+static void do_trace_print_events(Monitor *mon)
{
- st_print_trace_events((FILE *)mon, &monitor_fprintf);
+ trace_print_events((FILE *)mon, &monitor_fprintf);
}
-#endif
/**
* do_quit(): Quit QEMU execution
{
const char *protocol = qdict_get_str(qdict, "protocol");
const char *fdname = qdict_get_str(qdict, "fdname");
- int skipauth = qdict_get_try_bool(qdict, "skipauth", 0);
CharDriverState *s;
if (strcmp(protocol, "spice") == 0) {
#ifdef CONFIG_VNC
} else if (strcmp(protocol, "vnc") == 0) {
int fd = monitor_get_fd(mon, fdname);
+ int skipauth = qdict_get_try_bool(qdict, "skipauth", 0);
vnc_display_add_client(NULL, fd, skipauth);
return 0;
#endif
.help = "show roms",
.mhandler.info = do_info_roms,
},
-#if defined(CONFIG_SIMPLE_TRACE)
+#if defined(CONFIG_TRACE_SIMPLE)
{
.name = "trace",
.args_type = "",
.help = "show current contents of trace buffer",
.mhandler.info = do_info_trace,
},
+#endif
{
.name = "trace-events",
.args_type = "",
.params = "",
.help = "show available trace-events & their state",
- .mhandler.info = do_info_trace_events,
+ .mhandler.info = do_trace_print_events,
},
-#endif
{
.name = NULL,
},
uint64_t handle;
uint64_t from;
uint32_t len;
-} __attribute__ ((__packed__));
+} QEMU_PACKED;
struct nbd_reply {
uint32_t magic;
uint32_t error;
uint64_t handle;
-} __attribute__ ((__packed__));
+} QEMU_PACKED;
enum {
NBD_CMD_READ = 0,
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
-#ifdef __sun__
-#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
-#else
-#define SMBD_COMMAND "/usr/sbin/smbd"
-#endif
void qdev_set_nic_properties(DeviceState *dev, NICInfo *nd);
fclose(f);
snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
- SMBD_COMMAND, smb_conf);
+ CONFIG_SMBD_COMMAND, smb_conf);
if (slirp_add_exec(s->slirp, 0, smb_cmdline, &vserver_addr, 139) < 0) {
slirp_smb_cleanup(s);
#include "block/raw-posix-aio.h"
+static void do_spawn_thread(void);
struct qemu_paiocb {
BlockDriverAIOCB common;
static int max_threads = 64;
static int cur_threads = 0;
static int idle_threads = 0;
+static int new_threads = 0; /* backlog of threads we need to create */
+static int pending_threads = 0; /* threads created but not running yet */
+static QEMUBH *new_thread_bh;
static QTAILQ_HEAD(, qemu_paiocb) request_list;
#ifdef CONFIG_PREADV
pid = getpid();
+ mutex_lock(&lock);
+ pending_threads--;
+ mutex_unlock(&lock);
+ do_spawn_thread();
+
while (1) {
struct qemu_paiocb *aiocb;
ssize_t ret = 0;
return NULL;
}
-static void spawn_thread(void)
+static void do_spawn_thread(void)
{
sigset_t set, oldset;
- cur_threads++;
+ mutex_lock(&lock);
+ if (!new_threads) {
+ mutex_unlock(&lock);
+ return;
+ }
+
+ new_threads--;
+ pending_threads++;
+
+ mutex_unlock(&lock);
/* block all signals */
if (sigfillset(&set)) die("sigfillset");
if (sigprocmask(SIG_SETMASK, &oldset, NULL)) die("sigprocmask restore");
}
+static void spawn_thread_bh_fn(void *opaque)
+{
+ do_spawn_thread();
+}
+
+static void spawn_thread(void)
+{
+ cur_threads++;
+ new_threads++;
+ /* If there are threads being created, they will spawn new workers, so
+ * we don't spend time creating many threads in a loop holding a mutex or
+ * starving the current vcpu.
+ *
+ * If there are no idle threads, ask the main thread to create one, so we
+ * inherit the correct affinity instead of the vcpu affinity.
+ */
+ if (!pending_threads) {
+ qemu_bh_schedule(new_thread_bh);
+ }
+}
+
static void qemu_paio_submit(struct qemu_paiocb *aiocb)
{
aiocb->ret = -EINPROGRESS;
die2(ret, "pthread_attr_setdetachstate");
QTAILQ_INIT(&request_list);
+ new_thread_bh = qemu_bh_new(spawn_thread_bh_fn, NULL);
posix_aio_state = s;
return 0;
}
.sbss2 : { *(.sbss2 .sbss2.* .gnu.linkonce.sb2.*) }
.eh_frame_hdr : { *(.eh_frame_hdr) }
- .eh_frame : ONLY_IF_RO { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RO { *(.gcc_except_table .gcc_except_table.*) }
/* Adjust the address for the data segment. We want to adjust up to
the same address within the page on the next page up. */
. = ALIGN (0x10000) - ((0x10000 - .) & (0x10000 - 1)); . = DATA_SEGMENT_ALIGN (0x10000, 0x1000);
/* Exception handling */
- .eh_frame : ONLY_IF_RW { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RW { *(.gcc_except_table .gcc_except_table.*) }
+ .eh_frame : { KEEP (*(.eh_frame)) }
+ .gcc_except_table : { *(.gcc_except_table .gcc_except_table.*) }
/* Thread Local Storage sections */
.tdata : { *(.tdata .tdata.* .gnu.linkonce.td.*) }
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) }
.preinit_array :
{
- PROVIDE_HIDDEN (__preinit_array_start = .);
+ PROVIDE (__preinit_array_start = .);
KEEP (*(.preinit_array))
- PROVIDE_HIDDEN (__preinit_array_end = .);
+ PROVIDE (__preinit_array_end = .);
}
.init_array :
{
- PROVIDE_HIDDEN (__init_array_start = .);
+ PROVIDE (__init_array_start = .);
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
- PROVIDE_HIDDEN (__init_array_end = .);
+ PROVIDE (__init_array_end = .);
}
.fini_array :
{
- PROVIDE_HIDDEN (__fini_array_start = .);
+ PROVIDE (__fini_array_start = .);
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
- PROVIDE_HIDDEN (__fini_array_end = .);
+ PROVIDE (__fini_array_end = .);
}
.ctors :
{
.sdata2 : { *(.sdata2 .sdata2.* .gnu.linkonce.s2.*) }
.sbss2 : { *(.sbss2 .sbss2.* .gnu.linkonce.sb2.*) }
.eh_frame_hdr : { *(.eh_frame_hdr) }
- .eh_frame : ONLY_IF_RO { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RO { KEEP (*(.gcc_except_table))
*(.gcc_except_table.*) } /* Adjust the address for the data segment. We want to
adjust up to + the same address within the page on the next page up. */
. = ALIGN (0x10000) - ((0x10000 - .) & (0x10000 - 1)); . = DATA_SEGMENT_ALIGN
(0x10000, 0x1000); /* Exception handling */
- .eh_frame : ONLY_IF_RW { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RW { KEEP (*(.gcc_except_table))
+ .eh_frame : { KEEP (*(.eh_frame)) }
+ .gcc_except_table : { KEEP (*(.gcc_except_table))
*(.gcc_except_table.*) } /* Thread Local Storage sections */
.tdata : { *(.tdata .tdata.* .gnu.linkonce.td.*) }
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) }
},{
.name = "cache",
.type = QEMU_OPT_STRING,
- .help = "host cache usage (none, writeback, writethrough, unsafe)",
+ .help = "host cache usage (none, writeback, writethrough, "
+ "directsync, unsafe)",
},{
.name = "aio",
.type = QEMU_OPT_STRING,
},
};
-#ifdef CONFIG_SIMPLE_TRACE
static QemuOptsList qemu_trace_opts = {
.name = "trace",
.implied_opt_name = "trace",
.head = QTAILQ_HEAD_INITIALIZER(qemu_trace_opts.head),
.desc = {
{
+ .name = "events",
+ .type = QEMU_OPT_STRING,
+ },{
.name = "file",
.type = QEMU_OPT_STRING,
},
{ /* end of list */ }
},
};
-#endif
static QemuOptsList qemu_cpudef_opts = {
.name = "cpudef",
&qemu_global_opts,
&qemu_mon_opts,
&qemu_cpudef_opts,
-#ifdef CONFIG_SIMPLE_TRACE
&qemu_trace_opts,
-#endif
&qemu_option_rom_opts,
&qemu_machine_opts,
&qemu_boot_opts,
trace_qemu_co_mutex_unlock_return(mutex, self);
}
+
+void qemu_co_rwlock_init(CoRwlock *lock)
+{
+ memset(lock, 0, sizeof(*lock));
+ qemu_co_queue_init(&lock->queue);
+}
+
+void qemu_co_rwlock_rdlock(CoRwlock *lock)
+{
+ while (lock->writer) {
+ qemu_co_queue_wait(&lock->queue);
+ }
+ lock->reader++;
+}
+
+void qemu_co_rwlock_unlock(CoRwlock *lock)
+{
+ assert(qemu_in_coroutine());
+ if (lock->writer) {
+ lock->writer = false;
+ while (!qemu_co_queue_empty(&lock->queue)) {
+ /*
+ * Wakeup every body. This will include some
+ * writers too.
+ */
+ qemu_co_queue_next(&lock->queue);
+ }
+ } else {
+ lock->reader--;
+ assert(lock->reader >= 0);
+ /* Wakeup only one waiting writer */
+ if (!lock->reader) {
+ qemu_co_queue_next(&lock->queue);
+ }
+ }
+}
+
+void qemu_co_rwlock_wrlock(CoRwlock *lock)
+{
+ while (lock->writer || lock->reader) {
+ qemu_co_queue_wait(&lock->queue);
+ }
+ lock->writer = true;
+}
*/
void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
+typedef struct CoRwlock {
+ bool writer;
+ int reader;
+ CoQueue queue;
+} CoRwlock;
+
+/**
+ * Initialises a CoRwlock. This must be called before any other operation
+ * is used on the CoRwlock
+ */
+void qemu_co_rwlock_init(CoRwlock *lock);
+
+/**
+ * Read locks the CoRwlock. If the lock cannot be taken immediately because
+ * of a parallel writer, control is transferred to the caller of the current
+ * coroutine.
+ */
+void qemu_co_rwlock_rdlock(CoRwlock *lock);
+
+/**
+ * Write Locks the mutex. If the lock cannot be taken immediately because
+ * of a parallel reader, control is transferred to the caller of the current
+ * coroutine.
+ */
+void qemu_co_rwlock_wrlock(CoRwlock *lock);
+
+/**
+ * Unlocks the read/write lock and schedules the next coroutine that was
+ * waiting for this lock to be run.
+ */
+void qemu_co_rwlock_unlock(CoRwlock *lock);
+
#endif /* QEMU_COROUTINE_H */
static void quit_handler(int sig)
{
- g_debug("recieved signal num %d, quitting", sig);
+ g_debug("received signal num %d, quitting", sig);
if (g_main_loop_is_running(ga_state->main_loop)) {
g_main_loop_quit(ga_state->main_loop);
ETEXI
DEF("convert", img_convert,
- "convert [-c] [-p] [-f fmt] [-t cache] [-O output_fmt] [-o options] [-s snapshot_name] filename [filename2 [...]] output_filename")
+ "convert [-c] [-p] [-f fmt] [-t cache] [-O output_fmt] [-o options] [-s snapshot_name] [-S sparse_size] filename [filename2 [...]] output_filename")
STEXI
-@item convert [-c] [-p] [-f @var{fmt}] [-O @var{output_fmt}] [-o @var{options}] [-s @var{snapshot_name}] @var{filename} [@var{filename2} [...]] @var{output_filename}
+@item convert [-c] [-p] [-f @var{fmt}] [-O @var{output_fmt}] [-o @var{options}] [-s @var{snapshot_name}] [-S @var{sparse_size}] @var{filename} [@var{filename2} [...]] @var{output_filename}
ETEXI
DEF("info", img_info,
" 'filename' is a disk image filename\n"
" 'fmt' is the disk image format. It is guessed automatically in most cases\n"
" 'cache' is the cache mode used to write the output disk image, the valid\n"
- " options are: 'none', 'writeback' (default), 'writethrough' and 'unsafe'\n"
+ " options are: 'none', 'writeback' (default), 'writethrough', 'directsync'\n"
+ " and 'unsafe'\n"
" 'size' is the disk image size in bytes. Optional suffixes\n"
" 'k' or 'K' (kilobyte, 1024), 'M' (megabyte, 1024k), 'G' (gigabyte, 1024M)\n"
" and T (terabyte, 1024G) are supported. 'b' is ignored.\n"
" rebasing in this case (useful for renaming the backing file)\n"
" '-h' with or without a command shows this help and lists the supported formats\n"
" '-p' show progress of command (only certain commands)\n"
+ " '-S' indicates the consecutive number of bytes that must contain only zeros\n"
+ " for qemu-img to create a sparse image during conversion\n"
"\n"
"Parameters to snapshot subcommand:\n"
" 'snapshot' is the name of the snapshot to create, apply or delete\n"
}
#endif
-static int set_cache_flag(const char *mode, int *flags)
-{
- *flags &= ~BDRV_O_CACHE_MASK;
-
- if (!strcmp(mode, "none") || !strcmp(mode, "off")) {
- *flags |= BDRV_O_CACHE_WB;
- *flags |= BDRV_O_NOCACHE;
- } else if (!strcmp(mode, "writeback")) {
- *flags |= BDRV_O_CACHE_WB;
- } else if (!strcmp(mode, "unsafe")) {
- *flags |= BDRV_O_CACHE_WB;
- *flags |= BDRV_O_NO_FLUSH;
- } else if (!strcmp(mode, "writethrough")) {
- /* this is the default */
- } else {
- return -1;
- }
-
- return 0;
-}
-
static int print_block_option_help(const char *filename, const char *fmt)
{
BlockDriver *drv, *proto_drv;
filename = argv[optind++];
flags = BDRV_O_RDWR;
- ret = set_cache_flag(cache, &flags);
+ ret = bdrv_parse_cache_flags(cache, &flags);
if (ret < 0) {
error_report("Invalid cache option: %s", cache);
return -1;
return v;
}
+/*
+ * Like is_allocated_sectors, but if the buffer starts with a used sector,
+ * up to 'min' consecutive sectors containing zeros are ignored. This avoids
+ * breaking up write requests for only small sparse areas.
+ */
+static int is_allocated_sectors_min(const uint8_t *buf, int n, int *pnum,
+ int min)
+{
+ int ret;
+ int num_checked, num_used;
+
+ if (n < min) {
+ min = n;
+ }
+
+ ret = is_allocated_sectors(buf, n, pnum);
+ if (!ret) {
+ return ret;
+ }
+
+ num_used = *pnum;
+ buf += BDRV_SECTOR_SIZE * *pnum;
+ n -= *pnum;
+ num_checked = num_used;
+
+ while (n > 0) {
+ ret = is_allocated_sectors(buf, n, pnum);
+
+ buf += BDRV_SECTOR_SIZE * *pnum;
+ n -= *pnum;
+ num_checked += *pnum;
+ if (ret) {
+ num_used = num_checked;
+ } else if (*pnum >= min) {
+ break;
+ }
+ }
+
+ *pnum = num_used;
+ return 1;
+}
+
/*
* Compares two buffers sector by sector. Returns 0 if the first sector of both
* buffers matches, non-zero otherwise.
char *options = NULL;
const char *snapshot_name = NULL;
float local_progress;
+ int min_sparse = 8; /* Need at least 4k of zeros for sparse detection */
fmt = NULL;
out_fmt = "raw";
out_baseimg = NULL;
compress = 0;
for(;;) {
- c = getopt(argc, argv, "f:O:B:s:hce6o:pt:");
+ c = getopt(argc, argv, "f:O:B:s:hce6o:pS:t:");
if (c == -1) {
break;
}
case 's':
snapshot_name = optarg;
break;
+ case 'S':
+ {
+ int64_t sval;
+ sval = strtosz_suffix(optarg, NULL, STRTOSZ_DEFSUFFIX_B);
+ if (sval < 0) {
+ error_report("Invalid minimum zero buffer size for sparse output specified");
+ return 1;
+ }
+
+ min_sparse = sval / BDRV_SECTOR_SIZE;
+ break;
+ }
case 'p':
progress = 1;
break;
}
flags = BDRV_O_RDWR;
- ret = set_cache_flag(cache, &flags);
+ ret = bdrv_parse_cache_flags(cache, &flags);
if (ret < 0) {
error_report("Invalid cache option: %s", cache);
return -1;
bs_i = 0;
bs_offset = 0;
bdrv_get_geometry(bs[0], &bs_sectors);
- buf = g_malloc(IO_BUF_SIZE);
+ buf = qemu_blockalign(out_bs, IO_BUF_SIZE);
if (compress) {
ret = bdrv_get_info(out_bs, &bdi);
ret = bdrv_read(bs[bs_i], bs_num, buf2, nlow);
if (ret < 0) {
- error_report("error while reading");
+ error_report("error while reading sector %" PRId64 ": %s",
+ bs_num, strerror(-ret));
goto out;
}
ret = bdrv_write_compressed(out_bs, sector_num, buf,
cluster_sectors);
if (ret != 0) {
- error_report("error while compressing sector %" PRId64,
- sector_num);
+ error_report("error while compressing sector %" PRId64
+ ": %s", sector_num, strerror(-ret));
goto out;
}
}
ret = bdrv_read(bs[bs_i], sector_num - bs_offset, buf, n);
if (ret < 0) {
- error_report("error while reading");
+ error_report("error while reading sector %" PRId64 ": %s",
+ sector_num - bs_offset, strerror(-ret));
goto out;
}
/* NOTE: at the same time we convert, we do not write zero
sectors that are entirely 0, since whatever data was
already there is garbage, not 0s. */
if (!has_zero_init || out_baseimg ||
- is_allocated_sectors(buf1, n, &n1)) {
+ is_allocated_sectors_min(buf1, n, &n1, min_sparse)) {
ret = bdrv_write(out_bs, sector_num, buf1, n1);
if (ret < 0) {
- error_report("error while writing");
+ error_report("error while writing sector %" PRId64
+ ": %s", sector_num, strerror(-ret));
goto out;
}
}
qemu_progress_end();
free_option_parameters(create_options);
free_option_parameters(param);
- g_free(buf);
+ qemu_vfree(buf);
if (out_bs) {
bdrv_delete(out_bs);
}
qemu_progress_print(0, 100);
flags = BDRV_O_RDWR | (unsafe ? BDRV_O_NO_BACKING : 0);
- ret = set_cache_flag(cache, &flags);
+ ret = bdrv_parse_cache_flags(cache, &flags);
if (ret < 0) {
error_report("Invalid cache option: %s", cache);
return -1;
uint8_t * buf_new;
float local_progress;
- buf_old = g_malloc(IO_BUF_SIZE);
- buf_new = g_malloc(IO_BUF_SIZE);
+ buf_old = qemu_blockalign(bs, IO_BUF_SIZE);
+ buf_new = qemu_blockalign(bs, IO_BUF_SIZE);
bdrv_get_geometry(bs, &num_sectors);
qemu_progress_print(local_progress, 100);
}
- g_free(buf_old);
- g_free(buf_new);
+ qemu_vfree(buf_old);
+ qemu_vfree(buf_new);
}
/*
with or without a command shows help and lists the supported formats
@item -p
display progress bar (convert and rebase commands only)
+@item -S @var{size}
+indicates the consecutive number of bytes that must contain only zeros
+for qemu-img to create a sparse image during conversion. This value is rounded
+down to the nearest 512 bytes. You may use the common size suffixes like
+@code{k} for kilobytes.
@end table
Parameters to snapshot subcommand:
Commit the changes recorded in @var{filename} in its base image.
-@item convert [-c] [-p] [-f @var{fmt}] [-O @var{output_fmt}] [-o @var{options}] [-s @var{snapshot_name}] @var{filename} [@var{filename2} [...]] @var{output_filename}
+@item convert [-c] [-p] [-f @var{fmt}] [-O @var{output_fmt}] [-o @var{options}] [-s @var{snapshot_name}] [-S @var{sparse_size}] @var{filename} [@var{filename2} [...]] @var{output_filename}
Convert the disk image @var{filename} or a snapshot @var{snapshot_name} to disk image @var{output_filename}
using format @var{output_fmt}. It can be optionally compressed (@code{-c}
DEF("drive", HAS_ARG, QEMU_OPTION_drive,
"-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
" [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
- " [,cache=writethrough|writeback|none|unsafe][,format=f]\n"
+ " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
" [,serial=s][,addr=A][,id=name][,aio=threads|native]\n"
" [,readonly=on|off]\n"
" use 'file' as a drive image\n", QEMU_ARCH_ALL)
@item snapshot=@var{snapshot}
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
@item cache=@var{cache}
-@var{cache} is "none", "writeback", "unsafe", or "writethrough" and controls how the host cache is used to access block data.
+@var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
@item aio=@var{aio}
@var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
@item format=@var{format}
attempt to do disk IO directly to the guests memory. QEMU may still perform
an internal copy of the data.
+The host page cache can be avoided while only sending write notifications to
+the guest when the data has been reported as written by the storage subsystem
+using @option{cache=directsync}.
+
Some block drivers perform badly with @option{cache=writethrough}, most notably,
qcow2. If performance is more important than correctness,
@option{cache=writeback} should be used with qcow2.
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
-Note that a SAMBA server must be installed on the host OS in
-@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from
-Red Hat 9, Fedora Core 3 and OpenSUSE 11.x.
+Note that a SAMBA server must be installed on the host OS.
+QEMU was tested successfully with smbd versions from Red Hat 9,
+Fedora Core 3 and OpenSUSE 11.x.
@item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
Redirect incoming TCP or UDP connections to the host port @var{hostport} to
@var{sysconfdir}/target-@var{ARCH}.conf on startup. The @code{-nodefconfig}
option will prevent QEMU from loading these configuration files at startup.
ETEXI
-#ifdef CONFIG_SIMPLE_TRACE
DEF("trace", HAS_ARG, QEMU_OPTION_trace,
- "-trace\n"
- " Specify a trace file to log traces to\n",
+ "-trace [events=<file>][,file=<file>]\n"
+ " specify tracing options\n",
QEMU_ARCH_ALL)
STEXI
-@item -trace
+HXCOMM This line is not accurate, as some sub-options are backend-specific but
+HXCOMM HX does not support conditional compilation of text.
+@item -trace [events=@var{file}][,file=@var{file}]
@findex -trace
-Specify a trace file to log output traces to.
