+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- Madge Horizon ATM Adapter driver.
- Copyright (C) 1995-1999 Madge Networks Ltd.
-
-*/
-
-/*
- IMPORTANT NOTE: Madge Networks no longer makes the adapters
- supported by this driver and makes no commitment to maintain it.
-*/
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/sched/signal.h>
-#include <linux/mm.h>
-#include <linux/pci.h>
-#include <linux/errno.h>
-#include <linux/atm.h>
-#include <linux/atmdev.h>
-#include <linux/sonet.h>
-#include <linux/skbuff.h>
-#include <linux/time.h>
-#include <linux/delay.h>
-#include <linux/uio.h>
-#include <linux/init.h>
-#include <linux/interrupt.h>
-#include <linux/ioport.h>
-#include <linux/wait.h>
-#include <linux/slab.h>
-
-#include <asm/io.h>
-#include <linux/atomic.h>
-#include <linux/uaccess.h>
-#include <asm/string.h>
-#include <asm/byteorder.h>
-
-#include "horizon.h"
-
-#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
-#define description_string "Madge ATM Horizon [Ultra] driver"
-#define version_string "1.2.1"
-
-static inline void __init show_version (void) {
- printk ("%s version %s\n", description_string, version_string);
-}
-
-/*
-
- CREDITS
-
- Driver and documentation by:
-
- Chris Aston Madge Networks
- Giuliano Procida Madge Networks
- Simon Benham Madge Networks
- Simon Johnson Madge Networks
- Various Others Madge Networks
-
- Some inspiration taken from other drivers by:
-
- Alexandru Cucos UTBv
- Kari Mettinen University of Helsinki
- Werner Almesberger EPFL LRC
-
- Theory of Operation
-
- I Hardware, detection, initialisation and shutdown.
-
- 1. Supported Hardware
-
- This driver should handle all variants of the PCI Madge ATM adapters
- with the Horizon chipset. These are all PCI cards supporting PIO, BM
- DMA and a form of MMIO (registers only, not internal RAM).
-
- The driver is only known to work with SONET and UTP Horizon Ultra
- cards at 155Mb/s. However, code is in place to deal with both the
- original Horizon and 25Mb/s operation.
-
- There are two revisions of the Horizon ASIC: the original and the
- Ultra. Details of hardware bugs are in section III.
-
- The ASIC version can be distinguished by chip markings but is NOT
- indicated by the PCI revision (all adapters seem to have PCI rev 1).
-
- I believe that:
-
- Horizon => Collage 25 PCI Adapter (UTP and STP)
- Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
- Ambassador x => Collage 155 PCI Server (completely different)
-
- Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
- have a Madge B154 plus glue logic serializer. I have also found a
- really ancient version of this with slightly different glue. It
- comes with the revision 0 (140-025-01) ASIC.
-
- Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
- output (UTP) or an HP HFBR 5205 output (SONET). It has either
- Madge's SAMBA framer or a SUNI-lite device (early versions). It
- comes with the revision 1 (140-027-01) ASIC.
-
- 2. Detection
-
- All Horizon-based cards present with the same PCI Vendor and Device
- IDs. The standard Linux 2.2 PCI API is used to locate any cards and
- to enable bus-mastering (with appropriate latency).
-
- ATM_LAYER_STATUS in the control register distinguishes between the
- two possible physical layers (25 and 155). It is not clear whether
- the 155 cards can also operate at 25Mbps. We rely on the fact that a
- card operates at 155 if and only if it has the newer Horizon Ultra
- ASIC.
-
- For 155 cards the two possible framers are probed for and then set
- up for loop-timing.
-
- 3. Initialisation
-
- The card is reset and then put into a known state. The physical
- layer is configured for normal operation at the appropriate speed;
- in the case of the 155 cards, the framer is initialised with
- line-based timing; the internal RAM is zeroed and the allocation of
- buffers for RX and TX is made; the Burnt In Address is read and
- copied to the ATM ESI; various policy settings for RX (VPI bits,
- unknown VCs, oam cells) are made. Ideally all policy items should be
- configurable at module load (if not actually on-demand), however,
- only the vpi vs vci bit allocation can be specified at insmod.
