ICmpInst &ICI;
};
+// UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
+// a unary operator like UO called Name with operand X.
+struct UnarySplitter {
+ UnarySplitter(UnaryOperator &uo) : UO(uo) {}
+
+ Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
+ return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
+ }
+
+ UnaryOperator &UO;
+};
+
// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
// a binary operator like BO called Name with operands X and Y.
struct BinarySplitter {
bool visitSelectInst(SelectInst &SI);
bool visitICmpInst(ICmpInst &ICI);
bool visitFCmpInst(FCmpInst &FCI);
+ bool visitUnaryOperator(UnaryOperator &UO);
bool visitBinaryOperator(BinaryOperator &BO);
bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
bool visitCastInst(CastInst &CI);
const DataLayout &DL);
bool finish();
+ template<typename T> bool splitUnary(Instruction &, const T &);
template<typename T> bool splitBinary(Instruction &, const T &);
bool splitCall(CallInst &CI);
return true;
}
+// Scalarize one-operand instruction I, using Split(Builder, X, Name)
+// to create an instruction like I with operand X and name Name.
+template<typename Splitter>
+bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
+ VectorType *VT = dyn_cast<VectorType>(I.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = VT->getNumElements();
+ IRBuilder<> Builder(&I);
+ Scatterer Op = scatter(&I, I.getOperand(0));
+ assert(Op.size() == NumElems && "Mismatched unary operation");
+ ValueVector Res;
+ Res.resize(NumElems);
+ for (unsigned Elem = 0; Elem < NumElems; ++Elem)
+ Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
+ gather(&I, Res);
+ return true;
+}
+
// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
// to create an instruction like I with operands X and Y and name Name.
template<typename Splitter>
return splitBinary(FCI, FCmpSplitter(FCI));
}
+bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
+ return splitUnary(UO, UnarySplitter(UO));
+}
+
bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
return splitBinary(BO, BinarySplitter(BO));
}
ret <4 x float> %next_acc
}
+; Test unary operator scalarization.
+define void @f15(<4 x float> %init, <4 x float> *%base, i32 %count) {
+; CHECK-LABEL: @f15(
+; CHECK: %ptr = getelementptr <4 x float>, <4 x float>* %base, i32 %i
+; CHECK: %ptr.i0 = bitcast <4 x float>* %ptr to float*
+; CHECK: %val.i0 = load float, float* %ptr.i0, align 16
+; CHECK: %ptr.i1 = getelementptr float, float* %ptr.i0, i32 1
+; CHECK: %val.i1 = load float, float* %ptr.i1, align 4
+; CHECK: %ptr.i2 = getelementptr float, float* %ptr.i0, i32 2
+; CHECK: %val.i2 = load float, float* %ptr.i2, align 8
+; CHECK: %ptr.i3 = getelementptr float, float* %ptr.i0, i32 3
+; CHECK: %val.i3 = load float, float* %ptr.i3, align 4
+; CHECK: %neg.i0 = fneg float %val.i0
+; CHECK: %neg.i1 = fneg float %val.i1
+; CHECK: %neg.i2 = fneg float %val.i2
+; CHECK: %neg.i3 = fneg float %val.i3
+; CHECK: %neg.upto0 = insertelement <4 x float> undef, float %neg.i0, i32 0
+; CHECK: %neg.upto1 = insertelement <4 x float> %neg.upto0, float %neg.i1, i32 1
+; CHECK: %neg.upto2 = insertelement <4 x float> %neg.upto1, float %neg.i2, i32 2
+; CHECK: %neg = insertelement <4 x float> %neg.upto2, float %neg.i3, i32 3
+; CHECK: %call = call <4 x float> @ext(<4 x float> %neg)
+; CHECK: %call.i0 = extractelement <4 x float> %call, i32 0
+; CHECK: %cmp.i0 = fcmp ogt float %call.i0, 1.000000e+00
+; CHECK: %call.i1 = extractelement <4 x float> %call, i32 1
+; CHECK: %cmp.i1 = fcmp ogt float %call.i1, 2.000000e+00
+; CHECK: %call.i2 = extractelement <4 x float> %call, i32 2
+; CHECK: %cmp.i2 = fcmp ogt float %call.i2, 3.000000e+00
+; CHECK: %call.i3 = extractelement <4 x float> %call, i32 3
+; CHECK: %cmp.i3 = fcmp ogt float %call.i3, 4.000000e+00
+; CHECK: %sel.i0 = select i1 %cmp.i0, float %call.i0, float 5.000000e+00
+; CHECK: %sel.i1 = select i1 %cmp.i1, float %call.i1, float 6.000000e+00
+; CHECK: %sel.i2 = select i1 %cmp.i2, float %call.i2, float 7.000000e+00
+; CHECK: %sel.i3 = select i1 %cmp.i3, float %call.i3, float 8.000000e+00
+; CHECK: store float %sel.i0, float* %ptr.i0, align 16
+; CHECK: store float %sel.i1, float* %ptr.i1, align 4
+; CHECK: store float %sel.i2, float* %ptr.i2, align 8
+; CHECK: store float %sel.i3, float* %ptr.i3, align 4
+entry:
+ br label %loop
+
+loop:
+ %i = phi i32 [ %count, %entry ], [ %nexti, %loop ]
+ %acc = phi <4 x float> [ %init, %entry ], [ %sel, %loop ]
+ %nexti = sub i32 %i, 1
+
+ %ptr = getelementptr <4 x float>, <4 x float> *%base, i32 %i
+ %val = load <4 x float> , <4 x float> *%ptr
+ %neg = fneg <4 x float> %val
+ %call = call <4 x float> @ext(<4 x float> %neg)
+ %cmp = fcmp ogt <4 x float> %call,
+ <float 1.0, float 2.0, float 3.0, float 4.0>
+ %sel = select <4 x i1> %cmp, <4 x float> %call,
+ <4 x float> <float 5.0, float 6.0, float 7.0, float 8.0>
+ store <4 x float> %sel, <4 x float> *%ptr
+
+ %test = icmp eq i32 %nexti, 0
+ br i1 %test, label %loop, label %exit
+
+exit:
+ ret void
+}
+
!0 = !{ !"root" }
!1 = !{ !"set1", !0 }
!2 = !{ !"set2", !0 }