+
+Specify tracing options.
+
+@table @option
+@item events=@var{file}
+Immediately enable events listed in @var{file}.
+The file must contain one event name (as listed in the @var{trace-events} file)
+per line.
+
+This option is only available when using the @var{simple} and @var{stderr}
+tracing backends.
+@item file=@var{file}
+Log output traces to @var{file}.
+
+This option is only available when using the @var{simple} tracing backend.
+@end table
ETEXI
-#endif
HXCOMM This is the last statement. Insert new options before this line!
STEXI
}
}
-#ifndef CONFIG_IOTHREAD
-static int64_t qemu_icount_delta(void)
-{
- if (!use_icount) {
- return 5000 * (int64_t) 1000000;
- } else if (use_icount == 1) {
- /* When not using an adaptive execution frequency
- we tend to get badly out of sync with real time,
- so just delay for a reasonable amount of time. */
- return 0;
- } else {
- return cpu_get_icount() - cpu_get_clock();
- }
-}
-#endif
-
/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
if (!option)
return;
-#ifdef CONFIG_IOTHREAD
vm_clock->warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
-#endif
if (strcmp(option, "auto") != 0) {
icount_time_shift = strtol(option, NULL, 0);
int qemu_calculate_timeout(void)
{
-#ifndef CONFIG_IOTHREAD
- int timeout;
-
- if (!vm_running)
- timeout = 5000;
- else {
- /* XXX: use timeout computed from timers */
- int64_t add;
- int64_t delta;
- /* Advance virtual time to the next event. */
- delta = qemu_icount_delta();
- if (delta > 0) {
- /* If virtual time is ahead of real time then just
- wait for IO. */
- timeout = (delta + 999999) / 1000000;
- } else {
- /* Wait for either IO to occur or the next
- timer event. */
- add = qemu_next_icount_deadline();
- /* We advance the timer before checking for IO.
- Limit the amount we advance so that early IO
- activity won't get the guest too far ahead. */
- if (add > 10000000)
- add = 10000000;
- delta += add;
- qemu_icount += qemu_icount_round (add);
- timeout = delta / 1000000;
- if (timeout < 0)
- timeout = 0;
- }
- }
-
- return timeout;
-#else /* CONFIG_IOTHREAD */
return 1000;
-#endif
}
- "wr_bytes": bytes written (json-int)
- "rd_operations": read operations (json-int)
- "wr_operations": write operations (json-int)
+ - "flush_operations": cache flush operations (json-int)
+ - "wr_total_time_ns": total time spend on writes in nano-seconds (json-int)
+ - "rd_total_time_ns": total time spend on reads in nano-seconds (json-int)
+ - "flush_total_time_ns": total time spend on cache flushes in nano-seconds (json-int)
- "wr_highest_offset": Highest offset of a sector written since the
BlockDriverState has been opened (json-int)
- "parent": Contains recursively the statistics of the underlying
"wr_operations":751,
"rd_bytes":122567168,
"rd_operations":36772
+ "wr_total_times_ns":313253456
+ "rd_total_times_ns":3465673657
+ "flush_total_times_ns":49653
+ "flush_operations":61,
}
},
"stats":{
"wr_operations":692,
"rd_bytes":122739200,
"rd_operations":36604
+ "flush_operations":51,
+ "wr_total_times_ns":313253456
+ "rd_total_times_ns":3465673657
+ "flush_total_times_ns":49653
}
},
{
"wr_operations":0,
"rd_bytes":0,
"rd_operations":0
+ "flush_operations":0,
+ "wr_total_times_ns":0
+ "rd_total_times_ns":0
+ "flush_total_times_ns":0
}
},
{
"wr_operations":0,
"rd_bytes":0,
"rd_operations":0
+ "flush_operations":0,
+ "wr_total_times_ns":0
+ "rd_total_times_ns":0
+ "flush_total_times_ns":0
}
},
{
"wr_operations":0,
"rd_bytes":0,
"rd_operations":0
+ "flush_operations":0,
+ "wr_total_times_ns":0
+ "rd_total_times_ns":0
+ "flush_total_times_ns":0
}
}
]
%.o: %.m
$(call quiet-command,$(CC) $(QEMU_INCLUDES) $(QEMU_CFLAGS) $(QEMU_DGFLAGS) $(CFLAGS) -c -o $@ $<," OBJC $(TARGET_DIR)$@")
-LINK = $(call quiet-command,$(CC) $(QEMU_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ $(1) $(LIBS)," LINK $(TARGET_DIR)$@")
+LINK = $(call quiet-command,$(CC) $(QEMU_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ $(sort $(1)) $(LIBS)," LINK $(TARGET_DIR)$@")
%$(EXESUF): %.o
$(call LINK,$^)
--- /dev/null
+#include "rwhandler.h"
+#include "ioport.h"
+#include "cpu-all.h"
+
+#define RWHANDLER_WRITE(name, len, type) \
+static void name(void *opaque, type addr, uint32_t value) \
+{\
+ struct ReadWriteHandler *handler = opaque;\
+ handler->write(handler, addr, value, len);\
+}
+
+#define RWHANDLER_READ(name, len, type) \
+static uint32_t name(void *opaque, type addr) \
+{ \
+ struct ReadWriteHandler *handler = opaque; \
+ return handler->read(handler, addr, len); \
+}
+
+RWHANDLER_WRITE(cpu_io_memory_simple_writeb, 1, target_phys_addr_t);
+RWHANDLER_READ(cpu_io_memory_simple_readb, 1, target_phys_addr_t);
+RWHANDLER_WRITE(cpu_io_memory_simple_writew, 2, target_phys_addr_t);
+RWHANDLER_READ(cpu_io_memory_simple_readw, 2, target_phys_addr_t);
+RWHANDLER_WRITE(cpu_io_memory_simple_writel, 4, target_phys_addr_t);
+RWHANDLER_READ(cpu_io_memory_simple_readl, 4, target_phys_addr_t);
+
+static CPUWriteMemoryFunc * const cpu_io_memory_simple_write[] = {
+ &cpu_io_memory_simple_writeb,
+ &cpu_io_memory_simple_writew,
+ &cpu_io_memory_simple_writel,
+};
+
+static CPUReadMemoryFunc * const cpu_io_memory_simple_read[] = {
+ &cpu_io_memory_simple_readb,
+ &cpu_io_memory_simple_readw,
+ &cpu_io_memory_simple_readl,
+};
+
+int cpu_register_io_memory_simple(struct ReadWriteHandler *handler, int endian)
+{
+ if (!handler->read || !handler->write) {
+ return -1;
+ }
+ return cpu_register_io_memory(cpu_io_memory_simple_read,
+ cpu_io_memory_simple_write,
+ handler, endian);
+}
+
+RWHANDLER_WRITE(ioport_simple_writeb, 1, uint32_t);
+RWHANDLER_READ(ioport_simple_readb, 1, uint32_t);
+RWHANDLER_WRITE(ioport_simple_writew, 2, uint32_t);
+RWHANDLER_READ(ioport_simple_readw, 2, uint32_t);
+RWHANDLER_WRITE(ioport_simple_writel, 4, uint32_t);
+RWHANDLER_READ(ioport_simple_readl, 4, uint32_t);
+
+int register_ioport_simple(ReadWriteHandler* handler,
+ pio_addr_t start, int length, int size)
+{
+ IOPortWriteFunc *write;
+ IOPortReadFunc *read;
+ int r;
+ switch (size) {
+ case 1:
+ write = ioport_simple_writeb;
+ read = ioport_simple_readb;
+ break;
+ case 2:
+ write = ioport_simple_writew;
+ read = ioport_simple_readw;
+ break;
+ default:
+ write = ioport_simple_writel;
+ read = ioport_simple_readl;
+ }
+ if (handler->write) {
+ r = register_ioport_write(start, length, size, write, handler);
+ if (r < 0) {
+ return r;
+ }
+ }
+ if (handler->read) {
+ r = register_ioport_read(start, length, size, read, handler);
+ if (r < 0) {
+ return r;
+ }
+ }
+ return 0;
+}
--- /dev/null
+#ifndef READ_WRITE_HANDLER_H
+#define READ_WRITE_HANDLER_H
+
+#include "qemu-common.h"
+#include "ioport.h"
+
+typedef struct ReadWriteHandler ReadWriteHandler;
+
+/* len is guaranteed to be one of 1, 2 or 4, addr is guaranteed to fit in an
+ * appropriate type (io/memory/etc). They do not need to be range checked. */
+typedef void WriteHandlerFunc(ReadWriteHandler *, pcibus_t addr,
+ uint32_t value, int len);
+typedef uint32_t ReadHandlerFunc(ReadWriteHandler *, pcibus_t addr, int len);
+
+struct ReadWriteHandler {
+ WriteHandlerFunc *write;
+ ReadHandlerFunc *read;
+};
+
+/* Helpers for when we want to use a single routine with length. */
+/* CPU memory handler: both read and write must be present. */
+int cpu_register_io_memory_simple(ReadWriteHandler *, int endian);
+/* io port handler: can supply only read or write handlers. */
+int register_ioport_simple(ReadWriteHandler *,
+ pio_addr_t start, int length, int size);
+
+#endif
$allowed = 1;
}
}
- if (!$seen) {
+ if ($seen != ($#chunks + 1)) {
WARN("braces {} are necessary for all arms of this statement\n" . $herectx);
}
}
fn_argcount = len(inspect.getargspec(fn)[0]) - 1
if fn_argcount == event_argcount + 1:
# Include timestamp as first argument
- return lambda _, rec: fn(*rec[1:2 + fn_argcount])
+ return lambda _, rec: fn(*rec[1:2 + event_argcount])
else:
# Just arguments, no timestamp
- return lambda _, rec: fn(*rec[2:2 + fn_argcount])
+ return lambda _, rec: fn(*rec[2:2 + event_argcount])
analyzer.begin()
fn_cache = {}
# Get the name of a trace event
get_name()
{
- echo ${1%%\(*}
+ local name
+ name=${1%%\(*}
+ echo "${name##* }"
+}
+
+# Get the given property of a trace event
+# 1: trace-events line
+# 2: property name
+# -> return 0 if property is present, or 1 otherwise
+has_property()
+{
+ local props prop
+ props=${1%%\(*}
+ props=${props% *}
+ for prop in $props; do
+ if [ "$prop" = "$2" ]; then
+ return 0
+ fi
+ done
+ return 1
}
# Get the argument list of a trace event, including types and names
echo "$fmt"
}
-# Get the state of a trace event
-get_state()
-{
- local str disable state
- str=$(get_name "$1")
- disable=${str##disable }
- if [ "$disable" = "$str" ] ; then
- state=1
- else
- state=0
- fi
- echo "$state"
-}
-
linetoh_begin_nop()
{
return
linetoh_begin_simple()
{
cat <<EOF
-#include "simpletrace.h"
+#include "trace/simple.h"
EOF
simple_event_num=0
linetoh_simple()
{
- local name args argc trace_args state
+ local name args argc trace_args
name=$(get_name "$1")
args=$(get_args "$1")
argc=$(get_argc "$1")
- state=$(get_state "$1")
- if [ "$state" = "0" ]; then
- name=${name##disable }
- fi
trace_args="$simple_event_num"
if [ "$argc" -gt 0 ]
linetoc_simple()
{
- local name state
+ local name
name=$(get_name "$1")
- state=$(get_state "$1")
- if [ "$state" = "0" ] ; then
- name=${name##disable }
- fi
cat <<EOF
-{.tp_name = "$name", .state=$state},
+{.tp_name = "$name", .state=0},
EOF
simple_event_num=$((simple_event_num + 1))
}
{
cat <<EOF
#include <stdio.h>
+#include "trace/stderr.h"
+
+extern TraceEvent trace_list[];
EOF
+
+ stderr_event_num=0
}
linetoh_stderr()
cat <<EOF
static inline void trace_$name($args)
{
- fprintf(stderr, "$name $fmt\n" $argnames);
+ if (trace_list[$stderr_event_num].state != 0) {
+ fprintf(stderr, "$name $fmt\n" $argnames);
+ }
}
EOF
+ stderr_event_num=$((stderr_event_num + 1))
+
}
linetoh_end_stderr()
{
-return
+ cat <<EOF
+#define NR_TRACE_EVENTS $stderr_event_num
+EOF
}
linetoc_begin_stderr()
{
-return
+ cat <<EOF
+#include "trace.h"
+
+TraceEvent trace_list[] = {
+EOF
+ stderr_event_num=0
}
linetoc_stderr()
{
-return
+ local name
+ name=$(get_name "$1")
+ cat <<EOF
+{.tp_name = "$name", .state=0},
+EOF
+ stderr_event_num=$(($stderr_event_num + 1))
}
linetoc_end_stderr()
{
-return
+ cat <<EOF
+};
+EOF
}
#END OF STDERR
linetoh_dtrace()
{
- local name args argnames state nameupper
+ local name args argnames nameupper
name=$(get_name "$1")
args=$(get_args "$1")
argnames=$(get_argnames "$1", ",")
- state=$(get_state "$1")
- if [ "$state" = "0" ] ; then
- name=${name##disable }
- fi
nameupper=`echo $name | tr '[:lower:]' '[:upper:]'`
linetod_dtrace()
{
- local name args state
+ local name args
name=$(get_name "$1")
args=$(get_args "$1")
- state=$(get_state "$1")
- if [ "$state" = "0" ] ; then
- name=${name##disable }
- fi
# DTrace provider syntax expects foo() for empty
# params, not foo(void)
linetostap_dtrace()
{
- local i arg name args arglist state
+ local i arg name args arglist
name=$(get_name "$1")
args=$(get_args "$1")
arglist=$(get_argnames "$1", "")
- state=$(get_state "$1")
- if [ "$state" = "0" ] ; then
- name=${name##disable }
- fi
# Define prototype for probe arguments
cat <<EOF
# Skip comments and empty lines
test -z "${str%%#*}" && continue
- # Process the line. The nop backend handles disabled lines.
- disable=${str%%disable *}
echo
- if test -z "$disable"; then
- # Pass the disabled state as an arg for the simple
- # or DTrace backends which handle it dynamically.
- # For all other backends, call lineto$1_nop()
- if [ $backend = "simple" -o "$backend" = "dtrace" ]; then
- "$process_line" "$str"
- else
- "lineto$1_nop" "${str##disable }"
- fi
+ # Process the line. The nop backend handles disabled lines.
+ if has_property "$str" "disable"; then
+ "lineto$1_nop" "$str"
else
"$process_line" "$str"
fi
+++ /dev/null
-/*
- * Simple trace backend
- *
- * Copyright IBM, Corp. 2010
- *
- * This work is licensed under the terms of the GNU GPL, version 2. See
- * the COPYING file in the top-level directory.
- *
- */
-
-#include <stdlib.h>
-#include <stdint.h>
-#include <stdio.h>
-#include <time.h>
-#include <signal.h>
-#include <pthread.h>
-#include "qemu-timer.h"
-#include "trace.h"
-
-/** Trace file header event ID */
-#define HEADER_EVENT_ID (~(uint64_t)0) /* avoids conflicting with TraceEventIDs */
-
-/** Trace file magic number */
-#define HEADER_MAGIC 0xf2b177cb0aa429b4ULL
-
-/** Trace file version number, bump if format changes */
-#define HEADER_VERSION 0
-
-/** Records were dropped event ID */
-#define DROPPED_EVENT_ID (~(uint64_t)0 - 1)
-
-/** Trace record is valid */
-#define TRACE_RECORD_VALID ((uint64_t)1 << 63)
-
-/** Trace buffer entry */
-typedef struct {
- uint64_t event;
- uint64_t timestamp_ns;
- uint64_t x1;
- uint64_t x2;
- uint64_t x3;
- uint64_t x4;
- uint64_t x5;
- uint64_t x6;
-} TraceRecord;
-
-enum {
- TRACE_BUF_LEN = 4096,
- TRACE_BUF_FLUSH_THRESHOLD = TRACE_BUF_LEN / 4,
-};
-
-/*
- * Trace records are written out by a dedicated thread. The thread waits for
- * records to become available, writes them out, and then waits again.
- */
-static pthread_mutex_t trace_lock = PTHREAD_MUTEX_INITIALIZER;
-static pthread_cond_t trace_available_cond = PTHREAD_COND_INITIALIZER;
-static pthread_cond_t trace_empty_cond = PTHREAD_COND_INITIALIZER;
-static bool trace_available;
-static bool trace_writeout_enabled;
-
-static TraceRecord trace_buf[TRACE_BUF_LEN];
-static unsigned int trace_idx;
-static FILE *trace_fp;
-static char *trace_file_name = NULL;
-
-/**
- * Read a trace record from the trace buffer
- *
- * @idx Trace buffer index
- * @record Trace record to fill
- *
- * Returns false if the record is not valid.
- */
-static bool get_trace_record(unsigned int idx, TraceRecord *record)
-{
- if (!(trace_buf[idx].event & TRACE_RECORD_VALID)) {
- return false;
- }
-
- __sync_synchronize(); /* read memory barrier before accessing record */
-
- *record = trace_buf[idx];
- record->event &= ~TRACE_RECORD_VALID;
- return true;
-}
-
-/**
- * Kick writeout thread
- *
- * @wait Whether to wait for writeout thread to complete
- */
-static void flush_trace_file(bool wait)
-{
- pthread_mutex_lock(&trace_lock);
- trace_available = true;
- pthread_cond_signal(&trace_available_cond);
-
- if (wait) {
- pthread_cond_wait(&trace_empty_cond, &trace_lock);
- }
-
- pthread_mutex_unlock(&trace_lock);
-}
-
-static void wait_for_trace_records_available(void)
-{
- pthread_mutex_lock(&trace_lock);
- while (!(trace_available && trace_writeout_enabled)) {
- pthread_cond_signal(&trace_empty_cond);
- pthread_cond_wait(&trace_available_cond, &trace_lock);
- }
- trace_available = false;
- pthread_mutex_unlock(&trace_lock);
-}
-
-static void *writeout_thread(void *opaque)
-{
- TraceRecord record;
- unsigned int writeout_idx = 0;
- unsigned int num_available, idx;
- size_t unused __attribute__ ((unused));
-
- for (;;) {
- wait_for_trace_records_available();
-
- num_available = trace_idx - writeout_idx;
- if (num_available > TRACE_BUF_LEN) {
- record = (TraceRecord){
- .event = DROPPED_EVENT_ID,
- .x1 = num_available,
- };
- unused = fwrite(&record, sizeof(record), 1, trace_fp);
- writeout_idx += num_available;
- }
-
- idx = writeout_idx % TRACE_BUF_LEN;
- while (get_trace_record(idx, &record)) {
- trace_buf[idx].event = 0; /* clear valid bit */
- unused = fwrite(&record, sizeof(record), 1, trace_fp);
- idx = ++writeout_idx % TRACE_BUF_LEN;
- }
-
- fflush(trace_fp);
- }
- return NULL;
-}
-
-static void trace(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3,
- uint64_t x4, uint64_t x5, uint64_t x6)
-{
- unsigned int idx;
- uint64_t timestamp;
-
- if (!trace_list[event].state) {
- return;
- }
-
- timestamp = get_clock();
-
- idx = __sync_fetch_and_add(&trace_idx, 1) % TRACE_BUF_LEN;
- trace_buf[idx] = (TraceRecord){
- .event = event,
- .timestamp_ns = timestamp,
- .x1 = x1,
- .x2 = x2,
- .x3 = x3,
- .x4 = x4,
- .x5 = x5,
- .x6 = x6,
- };
- __sync_synchronize(); /* write barrier before marking as valid */
- trace_buf[idx].event |= TRACE_RECORD_VALID;
-
- if ((idx + 1) % TRACE_BUF_FLUSH_THRESHOLD == 0) {
- flush_trace_file(false);
- }
-}
-
-void trace0(TraceEventID event)
-{
- trace(event, 0, 0, 0, 0, 0, 0);
-}
-
-void trace1(TraceEventID event, uint64_t x1)
-{
- trace(event, x1, 0, 0, 0, 0, 0);
-}
-
-void trace2(TraceEventID event, uint64_t x1, uint64_t x2)
-{
- trace(event, x1, x2, 0, 0, 0, 0);
-}
-
-void trace3(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3)
-{
- trace(event, x1, x2, x3, 0, 0, 0);
-}
-
-void trace4(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4)
-{
- trace(event, x1, x2, x3, x4, 0, 0);
-}
-
-void trace5(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, uint64_t x5)
-{
- trace(event, x1, x2, x3, x4, x5, 0);
-}
-
-void trace6(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, uint64_t x5, uint64_t x6)
-{
- trace(event, x1, x2, x3, x4, x5, x6);
-}
-
-void st_set_trace_file_enabled(bool enable)
-{
- if (enable == !!trace_fp) {
- return; /* no change */
- }
-
- /* Halt trace writeout */
- flush_trace_file(true);
- trace_writeout_enabled = false;
- flush_trace_file(true);
-
- if (enable) {
- static const TraceRecord header = {
- .event = HEADER_EVENT_ID,
- .timestamp_ns = HEADER_MAGIC,
- .x1 = HEADER_VERSION,
- };
-
- trace_fp = fopen(trace_file_name, "w");
- if (!trace_fp) {
- return;
- }
-
- if (fwrite(&header, sizeof header, 1, trace_fp) != 1) {
- fclose(trace_fp);
- trace_fp = NULL;
- return;
- }
-
- /* Resume trace writeout */
- trace_writeout_enabled = true;
- flush_trace_file(false);
- } else {
- fclose(trace_fp);
- trace_fp = NULL;
- }
-}
-
-/**
- * Set the name of a trace file
- *
- * @file The trace file name or NULL for the default name-<pid> set at
- * config time
- */
-bool st_set_trace_file(const char *file)
-{
- st_set_trace_file_enabled(false);
-
- free(trace_file_name);
-
- if (!file) {
- if (asprintf(&trace_file_name, CONFIG_TRACE_FILE, getpid()) < 0) {
- trace_file_name = NULL;
- return false;
- }
- } else {
- if (asprintf(&trace_file_name, "%s", file) < 0) {
- trace_file_name = NULL;
- return false;
- }
- }
-
- st_set_trace_file_enabled(true);
- return true;
-}
-
-void st_print_trace_file_status(FILE *stream, int (*stream_printf)(FILE *stream, const char *fmt, ...))
-{
- stream_printf(stream, "Trace file \"%s\" %s.\n",
- trace_file_name, trace_fp ? "on" : "off");
-}
-
-void st_print_trace(FILE *stream, int (*stream_printf)(FILE *stream, const char *fmt, ...))