-
- 4. Shutdown
-
- This is in response to module_cleaup. No VCs are in use and the card
- should be idle; it is reset.
-
- II Driver software (as it should be)
-
- 0. Traffic Parameters
-
- The traffic classes (not an enumeration) are currently: ATM_NONE (no
- traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
- (compatible with everything). Together with (perhaps only some of)
- the following items they make up the traffic specification.
-
- struct atm_trafprm {
- unsigned char traffic_class; traffic class (ATM_UBR, ...)
- int max_pcr; maximum PCR in cells per second
- int pcr; desired PCR in cells per second
- int min_pcr; minimum PCR in cells per second
- int max_cdv; maximum CDV in microseconds
- int max_sdu; maximum SDU in bytes
- };
-
- Note that these denote bandwidth available not bandwidth used; the
- possibilities according to ATMF are:
-
- Real Time (cdv and max CDT given)
-
- CBR(pcr) pcr bandwidth always available
- rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
-
- Non Real Time
-
- nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
- UBR()
- ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
-
- mbs is max burst size (bucket)
- pcr and scr have associated cdvt values
- mcr is like scr but has no cdtv
- cdtv may differ at each hop
-
- Some of the above items are qos items (as opposed to traffic
- parameters). We have nothing to do with qos. All except ABR can have
- their traffic parameters converted to GCRA parameters. The GCRA may
- be implemented as a (real-number) leaky bucket. The GCRA can be used
- in complicated ways by switches and in simpler ways by end-stations.
- It can be used both to filter incoming cells and shape out-going
- cells.
-
- ATM Linux actually supports:
-
- ATM_NONE() (no traffic in this direction)
- ATM_UBR(max_frame_size)
- ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
-
- 0 or ATM_MAX_PCR are used to indicate maximum available PCR
-
- A traffic specification consists of the AAL type and separate
- traffic specifications for either direction. In ATM Linux it is:
-
- struct atm_qos {
- struct atm_trafprm txtp;
- struct atm_trafprm rxtp;
- unsigned char aal;
- };
-
- AAL types are:
-
- ATM_NO_AAL AAL not specified
- ATM_AAL0 "raw" ATM cells
- ATM_AAL1 AAL1 (CBR)
- ATM_AAL2 AAL2 (VBR)
- ATM_AAL34 AAL3/4 (data)
- ATM_AAL5 AAL5 (data)
- ATM_SAAL signaling AAL
-
- The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
- it does not implement AAL 3/4 SAR and it has a different notion of
- "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
- supported by this driver.
-
- The Horizon has limited support for ABR (including UBR), VBR and
- CBR. Each TX channel has a bucket (containing up to 31 cell units)
- and two timers (PCR and SCR) associated with it that can be used to
- govern cell emissions and host notification (in the case of ABR this
- is presumably so that RM cells may be emitted at appropriate times).
- The timers may either be disabled or may be set to any of 240 values
- (determined by the clock crystal, a fixed (?) per-device divider, a
- configurable divider and a configurable timer preload value).
-
- At the moment only UBR and CBR are supported by the driver. VBR will
- be supported as soon as ATM for Linux supports it. ABR support is
- very unlikely as RM cell handling is completely up to the driver.
-
- 1. TX (TX channel setup and TX transfer)
-
- The TX half of the driver owns the TX Horizon registers. The TX
- component in the IRQ handler is the BM completion handler. This can
- only be entered when tx_busy is true (enforced by hardware). The
- other TX component can only be entered when tx_busy is false
- (enforced by driver). So TX is single-threaded.
-
- Apart from a minor optimisation to not re-select the last channel,
- the TX send component works as follows:
-
- Atomic test and set tx_busy until we succeed; we should implement
- some sort of timeout so that tx_busy will never be stuck at true.
