Learning_rate = 0.0001 # Learning Rate
Decay_rate = 0.96 # for the decay_rate for the decayed learning rate
Decay_steps = 1000 # decay step for the exponential decayed learning rate
-Epochs = 3 # Epoch
+Epochs = 2 # Epoch
Optimizer = adam # Optimizer : sgd (stochastic gradien decent),
# adam (Adamtive Moment Estimation)
loss = cross # Cost(loss) function : mse (mean squared error)
# cross (cross entropy)
-batch_size = 3
+batch_size = 2
save_path = "model.bin" # model path to save / read
beta1 = 0.9 # beta 1 for adam
beta2 = 0.9999 # beta 2 for adam
epsilon = 1e-7 # epsilon for adam
[DataSet]
-BufferSize=3
+BufferSize=2
TrainData="trainingSet.dat"
ValidData="trainingSet.dat"
LabelData="label.dat"
# Layer Section : Name
[inputlayer]
Type = input
-Input_Shape = 1:1:62720 # Input Layer Dimensions
+Input_Shape = 1:1:1280 # Input Layer Dimensions
bias_initializer = zeros # Zero Bias
Normalization = true