-{
- unsigned int i;
-
- for (i = 0; i < TRACE_BUF_LEN; i++) {
- TraceRecord record;
-
- if (!get_trace_record(i, &record)) {
- continue;
- }
- stream_printf(stream, "Event %" PRIu64 " : %" PRIx64 " %" PRIx64
- " %" PRIx64 " %" PRIx64 " %" PRIx64 " %" PRIx64 "\n",
- record.event, record.x1, record.x2,
- record.x3, record.x4, record.x5,
- record.x6);
- }
-}
-
-void st_print_trace_events(FILE *stream, int (*stream_printf)(FILE *stream, const char *fmt, ...))
-{
- unsigned int i;
-
- for (i = 0; i < NR_TRACE_EVENTS; i++) {
- stream_printf(stream, "%s [Event ID %u] : state %u\n",
- trace_list[i].tp_name, i, trace_list[i].state);
- }
-}
-
-bool st_change_trace_event_state(const char *name, bool enabled)
-{
- unsigned int i;
-
- for (i = 0; i < NR_TRACE_EVENTS; i++) {
- if (!strcmp(trace_list[i].tp_name, name)) {
- trace_list[i].state = enabled;
- return true;
- }
- }
- return false;
-}
-
-void st_flush_trace_buffer(void)
-{
- flush_trace_file(true);
-}
-
-bool st_init(const char *file)
-{
- pthread_t thread;
- pthread_attr_t attr;
- sigset_t set, oldset;
- int ret;
-
- pthread_attr_init(&attr);
- pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
-
- sigfillset(&set);
- pthread_sigmask(SIG_SETMASK, &set, &oldset);
- ret = pthread_create(&thread, &attr, writeout_thread, NULL);
- pthread_sigmask(SIG_SETMASK, &oldset, NULL);
-
- if (ret != 0) {
- return false;
- }
-
- atexit(st_flush_trace_buffer);
- st_set_trace_file(file);
- return true;
-}
+++ /dev/null
-/*
- * Simple trace backend
- *
- * Copyright IBM, Corp. 2010
- *
- * This work is licensed under the terms of the GNU GPL, version 2. See
- * the COPYING file in the top-level directory.
- *
- */
-
-#ifndef SIMPLETRACE_H
-#define SIMPLETRACE_H
-
-#include <stdint.h>
-#include <stdbool.h>
-#include <stdio.h>
-
-#ifdef CONFIG_SIMPLE_TRACE
-typedef uint64_t TraceEventID;
-
-typedef struct {
- const char *tp_name;
- bool state;
-} TraceEvent;
-
-void trace0(TraceEventID event);
-void trace1(TraceEventID event, uint64_t x1);
-void trace2(TraceEventID event, uint64_t x1, uint64_t x2);
-void trace3(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3);
-void trace4(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4);
-void trace5(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, uint64_t x5);
-void trace6(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, uint64_t x5, uint64_t x6);
-void st_print_trace(FILE *stream, fprintf_function stream_printf);
-void st_print_trace_events(FILE *stream, fprintf_function stream_printf);
-bool st_change_trace_event_state(const char *tname, bool tstate);
-void st_print_trace_file_status(FILE *stream, fprintf_function stream_printf);
-void st_set_trace_file_enabled(bool enable);
-bool st_set_trace_file(const char *file);
-void st_flush_trace_buffer(void);
-bool st_init(const char *file);
-#else
-static inline bool st_init(const char *file)
-{
- return true;
-}
-#endif /* !CONFIG_SIMPLE_TRACE */
-
-#endif /* SIMPLETRACE_H */
uint8_t ip_p; /* protocol */
uint16_t ip_sum; /* checksum */
struct in_addr ip_src,ip_dst; /* source and dest address */
-} __attribute__((packed));
+} QEMU_PACKED;
#define IP_MAXPACKET 65535 /* maximum packet size */
n_long ipt_time;
} ipt_ta[1];
} ipt_timestamp;
-} __attribute__((packed));
+} QEMU_PACKED;
/* flag bits for ipt_flg */
#define IPOPT_TS_TSONLY 0 /* timestamps only */
struct mbuf_ptr {
struct mbuf *mptr;
uint32_t dummy;
-} __attribute__((packed));
+} QEMU_PACKED;
#else
struct mbuf_ptr {
struct mbuf *mptr;
-} __attribute__((packed));
+} QEMU_PACKED;
#endif
struct qlink {
void *next, *prev;
uint16_t ih_len; /* protocol length */
struct in_addr ih_src; /* source internet address */
struct in_addr ih_dst; /* destination internet address */
-} __attribute__((packed));
+} QEMU_PACKED;
/*
* Ip reassembly queue structure. Each fragment
uint8_t ipq_p; /* protocol of this fragment */
uint16_t ipq_id; /* sequence id for reassembly */
struct in_addr ipq_src,ipq_dst;
-} __attribute__((packed));
+} QEMU_PACKED;
/*
* Ip header, when holding a fragment.
struct ipasfrag {
struct qlink ipf_link;
struct ip ipf_ip;
-} __attribute__((packed));
+} QEMU_PACKED;
#define ipf_off ipf_ip.ip_off
#define ipf_tos ipf_ip.ip_tos
struct ipoption {
struct in_addr ipopt_dst; /* first-hop dst if source routed */
int8_t ipopt_list[MAX_IPOPTLEN]; /* options proper */
-} __attribute__((packed));
+} QEMU_PACKED;
#endif
uint32_t ar_sip; /* sender IP address */
unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
uint32_t ar_tip; /* target IP address */
-} __attribute__((packed));
+} QEMU_PACKED;
#define ARP_TABLE_SIZE 16
.tbss : { *(.tbss) }
.preinit_array :
{
- PROVIDE_HIDDEN (__preinit_array_start = .);
+ PROVIDE (__preinit_array_start = .);
KEEP (*(.preinit_array))
- PROVIDE_HIDDEN (__preinit_array_end = .);
+ PROVIDE (__preinit_array_end = .);
}
.init_array :
{
- PROVIDE_HIDDEN (__init_array_start = .);
+ PROVIDE (__init_array_start = .);
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
- PROVIDE_HIDDEN (__init_array_end = .);
+ PROVIDE (__init_array_end = .);
}
.fini_array :
{
- PROVIDE_HIDDEN (__fini_array_start = .);
+ PROVIDE (__fini_array_start = .);
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
- PROVIDE_HIDDEN (__fini_array_end = .);
+ PROVIDE (__fini_array_end = .);
}
.ctors :
{
struct {
struct kvm_cpuid2 cpuid;
struct kvm_cpuid_entry2 entries[100];
- } __attribute__((packed)) cpuid_data;
+ } QEMU_PACKED cpuid_data;
KVMState *s = env->kvm_state;
uint32_t limit, i, j, cpuid_i;
uint32_t unused;
#define SVM_CR0_SELECTIVE_MASK (1 << 3 | 1) /* TS and MP */
-struct __attribute__ ((__packed__)) vmcb_control_area {
+struct QEMU_PACKED vmcb_control_area {
uint16_t intercept_cr_read;
uint16_t intercept_cr_write;
uint16_t intercept_dr_read;
uint8_t reserved_5[832];
};
-struct __attribute__ ((__packed__)) vmcb_seg {
+struct QEMU_PACKED vmcb_seg {
uint16_t selector;
uint16_t attrib;
uint32_t limit;
uint64_t base;
};
-struct __attribute__ ((__packed__)) vmcb_save_area {
+struct QEMU_PACKED vmcb_save_area {
struct vmcb_seg es;
struct vmcb_seg cs;
struct vmcb_seg ss;
uint64_t last_excp_to;
};
-struct __attribute__ ((__packed__)) vmcb {
+struct QEMU_PACKED vmcb {
struct vmcb_control_area control;
struct vmcb_save_area save;
};
#define MSR_DCE (1<<7) /* 0x080 */
#define MSR_EE (1<<8) /* 0x100 */
#define MSR_EIP (1<<9) /* 0x200 */
+#define MSR_PVR (1<<10) /* 0x400 */
#define MSR_CC (1<<31)
/* Machine State Register (MSR) Fields */
static inline void msr_write(DisasContext *dc, TCGv v)
{
+ TCGv t;
+
+ t = tcg_temp_new();
dc->cpustate_changed = 1;
- tcg_gen_mov_tl(cpu_SR[SR_MSR], v);
- /* PVR, we have a processor version register. */
- tcg_gen_ori_tl(cpu_SR[SR_MSR], cpu_SR[SR_MSR], (1 << 10));
+ /* PVR bit is not writable. */
+ tcg_gen_andi_tl(t, v, ~MSR_PVR);
+ tcg_gen_andi_tl(cpu_SR[SR_MSR], cpu_SR[SR_MSR], MSR_PVR);
+ tcg_gen_or_tl(cpu_SR[SR_MSR], cpu_SR[SR_MSR], v);
+ tcg_temp_free(t);
}
static void dec_msr(DisasContext *dc)
if (!(env->CP0_Status & (1 << CP0St_IE)) ||
(env->CP0_Status & (1 << CP0St_EXL)) ||
(env->CP0_Status & (1 << CP0St_ERL)) ||
+ /* Note that the TCStatus IXMT field is initialized to zero,
+ and only MT capable cores can set it to one. So we don't
+ need to check for MT capabilities here. */
+ (env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT)) ||
(env->hflags & MIPS_HFLAG_DM)) {
/* Interrupts are disabled */
return 0;
/* Dummy exception for conditional stores. */
#define EXCP_SC 0x100
+/*
+ * This is an interrnally generated WAKE request line.
+ * It is driven by the CPU itself. Raised when the MT
+ * block wants to wake a VPE from an inactive state and
+ * cleared when VPE goes from active to inactive.
+ */
+#define CPU_INTERRUPT_WAKE CPU_INTERRUPT_TGT_INT_0
+
int cpu_mips_exec(CPUMIPSState *s);
CPUMIPSState *cpu_mips_init(const char *cpu_model);
//~ uint32_t cpu_mips_get_clock (void);
env->tls_value = newtls;
}
+static inline int mips_vpe_active(CPUState *env)
+{
+ int active = 1;
+
+ /* Check that the VPE is enabled. */
+ if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
+ active = 0;
+ }
+ /* Check that the VPE is actived. */
+ if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
+ active = 0;
+ }
+
+ /* Now verify that there are active thread contexts in the VPE.
+
+ This assumes the CPU model will internally reschedule threads
+ if the active one goes to sleep. If there are no threads available
+ the active one will be in a sleeping state, and we can turn off
+ the entire VPE. */
+ if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
+ /* TC is not activated. */
+ active = 0;
+ }
+ if (env->active_tc.CP0_TCHalt & 1) {
+ /* TC is in halt state. */
+ active = 0;
+ }
+
+ return active;
+}
+
static inline int cpu_has_work(CPUState *env)
{
int has_work = 0;
has_work = 1;
}
+ /* MIPS-MT has the ability to halt the CPU. */
+ if (env->CP0_Config3 & (1 << CP0C3_MT)) {
+ /* The QEMU model will issue an _WAKE request whenever the CPUs
+ should be woken up. */
+ if (env->interrupt_request & CPU_INTERRUPT_WAKE) {
+ has_work = 1;
+ }
+
+ if (!mips_vpe_active(env)) {
+ has_work = 0;
+ }
+ }
return has_work;
}
unsigned int vector;
unsigned int pending = (env->CP0_Cause & CP0Ca_IP_mask) >> 8;
+ pending &= env->CP0_Status >> 8;
/* Compute the Vector Spacing. */
spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & ((1 << 6) - 1);
spacing <<= 5;
if (env->CP0_Config3 & (1 << CP0C3_VInt)) {
/* For VInt mode, the MIPS computes the vector internally. */
- for (vector = 0; vector < 8; vector++) {
- if (pending & 1) {
+ for (vector = 7; vector > 0; vector--) {
+ if (pending & (1 << vector)) {
/* Found it. */
break;
}
- pending >>= 1;
}
} else {
/* For VEIC mode, the external interrupt controller feeds the
DEF_HELPER_0(mfc0_mvpcontrol, tl)
DEF_HELPER_0(mfc0_mvpconf0, tl)
DEF_HELPER_0(mfc0_mvpconf1, tl)
+DEF_HELPER_0(mftc0_vpecontrol, tl)
+DEF_HELPER_0(mftc0_vpeconf0, tl)
DEF_HELPER_0(mfc0_random, tl)
DEF_HELPER_0(mfc0_tcstatus, tl)
DEF_HELPER_0(mftc0_tcstatus, tl)
DEF_HELPER_0(mfc0_count, tl)
DEF_HELPER_0(mftc0_entryhi, tl)
DEF_HELPER_0(mftc0_status, tl)
+DEF_HELPER_0(mftc0_cause, tl)
+DEF_HELPER_0(mftc0_epc, tl)
+DEF_HELPER_0(mftc0_ebase, tl)
+DEF_HELPER_1(mftc0_configx, tl, tl)
DEF_HELPER_0(mfc0_lladdr, tl)
DEF_HELPER_1(mfc0_watchlo, tl, i32)
DEF_HELPER_1(mfc0_watchhi, tl, i32)
DEF_HELPER_1(mtc0_index, void, tl)
DEF_HELPER_1(mtc0_mvpcontrol, void, tl)
DEF_HELPER_1(mtc0_vpecontrol, void, tl)
+DEF_HELPER_1(mttc0_vpecontrol, void, tl)
DEF_HELPER_1(mtc0_vpeconf0, void, tl)
+DEF_HELPER_1(mttc0_vpeconf0, void, tl)
DEF_HELPER_1(mtc0_vpeconf1, void, tl)
DEF_HELPER_1(mtc0_yqmask, void, tl)
DEF_HELPER_1(mtc0_vpeopt, void, tl)
DEF_HELPER_1(mtc0_intctl, void, tl)
DEF_HELPER_1(mtc0_srsctl, void, tl)
DEF_HELPER_1(mtc0_cause, void, tl)
+DEF_HELPER_1(mttc0_cause, void, tl)
DEF_HELPER_1(mtc0_ebase, void, tl)
+DEF_HELPER_1(mttc0_ebase, void, tl)
DEF_HELPER_1(mtc0_config0, void, tl)
DEF_HELPER_1(mtc0_config2, void, tl)
DEF_HELPER_1(mtc0_lladdr, void, tl)
#endif
#ifndef CONFIG_USER_ONLY
+/* SMP helpers. */
+static int mips_vpe_is_wfi(CPUState *c)
+{
+ /* If the VPE is halted but otherwise active, it means it's waiting for
+ an interrupt. */
+ return c->halted && mips_vpe_active(c);
+}
+
+static inline void mips_vpe_wake(CPUState *c)
+{
+ /* Dont set ->halted = 0 directly, let it be done via cpu_has_work
+ because there might be other conditions that state that c should
+ be sleeping. */
+ cpu_interrupt(c, CPU_INTERRUPT_WAKE);
+}
+
+static inline void mips_vpe_sleep(CPUState *c)
+{
+ /* The VPE was shut off, really go to bed.
+ Reset any old _WAKE requests. */
+ c->halted = 1;
+ cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE);
+}
+
+static inline void mips_tc_wake(CPUState *c, int tc)
+{
+ /* FIXME: TC reschedule. */
+ if (mips_vpe_active(c) && !mips_vpe_is_wfi(c)) {
+ mips_vpe_wake(c);
+ }
+}
+
+static inline void mips_tc_sleep(CPUState *c, int tc)
+{
+ /* FIXME: TC reschedule. */
+ if (!mips_vpe_active(c)) {
+ mips_vpe_sleep(c);
+ }
+}
+
+/* tc should point to an int with the value of the global TC index.
+ This function will transform it into a local index within the
+ returned CPUState.
+
+ FIXME: This code assumes that all VPEs have the same number of TCs,
+ which depends on runtime setup. Can probably be fixed by
+ walking the list of CPUStates. */
+static CPUState *mips_cpu_map_tc(int *tc)
+{
+ CPUState *other;
+ int vpe_idx, nr_threads = env->nr_threads;
+ int tc_idx = *tc;
+
+ if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
+ /* Not allowed to address other CPUs. */
+ *tc = env->current_tc;
+ return env;
+ }
+
+ vpe_idx = tc_idx / nr_threads;
+ *tc = tc_idx % nr_threads;
+ other = qemu_get_cpu(vpe_idx);
+ return other ? other : env;
+}
+
+/* The per VPE CP0_Status register shares some fields with the per TC
+ CP0_TCStatus registers. These fields are wired to the same registers,
+ so changes to either of them should be reflected on both registers.
+
+ Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
+
+ These helper call synchronizes the regs for a given cpu. */
+
+/* Called for updates to CP0_Status. */
+static void sync_c0_status(CPUState *cpu, int tc)
+{
+ int32_t tcstatus, *tcst;
+ uint32_t v = cpu->CP0_Status;
+ uint32_t cu, mx, asid, ksu;
+ uint32_t mask = ((1 << CP0TCSt_TCU3)
+ | (1 << CP0TCSt_TCU2)
+ | (1 << CP0TCSt_TCU1)
+ | (1 << CP0TCSt_TCU0)
+ | (1 << CP0TCSt_TMX)
+ | (3 << CP0TCSt_TKSU)
+ | (0xff << CP0TCSt_TASID));
+
+ cu = (v >> CP0St_CU0) & 0xf;
+ mx = (v >> CP0St_MX) & 0x1;
+ ksu = (v >> CP0St_KSU) & 0x3;
+ asid = env->CP0_EntryHi & 0xff;
+
+ tcstatus = cu << CP0TCSt_TCU0;
+ tcstatus |= mx << CP0TCSt_TMX;
+ tcstatus |= ksu << CP0TCSt_TKSU;
+ tcstatus |= asid;
+
+ if (tc == cpu->current_tc) {
+ tcst = &cpu->active_tc.CP0_TCStatus;
+ } else {
+ tcst = &cpu->tcs[tc].CP0_TCStatus;
+ }
+
+ *tcst &= ~mask;
+ *tcst |= tcstatus;
+ compute_hflags(cpu);
+}
+
+/* Called for updates to CP0_TCStatus. */
+static void sync_c0_tcstatus(CPUState *cpu, int tc, target_ulong v)
+{
+ uint32_t status;
+ uint32_t tcu, tmx, tasid, tksu;
+ uint32_t mask = ((1 << CP0St_CU3)
+ | (1 << CP0St_CU2)
+ | (1 << CP0St_CU1)
+ | (1 << CP0St_CU0)
+ | (1 << CP0St_MX)
+ | (3 << CP0St_KSU));
+
+ tcu = (v >> CP0TCSt_TCU0) & 0xf;
+ tmx = (v >> CP0TCSt_TMX) & 0x1;
+ tasid = v & 0xff;
+ tksu = (v >> CP0TCSt_TKSU) & 0x3;
+
+ status = tcu << CP0St_CU0;
+ status |= tmx << CP0St_MX;
+ status |= tksu << CP0St_KSU;
+
+ cpu->CP0_Status &= ~mask;
+ cpu->CP0_Status |= status;
+
+ /* Sync the TASID with EntryHi. */
+ cpu->CP0_EntryHi &= ~0xff;
+ cpu->CP0_EntryHi = tasid;
+
+ compute_hflags(cpu);
+}
+
+/* Called for updates to CP0_EntryHi. */
+static void sync_c0_entryhi(CPUState *cpu, int tc)
+{
+ int32_t *tcst;
+ uint32_t asid, v = cpu->CP0_EntryHi;
+
+ asid = v & 0xff;
+
+ if (tc == cpu->current_tc) {
+ tcst = &cpu->active_tc.CP0_TCStatus;
+ } else {
+ tcst = &cpu->tcs[tc].CP0_TCStatus;
+ }
+
+ *tcst &= ~0xff;
+ *tcst |= asid;
+}
+
/* CP0 helpers */
target_ulong helper_mfc0_mvpcontrol (void)
{
target_ulong helper_mftc0_tcstatus(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.CP0_TCStatus;
+ if (other_tc == other->current_tc)
+ return other->active_tc.CP0_TCStatus;
else
- return env->tcs[other_tc].CP0_TCStatus;
+ return other->tcs[other_tc].CP0_TCStatus;
}
target_ulong helper_mfc0_tcbind (void)
target_ulong helper_mftc0_tcbind(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.CP0_TCBind;
+ if (other_tc == other->current_tc)
+ return other->active_tc.CP0_TCBind;
else
- return env->tcs[other_tc].CP0_TCBind;
+ return other->tcs[other_tc].CP0_TCBind;
}
target_ulong helper_mfc0_tcrestart (void)
target_ulong helper_mftc0_tcrestart(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.PC;
+ if (other_tc == other->current_tc)
+ return other->active_tc.PC;
else
- return env->tcs[other_tc].PC;
+ return other->tcs[other_tc].PC;
}
target_ulong helper_mfc0_tchalt (void)
target_ulong helper_mftc0_tchalt(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.CP0_TCHalt;
+ if (other_tc == other->current_tc)
+ return other->active_tc.CP0_TCHalt;
else
- return env->tcs[other_tc].CP0_TCHalt;
+ return other->tcs[other_tc].CP0_TCHalt;
}
target_ulong helper_mfc0_tccontext (void)
target_ulong helper_mftc0_tccontext(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.CP0_TCContext;
+ if (other_tc == other->current_tc)
+ return other->active_tc.CP0_TCContext;
else
- return env->tcs[other_tc].CP0_TCContext;
+ return other->tcs[other_tc].CP0_TCContext;
}
target_ulong helper_mfc0_tcschedule (void)
target_ulong helper_mftc0_tcschedule(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.CP0_TCSchedule;
+ if (other_tc == other->current_tc)
+ return other->active_tc.CP0_TCSchedule;
else
- return env->tcs[other_tc].CP0_TCSchedule;
+ return other->tcs[other_tc].CP0_TCSchedule;
}
target_ulong helper_mfc0_tcschefback (void)
target_ulong helper_mftc0_tcschefback(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.CP0_TCScheFBack;
+ if (other_tc == other->current_tc)
+ return other->active_tc.CP0_TCScheFBack;
else
- return env->tcs[other_tc].CP0_TCScheFBack;
+ return other->tcs[other_tc].CP0_TCScheFBack;
}
target_ulong helper_mfc0_count (void)
target_ulong helper_mftc0_entryhi(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
- int32_t tcstatus;
-
- if (other_tc == env->current_tc)
- tcstatus = env->active_tc.CP0_TCStatus;
- else
- tcstatus = env->tcs[other_tc].CP0_TCStatus;
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
+ return other->CP0_EntryHi;
}
-target_ulong helper_mftc0_status(void)
+target_ulong helper_mftc0_cause(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
- target_ulong t0;
- int32_t tcstatus;
+ int32_t tccause;
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- tcstatus = env->active_tc.CP0_TCStatus;
- else
- tcstatus = env->tcs[other_tc].CP0_TCStatus;
+ if (other_tc == other->current_tc) {
+ tccause = other->CP0_Cause;
+ } else {
+ tccause = other->CP0_Cause;
+ }
- t0 = env->CP0_Status & ~0xf1000018;
- t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
- t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
- t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
+ return tccause;
+}
- return t0;
+target_ulong helper_mftc0_status(void)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+
+ return other->CP0_Status;
}
target_ulong helper_mfc0_lladdr (void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tcstatus;
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- tcstatus = env->active_tc.CP0_Debug_tcstatus;
+ if (other_tc == other->current_tc)
+ tcstatus = other->active_tc.CP0_Debug_tcstatus;
else
- tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
+ tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
/* XXX: Might be wrong, check with EJTAG spec. */
- return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
+ return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
env->CP0_VPEControl = newval;
}
+void helper_mttc0_vpecontrol(target_ulong arg1)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+ uint32_t mask;
+ uint32_t newval;
+
+ mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
+ (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
+ newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
+
+ /* TODO: Enable/disable TCs. */
+
+ other->CP0_VPEControl = newval;
+}
+
+target_ulong helper_mftc0_vpecontrol(void)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+ /* FIXME: Mask away return zero on read bits. */
+ return other->CP0_VPEControl;
+}
+
+target_ulong helper_mftc0_vpeconf0(void)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+
+ return other->CP0_VPEConf0;
+}
+
void helper_mtc0_vpeconf0 (target_ulong arg1)
{
uint32_t mask = 0;
env->CP0_VPEConf0 = newval;
}
+void helper_mttc0_vpeconf0(target_ulong arg1)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+ uint32_t mask = 0;
+ uint32_t newval;
+
+ mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
+ newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
+
+ /* TODO: TC exclusive handling due to ERL/EXL. */
+ other->CP0_VPEConf0 = newval;
+}
+
void helper_mtc0_vpeconf1 (target_ulong arg1)
{
uint32_t mask = 0;
newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
- // TODO: Sync with CP0_Status.