-
- If no TX channel is set up for this VC we wait for an idle one (if
- necessary) and set it up.
-
- At this point we have a TX channel ready for use. We wait for enough
- buffers to become available then start a TX transmit (set the TX
- descriptor, schedule transfer, exit).
-
- The IRQ component handles TX completion (stats, free buffer, tx_busy
- unset, exit). We also re-schedule further transfers for the same
- frame if needed.
-
- TX setup in more detail:
-
- TX open is a nop, the relevant information is held in the hrz_vcc
- (vcc->dev_data) structure and is "cached" on the card.
-
- TX close gets the TX lock and clears the channel from the "cache".
-
- 2. RX (Data Available and RX transfer)
-
- The RX half of the driver owns the RX registers. There are two RX
- components in the IRQ handler: the data available handler deals with
- fresh data that has arrived on the card, the BM completion handler
- is very similar to the TX completion handler. The data available
- handler grabs the rx_lock and it is only released once the data has
- been discarded or completely transferred to the host. The BM
- completion handler only runs when the lock is held; the data
- available handler is locked out over the same period.
-
- Data available on the card triggers an interrupt. If the data is not
- suitable for our existing RX channels or we cannot allocate a buffer
- it is flushed. Otherwise an RX receive is scheduled. Multiple RX
- transfers may be scheduled for the same frame.
-
- RX setup in more detail:
-
- RX open...
- RX close...
-
- III Hardware Bugs
-
- 0. Byte vs Word addressing of adapter RAM.
-
- A design feature; see the .h file (especially the memory map).
-
- 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
-
- The host must not start a transmit direction transfer at a
- non-four-byte boundary in host memory. Instead the host should
- perform a byte, or a two byte, or one byte followed by two byte
- transfer in order to start the rest of the transfer on a four byte
- boundary. RX is OK.
-
- Simultaneous transmit and receive direction bus master transfers are
- not allowed.
-
- The simplest solution to these two is to always do PIO (never DMA)
- in the TX direction on the original Horizon. More complicated
- solutions are likely to hurt my brain.
-
- 2. Loss of buffer on close VC
-
- When a VC is being closed, the buffer associated with it is not
- returned to the pool. The host must store the reference to this
- buffer and when opening a new VC then give it to that new VC.
-
- The host intervention currently consists of stacking such a buffer
- pointer at VC close and checking the stack at VC open.
-
- 3. Failure to close a VC
-
- If a VC is currently receiving a frame then closing the VC may fail
- and the frame continues to be received.
-
- The solution is to make sure any received frames are flushed when
- ready. This is currently done just before the solution to 2.
-
- 4. PCI bus (original Horizon only, fixed in Ultra)
-
- Reading from the data port prior to initialisation will hang the PCI
- bus. Just don't do that then! We don't.
-
- IV To Do List
-
- . Timer code may be broken.
-
- . Allow users to specify buffer allocation split for TX and RX.
-
- . Deal once and for all with buggy VC close.
-
- . Handle interrupted and/or non-blocking operations.
-
- . Change some macros to functions and move from .h to .c.
-
- . Try to limit the number of TX frames each VC may have queued, in
- order to reduce the chances of TX buffer exhaustion.
-
- . Implement VBR (bucket and timers not understood) and ABR (need to
- do RM cells manually); also no Linux support for either.
-
- . Implement QoS changes on open VCs (involves extracting parts of VC open
- and close into separate functions and using them to make changes).
-
-*/
-
-/********** globals **********/
-
-static void do_housekeeping (struct timer_list *t);
-
-static unsigned short debug = 0;
-static unsigned short vpi_bits = 0;
-static int max_tx_size = 9000;
-static int max_rx_size = 9000;
-static unsigned char pci_lat = 0;
-
-/********** access functions **********/
-
-/* Read / Write Horizon registers */
-static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
- outl (cpu_to_le32 (data), dev->iobase + reg);
-}
-
-static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
- return le32_to_cpu (inl (dev->iobase + reg));
-}
-
-static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
- outw (cpu_to_le16 (data), dev->iobase + reg);
-}
-
-static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
- return le16_to_cpu (inw (dev->iobase + reg));
-}
-
-static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
- outsb (dev->iobase + reg, addr, len);
-}
-
-static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
- insb (dev->iobase + reg, addr, len);
-}
-
-/* Read / Write to a given address in Horizon buffer memory.
