using FPBits = typename fputil::FPBits<float>;
FPBits xbits(x);
- // When x < log(2^-150) or nan
- if (unlikely(xbits.uintval() >= 0xc2cf'f1b5U)) {
- // exp(-Inf) = 0
- if (xbits.is_inf())
- return 0.0f;
- // exp(nan) = nan
- if (xbits.is_nan())
- return x;
- if (fputil::get_round() == FE_UPWARD)
- return static_cast<float>(FPBits(FPBits::MIN_SUBNORMAL));
- errno = ERANGE;
- return 0.0f;
+ uint32_t x_u = xbits.uintval();
+ uint32_t x_abs = x_u & 0x7fff'ffffU;
+
+ // Exceptional values
+ if (unlikely(x_u == 0xc236'bd8cU)) { // x = -0x1.6d7b18p+5f
+ return 0x1.108a58p-66f - x * 0x1.0p-95f;
}
- // x >= 89 or nan
- if (unlikely(!xbits.get_sign() && (xbits.uintval() >= 0x42b2'0000))) {
- if (xbits.uintval() < 0x7f80'0000U) {
- int rounding = fputil::get_round();
- if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
- return static_cast<float>(FPBits(FPBits::MAX_NORMAL));
+ // When |x| >= 89, |x| < 2^-25, or x is nan
+ if (unlikely(x_abs >= 0x42b2'0000U || x_abs <= 0x3280'0000U)) {
+ // |x| < 2^-25
+ if (xbits.get_unbiased_exponent() <= 101) {
+ return 1.0f + x;
+ }
+
+ // When x < log(2^-150) or nan
+ if (xbits.uintval() >= 0xc2cf'f1b5U) {
+ // exp(-Inf) = 0
+ if (xbits.is_inf())
+ return 0.0f;
+ // exp(nan) = nan
+ if (xbits.is_nan())
+ return x;
+ if (fputil::get_round() == FE_UPWARD)
+ return static_cast<float>(FPBits(FPBits::MIN_SUBNORMAL));
errno = ERANGE;
+ return 0.0f;
}
- return x + static_cast<float>(FPBits::inf());
- }
- // |x| < 2^-25
- if (unlikely(xbits.get_unbiased_exponent() <= 101)) {
- return 1.0f + x;
- }
+ // x >= 89 or nan
+ if (!xbits.get_sign() && (xbits.uintval() >= 0x42b2'0000)) {
+ // x is finite
+ if (xbits.uintval() < 0x7f80'0000U) {
+ int rounding = fputil::get_round();
+ if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
+ return static_cast<float>(FPBits(FPBits::MAX_NORMAL));
+ errno = ERANGE;
+ }
+ // x is +inf or nan
+ return x + static_cast<float>(FPBits::inf());
+ }
+ }
// For -104 < x < 89, to compute exp(x), we perform the following range
// reduction: find hi, mid, lo such that:
// x = hi + mid + lo, in which
// Then,
// exp(x) = exp(hi + mid + lo) = exp(hi) * exp(mid) * exp(lo).
// We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2
- // respectively. exp(lo) is computed using a degree-7 minimax polynomial
+ // respectively. exp(lo) is computed using a degree-4 minimax polynomial
// generated by Sollya.
- // x_hi = hi + mid.
- int x_hi = static_cast<int>(x * 0x1.0p7f);
+ // x_hi = (hi + mid) * 2^7 = round(x * 2^7).
+ // The default rounding mode for float-to-int conversion in C++ is
+ // round-toward-zero. To make it round-to-nearest, we add (-1)^sign(x) * 0.5
+ // before conversion.
+ int x_hi = static_cast<int>(x * 0x1.0p7f + (xbits.get_sign() ? -0.5f : 0.5f));
// Subtract (hi + mid) from x to get lo.
x -= static_cast<float>(x_hi) * 0x1.0p-7f;
double xd = static_cast<double>(x);
- // Make sure that -2^(-8) <= lo < 2^-8.
- if (x >= 0x1.0p-8f) {
- ++x_hi;
- xd -= 0x1.0p-7;
- }
- if (x < -0x1.0p-8f) {
- --x_hi;
- xd += 0x1.0p-7;
- }
x_hi += 104 << 7;
// hi = x_hi >> 7
double exp_hi = EXP_M1[x_hi >> 7];
- // lo = x_hi & 0x0000'007fU;
+ // mid * 2^7 = x_hi & 0x0000'007fU;
double exp_mid = EXP_M2[x_hi & 0x7f];
- // Degree-7 minimax polynomial generated by Sollya with the following
+ // Degree-4 minimax polynomial generated by Sollya with the following
// commands:
// > display = hexadecimal;
- // > Q = fpminimax(expm1(x)/x, 6, [|D...|], [-2^-8, 2^-8]);
+ // > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]);
// > Q;
- double exp_lo = fputil::polyeval(
- xd, 0x1p0, 0x1p0, 0x1p-1, 0x1.5555555555555p-3, 0x1.55555555553ap-5,
- 0x1.1111111204dfcp-7, 0x1.6c16cb2da593ap-10, 0x1.9ff1648996d2ep-13);
+ double exp_lo =
+ fputil::polyeval(xd, 0x1p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1,
+ 0x1.555566668e5e7p-3, 0x1.55555555ef243p-5);
return static_cast<float>(exp_hi * exp_mid * exp_lo);
}