-
env->active_tc.CP0_TCStatus = newval;
+ sync_c0_tcstatus(env, env->current_tc, newval);
}
void helper_mttc0_tcstatus (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- // TODO: Sync with CP0_Status.
-
- if (other_tc == env->current_tc)
- env->active_tc.CP0_TCStatus = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.CP0_TCStatus = arg1;
else
- env->tcs[other_tc].CP0_TCStatus = arg1;
+ other->tcs[other_tc].CP0_TCStatus = arg1;
+ sync_c0_tcstatus(other, other_tc, arg1);
}
void helper_mtc0_tcbind (target_ulong arg1)
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
+ if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0TCBd_CurVPE);
- if (other_tc == env->current_tc) {
- newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
- env->active_tc.CP0_TCBind = newval;
+ if (other_tc == other->current_tc) {
+ newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
+ other->active_tc.CP0_TCBind = newval;
} else {
- newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
- env->tcs[other_tc].CP0_TCBind = newval;
+ newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
+ other->tcs[other_tc].CP0_TCBind = newval;
}
}
void helper_mttc0_tcrestart (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc) {
- env->active_tc.PC = arg1;
- env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
- env->lladdr = 0ULL;
+ if (other_tc == other->current_tc) {
+ other->active_tc.PC = arg1;
+ other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
+ other->lladdr = 0ULL;
/* MIPS16 not implemented. */
} else {
- env->tcs[other_tc].PC = arg1;
- env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
- env->lladdr = 0ULL;
+ other->tcs[other_tc].PC = arg1;
+ other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
+ other->lladdr = 0ULL;
/* MIPS16 not implemented. */
}
}
env->active_tc.CP0_TCHalt = arg1 & 0x1;
// TODO: Halt TC / Restart (if allocated+active) TC.
+ if (env->active_tc.CP0_TCHalt & 1) {
+ mips_tc_sleep(env, env->current_tc);
+ } else {
+ mips_tc_wake(env, env->current_tc);
+ }
}
void helper_mttc0_tchalt (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
// TODO: Halt TC / Restart (if allocated+active) TC.
- if (other_tc == env->current_tc)
- env->active_tc.CP0_TCHalt = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.CP0_TCHalt = arg1;
else
- env->tcs[other_tc].CP0_TCHalt = arg1;
+ other->tcs[other_tc].CP0_TCHalt = arg1;
+
+ if (arg1 & 1) {
+ mips_tc_sleep(other, other_tc);
+ } else {
+ mips_tc_wake(other, other_tc);
+ }
}
void helper_mtc0_tccontext (target_ulong arg1)
void helper_mttc0_tccontext (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- env->active_tc.CP0_TCContext = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.CP0_TCContext = arg1;
else
- env->tcs[other_tc].CP0_TCContext = arg1;
+ other->tcs[other_tc].CP0_TCContext = arg1;
}
void helper_mtc0_tcschedule (target_ulong arg1)
void helper_mttc0_tcschedule (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- env->active_tc.CP0_TCSchedule = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.CP0_TCSchedule = arg1;
else
- env->tcs[other_tc].CP0_TCSchedule = arg1;
+ other->tcs[other_tc].CP0_TCSchedule = arg1;
}
void helper_mtc0_tcschefback (target_ulong arg1)
void helper_mttc0_tcschefback (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- env->active_tc.CP0_TCScheFBack = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.CP0_TCScheFBack = arg1;
else
- env->tcs[other_tc].CP0_TCScheFBack = arg1;
+ other->tcs[other_tc].CP0_TCScheFBack = arg1;
}
void helper_mtc0_entrylo1 (target_ulong arg1)
old = env->CP0_EntryHi;
env->CP0_EntryHi = val;
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
- uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
- env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
+ sync_c0_entryhi(env, env->current_tc);
}
/* If the ASID changes, flush qemu's TLB. */
if ((old & 0xFF) != (val & 0xFF))
void helper_mttc0_entryhi(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
- int32_t tcstatus;
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff);
- if (other_tc == env->current_tc) {
- tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff);
- env->active_tc.CP0_TCStatus = tcstatus;
- } else {
- tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff);
- env->tcs[other_tc].CP0_TCStatus = tcstatus;
- }
+ other->CP0_EntryHi = arg1;
+ sync_c0_entryhi(other, other_tc);
}
void helper_mtc0_compare (target_ulong arg1)
val = arg1 & mask;
old = env->CP0_Status;
env->CP0_Status = (env->CP0_Status & ~mask) | val;
- compute_hflags(env);
+ if (env->CP0_Config3 & (1 << CP0C3_MT)) {
+ sync_c0_status(env, env->current_tc);
+ } else {
+ compute_hflags(env);
+ }
+
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
old, old & env->CP0_Cause & CP0Ca_IP_mask,
void helper_mttc0_status(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
- int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
-
- env->CP0_Status = arg1 & ~0xf1000018;
- tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0));
- tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
- tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
- if (other_tc == env->current_tc)
- env->active_tc.CP0_TCStatus = tcstatus;
- else
- env->tcs[other_tc].CP0_TCStatus = tcstatus;
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+
+ other->CP0_Status = arg1 & ~0xf1000018;
+ sync_c0_status(other, other_tc);
}
void helper_mtc0_intctl (target_ulong arg1)
{
/* vectored interrupts not implemented, no performance counters. */
- env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0);
+ env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
}
void helper_mtc0_srsctl (target_ulong arg1)
env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
}
-void helper_mtc0_cause (target_ulong arg1)
+static void mtc0_cause(CPUState *cpu, target_ulong arg1)
{
uint32_t mask = 0x00C00300;
- uint32_t old = env->CP0_Cause;
+ uint32_t old = cpu->CP0_Cause;
int i;
- if (env->insn_flags & ISA_MIPS32R2)
+ if (cpu->insn_flags & ISA_MIPS32R2) {
mask |= 1 << CP0Ca_DC;
+ }
- env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask);
+ cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
- if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
- if (env->CP0_Cause & (1 << CP0Ca_DC))
- cpu_mips_stop_count(env);
- else
- cpu_mips_start_count(env);
+ if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
+ if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
+ cpu_mips_stop_count(cpu);
+ } else {
+ cpu_mips_start_count(cpu);
+ }
}
/* Set/reset software interrupts */
for (i = 0 ; i < 2 ; i++) {
- if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
- cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
+ if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
+ cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
}
}
}
+void helper_mtc0_cause(target_ulong arg1)
+{
+ mtc0_cause(env, arg1);
+}
+
+void helper_mttc0_cause(target_ulong arg1)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+
+ mtc0_cause(other, arg1);
+}
+
+target_ulong helper_mftc0_epc(void)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+
+ return other->CP0_EPC;
+}
+
+target_ulong helper_mftc0_ebase(void)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+
+ return other->CP0_EBase;
+}
+
void helper_mtc0_ebase (target_ulong arg1)
{
/* vectored interrupts not implemented */
env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
}
+void helper_mttc0_ebase(target_ulong arg1)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+ other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
+}
+
+target_ulong helper_mftc0_configx(target_ulong idx)
+{
+ int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
+
+ switch (idx) {
+ case 0: return other->CP0_Config0;
+ case 1: return other->CP0_Config1;
+ case 2: return other->CP0_Config2;
+ case 3: return other->CP0_Config3;
+ /* 4 and 5 are reserved. */
+ case 6: return other->CP0_Config6;
+ case 7: return other->CP0_Config7;
+ default:
+ break;
+ }
+ return 0;
+}
+
void helper_mtc0_config0 (target_ulong arg1)
{
env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
+ CPUState *other = mips_cpu_map_tc(&other_tc);
/* XXX: Might be wrong, check with EJTAG spec. */
- if (other_tc == env->current_tc)
- env->active_tc.CP0_Debug_tcstatus = val;
+ if (other_tc == other->current_tc)
+ other->active_tc.CP0_Debug_tcstatus = val;
else
- env->tcs[other_tc].CP0_Debug_tcstatus = val;
- env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
+ other->tcs[other_tc].CP0_Debug_tcstatus = val;
+ other->CP0_Debug = (other->CP0_Debug &
+ ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
target_ulong helper_mftgpr(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.gpr[sel];
+ if (other_tc == other->current_tc)
+ return other->active_tc.gpr[sel];
else
- return env->tcs[other_tc].gpr[sel];
+ return other->tcs[other_tc].gpr[sel];
}
target_ulong helper_mftlo(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.LO[sel];
+ if (other_tc == other->current_tc)
+ return other->active_tc.LO[sel];
else
- return env->tcs[other_tc].LO[sel];
+ return other->tcs[other_tc].LO[sel];
}
target_ulong helper_mfthi(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.HI[sel];
+ if (other_tc == other->current_tc)
+ return other->active_tc.HI[sel];
else
- return env->tcs[other_tc].HI[sel];
+ return other->tcs[other_tc].HI[sel];
}
target_ulong helper_mftacx(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.ACX[sel];
+ if (other_tc == other->current_tc)
+ return other->active_tc.ACX[sel];
else
- return env->tcs[other_tc].ACX[sel];
+ return other->tcs[other_tc].ACX[sel];
}
target_ulong helper_mftdsp(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- return env->active_tc.DSPControl;
+ if (other_tc == other->current_tc)
+ return other->active_tc.DSPControl;
else
- return env->tcs[other_tc].DSPControl;
+ return other->tcs[other_tc].DSPControl;
}
void helper_mttgpr(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- env->active_tc.gpr[sel] = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.gpr[sel] = arg1;
else
- env->tcs[other_tc].gpr[sel] = arg1;
+ other->tcs[other_tc].gpr[sel] = arg1;
}
void helper_mttlo(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- env->active_tc.LO[sel] = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.LO[sel] = arg1;
else
- env->tcs[other_tc].LO[sel] = arg1;
+ other->tcs[other_tc].LO[sel] = arg1;
}
void helper_mtthi(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- env->active_tc.HI[sel] = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.HI[sel] = arg1;
else
- env->tcs[other_tc].HI[sel] = arg1;
+ other->tcs[other_tc].HI[sel] = arg1;
}
void helper_mttacx(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- env->active_tc.ACX[sel] = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.ACX[sel] = arg1;
else
- env->tcs[other_tc].ACX[sel] = arg1;
+ other->tcs[other_tc].ACX[sel] = arg1;
}
void helper_mttdsp(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
+ CPUState *other = mips_cpu_map_tc(&other_tc);
- if (other_tc == env->current_tc)
- env->active_tc.DSPControl = arg1;
+ if (other_tc == other->current_tc)
+ other->active_tc.DSPControl = arg1;
else
- env->tcs[other_tc].DSPControl = arg1;
+ other->tcs[other_tc].DSPControl = arg1;
}
/* MIPS MT functions */
target_ulong helper_dvpe(void)
{
- // TODO
- return 0;
+ CPUState *other_cpu = first_cpu;
+ target_ulong prev = env->mvp->CP0_MVPControl;
+
+ do {
+ /* Turn off all VPEs except the one executing the dvpe. */
+ if (other_cpu != env) {
+ other_cpu->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
+ mips_vpe_sleep(other_cpu);
+ }
+ other_cpu = other_cpu->next_cpu;
+ } while (other_cpu);
+ return prev;
}
target_ulong helper_evpe(void)
{
- // TODO
- return 0;
+ CPUState *other_cpu = first_cpu;
+ target_ulong prev = env->mvp->CP0_MVPControl;
+
+ do {
+ if (other_cpu != env
+ /* If the VPE is WFI, dont distrub it's sleep. */
+ && !mips_vpe_is_wfi(other_cpu)) {
+ /* Enable the VPE. */
+ other_cpu->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
+ mips_vpe_wake(other_cpu); /* And wake it up. */
+ }
+ other_cpu = other_cpu->next_cpu;
+ } while (other_cpu);
+ return prev;
}
#endif /* !CONFIG_USER_ONLY */
void helper_wait (void)
{
env->halted = 1;
+ cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE);
helper_raise_exception(EXCP_HLT);
}
tcg_gen_movi_tl(t0, -1);
else if (u == 0) {
switch (rt) {
+ case 1:
+ switch (sel) {
+ case 1:
+ gen_helper_mftc0_vpecontrol(t0);
+ break;
+ case 2:
+ gen_helper_mftc0_vpeconf0(t0);
+ break;
+ default:
+ goto die;
+ break;
+ }
+ break;
case 2:
switch (sel) {
case 1:
gen_mfc0(env, ctx, t0, rt, sel);
break;
}
+ case 13:
+ switch (sel) {
+ case 0:
+ gen_helper_mftc0_cause(t0);
+ break;
+ default:
+ goto die;
+ break;
+ }
+ break;
+ case 14:
+ switch (sel) {
+ case 0:
+ gen_helper_mftc0_epc(t0);
+ break;
+ default:
+ goto die;
+ break;
+ }
+ break;
+ case 15:
+ switch (sel) {
+ case 1:
+ gen_helper_mftc0_ebase(t0);
+ break;
+ default:
+ goto die;
+ break;
+ }
+ break;
+ case 16:
+ switch (sel) {
+ case 0 ... 7:
+ gen_helper_mftc0_configx(t0, tcg_const_tl(sel));
+ break;
+ default:
+ goto die;
+ break;
+ }
+ break;
case 23:
switch (sel) {
case 0:
/* NOP */ ;
else if (u == 0) {
switch (rd) {
+ case 1:
+ switch (sel) {
+ case 1:
+ gen_helper_mttc0_vpecontrol(t0);
+ break;
+ case 2:
+ gen_helper_mttc0_vpeconf0(t0);
+ break;
+ default:
+ goto die;
+ break;
+ }
+ break;
case 2:
switch (sel) {
case 1:
gen_mtc0(env, ctx, t0, rd, sel);
break;
}
+ case 13:
+ switch (sel) {
+ case 0:
+ gen_helper_mttc0_cause(t0);
+ break;
+ default:
+ goto die;
+ break;
+ }
+ break;
+ case 15:
+ switch (sel) {
+ case 1:
+ gen_helper_mttc0_ebase(t0);
+ break;
+ default:
+ goto die;
+ break;
+ }
+ break;
case 23:
switch (sel) {
case 0:
/* Count register increments in debug mode, EJTAG version 1 */
env->CP0_Debug = (1 << CP0DB_CNT) | (0x1 << CP0DB_VER);
env->hflags = MIPS_HFLAG_CP0;
+
+ if (env->CP0_Config3 & (1 << CP0C3_MT)) {
+ int i;
+
+ /* Only TC0 on VPE 0 starts as active. */
+ for (i = 0; i < ARRAY_SIZE(env->tcs); i++) {
+ env->tcs[i].CP0_TCBind = env->cpu_index << CP0TCBd_CurVPE;
+ env->tcs[i].CP0_TCHalt = 1;
+ }
+ env->active_tc.CP0_TCHalt = 1;
+ env->halted = 1;
+
+ if (!env->cpu_index) {
+ /* VPE0 starts up enabled. */
+ env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
+ env->CP0_VPEConf0 |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
+
+ /* TC0 starts up unhalted. */
+ env->halted = 0;
+ env->active_tc.CP0_TCHalt = 0;
+ env->tcs[0].CP0_TCHalt = 0;
+ /* With thread 0 active. */
+ env->active_tc.CP0_TCStatus = (1 << CP0TCSt_A);
+ env->tcs[0].CP0_TCStatus = (1 << CP0TCSt_A);
+ }
+ }
#endif
#if defined(TARGET_MIPS64)
if (env->cpu_model->insn_flags & ISA_MIPS3) {
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
- .CP0_Config3 = MIPS_CONFIG3 | (0 << CP0C3_VInt) | (1 << CP0C3_MT),
+ .CP0_Config3 = MIPS_CONFIG3 | (1 << CP0C3_VInt) | (1 << CP0C3_MT),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
// (1 << CP0MVPC0_TCA) | (0x1 << CP0MVPC0_PVPE) |
// (0x04 << CP0MVPC0_PTC);
(1 << CP0MVPC0_TCA) | (0x0 << CP0MVPC0_PVPE) |
- (0x04 << CP0MVPC0_PTC);
+ (0x00 << CP0MVPC0_PTC);
#if !defined(CONFIG_USER_ONLY)
/* Usermode has no TLB support */
env->mvp->CP0_MVPConf0 |= (env->tlb->nb_tlb << CP0MVPC0_PTLBE);
/* align to the top of the prefix area */
uint8_t pad18[0x2000-0x1400]; /* 0x1400 */
-} __attribute__((packed)) LowCore;
+} QEMU_PACKED LowCore;
/* STSI */
#define STSI_LEVEL_MASK 0x00000000f0000000ULL
}
}
-static int op_bits(enum TCGOpcode op)
+static int op_bits(TCGOpcode op)
{
const TCGOpDef *def = &tcg_op_defs[op];
return def->flags & TCG_OPF_64BIT ? 64 : 32;
}
-static int op_to_movi(int op)
+static TCGOpcode op_to_movi(TCGOpcode op)
{
switch (op_bits(op)) {
case 32:
gen_args[1] = val;
}
-static int op_to_mov(int op)
+static TCGOpcode op_to_mov(TCGOpcode op)
{
switch (op_bits(op)) {
case 32:
}
}
-static TCGArg do_constant_folding_2(int op, TCGArg x, TCGArg y)
+static TCGArg do_constant_folding_2(TCGOpcode op, TCGArg x, TCGArg y)
{
switch (op) {
CASE_OP_32_64(add):
}
}
-static TCGArg do_constant_folding(int op, TCGArg x, TCGArg y)
+static TCGArg do_constant_folding(TCGOpcode op, TCGArg x, TCGArg y)
{
TCGArg res = do_constant_folding_2(op, x, y);
if (op_bits(op) == 32) {
static TCGArg *tcg_constant_folding(TCGContext *s, uint16_t *tcg_opc_ptr,
TCGArg *args, TCGOpDef *tcg_op_defs)
{
- int i, nb_ops, op_index, op, nb_temps, nb_globals, nb_call_args;
+ int i, nb_ops, op_index, nb_temps, nb_globals, nb_call_args;
+ TCGOpcode op;
const TCGOpDef *def;
TCGArg *gen_args;
TCGArg tmp;
continue;
}
break;
+ default:
+ break;
}
/* Propagate constants through copy operations and do constant
static void tcg_out_qemu_ld (TCGContext *s, const TCGArg *args, int opc)
{
- int addr_reg, data_reg, data_reg2, r0, r1, rbase, mem_index, s_bits, bswap;
+ int addr_reg, data_reg, data_reg2, r0, r1, rbase, bswap;
#ifdef CONFIG_SOFTMMU
- int r2;
+ int mem_index, s_bits, r2;
void *label1_ptr, *label2_ptr;
-#endif
#if TARGET_LONG_BITS == 64
int addr_reg2;
+#endif
#endif
data_reg = *args++;
else
data_reg2 = 0;
addr_reg = *args++;
+
+#ifdef CONFIG_SOFTMMU
#if TARGET_LONG_BITS == 64
addr_reg2 = *args++;
#endif
mem_index = *args;
s_bits = opc & 3;
-
-#ifdef CONFIG_SOFTMMU
r0 = 3;
r1 = 4;
r2 = 0;
static void tcg_out_qemu_st (TCGContext *s, const TCGArg *args, int opc)
{
- int addr_reg, r0, r1, data_reg, data_reg2, mem_index, bswap, rbase;
+ int addr_reg, r0, r1, data_reg, data_reg2, bswap, rbase;
#ifdef CONFIG_SOFTMMU
- int r2, ir;
+ int mem_index, r2, ir;
void *label1_ptr, *label2_ptr;
-#endif
#if TARGET_LONG_BITS == 64
int addr_reg2;
+#endif
#endif
data_reg = *args++;
else
data_reg2 = 0;
addr_reg = *args++;
+
+#ifdef CONFIG_SOFTMMU
#if TARGET_LONG_BITS == 64
addr_reg2 = *args++;
#endif
mem_index = *args;
-
-#ifdef CONFIG_SOFTMMU
r0 = 3;
r1 = 4;
r2 = 0;
void fpu_clear_exceptions(void)
{
- struct __attribute__((packed)) {
+ struct QEMU_PACKED {
uint16_t fpuc;
uint16_t dummy1;
uint16_t fpus;
void test_fenv(void)
{
- struct __attribute__((packed)) {
+ struct QEMU_PACKED {
uint16_t fpuc;
uint16_t dummy1;
uint16_t fpus;
uint32_t ignored[4];
long double fpregs[8];
} float_env32;
- struct __attribute__((packed)) {
+ struct QEMU_PACKED {
uint16_t fpuc;
uint16_t fpus;
uint16_t fptag;
struct {
uint32_t offset;
uint16_t seg;
- } __attribute__((packed)) segoff;
+ } QEMU_PACKED segoff;
ldt.entry_number = 1;
ldt.base_addr = (unsigned long)&seg_data1;
/* XXX: see if Intel Core2 and AMD64 behavior really
differ. Here we implemented the Intel way which is not
compatible yet with QEMU. */
- static struct __attribute__((packed)) {
+ static struct QEMU_PACKED {
uint64_t offset;
uint16_t seg;
} desc;
#include "../cutils.c"
#include "../path.c"
#include "../trace.c"
-#ifdef CONFIG_SIMPLE_TRACE
+#ifdef CONFIG_TRACE_SIMPLE
#include "../simpletrace.c"
#endif
#
# [disable] <name>(<type1> <arg1>[, <type2> <arg2>] ...) "<format-string>"
#
-# Example: qemu_malloc(size_t size) "size %zu"
+# Example: g_malloc(size_t size) "size %zu"
#
# The "disable" keyword will build without the trace event.
-# In case of 'simple' trace backend, it will allow the trace event to be
-# compiled, but this would be turned off by default. It can be toggled on via
-# the monitor.