- Interrupts must be disabled between the address register and data
- port accesses as these must form an atomic operation. */
-static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
- // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
- wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
- wr_regl (dev, MEMORY_PORT_OFF, data);
-}
-
-static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
- // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
- wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
- return rd_regl (dev, MEMORY_PORT_OFF);
-}
-
-static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
- wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
- wr_regl (dev, MEMORY_PORT_OFF, data);
-}
-
-static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
- wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
- return rd_regl (dev, MEMORY_PORT_OFF);
-}
-
-/********** specialised access functions **********/
-
-/* RX */
-
-static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
- wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
- return;
-}
-
-static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
- while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
- ;
- return;
-}
-
-static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
- wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
- return;
-}
-
-static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
- while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
- ;
- return;
-}
-
-/* TX */
-
-static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
- wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
- return;
-}
-
-/* Update or query one configuration parameter of a particular channel. */
-
-static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
- wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
- chan * TX_CHANNEL_CONFIG_MULT | mode);
- wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
- return;
-}
-
-/********** dump functions **********/
-
-static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
-#ifdef DEBUG_HORIZON
- unsigned int i;
- unsigned char * data = skb->data;
- PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
- for (i=0; i<skb->len && i < 256;i++)
- PRINTDM (DBG_DATA, "%02x ", data[i]);
- PRINTDE (DBG_DATA,"");
-#else
- (void) prefix;
- (void) vc;
- (void) skb;
-#endif
- return;
-}
-
-static inline void dump_regs (hrz_dev * dev) {
-#ifdef DEBUG_HORIZON
- PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
- PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
- PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
- PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
- PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
- PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
-#else
- (void) dev;
-#endif
- return;
-}
-
-static inline void dump_framer (hrz_dev * dev) {
-#ifdef DEBUG_HORIZON
- unsigned int i;
- PRINTDB (DBG_REGS, "framer registers:");
- for (i = 0; i < 0x10; ++i)
- PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
- PRINTDE (DBG_REGS,"");
-#else
- (void) dev;
-#endif
- return;
-}
-
-/********** VPI/VCI <-> (RX) channel conversions **********/
-
-/* RX channels are 10 bit integers, these fns are quite paranoid */
-
-static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
- unsigned short vci_bits = 10 - vpi_bits;
- if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
- *channel = vpi<<vci_bits | vci;
- return *channel ? 0 : -EINVAL;
- }
- return -EINVAL;
-}
-
-/********** decode RX queue entries **********/
-
-static inline u16 rx_q_entry_to_length (u32 x) {
- return x & RX_Q_ENTRY_LENGTH_MASK;
-}
-
-static inline u16 rx_q_entry_to_rx_channel (u32 x) {
- return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
-}
-
-/* Cell Transmit Rate Values
- *
- * the cell transmit rate (cells per sec) can be set to a variety of
- * different values by specifying two parameters: a timer preload from
- * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
- * an exponent from 0 to 14; the special value 15 disables the timer).
- *
- * cellrate = baserate / (preload * 2^divider)
- *
- * The maximum cell rate that can be specified is therefore just the
- * base rate. Halving the preload is equivalent to adding 1 to the
- * divider and so values 1 to 8 of the preload are redundant except
- * in the case of a maximal divider (14).
- *
- * Given a desired cell rate, an algorithm to determine the preload
- * and divider is:
- *
- * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
- * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
- * if x <= 16 then set p = x, d = 0 (high rates), done
- * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
- * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
- * we find the range (n will be between 1 and 14), set d = n
- * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
- *
- * The algorithm used below is a minor variant of the above.