#
# The <name> must be a valid as a C function name.
#
# The <format-string> should be a sprintf()-compatible format string.
# qemu-malloc.c
-disable qemu_malloc(size_t size, void *ptr) "size %zu ptr %p"
-disable qemu_realloc(void *ptr, size_t size, void *newptr) "ptr %p size %zu newptr %p"
-disable qemu_free(void *ptr) "ptr %p"
+g_malloc(size_t size, void *ptr) "size %zu ptr %p"
+g_realloc(void *ptr, size_t size, void *newptr) "ptr %p size %zu newptr %p"
+g_free(void *ptr) "ptr %p"
# osdep.c
-disable qemu_memalign(size_t alignment, size_t size, void *ptr) "alignment %zu size %zu ptr %p"
-disable qemu_vmalloc(size_t size, void *ptr) "size %zu ptr %p"
-disable qemu_vfree(void *ptr) "ptr %p"
+qemu_memalign(size_t alignment, size_t size, void *ptr) "alignment %zu size %zu ptr %p"
+qemu_vmalloc(size_t size, void *ptr) "size %zu ptr %p"
+qemu_vfree(void *ptr) "ptr %p"
# hw/virtio.c
-disable virtqueue_fill(void *vq, const void *elem, unsigned int len, unsigned int idx) "vq %p elem %p len %u idx %u"
-disable virtqueue_flush(void *vq, unsigned int count) "vq %p count %u"
-disable virtqueue_pop(void *vq, void *elem, unsigned int in_num, unsigned int out_num) "vq %p elem %p in_num %u out_num %u"
-disable virtio_queue_notify(void *vdev, int n, void *vq) "vdev %p n %d vq %p"
-disable virtio_irq(void *vq) "vq %p"
-disable virtio_notify(void *vdev, void *vq) "vdev %p vq %p"
+virtqueue_fill(void *vq, const void *elem, unsigned int len, unsigned int idx) "vq %p elem %p len %u idx %u"
+virtqueue_flush(void *vq, unsigned int count) "vq %p count %u"
+virtqueue_pop(void *vq, void *elem, unsigned int in_num, unsigned int out_num) "vq %p elem %p in_num %u out_num %u"
+virtio_queue_notify(void *vdev, int n, void *vq) "vdev %p n %d vq %p"
+virtio_irq(void *vq) "vq %p"
+virtio_notify(void *vdev, void *vq) "vdev %p vq %p"
# hw/virtio-serial-bus.c
-disable virtio_serial_send_control_event(unsigned int port, uint16_t event, uint16_t value) "port %u, event %u, value %u"
-disable virtio_serial_throttle_port(unsigned int port, bool throttle) "port %u, throttle %d"
-disable virtio_serial_handle_control_message(uint16_t event, uint16_t value) "event %u, value %u"
-disable virtio_serial_handle_control_message_port(unsigned int port) "port %u"
+virtio_serial_send_control_event(unsigned int port, uint16_t event, uint16_t value) "port %u, event %u, value %u"
+virtio_serial_throttle_port(unsigned int port, bool throttle) "port %u, throttle %d"
+virtio_serial_handle_control_message(uint16_t event, uint16_t value) "event %u, value %u"
+virtio_serial_handle_control_message_port(unsigned int port) "port %u"
# hw/virtio-console.c
-disable virtio_console_flush_buf(unsigned int port, size_t len, ssize_t ret) "port %u, in_len %zu, out_len %zd"
-disable virtio_console_chr_read(unsigned int port, int size) "port %u, size %d"
-disable virtio_console_chr_event(unsigned int port, int event) "port %u, event %d"
+virtio_console_flush_buf(unsigned int port, size_t len, ssize_t ret) "port %u, in_len %zu, out_len %zd"
+virtio_console_chr_read(unsigned int port, int size) "port %u, size %d"
+virtio_console_chr_event(unsigned int port, int event) "port %u, event %d"
# block.c
-disable multiwrite_cb(void *mcb, int ret) "mcb %p ret %d"
-disable bdrv_aio_multiwrite(void *mcb, int num_callbacks, int num_reqs) "mcb %p num_callbacks %d num_reqs %d"
-disable bdrv_aio_multiwrite_earlyfail(void *mcb) "mcb %p"
-disable bdrv_aio_multiwrite_latefail(void *mcb, int i) "mcb %p i %d"
-disable bdrv_aio_flush(void *bs, void *opaque) "bs %p opaque %p"
-disable bdrv_aio_readv(void *bs, int64_t sector_num, int nb_sectors, void *opaque) "bs %p sector_num %"PRId64" nb_sectors %d opaque %p"
-disable bdrv_aio_writev(void *bs, int64_t sector_num, int nb_sectors, void *opaque) "bs %p sector_num %"PRId64" nb_sectors %d opaque %p"
-disable bdrv_set_locked(void *bs, int locked) "bs %p locked %d"
-disable bdrv_co_readv(void *bs, int64_t sector_num, int nb_sector) "bs %p sector_num %"PRId64" nb_sectors %d"
-disable bdrv_co_writev(void *bs, int64_t sector_num, int nb_sector) "bs %p sector_num %"PRId64" nb_sectors %d"
-disable bdrv_co_io(int is_write, void *acb) "is_write %d acb %p"
+multiwrite_cb(void *mcb, int ret) "mcb %p ret %d"
+bdrv_aio_multiwrite(void *mcb, int num_callbacks, int num_reqs) "mcb %p num_callbacks %d num_reqs %d"
+bdrv_aio_multiwrite_earlyfail(void *mcb) "mcb %p"
+bdrv_aio_multiwrite_latefail(void *mcb, int i) "mcb %p i %d"
+bdrv_aio_flush(void *bs, void *opaque) "bs %p opaque %p"
+bdrv_aio_readv(void *bs, int64_t sector_num, int nb_sectors, void *opaque) "bs %p sector_num %"PRId64" nb_sectors %d opaque %p"
+bdrv_aio_writev(void *bs, int64_t sector_num, int nb_sectors, void *opaque) "bs %p sector_num %"PRId64" nb_sectors %d opaque %p"
+bdrv_set_locked(void *bs, int locked) "bs %p locked %d"
+bdrv_co_readv(void *bs, int64_t sector_num, int nb_sector) "bs %p sector_num %"PRId64" nb_sectors %d"
+bdrv_co_writev(void *bs, int64_t sector_num, int nb_sector) "bs %p sector_num %"PRId64" nb_sectors %d"
+bdrv_co_io(int is_write, void *acb) "is_write %d acb %p"
# hw/virtio-blk.c
-disable virtio_blk_req_complete(void *req, int status) "req %p status %d"
-disable virtio_blk_rw_complete(void *req, int ret) "req %p ret %d"
-disable virtio_blk_handle_write(void *req, uint64_t sector, size_t nsectors) "req %p sector %"PRIu64" nsectors %zu"
+virtio_blk_req_complete(void *req, int status) "req %p status %d"
+virtio_blk_rw_complete(void *req, int ret) "req %p ret %d"
+virtio_blk_handle_write(void *req, uint64_t sector, size_t nsectors) "req %p sector %"PRIu64" nsectors %zu"
# posix-aio-compat.c
-disable paio_submit(void *acb, void *opaque, int64_t sector_num, int nb_sectors, int type) "acb %p opaque %p sector_num %"PRId64" nb_sectors %d type %d"
-disable paio_complete(void *acb, void *opaque, int ret) "acb %p opaque %p ret %d"
-disable paio_cancel(void *acb, void *opaque) "acb %p opaque %p"
+paio_submit(void *acb, void *opaque, int64_t sector_num, int nb_sectors, int type) "acb %p opaque %p sector_num %"PRId64" nb_sectors %d type %d"
+paio_complete(void *acb, void *opaque, int ret) "acb %p opaque %p ret %d"
+paio_cancel(void *acb, void *opaque) "acb %p opaque %p"
# ioport.c
-disable cpu_in(unsigned int addr, unsigned int val) "addr %#x value %u"
-disable cpu_out(unsigned int addr, unsigned int val) "addr %#x value %u"
+cpu_in(unsigned int addr, unsigned int val) "addr %#x value %u"
+cpu_out(unsigned int addr, unsigned int val) "addr %#x value %u"
# balloon.c
# Since requests are raised via monitor, not many tracepoints are needed.
-disable balloon_event(void *opaque, unsigned long addr) "opaque %p addr %lu"
+balloon_event(void *opaque, unsigned long addr) "opaque %p addr %lu"
# hw/apic.c
-disable apic_local_deliver(int vector, uint32_t lvt) "vector %d delivery mode %d"
-disable apic_deliver_irq(uint8_t dest, uint8_t dest_mode, uint8_t delivery_mode, uint8_t vector_num, uint8_t trigger_mode) "dest %d dest_mode %d delivery_mode %d vector %d trigger_mode %d"
-disable cpu_set_apic_base(uint64_t val) "%016"PRIx64""
-disable cpu_get_apic_base(uint64_t val) "%016"PRIx64""
-disable apic_mem_readl(uint64_t addr, uint32_t val) "%"PRIx64" = %08x"
-disable apic_mem_writel(uint64_t addr, uint32_t val) "%"PRIx64" = %08x"
+apic_local_deliver(int vector, uint32_t lvt) "vector %d delivery mode %d"
+apic_deliver_irq(uint8_t dest, uint8_t dest_mode, uint8_t delivery_mode, uint8_t vector_num, uint8_t trigger_mode) "dest %d dest_mode %d delivery_mode %d vector %d trigger_mode %d"
+cpu_set_apic_base(uint64_t val) "%016"PRIx64""
+cpu_get_apic_base(uint64_t val) "%016"PRIx64""
+apic_mem_readl(uint64_t addr, uint32_t val) "%"PRIx64" = %08x"
+apic_mem_writel(uint64_t addr, uint32_t val) "%"PRIx64" = %08x"
# coalescing
-disable apic_reset_irq_delivered(int apic_irq_delivered) "old coalescing %d"
-disable apic_get_irq_delivered(int apic_irq_delivered) "returning coalescing %d"
-disable apic_set_irq(int apic_irq_delivered) "coalescing %d"
+apic_reset_irq_delivered(int apic_irq_delivered) "old coalescing %d"
+apic_get_irq_delivered(int apic_irq_delivered) "returning coalescing %d"
+apic_set_irq(int apic_irq_delivered) "coalescing %d"
# hw/cs4231.c
-disable cs4231_mem_readl_dreg(uint32_t reg, uint32_t ret) "read dreg %d: 0x%02x"
-disable cs4231_mem_readl_reg(uint32_t reg, uint32_t ret) "read reg %d: 0x%08x"
-disable cs4231_mem_writel_reg(uint32_t reg, uint32_t old, uint32_t val) "write reg %d: 0x%08x -> 0x%08x"
-disable cs4231_mem_writel_dreg(uint32_t reg, uint32_t old, uint32_t val) "write dreg %d: 0x%02x -> 0x%02x"
+cs4231_mem_readl_dreg(uint32_t reg, uint32_t ret) "read dreg %d: 0x%02x"
+cs4231_mem_readl_reg(uint32_t reg, uint32_t ret) "read reg %d: 0x%08x"
+cs4231_mem_writel_reg(uint32_t reg, uint32_t old, uint32_t val) "write reg %d: 0x%08x -> 0x%08x"
+cs4231_mem_writel_dreg(uint32_t reg, uint32_t old, uint32_t val) "write dreg %d: 0x%02x -> 0x%02x"
# hw/ds1225y.c
-disable nvram_read(uint32_t addr, uint32_t ret) "read addr %d: 0x%02x"
-disable nvram_write(uint32_t addr, uint32_t old, uint32_t val) "write addr %d: 0x%02x -> 0x%02x"
+nvram_read(uint32_t addr, uint32_t ret) "read addr %d: 0x%02x"
+nvram_write(uint32_t addr, uint32_t old, uint32_t val) "write addr %d: 0x%02x -> 0x%02x"
# hw/eccmemctl.c
-disable ecc_mem_writel_mer(uint32_t val) "Write memory enable %08x"
-disable ecc_mem_writel_mdr(uint32_t val) "Write memory delay %08x"
-disable ecc_mem_writel_mfsr(uint32_t val) "Write memory fault status %08x"
-disable ecc_mem_writel_vcr(uint32_t val) "Write slot configuration %08x"
-disable ecc_mem_writel_dr(uint32_t val) "Write diagnostic %08x"
-disable ecc_mem_writel_ecr0(uint32_t val) "Write event count 1 %08x"
-disable ecc_mem_writel_ecr1(uint32_t val) "Write event count 2 %08x"
-disable ecc_mem_readl_mer(uint32_t ret) "Read memory enable %08x"
-disable ecc_mem_readl_mdr(uint32_t ret) "Read memory delay %08x"
-disable ecc_mem_readl_mfsr(uint32_t ret) "Read memory fault status %08x"
-disable ecc_mem_readl_vcr(uint32_t ret) "Read slot configuration %08x"
-disable ecc_mem_readl_mfar0(uint32_t ret) "Read memory fault address 0 %08x"
-disable ecc_mem_readl_mfar1(uint32_t ret) "Read memory fault address 1 %08x"
-disable ecc_mem_readl_dr(uint32_t ret) "Read diagnostic %08x"
-disable ecc_mem_readl_ecr0(uint32_t ret) "Read event count 1 %08x"
-disable ecc_mem_readl_ecr1(uint32_t ret) "Read event count 2 %08x"
-disable ecc_diag_mem_writeb(uint64_t addr, uint32_t val) "Write diagnostic %"PRId64" = %02x"
-disable ecc_diag_mem_readb(uint64_t addr, uint32_t ret) "Read diagnostic %"PRId64"= %02x"
+ecc_mem_writel_mer(uint32_t val) "Write memory enable %08x"
+ecc_mem_writel_mdr(uint32_t val) "Write memory delay %08x"
+ecc_mem_writel_mfsr(uint32_t val) "Write memory fault status %08x"
+ecc_mem_writel_vcr(uint32_t val) "Write slot configuration %08x"
+ecc_mem_writel_dr(uint32_t val) "Write diagnostic %08x"
+ecc_mem_writel_ecr0(uint32_t val) "Write event count 1 %08x"
+ecc_mem_writel_ecr1(uint32_t val) "Write event count 2 %08x"
+ecc_mem_readl_mer(uint32_t ret) "Read memory enable %08x"
+ecc_mem_readl_mdr(uint32_t ret) "Read memory delay %08x"
+ecc_mem_readl_mfsr(uint32_t ret) "Read memory fault status %08x"
+ecc_mem_readl_vcr(uint32_t ret) "Read slot configuration %08x"
+ecc_mem_readl_mfar0(uint32_t ret) "Read memory fault address 0 %08x"
+ecc_mem_readl_mfar1(uint32_t ret) "Read memory fault address 1 %08x"
+ecc_mem_readl_dr(uint32_t ret) "Read diagnostic %08x"
+ecc_mem_readl_ecr0(uint32_t ret) "Read event count 1 %08x"
+ecc_mem_readl_ecr1(uint32_t ret) "Read event count 2 %08x"
+ecc_diag_mem_writeb(uint64_t addr, uint32_t val) "Write diagnostic %"PRId64" = %02x"
+ecc_diag_mem_readb(uint64_t addr, uint32_t ret) "Read diagnostic %"PRId64"= %02x"
# hw/lance.c
-disable lance_mem_readw(uint64_t addr, uint32_t ret) "addr=%"PRIx64"val=0x%04x"
-disable lance_mem_writew(uint64_t addr, uint32_t val) "addr=%"PRIx64"val=0x%04x"
+lance_mem_readw(uint64_t addr, uint32_t ret) "addr=%"PRIx64"val=0x%04x"
+lance_mem_writew(uint64_t addr, uint32_t val) "addr=%"PRIx64"val=0x%04x"
# hw/slavio_intctl.c
-disable slavio_intctl_mem_readl(uint32_t cpu, uint64_t addr, uint32_t ret) "read cpu %d reg 0x%"PRIx64" = %x"
-disable slavio_intctl_mem_writel(uint32_t cpu, uint64_t addr, uint32_t val) "write cpu %d reg 0x%"PRIx64" = %x"
-disable slavio_intctl_mem_writel_clear(uint32_t cpu, uint32_t val, uint32_t intreg_pending) "Cleared cpu %d irq mask %x, curmask %x"
-disable slavio_intctl_mem_writel_set(uint32_t cpu, uint32_t val, uint32_t intreg_pending) "Set cpu %d irq mask %x, curmask %x"
-disable slavio_intctlm_mem_readl(uint64_t addr, uint32_t ret) "read system reg 0x%"PRIx64" = %x"
-disable slavio_intctlm_mem_writel(uint64_t addr, uint32_t val) "write system reg 0x%"PRIx64" = %x"
-disable slavio_intctlm_mem_writel_enable(uint32_t val, uint32_t intregm_disabled) "Enabled master irq mask %x, curmask %x"
-disable slavio_intctlm_mem_writel_disable(uint32_t val, uint32_t intregm_disabled) "Disabled master irq mask %x, curmask %x"
-disable slavio_intctlm_mem_writel_target(uint32_t cpu) "Set master irq cpu %d"
-disable slavio_check_interrupts(uint32_t pending, uint32_t intregm_disabled) "pending %x disabled %x"
-disable slavio_set_irq(uint32_t target_cpu, int irq, uint32_t pil, int level) "Set cpu %d irq %d -> pil %d level %d"
-disable slavio_set_timer_irq_cpu(int cpu, int level) "Set cpu %d local timer level %d"
+slavio_intctl_mem_readl(uint32_t cpu, uint64_t addr, uint32_t ret) "read cpu %d reg 0x%"PRIx64" = %x"
+slavio_intctl_mem_writel(uint32_t cpu, uint64_t addr, uint32_t val) "write cpu %d reg 0x%"PRIx64" = %x"
+slavio_intctl_mem_writel_clear(uint32_t cpu, uint32_t val, uint32_t intreg_pending) "Cleared cpu %d irq mask %x, curmask %x"
+slavio_intctl_mem_writel_set(uint32_t cpu, uint32_t val, uint32_t intreg_pending) "Set cpu %d irq mask %x, curmask %x"
+slavio_intctlm_mem_readl(uint64_t addr, uint32_t ret) "read system reg 0x%"PRIx64" = %x"
+slavio_intctlm_mem_writel(uint64_t addr, uint32_t val) "write system reg 0x%"PRIx64" = %x"
+slavio_intctlm_mem_writel_enable(uint32_t val, uint32_t intregm_disabled) "Enabled master irq mask %x, curmask %x"
+slavio_intctlm_mem_writel_disable(uint32_t val, uint32_t intregm_disabled) "Disabled master irq mask %x, curmask %x"
+slavio_intctlm_mem_writel_target(uint32_t cpu) "Set master irq cpu %d"
+slavio_check_interrupts(uint32_t pending, uint32_t intregm_disabled) "pending %x disabled %x"
+slavio_set_irq(uint32_t target_cpu, int irq, uint32_t pil, int level) "Set cpu %d irq %d -> pil %d level %d"
+slavio_set_timer_irq_cpu(int cpu, int level) "Set cpu %d local timer level %d"
# hw/slavio_misc.c
-disable slavio_misc_update_irq_raise(void) "Raise IRQ"
-disable slavio_misc_update_irq_lower(void) "Lower IRQ"
-disable slavio_set_power_fail(int power_failing, uint8_t config) "Power fail: %d, config: %d"
-disable slavio_cfg_mem_writeb(uint32_t val) "Write config %02x"
-disable slavio_cfg_mem_readb(uint32_t ret) "Read config %02x"
-disable slavio_diag_mem_writeb(uint32_t val) "Write diag %02x"
-disable slavio_diag_mem_readb(uint32_t ret) "Read diag %02x"
-disable slavio_mdm_mem_writeb(uint32_t val) "Write modem control %02x"
-disable slavio_mdm_mem_readb(uint32_t ret) "Read modem control %02x"
-disable slavio_aux1_mem_writeb(uint32_t val) "Write aux1 %02x"
-disable slavio_aux1_mem_readb(uint32_t ret) "Read aux1 %02x"
-disable slavio_aux2_mem_writeb(uint32_t val) "Write aux2 %02x"
-disable slavio_aux2_mem_readb(uint32_t ret) "Read aux2 %02x"
-disable apc_mem_writeb(uint32_t val) "Write power management %02x"
-disable apc_mem_readb(uint32_t ret) "Read power management %02x"
-disable slavio_sysctrl_mem_writel(uint32_t val) "Write system control %08x"
-disable slavio_sysctrl_mem_readl(uint32_t ret) "Read system control %08x"
-disable slavio_led_mem_writew(uint32_t val) "Write diagnostic LED %04x"
-disable slavio_led_mem_readw(uint32_t ret) "Read diagnostic LED %04x"
+slavio_misc_update_irq_raise(void) "Raise IRQ"
+slavio_misc_update_irq_lower(void) "Lower IRQ"
+slavio_set_power_fail(int power_failing, uint8_t config) "Power fail: %d, config: %d"
+slavio_cfg_mem_writeb(uint32_t val) "Write config %02x"
+slavio_cfg_mem_readb(uint32_t ret) "Read config %02x"
+slavio_diag_mem_writeb(uint32_t val) "Write diag %02x"
+slavio_diag_mem_readb(uint32_t ret) "Read diag %02x"
+slavio_mdm_mem_writeb(uint32_t val) "Write modem control %02x"
+slavio_mdm_mem_readb(uint32_t ret) "Read modem control %02x"
+slavio_aux1_mem_writeb(uint32_t val) "Write aux1 %02x"
+slavio_aux1_mem_readb(uint32_t ret) "Read aux1 %02x"
+slavio_aux2_mem_writeb(uint32_t val) "Write aux2 %02x"
+slavio_aux2_mem_readb(uint32_t ret) "Read aux2 %02x"
+apc_mem_writeb(uint32_t val) "Write power management %02x"
+apc_mem_readb(uint32_t ret) "Read power management %02x"
+slavio_sysctrl_mem_writel(uint32_t val) "Write system control %08x"
+slavio_sysctrl_mem_readl(uint32_t ret) "Read system control %08x"
+slavio_led_mem_writew(uint32_t val) "Write diagnostic LED %04x"
+slavio_led_mem_readw(uint32_t ret) "Read diagnostic LED %04x"
# hw/slavio_timer.c
-disable slavio_timer_get_out(uint64_t limit, uint32_t counthigh, uint32_t count) "limit %"PRIx64" count %x%08x"
-disable slavio_timer_irq(uint32_t counthigh, uint32_t count) "callback: count %x%08x"
-disable slavio_timer_mem_readl_invalid(uint64_t addr) "invalid read address %"PRIx64""
-disable slavio_timer_mem_readl(uint64_t addr, uint32_t ret) "read %"PRIx64" = %08x"
-disable slavio_timer_mem_writel(uint64_t addr, uint32_t val) "write %"PRIx64" = %08x"
-disable slavio_timer_mem_writel_limit(unsigned int timer_index, uint64_t count) "processor %d user timer set to %016"PRIx64""
-disable slavio_timer_mem_writel_counter_invalid(void) "not user timer"