- *
- * The base rate is derived from the oscillator frequency (Hz) using a
- * fixed divider:
- *
- * baserate = freq / 32 in the case of some Unknown Card
- * baserate = freq / 8 in the case of the Horizon 25
- * baserate = freq / 8 in the case of the Horizon Ultra 155
- *
- * The Horizon cards have oscillators and base rates as follows:
- *
- * Card Oscillator Base Rate
- * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
- * Horizon 25 32 MHz 4 MHz
- * Horizon Ultra 155 40 MHz 5 MHz
- *
- * The following defines give the base rates in Hz. These were
- * previously a factor of 100 larger, no doubt someone was using
- * cps*100.
- */
-
-#define BR_UKN 1031250l
-#define BR_HRZ 4000000l
-#define BR_ULT 5000000l
-
-// d is an exponent
-#define CR_MIND 0
-#define CR_MAXD 14
-
-// p ranges from 1 to a power of 2
-#define CR_MAXPEXP 4
-
-static int make_rate (const hrz_dev * dev, u32 c, rounding r,
- u16 * bits, unsigned int * actual)
-{
- // note: rounding the rate down means rounding 'p' up
- const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
-
- u32 div = CR_MIND;
- u32 pre;
-
- // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
- // the tests below. We could think harder about exact possibilities
- // of failure...
-
- unsigned long br_man = br;
- unsigned int br_exp = 0;
-
- PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
- r == round_up ? "up" : r == round_down ? "down" : "nearest");
-
- // avoid div by zero
- if (!c) {
- PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
- return -EINVAL;
- }
-
- while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
- br_man = br_man >> 1;
- ++br_exp;
- }
- // (br >>br_exp) <<br_exp == br and
- // br_exp <= CR_MAXPEXP+CR_MIND
-
- if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
- // Equivalent to: B <= (c << (MAXPEXP+MIND))
- // take care of rounding
- switch (r) {
- case round_down:
- pre = DIV_ROUND_UP(br, c<<div);
- // but p must be non-zero
- if (!pre)
- pre = 1;
- break;
- case round_nearest:
- pre = DIV_ROUND_CLOSEST(br, c<<div);
- // but p must be non-zero
- if (!pre)
- pre = 1;
- break;
- default: /* round_up */
- pre = br/(c<<div);
- // but p must be non-zero
- if (!pre)
- return -EINVAL;
- }
- PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
- goto got_it;
- }
-
- // at this point we have
- // d == MIND and (c << (MAXPEXP+MIND)) < B
- while (div < CR_MAXD) {
- div++;
- if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
- // Equivalent to: B <= (c << (MAXPEXP+d))
- // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
- // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
- // MAXP/2 < B/c2^d <= MAXP
- // take care of rounding
- switch (r) {
- case round_down:
- pre = DIV_ROUND_UP(br, c<<div);
- break;
- case round_nearest:
- pre = DIV_ROUND_CLOSEST(br, c<<div);
- break;
- default: /* round_up */
- pre = br/(c<<div);
- }
- PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
- goto got_it;
- }
- }
- // at this point we have
- // d == MAXD and (c << (MAXPEXP+MAXD)) < B
- // but we cannot go any higher
- // take care of rounding
- if (r == round_down)
- return -EINVAL;
- pre = 1 << CR_MAXPEXP;
- PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
-got_it:
- // paranoia
- if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
- PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
- div, pre);
- return -EINVAL;
- } else {
- if (bits)
- *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
- if (actual) {
- *actual = DIV_ROUND_UP(br, pre<<div);
- PRINTD (DBG_QOS, "actual rate: %u", *actual);
- }
- return 0;
- }
-}
-
-static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
- u16 * bit_pattern, unsigned int * actual) {
- unsigned int my_actual;
-
- PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
- c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
-
- if (!actual)
- // actual rate is not returned
- actual = &my_actual;
-
- if (make_rate (dev, c, round_nearest, bit_pattern, actual))
- // should never happen as round_nearest always succeeds
- return -1;
-
- if (c - tol <= *actual && *actual <= c + tol)
- // within tolerance
- return 0;
- else
- // intolerant, try rounding instead
- return make_rate (dev, c, r, bit_pattern, actual);
-}
-
-/********** Listen on a VC **********/
-
-static int hrz_open_rx (hrz_dev * dev, u16 channel) {
- // is there any guarantee that we don't get two simulataneous
- // identical calls of this function from different processes? yes
- // rate_lock
- unsigned long flags;
- u32 channel_type; // u16?