-disable slavio_timer_mem_writel_status_start(unsigned int timer_index) "processor %d user timer started"
-disable slavio_timer_mem_writel_status_stop(unsigned int timer_index) "processor %d user timer stopped"
-disable slavio_timer_mem_writel_mode_user(unsigned int timer_index) "processor %d changed from counter to user timer"
-disable slavio_timer_mem_writel_mode_counter(unsigned int timer_index) "processor %d changed from user timer to counter"
-disable slavio_timer_mem_writel_mode_invalid(void) "not system timer"
-disable slavio_timer_mem_writel_invalid(uint64_t addr) "invalid write address %"PRIx64""
+slavio_timer_get_out(uint64_t limit, uint32_t counthigh, uint32_t count) "limit %"PRIx64" count %x%08x"
+slavio_timer_irq(uint32_t counthigh, uint32_t count) "callback: count %x%08x"
+slavio_timer_mem_readl_invalid(uint64_t addr) "invalid read address %"PRIx64""
+slavio_timer_mem_readl(uint64_t addr, uint32_t ret) "read %"PRIx64" = %08x"
+slavio_timer_mem_writel(uint64_t addr, uint32_t val) "write %"PRIx64" = %08x"
+slavio_timer_mem_writel_limit(unsigned int timer_index, uint64_t count) "processor %d user timer set to %016"PRIx64""
+slavio_timer_mem_writel_counter_invalid(void) "not user timer"
+slavio_timer_mem_writel_status_start(unsigned int timer_index) "processor %d user timer started"
+slavio_timer_mem_writel_status_stop(unsigned int timer_index) "processor %d user timer stopped"
+slavio_timer_mem_writel_mode_user(unsigned int timer_index) "processor %d changed from counter to user timer"
+slavio_timer_mem_writel_mode_counter(unsigned int timer_index) "processor %d changed from user timer to counter"
+slavio_timer_mem_writel_mode_invalid(void) "not system timer"
+slavio_timer_mem_writel_invalid(uint64_t addr) "invalid write address %"PRIx64""
# hw/sparc32_dma.c
-disable ledma_memory_read(uint64_t addr) "DMA read addr 0x%"PRIx64""
-disable ledma_memory_write(uint64_t addr) "DMA write addr 0x%"PRIx64""
-disable sparc32_dma_set_irq_raise(void) "Raise IRQ"
-disable sparc32_dma_set_irq_lower(void) "Lower IRQ"
-disable espdma_memory_read(uint32_t addr) "DMA read addr 0x%08x"
-disable espdma_memory_write(uint32_t addr) "DMA write addr 0x%08x"
-disable sparc32_dma_mem_readl(uint64_t addr, uint32_t ret) "read dmareg %"PRIx64": 0x%08x"
-disable sparc32_dma_mem_writel(uint64_t addr, uint32_t old, uint32_t val) "write dmareg %"PRIx64": 0x%08x -> 0x%08x"
-disable sparc32_dma_enable_raise(void) "Raise DMA enable"
-disable sparc32_dma_enable_lower(void) "Lower DMA enable"
+ledma_memory_read(uint64_t addr) "DMA read addr 0x%"PRIx64""
+ledma_memory_write(uint64_t addr) "DMA write addr 0x%"PRIx64""
+sparc32_dma_set_irq_raise(void) "Raise IRQ"
+sparc32_dma_set_irq_lower(void) "Lower IRQ"
+espdma_memory_read(uint32_t addr) "DMA read addr 0x%08x"
+espdma_memory_write(uint32_t addr) "DMA write addr 0x%08x"
+sparc32_dma_mem_readl(uint64_t addr, uint32_t ret) "read dmareg %"PRIx64": 0x%08x"
+sparc32_dma_mem_writel(uint64_t addr, uint32_t old, uint32_t val) "write dmareg %"PRIx64": 0x%08x -> 0x%08x"
+sparc32_dma_enable_raise(void) "Raise DMA enable"
+sparc32_dma_enable_lower(void) "Lower DMA enable"
# hw/sun4m.c
-disable sun4m_cpu_interrupt(unsigned int level) "Set CPU IRQ %d"
-disable sun4m_cpu_reset_interrupt(unsigned int level) "Reset CPU IRQ %d"
-disable sun4m_cpu_set_irq_raise(int level) "Raise CPU IRQ %d"
-disable sun4m_cpu_set_irq_lower(int level) "Lower CPU IRQ %d"
+sun4m_cpu_interrupt(unsigned int level) "Set CPU IRQ %d"
+sun4m_cpu_reset_interrupt(unsigned int level) "Reset CPU IRQ %d"
+sun4m_cpu_set_irq_raise(int level) "Raise CPU IRQ %d"
+sun4m_cpu_set_irq_lower(int level) "Lower CPU IRQ %d"
# hw/sun4m_iommu.c
-disable sun4m_iommu_mem_readl(uint64_t addr, uint32_t ret) "read reg[%"PRIx64"] = %x"
-disable sun4m_iommu_mem_writel(uint64_t addr, uint32_t val) "write reg[%"PRIx64"] = %x"
-disable sun4m_iommu_mem_writel_ctrl(uint64_t iostart) "iostart = %"PRIx64""
-disable sun4m_iommu_mem_writel_tlbflush(uint32_t val) "tlb flush %x"
-disable sun4m_iommu_mem_writel_pgflush(uint32_t val) "page flush %x"
-disable sun4m_iommu_page_get_flags(uint64_t pa, uint64_t iopte, uint32_t ret) "get flags addr %"PRIx64" => pte %"PRIx64", *pte = %x"
-disable sun4m_iommu_translate_pa(uint64_t addr, uint64_t pa, uint32_t iopte) "xlate dva %"PRIx64" => pa %"PRIx64" iopte = %x"
-disable sun4m_iommu_bad_addr(uint64_t addr) "bad addr %"PRIx64""
+sun4m_iommu_mem_readl(uint64_t addr, uint32_t ret) "read reg[%"PRIx64"] = %x"
+sun4m_iommu_mem_writel(uint64_t addr, uint32_t val) "write reg[%"PRIx64"] = %x"
+sun4m_iommu_mem_writel_ctrl(uint64_t iostart) "iostart = %"PRIx64""
+sun4m_iommu_mem_writel_tlbflush(uint32_t val) "tlb flush %x"
+sun4m_iommu_mem_writel_pgflush(uint32_t val) "page flush %x"
+sun4m_iommu_page_get_flags(uint64_t pa, uint64_t iopte, uint32_t ret) "get flags addr %"PRIx64" => pte %"PRIx64", *pte = %x"
+sun4m_iommu_translate_pa(uint64_t addr, uint64_t pa, uint32_t iopte) "xlate dva %"PRIx64" => pa %"PRIx64" iopte = %x"
+sun4m_iommu_bad_addr(uint64_t addr) "bad addr %"PRIx64""
# hw/usb-ehci.c
-disable usb_ehci_reset(void) "=== RESET ==="
-disable usb_ehci_mmio_readl(uint32_t addr, const char *str, uint32_t val) "rd mmio %04x [%s] = %x"
-disable usb_ehci_mmio_writel(uint32_t addr, const char *str, uint32_t val) "wr mmio %04x [%s] = %x"
-disable usb_ehci_mmio_change(uint32_t addr, const char *str, uint32_t new, uint32_t old) "ch mmio %04x [%s] = %x (old: %x)"
-disable usb_ehci_usbsts(const char *sts, int state) "usbsts %s %d"
-disable usb_ehci_state(const char *schedule, const char *state) "%s schedule %s"
-disable usb_ehci_qh_ptrs(void *q, uint32_t addr, uint32_t nxt, uint32_t c_qtd, uint32_t n_qtd, uint32_t a_qtd) "q %p - QH @ %08x: next %08x qtds %08x,%08x,%08x"
-disable usb_ehci_qh_fields(uint32_t addr, int rl, int mplen, int eps, int ep, int devaddr) "QH @ %08x - rl %d, mplen %d, eps %d, ep %d, dev %d"
-disable usb_ehci_qh_bits(uint32_t addr, int c, int h, int dtc, int i) "QH @ %08x - c %d, h %d, dtc %d, i %d"
-disable usb_ehci_qtd_ptrs(void *q, uint32_t addr, uint32_t nxt, uint32_t altnext) "q %p - QTD @ %08x: next %08x altnext %08x"
-disable usb_ehci_qtd_fields(uint32_t addr, int tbytes, int cpage, int cerr, int pid) "QTD @ %08x - tbytes %d, cpage %d, cerr %d, pid %d"
-disable usb_ehci_qtd_bits(uint32_t addr, int ioc, int active, int halt, int babble, int xacterr) "QTD @ %08x - ioc %d, active %d, halt %d, babble %d, xacterr %d"
-disable usb_ehci_itd(uint32_t addr, uint32_t nxt, uint32_t mplen, uint32_t mult, uint32_t ep, uint32_t devaddr) "ITD @ %08x: next %08x - mplen %d, mult %d, ep %d, dev %d"
-disable usb_ehci_port_attach(uint32_t port, const char *device) "attach port #%d - %s"
-disable usb_ehci_port_detach(uint32_t port) "detach port #%d"
-disable usb_ehci_port_reset(uint32_t port, int enable) "reset port #%d - %d"
-disable usb_ehci_data(int rw, uint32_t cpage, uint32_t offset, uint32_t addr, uint32_t len, uint32_t bufpos) "write %d, cpage %d, offset 0x%03x, addr 0x%08x, len %d, bufpos %d"
-disable usb_ehci_queue_action(void *q, const char *action) "q %p: %s"
+usb_ehci_reset(void) "=== RESET ==="
+usb_ehci_mmio_readl(uint32_t addr, const char *str, uint32_t val) "rd mmio %04x [%s] = %x"
+usb_ehci_mmio_writel(uint32_t addr, const char *str, uint32_t val) "wr mmio %04x [%s] = %x"
+usb_ehci_mmio_change(uint32_t addr, const char *str, uint32_t new, uint32_t old) "ch mmio %04x [%s] = %x (old: %x)"
+usb_ehci_usbsts(const char *sts, int state) "usbsts %s %d"
+usb_ehci_state(const char *schedule, const char *state) "%s schedule %s"
+usb_ehci_qh_ptrs(void *q, uint32_t addr, uint32_t nxt, uint32_t c_qtd, uint32_t n_qtd, uint32_t a_qtd) "q %p - QH @ %08x: next %08x qtds %08x,%08x,%08x"
+usb_ehci_qh_fields(uint32_t addr, int rl, int mplen, int eps, int ep, int devaddr) "QH @ %08x - rl %d, mplen %d, eps %d, ep %d, dev %d"
+usb_ehci_qh_bits(uint32_t addr, int c, int h, int dtc, int i) "QH @ %08x - c %d, h %d, dtc %d, i %d"
+usb_ehci_qtd_ptrs(void *q, uint32_t addr, uint32_t nxt, uint32_t altnext) "q %p - QTD @ %08x: next %08x altnext %08x"
+usb_ehci_qtd_fields(uint32_t addr, int tbytes, int cpage, int cerr, int pid) "QTD @ %08x - tbytes %d, cpage %d, cerr %d, pid %d"
+usb_ehci_qtd_bits(uint32_t addr, int ioc, int active, int halt, int babble, int xacterr) "QTD @ %08x - ioc %d, active %d, halt %d, babble %d, xacterr %d"
+usb_ehci_itd(uint32_t addr, uint32_t nxt, uint32_t mplen, uint32_t mult, uint32_t ep, uint32_t devaddr) "ITD @ %08x: next %08x - mplen %d, mult %d, ep %d, dev %d"
+usb_ehci_port_attach(uint32_t port, const char *device) "attach port #%d - %s"
+usb_ehci_port_detach(uint32_t port) "detach port #%d"
+usb_ehci_port_reset(uint32_t port, int enable) "reset port #%d - %d"
+usb_ehci_data(int rw, uint32_t cpage, uint32_t offset, uint32_t addr, uint32_t len, uint32_t bufpos) "write %d, cpage %d, offset 0x%03x, addr 0x%08x, len %d, bufpos %d"
+usb_ehci_queue_action(void *q, const char *action) "q %p: %s"
# hw/usb-desc.c
-disable usb_desc_device(int addr, int len, int ret) "dev %d query device, len %d, ret %d"
-disable usb_desc_device_qualifier(int addr, int len, int ret) "dev %d query device qualifier, len %d, ret %d"
-disable usb_desc_config(int addr, int index, int len, int ret) "dev %d query config %d, len %d, ret %d"
-disable usb_desc_other_speed_config(int addr, int index, int len, int ret) "dev %d query config %d, len %d, ret %d"
-disable usb_desc_string(int addr, int index, int len, int ret) "dev %d query string %d, len %d, ret %d"
-disable usb_set_addr(int addr) "dev %d"
-disable usb_set_config(int addr, int config, int ret) "dev %d, config %d, ret %d"
-disable usb_clear_device_feature(int addr, int feature, int ret) "dev %d, feature %d, ret %d"
-disable usb_set_device_feature(int addr, int feature, int ret) "dev %d, feature %d, ret %d"
+usb_desc_device(int addr, int len, int ret) "dev %d query device, len %d, ret %d"
+usb_desc_device_qualifier(int addr, int len, int ret) "dev %d query device qualifier, len %d, ret %d"
+usb_desc_config(int addr, int index, int len, int ret) "dev %d query config %d, len %d, ret %d"
+usb_desc_other_speed_config(int addr, int index, int len, int ret) "dev %d query config %d, len %d, ret %d"
+usb_desc_string(int addr, int index, int len, int ret) "dev %d query string %d, len %d, ret %d"
+usb_set_addr(int addr) "dev %d"
+usb_set_config(int addr, int config, int ret) "dev %d, config %d, ret %d"
+usb_clear_device_feature(int addr, int feature, int ret) "dev %d, feature %d, ret %d"
+usb_set_device_feature(int addr, int feature, int ret) "dev %d, feature %d, ret %d"
# hw/scsi-bus.c
-disable scsi_req_alloc(int target, int lun, int tag) "target %d lun %d tag %d"
-disable scsi_req_data(int target, int lun, int tag, int len) "target %d lun %d tag %d len %d"
-disable scsi_req_dequeue(int target, int lun, int tag) "target %d lun %d tag %d"
-disable scsi_req_continue(int target, int lun, int tag) "target %d lun %d tag %d"
-disable scsi_req_parsed(int target, int lun, int tag, int cmd, int mode, int xfer) "target %d lun %d tag %d command %d dir %d length %d"
-disable scsi_req_parsed_lba(int target, int lun, int tag, int cmd, uint64_t lba) "target %d lun %d tag %d command %d lba %"PRIu64""
-disable scsi_req_parse_bad(int target, int lun, int tag, int cmd) "target %d lun %d tag %d command %d"
-disable scsi_req_build_sense(int target, int lun, int tag, int key, int asc, int ascq) "target %d lun %d tag %d key %#02x asc %#02x ascq %#02x"
-disable scsi_report_luns(int target, int lun, int tag) "target %d lun %d tag %d"
-disable scsi_inquiry(int target, int lun, int tag, int cdb1, int cdb2) "target %d lun %d tag %d page %#02x/%#02x"
-disable scsi_test_unit_ready(int target, int lun, int tag) "target %d lun %d tag %d"
-disable scsi_request_sense(int target, int lun, int tag) "target %d lun %d tag %d"
+scsi_req_alloc(int target, int lun, int tag) "target %d lun %d tag %d"
+scsi_req_data(int target, int lun, int tag, int len) "target %d lun %d tag %d len %d"
+scsi_req_dequeue(int target, int lun, int tag) "target %d lun %d tag %d"
+scsi_req_continue(int target, int lun, int tag) "target %d lun %d tag %d"
+scsi_req_parsed(int target, int lun, int tag, int cmd, int mode, int xfer) "target %d lun %d tag %d command %d dir %d length %d"
+scsi_req_parsed_lba(int target, int lun, int tag, int cmd, uint64_t lba) "target %d lun %d tag %d command %d lba %"PRIu64""
+scsi_req_parse_bad(int target, int lun, int tag, int cmd) "target %d lun %d tag %d command %d"
+scsi_req_build_sense(int target, int lun, int tag, int key, int asc, int ascq) "target %d lun %d tag %d key %#02x asc %#02x ascq %#02x"
+scsi_report_luns(int target, int lun, int tag) "target %d lun %d tag %d"
+scsi_inquiry(int target, int lun, int tag, int cdb1, int cdb2) "target %d lun %d tag %d page %#02x/%#02x"
+scsi_test_unit_ready(int target, int lun, int tag) "target %d lun %d tag %d"
+scsi_request_sense(int target, int lun, int tag) "target %d lun %d tag %d"
# vl.c
-disable vm_state_notify(int running, int reason) "running %d reason %d"
+vm_state_notify(int running, int reason) "running %d reason %d"
# block/qed-l2-cache.c
-disable qed_alloc_l2_cache_entry(void *l2_cache, void *entry) "l2_cache %p entry %p"
-disable qed_unref_l2_cache_entry(void *entry, int ref) "entry %p ref %d"
-disable qed_find_l2_cache_entry(void *l2_cache, void *entry, uint64_t offset, int ref) "l2_cache %p entry %p offset %"PRIu64" ref %d"
+qed_alloc_l2_cache_entry(void *l2_cache, void *entry) "l2_cache %p entry %p"
+qed_unref_l2_cache_entry(void *entry, int ref) "entry %p ref %d"
+qed_find_l2_cache_entry(void *l2_cache, void *entry, uint64_t offset, int ref) "l2_cache %p entry %p offset %"PRIu64" ref %d"
# block/qed-table.c
-disable qed_read_table(void *s, uint64_t offset, void *table) "s %p offset %"PRIu64" table %p"
-disable qed_read_table_cb(void *s, void *table, int ret) "s %p table %p ret %d"
-disable qed_write_table(void *s, uint64_t offset, void *table, unsigned int index, unsigned int n) "s %p offset %"PRIu64" table %p index %u n %u"
-disable qed_write_table_cb(void *s, void *table, int flush, int ret) "s %p table %p flush %d ret %d"
+qed_read_table(void *s, uint64_t offset, void *table) "s %p offset %"PRIu64" table %p"
+qed_read_table_cb(void *s, void *table, int ret) "s %p table %p ret %d"
+qed_write_table(void *s, uint64_t offset, void *table, unsigned int index, unsigned int n) "s %p offset %"PRIu64" table %p index %u n %u"
+qed_write_table_cb(void *s, void *table, int flush, int ret) "s %p table %p flush %d ret %d"
# block/qed.c
-disable qed_need_check_timer_cb(void *s) "s %p"
-disable qed_start_need_check_timer(void *s) "s %p"
-disable qed_cancel_need_check_timer(void *s) "s %p"
-disable qed_aio_complete(void *s, void *acb, int ret) "s %p acb %p ret %d"
-disable qed_aio_setup(void *s, void *acb, int64_t sector_num, int nb_sectors, void *opaque, int is_write) "s %p acb %p sector_num %"PRId64" nb_sectors %d opaque %p is_write %d"
-disable qed_aio_next_io(void *s, void *acb, int ret, uint64_t cur_pos) "s %p acb %p ret %d cur_pos %"PRIu64""
-disable qed_aio_read_data(void *s, void *acb, int ret, uint64_t offset, size_t len) "s %p acb %p ret %d offset %"PRIu64" len %zu"
-disable qed_aio_write_data(void *s, void *acb, int ret, uint64_t offset, size_t len) "s %p acb %p ret %d offset %"PRIu64" len %zu"
-disable qed_aio_write_prefill(void *s, void *acb, uint64_t start, size_t len, uint64_t offset) "s %p acb %p start %"PRIu64" len %zu offset %"PRIu64""
-disable qed_aio_write_postfill(void *s, void *acb, uint64_t start, size_t len, uint64_t offset) "s %p acb %p start %"PRIu64" len %zu offset %"PRIu64""
-disable qed_aio_write_main(void *s, void *acb, int ret, uint64_t offset, size_t len) "s %p acb %p ret %d offset %"PRIu64" len %zu"
+qed_need_check_timer_cb(void *s) "s %p"
+qed_start_need_check_timer(void *s) "s %p"
+qed_cancel_need_check_timer(void *s) "s %p"
+qed_aio_complete(void *s, void *acb, int ret) "s %p acb %p ret %d"
+qed_aio_setup(void *s, void *acb, int64_t sector_num, int nb_sectors, void *opaque, int is_write) "s %p acb %p sector_num %"PRId64" nb_sectors %d opaque %p is_write %d"
+qed_aio_next_io(void *s, void *acb, int ret, uint64_t cur_pos) "s %p acb %p ret %d cur_pos %"PRIu64""
+qed_aio_read_data(void *s, void *acb, int ret, uint64_t offset, size_t len) "s %p acb %p ret %d offset %"PRIu64" len %zu"
+qed_aio_write_data(void *s, void *acb, int ret, uint64_t offset, size_t len) "s %p acb %p ret %d offset %"PRIu64" len %zu"
+qed_aio_write_prefill(void *s, void *acb, uint64_t start, size_t len, uint64_t offset) "s %p acb %p start %"PRIu64" len %zu offset %"PRIu64""
+qed_aio_write_postfill(void *s, void *acb, uint64_t start, size_t len, uint64_t offset) "s %p acb %p start %"PRIu64" len %zu offset %"PRIu64""
+qed_aio_write_main(void *s, void *acb, int ret, uint64_t offset, size_t len) "s %p acb %p ret %d offset %"PRIu64" len %zu"
+
+# hw/g364fb.c
+g364fb_read(uint64_t addr, uint32_t val) "read addr=0x%"PRIx64": 0x%x"
+g364fb_write(uint64_t addr, uint32_t new) "write addr=0x%"PRIx64": 0x%x"
# hw/grlib_gptimer.c
-disable grlib_gptimer_enable(int id, uint32_t count) "timer:%d set count 0x%x and run"
-disable grlib_gptimer_disabled(int id, uint32_t config) "timer:%d Timer disable config 0x%x"
-disable grlib_gptimer_restart(int id, uint32_t reload) "timer:%d reload val: 0x%x"
-disable grlib_gptimer_set_scaler(uint32_t scaler, uint32_t freq) "scaler:0x%x freq: 0x%x"
-disable grlib_gptimer_hit(int id) "timer:%d HIT"
-disable grlib_gptimer_readl(int id, uint64_t addr, uint32_t val) "timer:%d addr 0x%"PRIx64" 0x%x"
-disable grlib_gptimer_writel(int id, uint64_t addr, uint32_t val) "timer:%d addr 0x%"PRIx64" 0x%x"
+grlib_gptimer_enable(int id, uint32_t count) "timer:%d set count 0x%x and run"
+grlib_gptimer_disabled(int id, uint32_t config) "timer:%d Timer disable config 0x%x"