-
- u16 buf_ptr = RX_CHANNEL_IDLE;
-
- rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
-
- PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
-
- spin_lock_irqsave (&dev->mem_lock, flags);
- channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
- spin_unlock_irqrestore (&dev->mem_lock, flags);
-
- // very serious error, should never occur
- if (channel_type != RX_CHANNEL_DISABLED) {
- PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
- return -EBUSY; // clean up?
- }
-
- // Give back spare buffer
- if (dev->noof_spare_buffers) {
- buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
- PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
- // should never occur
- if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
- // but easy to recover from
- PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
- buf_ptr = RX_CHANNEL_IDLE;
- }
- } else {
- PRINTD (DBG_VCC, "using IDLE buffer pointer");
- }
-
- // Channel is currently disabled so change its status to idle
-
- // do we really need to save the flags again?
- spin_lock_irqsave (&dev->mem_lock, flags);
-
- wr_mem (dev, &rx_desc->wr_buf_type,
- buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
- if (buf_ptr != RX_CHANNEL_IDLE)
- wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
-
- spin_unlock_irqrestore (&dev->mem_lock, flags);
-
- // rxer->rate = make_rate (qos->peak_cells);
-
- PRINTD (DBG_FLOW, "hrz_open_rx ok");
-
- return 0;
-}
-
-#if 0
-/********** change vc rate for a given vc **********/
-
-static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
- rxer->rate = make_rate (qos->peak_cells);
-}
-#endif
-
-/********** free an skb (as per ATM device driver documentation) **********/
-
-static void hrz_kfree_skb (struct sk_buff * skb) {
- if (ATM_SKB(skb)->vcc->pop) {
- ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
- } else {
- dev_kfree_skb_any (skb);
- }
-}
-
-/********** cancel listen on a VC **********/
-
-static void hrz_close_rx (hrz_dev * dev, u16 vc) {
- unsigned long flags;
-
- u32 value;
-
- u32 r1, r2;
-
- rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
-
- int was_idle = 0;
-
- spin_lock_irqsave (&dev->mem_lock, flags);
- value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
- spin_unlock_irqrestore (&dev->mem_lock, flags);
-
- if (value == RX_CHANNEL_DISABLED) {
- // I suppose this could happen once we deal with _NONE traffic properly
- PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
- return;
- }
- if (value == RX_CHANNEL_IDLE)
- was_idle = 1;
-
- spin_lock_irqsave (&dev->mem_lock, flags);
-
- for (;;) {
- wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
-
- if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
- break;
-
- was_idle = 0;
- }
-
- if (was_idle) {
- spin_unlock_irqrestore (&dev->mem_lock, flags);
- return;
- }
-
- WAIT_FLUSH_RX_COMPLETE(dev);
-
- // XXX Is this all really necessary? We can rely on the rx_data_av
- // handler to discard frames that remain queued for delivery. If the
- // worry is that immediately reopening the channel (perhaps by a
- // different process) may cause some data to be mis-delivered then
- // there may still be a simpler solution (such as busy-waiting on
- // rx_busy once the channel is disabled or before a new one is
- // opened - does this leave any holes?). Arguably setting up and
- // tearing down the TX and RX halves of each virtual circuit could
- // most safely be done within ?x_busy protected regions.
-
- // OK, current changes are that Simon's marker is disabled and we DO
- // look for NULL rxer elsewhere. The code here seems flush frames
- // and then remember the last dead cell belonging to the channel
- // just disabled - the cell gets relinked at the next vc_open.