+grlib_gptimer_restart(int id, uint32_t reload) "timer:%d reload val: 0x%x"
+grlib_gptimer_set_scaler(uint32_t scaler, uint32_t freq) "scaler:0x%x freq: 0x%x"
+grlib_gptimer_hit(int id) "timer:%d HIT"
+grlib_gptimer_readl(int id, uint64_t addr, uint32_t val) "timer:%d addr 0x%"PRIx64" 0x%x"
+grlib_gptimer_writel(int id, uint64_t addr, uint32_t val) "timer:%d addr 0x%"PRIx64" 0x%x"
# hw/grlib_irqmp.c
-disable grlib_irqmp_check_irqs(uint32_t pend, uint32_t force, uint32_t mask, uint32_t lvl1, uint32_t lvl2) "pend:0x%04x force:0x%04x mask:0x%04x lvl1:0x%04x lvl0:0x%04x\n"
-disable grlib_irqmp_ack(int intno) "interrupt:%d"
-disable grlib_irqmp_set_irq(int irq) "Raise CPU IRQ %d"
-disable grlib_irqmp_readl_unknown(uint64_t addr) "addr 0x%"PRIx64""
-disable grlib_irqmp_writel_unknown(uint64_t addr, uint32_t value) "addr 0x%"PRIx64" value 0x%x"
+grlib_irqmp_check_irqs(uint32_t pend, uint32_t force, uint32_t mask, uint32_t lvl1, uint32_t lvl2) "pend:0x%04x force:0x%04x mask:0x%04x lvl1:0x%04x lvl0:0x%04x\n"
+grlib_irqmp_ack(int intno) "interrupt:%d"
+grlib_irqmp_set_irq(int irq) "Raise CPU IRQ %d"
+grlib_irqmp_readl_unknown(uint64_t addr) "addr 0x%"PRIx64""
+grlib_irqmp_writel_unknown(uint64_t addr, uint32_t value) "addr 0x%"PRIx64" value 0x%x"
# hw/grlib_apbuart.c
-disable grlib_apbuart_event(int event) "event:%d"
-disable grlib_apbuart_writel_unknown(uint64_t addr, uint32_t value) "addr 0x%"PRIx64" value 0x%x"
+grlib_apbuart_event(int event) "event:%d"
+grlib_apbuart_writel_unknown(uint64_t addr, uint32_t value) "addr 0x%"PRIx64" value 0x%x"
# hw/leon3.c
-disable leon3_set_irq(int intno) "Set CPU IRQ %d"
-disable leon3_reset_irq(int intno) "Reset CPU IRQ %d"
+leon3_set_irq(int intno) "Set CPU IRQ %d"
+leon3_reset_irq(int intno) "Reset CPU IRQ %d"
# spice-qemu-char.c
-disable spice_vmc_write(ssize_t out, int len) "spice wrottn %zd of requested %d"
-disable spice_vmc_read(int bytes, int len) "spice read %d of requested %d"
-disable spice_vmc_register_interface(void *scd) "spice vmc registered interface %p"
-disable spice_vmc_unregister_interface(void *scd) "spice vmc unregistered interface %p"
+spice_vmc_write(ssize_t out, int len) "spice wrottn %zd of requested %d"
+spice_vmc_read(int bytes, int len) "spice read %d of requested %d"
+spice_vmc_register_interface(void *scd) "spice vmc registered interface %p"
+spice_vmc_unregister_interface(void *scd) "spice vmc unregistered interface %p"
# hw/lm32_pic.c
-disable lm32_pic_raise_irq(void) "Raise CPU interrupt"
-disable lm32_pic_lower_irq(void) "Lower CPU interrupt"
-disable lm32_pic_interrupt(int irq, int level) "Set IRQ%d %d"
-disable lm32_pic_set_im(uint32_t im) "im 0x%08x"
-disable lm32_pic_set_ip(uint32_t ip) "ip 0x%08x"
-disable lm32_pic_get_im(uint32_t im) "im 0x%08x"
-disable lm32_pic_get_ip(uint32_t ip) "ip 0x%08x"
+lm32_pic_raise_irq(void) "Raise CPU interrupt"
+lm32_pic_lower_irq(void) "Lower CPU interrupt"
+lm32_pic_interrupt(int irq, int level) "Set IRQ%d %d"
+lm32_pic_set_im(uint32_t im) "im 0x%08x"
+lm32_pic_set_ip(uint32_t ip) "ip 0x%08x"
+lm32_pic_get_im(uint32_t im) "im 0x%08x"
+lm32_pic_get_ip(uint32_t ip) "ip 0x%08x"
# hw/lm32_juart.c
-disable lm32_juart_get_jtx(uint32_t value) "jtx 0x%08x"
-disable lm32_juart_set_jtx(uint32_t value) "jtx 0x%08x"
-disable lm32_juart_get_jrx(uint32_t value) "jrx 0x%08x"
-disable lm32_juart_set_jrx(uint32_t value) "jrx 0x%08x"
+lm32_juart_get_jtx(uint32_t value) "jtx 0x%08x"
+lm32_juart_set_jtx(uint32_t value) "jtx 0x%08x"
+lm32_juart_get_jrx(uint32_t value) "jrx 0x%08x"
+lm32_juart_set_jrx(uint32_t value) "jrx 0x%08x"
# hw/lm32_timer.c
-disable lm32_timer_memory_write(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
-disable lm32_timer_memory_read(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
-disable lm32_timer_hit(void) "timer hit"
-disable lm32_timer_irq_state(int level) "irq state %d"
+lm32_timer_memory_write(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
+lm32_timer_memory_read(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
+lm32_timer_hit(void) "timer hit"
+lm32_timer_irq_state(int level) "irq state %d"
# hw/lm32_uart.c
-disable lm32_uart_memory_write(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
-disable lm32_uart_memory_read(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
-disable lm32_uart_irq_state(int level) "irq state %d"
+lm32_uart_memory_write(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
+lm32_uart_memory_read(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
+lm32_uart_irq_state(int level) "irq state %d"
# hw/lm32_sys.c
-disable lm32_sys_memory_write(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
+lm32_sys_memory_write(uint32_t addr, uint32_t value) "addr 0x%08x value 0x%08x"
# hw/milkymist-ac97.c
-disable milkymist_ac97_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_ac97_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_ac97_pulse_irq_crrequest(void) "Pulse IRQ CR request"
-disable milkymist_ac97_pulse_irq_crreply(void) "Pulse IRQ CR reply"
-disable milkymist_ac97_pulse_irq_dmaw(void) "Pulse IRQ DMA write"
-disable milkymist_ac97_pulse_irq_dmar(void) "Pulse IRQ DMA read"
-disable milkymist_ac97_in_cb(int avail, uint32_t remaining) "avail %d remaining %u"
-disable milkymist_ac97_in_cb_transferred(int transferred) "transferred %d"
-disable milkymist_ac97_out_cb(int free, uint32_t remaining) "free %d remaining %u"
-disable milkymist_ac97_out_cb_transferred(int transferred) "transferred %d"
+milkymist_ac97_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_ac97_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_ac97_pulse_irq_crrequest(void) "Pulse IRQ CR request"
+milkymist_ac97_pulse_irq_crreply(void) "Pulse IRQ CR reply"
+milkymist_ac97_pulse_irq_dmaw(void) "Pulse IRQ DMA write"
+milkymist_ac97_pulse_irq_dmar(void) "Pulse IRQ DMA read"
+milkymist_ac97_in_cb(int avail, uint32_t remaining) "avail %d remaining %u"
+milkymist_ac97_in_cb_transferred(int transferred) "transferred %d"
+milkymist_ac97_out_cb(int free, uint32_t remaining) "free %d remaining %u"
+milkymist_ac97_out_cb_transferred(int transferred) "transferred %d"
# hw/milkymist-hpdmc.c
-disable milkymist_hpdmc_memory_read(uint32_t addr, uint32_t value) "addr=%08x value=%08x"
-disable milkymist_hpdmc_memory_write(uint32_t addr, uint32_t value) "addr=%08x value=%08x"
+milkymist_hpdmc_memory_read(uint32_t addr, uint32_t value) "addr=%08x value=%08x"
+milkymist_hpdmc_memory_write(uint32_t addr, uint32_t value) "addr=%08x value=%08x"
# hw/milkymist-memcard.c
-disable milkymist_memcard_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_memcard_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_memcard_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_memcard_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
# hw/milkymist-minimac2.c
-disable milkymist_minimac2_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_minimac2_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_minimac2_mdio_write(uint8_t phy_addr, uint8_t addr, uint16_t value) "phy_addr %02x addr %02x value %04x"
-disable milkymist_minimac2_mdio_read(uint8_t phy_addr, uint8_t addr, uint16_t value) "phy_addr %02x addr %02x value %04x"
-disable milkymist_minimac2_tx_frame(uint32_t length) "length %u"
-disable milkymist_minimac2_rx_frame(const void *buf, uint32_t length) "buf %p length %u"
-disable milkymist_minimac2_drop_rx_frame(const void *buf) "buf %p"
-disable milkymist_minimac2_rx_transfer(const void *buf, uint32_t length) "buf %p length %d"
-disable milkymist_minimac2_raise_irq_rx(void) "Raise IRQ RX"
-disable milkymist_minimac2_lower_irq_rx(void) "Lower IRQ RX"
-disable milkymist_minimac2_pulse_irq_tx(void) "Pulse IRQ TX"
+milkymist_minimac2_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_minimac2_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_minimac2_mdio_write(uint8_t phy_addr, uint8_t addr, uint16_t value) "phy_addr %02x addr %02x value %04x"
+milkymist_minimac2_mdio_read(uint8_t phy_addr, uint8_t addr, uint16_t value) "phy_addr %02x addr %02x value %04x"
+milkymist_minimac2_tx_frame(uint32_t length) "length %u"
+milkymist_minimac2_rx_frame(const void *buf, uint32_t length) "buf %p length %u"
+milkymist_minimac2_drop_rx_frame(const void *buf) "buf %p"
+milkymist_minimac2_rx_transfer(const void *buf, uint32_t length) "buf %p length %d"
+milkymist_minimac2_raise_irq_rx(void) "Raise IRQ RX"
+milkymist_minimac2_lower_irq_rx(void) "Lower IRQ RX"
+milkymist_minimac2_pulse_irq_tx(void) "Pulse IRQ TX"
# hw/milkymist-pfpu.c
-disable milkymist_pfpu_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_pfpu_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_pfpu_vectout(uint32_t a, uint32_t b, uint32_t dma_ptr) "a %08x b %08x dma_ptr %08x"
-disable milkymist_pfpu_pulse_irq(void) "Pulse IRQ"
+milkymist_pfpu_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_pfpu_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_pfpu_vectout(uint32_t a, uint32_t b, uint32_t dma_ptr) "a %08x b %08x dma_ptr %08x"
+milkymist_pfpu_pulse_irq(void) "Pulse IRQ"
# hw/milkymist-softusb.c
-disable milkymist_softusb_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_softusb_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_softusb_mevt(uint8_t m) "m %d"
-disable milkymist_softusb_kevt(uint8_t m) "m %d"
-disable milkymist_softusb_mouse_event(int dx, int dy, int dz, int bs) "dx %d dy %d dz %d bs %02x"
-disable milkymist_softusb_pulse_irq(void) "Pulse IRQ"
+milkymist_softusb_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_softusb_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_softusb_mevt(uint8_t m) "m %d"
+milkymist_softusb_kevt(uint8_t m) "m %d"
+milkymist_softusb_mouse_event(int dx, int dy, int dz, int bs) "dx %d dy %d dz %d bs %02x"
+milkymist_softusb_pulse_irq(void) "Pulse IRQ"
# hw/milkymist-sysctl.c
-disable milkymist_sysctl_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_sysctl_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_sysctl_icap_write(uint32_t value) "value %08x"
-disable milkymist_sysctl_start_timer0(void) "Start timer0"
-disable milkymist_sysctl_stop_timer0(void) "Stop timer0"
-disable milkymist_sysctl_start_timer1(void) "Start timer1"
-disable milkymist_sysctl_stop_timer1(void) "Stop timer1"
-disable milkymist_sysctl_pulse_irq_timer0(void) "Pulse IRQ Timer0"
-disable milkymist_sysctl_pulse_irq_timer1(void) "Pulse IRQ Timer1"
+milkymist_sysctl_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_sysctl_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_sysctl_icap_write(uint32_t value) "value %08x"
+milkymist_sysctl_start_timer0(void) "Start timer0"
+milkymist_sysctl_stop_timer0(void) "Stop timer0"
+milkymist_sysctl_start_timer1(void) "Start timer1"
+milkymist_sysctl_stop_timer1(void) "Stop timer1"
+milkymist_sysctl_pulse_irq_timer0(void) "Pulse IRQ Timer0"
+milkymist_sysctl_pulse_irq_timer1(void) "Pulse IRQ Timer1"
# hw/milkymist-tmu2.c
-disable milkymist_tmu2_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_tmu2_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_tmu2_start(void) "Start TMU"
-disable milkymist_tmu2_pulse_irq(void) "Pulse IRQ"
+milkymist_tmu2_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_tmu2_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_tmu2_start(void) "Start TMU"
+milkymist_tmu2_pulse_irq(void) "Pulse IRQ"
# hw/milkymist-uart.c
-disable milkymist_uart_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_uart_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_uart_pulse_irq_rx(void) "Pulse IRQ RX"
-disable milkymist_uart_pulse_irq_tx(void) "Pulse IRQ TX"
+milkymist_uart_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_uart_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_uart_pulse_irq_rx(void) "Pulse IRQ RX"
+milkymist_uart_pulse_irq_tx(void) "Pulse IRQ TX"
# hw/milkymist-vgafb.c
-disable milkymist_vgafb_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
-disable milkymist_vgafb_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_vgafb_memory_read(uint32_t addr, uint32_t value) "addr %08x value %08x"
+milkymist_vgafb_memory_write(uint32_t addr, uint32_t value) "addr %08x value %08x"
# xen-all.c
-disable xen_ram_alloc(unsigned long ram_addr, unsigned long size) "requested: %#lx, size %#lx"
-disable xen_client_set_memory(uint64_t start_addr, unsigned long size, unsigned long phys_offset, bool log_dirty) "%#"PRIx64" size %#lx, offset %#lx, log_dirty %i"
+xen_ram_alloc(unsigned long ram_addr, unsigned long size) "requested: %#lx, size %#lx"
+xen_client_set_memory(uint64_t start_addr, unsigned long size, unsigned long phys_offset, bool log_dirty) "%#"PRIx64" size %#lx, offset %#lx, log_dirty %i"
# xen-mapcache.c
-disable xen_map_cache(uint64_t phys_addr) "want %#"PRIx64""
-disable xen_remap_bucket(uint64_t index) "index %#"PRIx64""
-disable xen_map_cache_return(void* ptr) "%p"
-disable xen_map_block(uint64_t phys_addr, uint64_t size) "%#"PRIx64", size %#"PRIx64""
-disable xen_unmap_block(void* addr, unsigned long size) "%p, size %#lx"
+xen_map_cache(uint64_t phys_addr) "want %#"PRIx64""
+xen_remap_bucket(uint64_t index) "index %#"PRIx64""
+xen_map_cache_return(void* ptr) "%p"
+xen_map_block(uint64_t phys_addr, uint64_t size) "%#"PRIx64", size %#"PRIx64""
+xen_unmap_block(void* addr, unsigned long size) "%p, size %#lx"
# exec.c
-disable qemu_put_ram_ptr(void* addr) "%p"
+qemu_put_ram_ptr(void* addr) "%p"
# hw/xen_platform.c
-disable xen_platform_log(char *s) "xen platform: %s"
+xen_platform_log(char *s) "xen platform: %s"
# qemu-coroutine.c
-disable qemu_coroutine_enter(void *from, void *to, void *opaque) "from %p to %p opaque %p"
-disable qemu_coroutine_yield(void *from, void *to) "from %p to %p"
-disable qemu_coroutine_terminate(void *co) "self %p"
+qemu_coroutine_enter(void *from, void *to, void *opaque) "from %p to %p opaque %p"
+qemu_coroutine_yield(void *from, void *to) "from %p to %p"
+qemu_coroutine_terminate(void *co) "self %p"
# qemu-coroutine-lock.c
-disable qemu_co_queue_next_bh(void) ""
-disable qemu_co_queue_next(void *next) "next %p"
-disable qemu_co_mutex_lock_entry(void *mutex, void *self) "mutex %p self %p"
-disable qemu_co_mutex_lock_return(void *mutex, void *self) "mutex %p self %p"
-disable qemu_co_mutex_unlock_entry(void *mutex, void *self) "mutex %p self %p"
-disable qemu_co_mutex_unlock_return(void *mutex, void *self) "mutex %p self %p"
+qemu_co_queue_next_bh(void) ""
+qemu_co_queue_next(void *next) "next %p"
+qemu_co_mutex_lock_entry(void *mutex, void *self) "mutex %p self %p"
+qemu_co_mutex_lock_return(void *mutex, void *self) "mutex %p self %p"
+qemu_co_mutex_unlock_entry(void *mutex, void *self) "mutex %p self %p"
+qemu_co_mutex_unlock_return(void *mutex, void *self) "mutex %p self %p"
# hw/escc.c
-disable escc_put_queue(char channel, int b) "channel %c put: 0x%02x"
-disable escc_get_queue(char channel, int val) "channel %c get 0x%02x"
-disable escc_update_irq(int irq) "IRQ = %d"
-disable escc_update_parameters(char channel, int speed, int parity, int data_bits, int stop_bits) "channel %c: speed=%d parity=%c data=%d stop=%d"
-disable escc_mem_writeb_ctrl(char channel, uint32_t reg, uint32_t val) "Write channel %c, reg[%d] = %2.2x"
-disable escc_mem_writeb_data(char channel, uint32_t val) "Write channel %c, ch %d"
-disable escc_mem_readb_ctrl(char channel, uint32_t reg, uint8_t val) "Read channel %c, reg[%d] = %2.2x"
-disable escc_mem_readb_data(char channel, uint32_t ret) "Read channel %c, ch %d"
-disable escc_serial_receive_byte(char channel, int ch) "channel %c put ch %d"
-disable escc_sunkbd_event_in(int ch) "Untranslated keycode %2.2x"
-disable escc_sunkbd_event_out(int ch) "Translated keycode %2.2x"
-disable escc_kbd_command(int val) "Command %d"
-disable escc_sunmouse_event(int dx, int dy, int buttons_state) "dx=%d dy=%d buttons=%01x"
+escc_put_queue(char channel, int b) "channel %c put: 0x%02x"
+escc_get_queue(char channel, int val) "channel %c get 0x%02x"
+escc_update_irq(int irq) "IRQ = %d"
+escc_update_parameters(char channel, int speed, int parity, int data_bits, int stop_bits) "channel %c: speed=%d parity=%c data=%d stop=%d"
+escc_mem_writeb_ctrl(char channel, uint32_t reg, uint32_t val) "Write channel %c, reg[%d] = %2.2x"
+escc_mem_writeb_data(char channel, uint32_t val) "Write channel %c, ch %d"
+escc_mem_readb_ctrl(char channel, uint32_t reg, uint8_t val) "Read channel %c, reg[%d] = %2.2x"
+escc_mem_readb_data(char channel, uint32_t ret) "Read channel %c, ch %d"
+escc_serial_receive_byte(char channel, int ch) "channel %c put ch %d"
+escc_sunkbd_event_in(int ch) "Untranslated keycode %2.2x"
+escc_sunkbd_event_out(int ch) "Translated keycode %2.2x"
+escc_kbd_command(int val) "Command %d"
+escc_sunmouse_event(int dx, int dy, int buttons_state) "dx=%d dy=%d buttons=%01x"
--- /dev/null
+/*
+ * Interface for configuring and controlling the state of tracing events.
+ *
+ * Copyright (C) 2011 LluÃs Vilanova <vilanova@ac.upc.edu>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ */
+
+#include "trace/control.h"
+
+
+void trace_backend_init_events(const char *fname)
+{
+ if (fname == NULL) {
+ return;
+ }
+
+ FILE *fp = fopen(fname, "r");
+ if (!fp) {
+ fprintf(stderr, "error: could not open trace events file '%s': %s\n",
+ fname, strerror(errno));
+ exit(1);
+ }
+ char line_buf[1024];
+ while (fgets(line_buf, sizeof(line_buf), fp)) {
+ size_t len = strlen(line_buf);
+ if (len > 1) { /* skip empty lines */
+ line_buf[len - 1] = '\0';
+ if (!trace_event_set_state(line_buf, true)) {
+ fprintf(stderr,
+ "error: trace event '%s' does not exist\n", line_buf);
+ exit(1);
+ }
+ }
+ }
+ if (fclose(fp) != 0) {
+ fprintf(stderr, "error: closing file '%s': %s\n",
+ fname, strerror(errno));
+ exit(1);
+ }
+}
--- /dev/null
+/*
+ * Interface for configuring and controlling the state of tracing events.
+ *
+ * Copyright (C) 2011 LluÃs Vilanova <vilanova@ac.upc.edu>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ */
+
+#ifndef TRACE_CONTROL_H
+#define TRACE_CONTROL_H
+
+#include "qemu-common.h"
+
+
+/** Print the state of all events. */
+void trace_print_events(FILE *stream, fprintf_function stream_printf);
+/** Set the state of an event.
+ *
+ * @return Whether the state changed.
+ */
+bool trace_event_set_state(const char *name, bool state);
+
+
+/** Initialize the tracing backend.
+ *
+ * @events Name of file with events to be enabled at startup; may be NULL.
+ * Corresponds to commandline option "-trace events=...".
+ * @file Name of trace output file; may be NULL.
+ * Corresponds to commandline option "-trace file=...".
+ * @return Whether the backend could be successfully initialized.
+ */
+bool trace_backend_init(const char *events, const char *file);
+
+/** Generic function to initialize the state of events.
+ *
+ * @fname Name of file with events to enable; may be NULL.
+ */
+void trace_backend_init_events(const char *fname);
+
+#endif /* TRACE_CONTROL_H */
--- /dev/null
+/*
+ * Default implementation for backend initialization from commandline.
+ *
+ * Copyright (C) 2011 LluÃs Vilanova <vilanova@ac.upc.edu>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ */
+
+#include "trace/control.h"
+
+
+void trace_print_events(FILE *stream, fprintf_function stream_printf)
+{
+ fprintf(stderr, "warning: "
+ "cannot print the trace events with the current backend\n");
+ stream_printf(stream, "error: "
+ "operation not supported with the current backend\n");
+}
+
+bool trace_event_set_state(const char *name, bool state)
+{
+ fprintf(stderr, "warning: "
+ "cannot set the state of a trace event with the current backend\n");
+ return false;
+}
+
+bool trace_backend_init(const char *events, const char *file)
+{
+ if (events) {
+ fprintf(stderr, "error: -trace events=...: "
+ "option not supported by the selected tracing backend\n");
+ return false;
+ }
+ if (file) {
+ fprintf(stderr, "error: -trace file=...: "
+ "option not supported by the selected tracing backend\n");
+ return false;
+ }
+ return true;
+}
--- /dev/null
+/*
+ * Simple trace backend
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <stdlib.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <time.h>
+#include <signal.h>
+#include <pthread.h>
+#include "qemu-timer.h"
+#include "trace.h"
+#include "trace/control.h"
+
+/** Trace file header event ID */
+#define HEADER_EVENT_ID (~(uint64_t)0) /* avoids conflicting with TraceEventIDs */
+
+/** Trace file magic number */
+#define HEADER_MAGIC 0xf2b177cb0aa429b4ULL
+
+/** Trace file version number, bump if format changes */
+#define HEADER_VERSION 0
+
+/** Records were dropped event ID */
+#define DROPPED_EVENT_ID (~(uint64_t)0 - 1)
+
+/** Trace record is valid */
+#define TRACE_RECORD_VALID ((uint64_t)1 << 63)
+
+/** Trace buffer entry */
+typedef struct {
+ uint64_t event;
+ uint64_t timestamp_ns;
+ uint64_t x1;
+ uint64_t x2;
+ uint64_t x3;
+ uint64_t x4;
+ uint64_t x5;
+ uint64_t x6;
+} TraceRecord;
+
+enum {
+ TRACE_BUF_LEN = 4096,
+ TRACE_BUF_FLUSH_THRESHOLD = TRACE_BUF_LEN / 4,
+};
+
+/*
+ * Trace records are written out by a dedicated thread. The thread waits for
+ * records to become available, writes them out, and then waits again.
+ */
+static pthread_mutex_t trace_lock = PTHREAD_MUTEX_INITIALIZER;
+static pthread_cond_t trace_available_cond = PTHREAD_COND_INITIALIZER;
+static pthread_cond_t trace_empty_cond = PTHREAD_COND_INITIALIZER;
+static bool trace_available;
+static bool trace_writeout_enabled;
+
+static TraceRecord trace_buf[TRACE_BUF_LEN];
+static unsigned int trace_idx;
+static FILE *trace_fp;
+static char *trace_file_name = NULL;
+
+/**
+ * Read a trace record from the trace buffer
+ *
+ * @idx Trace buffer index
+ * @record Trace record to fill
+ *
+ * Returns false if the record is not valid.
+ */
+static bool get_trace_record(unsigned int idx, TraceRecord *record)
+{
+ if (!(trace_buf[idx].event & TRACE_RECORD_VALID)) {
+ return false;
+ }
+
+ __sync_synchronize(); /* read memory barrier before accessing record */
+
+ *record = trace_buf[idx];
+ record->event &= ~TRACE_RECORD_VALID;
+ return true;
+}
+
+/**
+ * Kick writeout thread
+ *
+ * @wait Whether to wait for writeout thread to complete
+ */
+static void flush_trace_file(bool wait)
+{
+ pthread_mutex_lock(&trace_lock);
+ trace_available = true;
+ pthread_cond_signal(&trace_available_cond);
+
+ if (wait) {
+ pthread_cond_wait(&trace_empty_cond, &trace_lock);
+ }
+
+ pthread_mutex_unlock(&trace_lock);
+}
+
+static void wait_for_trace_records_available(void)
+{
+ pthread_mutex_lock(&trace_lock);
+ while (!(trace_available && trace_writeout_enabled)) {
+ pthread_cond_signal(&trace_empty_cond);
+ pthread_cond_wait(&trace_available_cond, &trace_lock);
+ }
+ trace_available = false;
+ pthread_mutex_unlock(&trace_lock);
+}
+
+static void *writeout_thread(void *opaque)
+{
+ TraceRecord record;
+ unsigned int writeout_idx = 0;
+ unsigned int num_available, idx;
+ size_t unused __attribute__ ((unused));
+
+ for (;;) {
+ wait_for_trace_records_available();
+
+ num_available = trace_idx - writeout_idx;
+ if (num_available > TRACE_BUF_LEN) {
+ record = (TraceRecord){
+ .event = DROPPED_EVENT_ID,
+ .x1 = num_available,
+ };
+ unused = fwrite(&record, sizeof(record), 1, trace_fp);
+ writeout_idx += num_available;
+ }
+
+ idx = writeout_idx % TRACE_BUF_LEN;
+ while (get_trace_record(idx, &record)) {
+ trace_buf[idx].event = 0; /* clear valid bit */
+ unused = fwrite(&record, sizeof(record), 1, trace_fp);
+ idx = ++writeout_idx % TRACE_BUF_LEN;
+ }
+
+ fflush(trace_fp);
+ }
+ return NULL;
+}
+
+static void trace(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3,
+ uint64_t x4, uint64_t x5, uint64_t x6)
+{
+ unsigned int idx;
+ uint64_t timestamp;
+
+ if (!trace_list[event].state) {
+ return;
+ }
+
+ timestamp = get_clock();
+
+ idx = __sync_fetch_and_add(&trace_idx, 1) % TRACE_BUF_LEN;
+ trace_buf[idx] = (TraceRecord){
+ .event = event,
+ .timestamp_ns = timestamp,
+ .x1 = x1,
+ .x2 = x2,
+ .x3 = x3,
+ .x4 = x4,
+ .x5 = x5,
+ .x6 = x6,
+ };
+ __sync_synchronize(); /* write barrier before marking as valid */
+ trace_buf[idx].event |= TRACE_RECORD_VALID;
+
+ if ((idx + 1) % TRACE_BUF_FLUSH_THRESHOLD == 0) {
+ flush_trace_file(false);
+ }
+}
+
+void trace0(TraceEventID event)
+{
+ trace(event, 0, 0, 0, 0, 0, 0);
+}
+
+void trace1(TraceEventID event, uint64_t x1)
+{
+ trace(event, x1, 0, 0, 0, 0, 0);
+}
+
+void trace2(TraceEventID event, uint64_t x1, uint64_t x2)
+{
+ trace(event, x1, x2, 0, 0, 0, 0);
+}
+
+void trace3(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3)
+{
+ trace(event, x1, x2, x3, 0, 0, 0);
+}
+
+void trace4(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4)
+{
+ trace(event, x1, x2, x3, x4, 0, 0);
+}
+
+void trace5(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, uint64_t x5)
+{
+ trace(event, x1, x2, x3, x4, x5, 0);
+}
+
+void trace6(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, uint64_t x5, uint64_t x6)
+{
+ trace(event, x1, x2, x3, x4, x5, x6);
+}
+
+void st_set_trace_file_enabled(bool enable)
+{
+ if (enable == !!trace_fp) {
+ return; /* no change */
+ }
+
+ /* Halt trace writeout */
+ flush_trace_file(true);
+ trace_writeout_enabled = false;
+ flush_trace_file(true);
+
+ if (enable) {
+ static const TraceRecord header = {
+ .event = HEADER_EVENT_ID,
+ .timestamp_ns = HEADER_MAGIC,
+ .x1 = HEADER_VERSION,
+ };
+
+ trace_fp = fopen(trace_file_name, "w");
+ if (!trace_fp) {
+ return;
+ }
+
+ if (fwrite(&header, sizeof header, 1, trace_fp) != 1) {
+ fclose(trace_fp);
+ trace_fp = NULL;
+ return;
+ }
+
+ /* Resume trace writeout */
+ trace_writeout_enabled = true;
+ flush_trace_file(false);
+ } else {
+ fclose(trace_fp);
+ trace_fp = NULL;
+ }
+}
+
+/**
+ * Set the name of a trace file
+ *
+ * @file The trace file name or NULL for the default name-<pid> set at
+ * config time
+ */
+bool st_set_trace_file(const char *file)
+{
+ st_set_trace_file_enabled(false);
+
+ free(trace_file_name);
+
+ if (!file) {
+ if (asprintf(&trace_file_name, CONFIG_TRACE_FILE, getpid()) < 0) {
+ trace_file_name = NULL;
+ return false;
+ }
+ } else {
+ if (asprintf(&trace_file_name, "%s", file) < 0) {
+ trace_file_name = NULL;
+ return false;
+ }
+ }
+
+ st_set_trace_file_enabled(true);
+ return true;
+}
+
+void st_print_trace_file_status(FILE *stream, int (*stream_printf)(FILE *stream, const char *fmt, ...))
+{
+ stream_printf(stream, "Trace file \"%s\" %s.\n",
+ trace_file_name, trace_fp ? "on" : "off");
+}
+
+void st_print_trace(FILE *stream, int (*stream_printf)(FILE *stream, const char *fmt, ...))
+{
+ unsigned int i;
+
+ for (i = 0; i < TRACE_BUF_LEN; i++) {
+ TraceRecord record;
+
+ if (!get_trace_record(i, &record)) {
+ continue;
+ }
+ stream_printf(stream, "Event %" PRIu64 " : %" PRIx64 " %" PRIx64
+ " %" PRIx64 " %" PRIx64 " %" PRIx64 " %" PRIx64 "\n",
+ record.event, record.x1, record.x2,
+ record.x3, record.x4, record.x5,
+ record.x6);
+ }
+}
+
+void st_flush_trace_buffer(void)
+{
+ flush_trace_file(true);
+}
+
+void trace_print_events(FILE *stream, fprintf_function stream_printf)
+{
+ unsigned int i;
+
+ for (i = 0; i < NR_TRACE_EVENTS; i++) {
+ stream_printf(stream, "%s [Event ID %u] : state %u\n",
+ trace_list[i].tp_name, i, trace_list[i].state);
+ }
+}
+
+bool trace_event_set_state(const char *name, bool state)
+{
+ unsigned int i;
+
+ for (i = 0; i < NR_TRACE_EVENTS; i++) {
+ if (!strcmp(trace_list[i].tp_name, name)) {
+ trace_list[i].state = state;
+ return true;
+ }
+ }
+ return false;
+}
+
+bool trace_backend_init(const char *events, const char *file)
+{
+ pthread_t thread;
+ pthread_attr_t attr;
+ sigset_t set, oldset;
+ int ret;
+
+ pthread_attr_init(&attr);
+ pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
+
+ sigfillset(&set);
+ pthread_sigmask(SIG_SETMASK, &set, &oldset);
+ ret = pthread_create(&thread, &attr, writeout_thread, NULL);
+ pthread_sigmask(SIG_SETMASK, &oldset, NULL);
+
+ if (ret != 0) {
+ fprintf(stderr, "warning: unable to initialize simple trace backend\n");
+ } else {
+ atexit(st_flush_trace_buffer);
+ trace_backend_init_events(events);
+ st_set_trace_file(file);
+ }
+
+ return true;
+}
--- /dev/null
+/*
+ * Simple trace backend
+ *
+ * Copyright IBM, Corp. 2010
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#ifndef TRACE_SIMPLE_H
+#define TRACE_SIMPLE_H
+
+#include <stdint.h>
+#include <stdbool.h>
+#include <stdio.h>
+
+typedef uint64_t TraceEventID;
+
+typedef struct {
+ const char *tp_name;
+ bool state;
+} TraceEvent;
+
+void trace0(TraceEventID event);
+void trace1(TraceEventID event, uint64_t x1);
+void trace2(TraceEventID event, uint64_t x1, uint64_t x2);
+void trace3(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3);
+void trace4(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4);
+void trace5(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, uint64_t x5);
+void trace6(TraceEventID event, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, uint64_t x5, uint64_t x6);
+void st_print_trace(FILE *stream, fprintf_function stream_printf);
+void st_print_trace_file_status(FILE *stream, fprintf_function stream_printf);
+void st_set_trace_file_enabled(bool enable);
+bool st_set_trace_file(const char *file);
+void st_flush_trace_buffer(void);
+
+#endif /* TRACE_SIMPLE_H */
--- /dev/null
+#include "trace.h"
+#include "trace/control.h"
+
+
+void trace_print_events(FILE *stream, fprintf_function stream_printf)
+{
+ unsigned int i;
+
+ for (i = 0; i < NR_TRACE_EVENTS; i++) {
+ stream_printf(stream, "%s [Event ID %u] : state %u\n",
+ trace_list[i].tp_name, i, trace_list[i].state);
+ }
+}
+
+bool trace_event_set_state(const char *name, bool state)
+{
+ unsigned int i;
+
+ for (i = 0; i < NR_TRACE_EVENTS; i++) {
+ if (!strcmp(trace_list[i].tp_name, name)) {
+ trace_list[i].state = state;
+ return true;
+ }
+ }
+ return false;
+}
+
+bool trace_backend_init(const char *events, const char *file)
+{
+ if (file) {
+ fprintf(stderr, "error: -trace file=...: "
+ "option not supported by the selected tracing backend\n");
+ return false;
+ }
+ trace_backend_init_events(events);
+ return true;
+}
--- /dev/null
+#ifndef TRACE_STDERR_H
+#define TRACE_STDERR_H
+
+typedef uint64_t TraceEventID;
+
+typedef struct {
+ const char *tp_name;
+ bool state;
+} TraceEvent;
+
+#endif /* ! TRACE_STDERR_H */
#define main qemu_main
#endif /* CONFIG_COCOA */
+#include <glib.h>
+
#include "hw/hw.h"
#include "hw/boards.h"
#include "hw/usb.h"
#include "slirp/libslirp.h"
#include "trace.h"
-#include "simpletrace.h"
+#include "trace/control.h"
#include "qemu-queue.h"
#include "cpus.h"
#include "arch_init.h"
qemu_notify_event();
}
+static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
+static int n_poll_fds;
+static int max_priority;
+
+static void glib_select_fill(int *max_fd, fd_set *rfds, fd_set *wfds,
+ fd_set *xfds, struct timeval *tv)
+{
+ GMainContext *context = g_main_context_default();
+ int i;
+ int timeout = 0, cur_timeout;
+
+ g_main_context_prepare(context, &max_priority);
+
+ n_poll_fds = g_main_context_query(context, max_priority, &timeout,
+ poll_fds, ARRAY_SIZE(poll_fds));
+ g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds));
+
+ for (i = 0; i < n_poll_fds; i++) {
+ GPollFD *p = &poll_fds[i];
+
+ if ((p->events & G_IO_IN)) {
+ FD_SET(p->fd, rfds);
+ *max_fd = MAX(*max_fd, p->fd);
+ }
+ if ((p->events & G_IO_OUT)) {
+ FD_SET(p->fd, wfds);
+ *max_fd = MAX(*max_fd, p->fd);
+ }
+ if ((p->events & G_IO_ERR)) {
+ FD_SET(p->fd, xfds);
+ *max_fd = MAX(*max_fd, p->fd);
+ }
+ }
+
+ cur_timeout = (tv->tv_sec * 1000) + ((tv->tv_usec + 500) / 1000);
+ if (timeout >= 0 && timeout < cur_timeout) {
+ tv->tv_sec = timeout / 1000;
+ tv->tv_usec = (timeout % 1000) * 1000;
+ }
+}
+
+static void glib_select_poll(fd_set *rfds, fd_set *wfds, fd_set *xfds,
+ bool err)
+{
+ GMainContext *context = g_main_context_default();
+
+ if (!err) {
+ int i;
+
+ for (i = 0; i < n_poll_fds; i++) {
+ GPollFD *p = &poll_fds[i];
+
+ if ((p->events & G_IO_IN) && FD_ISSET(p->fd, rfds)) {
+ p->revents |= G_IO_IN;
+ }
+ if ((p->events & G_IO_OUT) && FD_ISSET(p->fd, wfds)) {
+ p->revents |= G_IO_OUT;
+ }
+ if ((p->events & G_IO_ERR) && FD_ISSET(p->fd, xfds)) {
+ p->revents |= G_IO_ERR;
+ }
+ }
+ }
+
+ if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
+ g_main_context_dispatch(context);
+ }
+}
+
int main_loop_wait(int nonblocking)
{
fd_set rfds, wfds, xfds;
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
+
qemu_iohandler_fill(&nfds, &rfds, &wfds, &xfds);
slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
+ glib_select_fill(&nfds, &rfds, &wfds, &xfds, &tv);
if (timeout > 0) {
qemu_mutex_unlock_iothread();
qemu_iohandler_poll(&rfds, &wfds, &xfds, ret);
slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
+ glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
qemu_run_all_timers();
return ret;
}
-#ifndef CONFIG_IOTHREAD
-static int vm_request_pending(void)
-{
- return powerdown_requested ||
- reset_requested ||
- shutdown_requested ||
- debug_requested ||
- vmstop_requested;
-}
-#endif
-
qemu_irq qemu_system_powerdown;
static void main_loop(void)
qemu_main_loop_start();
for (;;) {
-#ifdef CONFIG_IOTHREAD
nonblocking = !kvm_enabled() && last_io > 0;
-#else
- nonblocking = cpu_exec_all();
- if (vm_request_pending()) {
- nonblocking = true;
- }
-#endif
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
static gpointer malloc_and_trace(gsize n_bytes)
{
void *ptr = malloc(n_bytes);
- trace_qemu_malloc(n_bytes, ptr);
+ trace_g_malloc(n_bytes, ptr);
return ptr;
}
static gpointer realloc_and_trace(gpointer mem, gsize n_bytes)
{
void *ptr = realloc(mem, n_bytes);
- trace_qemu_realloc(mem, n_bytes, ptr);
+ trace_g_realloc(mem, n_bytes, ptr);
return ptr;
}
static void free_and_trace(gpointer mem)
{
- trace_qemu_free(mem);
+ trace_g_free(mem);
free(mem);
}
int show_vnc_port = 0;
#endif
int defconfig = 1;
- const char *trace_file = NULL;
const char *log_mask = NULL;
const char *log_file = NULL;
GMemVTable mem_trace = {
.realloc = realloc_and_trace,
.free = free_and_trace,
};
+ const char *trace_events = NULL;
+ const char *trace_file = NULL;
atexit(qemu_run_exit_notifiers);
error_set_progname(argv[0]);
}
xen_mode = XEN_ATTACH;
break;
-#ifdef CONFIG_SIMPLE_TRACE
case QEMU_OPTION_trace:
+ {
opts = qemu_opts_parse(qemu_find_opts("trace"), optarg, 0);
- if (opts) {
- trace_file = qemu_opt_get(opts, "file");
+ if (!opts) {
+ exit(1);
}
+ trace_events = qemu_opt_get(opts, "events");
+ trace_file = qemu_opt_get(opts, "file");
break;
-#endif
+ }
case QEMU_OPTION_readconfig:
{
int ret = qemu_read_config_file(optarg);
set_cpu_log(log_mask);
}
- if (!st_init(trace_file)) {
- fprintf(stderr, "warning: unable to initialize simple trace backend\n");
+ if (!trace_backend_init(trace_events, trace_file)) {
+ exit(1);
}
/* If no data_dir is specified then try to find it relative to the
.rel.plt :
{
*(.rel.plt)
- PROVIDE_HIDDEN (__rel_iplt_start = .);
+ PROVIDE (__rel_iplt_start = .);
*(.rel.iplt)
- PROVIDE_HIDDEN (__rel_iplt_end = .);
+ PROVIDE (__rel_iplt_end = .);
}
.rela.plt :
{
*(.rela.plt)
- PROVIDE_HIDDEN (__rela_iplt_start = .);
+ PROVIDE (__rela_iplt_start = .);
*(.rela.iplt)
- PROVIDE_HIDDEN (__rela_iplt_end = .);
+ PROVIDE (__rela_iplt_end = .);
}
.init :
{
.rodata : { *(.rodata .rodata.* .gnu.linkonce.r.*) }
.rodata1 : { *(.rodata1) }
.eh_frame_hdr : { *(.eh_frame_hdr) }
- .eh_frame : ONLY_IF_RO { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RO { *(.gcc_except_table) }
/* Adjust the address for the data segment. We want to adjust up to
the same address within the page on the next page up. */
. = ALIGN (0x100000) - ((0x100000 - .) & (0x100000 - 1)); . = DATA_SEGMENT_ALIGN (0x100000, 0x1000);
.data1 : { *(.data1) }
.tdata : { *(.tdata .tdata.* .gnu.linkonce.td.*) }
.tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) }
- .eh_frame : ONLY_IF_RW { KEEP (*(.eh_frame)) }
- .gcc_except_table : ONLY_IF_RW { *(.gcc_except_table) }
+ .eh_frame : { KEEP (*(.eh_frame)) }
+ .gcc_except_table : { *(.gcc_except_table) }
.dynamic : { *(.dynamic) }
.ctors :
{