- // However, when all VCs are closed or only a few opened there are a
- // handful of buffers that are unusable.
-
- // Does anyone feel like documenting spare_buffers properly?
- // Does anyone feel like fixing this in a nicer way?
-
- // Flush any data which is left in the channel
- for (;;) {
- // Change the rx channel port to something different to the RX
- // channel we are trying to close to force Horizon to flush the rx
- // channel read and write pointers.
-
- u16 other = vc^(RX_CHANS/2);
-
- SELECT_RX_CHANNEL (dev, other);
- WAIT_UPDATE_COMPLETE (dev);
-
- r1 = rd_mem (dev, &rx_desc->rd_buf_type);
-
- // Select this RX channel. Flush doesn't seem to work unless we
- // select an RX channel before hand
-
- SELECT_RX_CHANNEL (dev, vc);
- WAIT_UPDATE_COMPLETE (dev);
-
- // Attempt to flush a frame on this RX channel
-
- FLUSH_RX_CHANNEL (dev, vc);
- WAIT_FLUSH_RX_COMPLETE (dev);
-
- // Force Horizon to flush rx channel read and write pointers as before
-
- SELECT_RX_CHANNEL (dev, other);
- WAIT_UPDATE_COMPLETE (dev);
-
- r2 = rd_mem (dev, &rx_desc->rd_buf_type);
-
- PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
-
- if (r1 == r2) {
- dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
- break;
- }
- }
-
-#if 0
- {
- rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
- rx_q_entry * rd_ptr = dev->rx_q_entry;
-
- PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
-
- while (rd_ptr != wr_ptr) {
- u32 x = rd_mem (dev, (HDW *) rd_ptr);
-
- if (vc == rx_q_entry_to_rx_channel (x)) {
- x |= SIMONS_DODGEY_MARKER;
-
- PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
-
- wr_mem (dev, (HDW *) rd_ptr, x);
- }
-
- if (rd_ptr == dev->rx_q_wrap)
- rd_ptr = dev->rx_q_reset;
- else
- rd_ptr++;
- }
- }
-#endif
-
- spin_unlock_irqrestore (&dev->mem_lock, flags);
-
- return;
-}
-
-/********** schedule RX transfers **********/
-
-// Note on tail recursion: a GCC developer said that it is not likely
-// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
-// are sure it does as you may otherwise overflow the kernel stack.
-
-// giving this fn a return value would help GCC, allegedly
-
-static void rx_schedule (hrz_dev * dev, int irq) {
- unsigned int rx_bytes;
-
- int pio_instead = 0;
-#ifndef TAILRECURSIONWORKS
- pio_instead = 1;
- while (pio_instead) {
-#endif
- // bytes waiting for RX transfer
- rx_bytes = dev->rx_bytes;
-
-#if 0
- spin_count = 0;
- while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
- PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
- if (++spin_count > 10) {
- PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
- wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
- clear_bit (rx_busy, &dev->flags);
- hrz_kfree_skb (dev->rx_skb);
- return;
- }
- }
-#endif
-
- // this code follows the TX code but (at the moment) there is only
- // one region - the skb itself. I don't know if this will change,
- // but it doesn't hurt to have the code here, disabled.
-
- if (rx_bytes) {
- // start next transfer within same region
- if (rx_bytes <= MAX_PIO_COUNT) {
- PRINTD (DBG_RX|DBG_BUS, "(pio)");
- pio_instead = 1;
- }
- if (rx_bytes <= MAX_TRANSFER_COUNT) {
- PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
- dev->rx_bytes = 0;
- } else {
- PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
- dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
- rx_bytes = MAX_TRANSFER_COUNT;
- }
- } else {
- // rx_bytes == 0 -- we're between regions
- // regions remaining to transfer
-#if 0
- unsigned int rx_regions = dev->rx_regions;
-#else
- unsigned int rx_regions = 0;
-#endif
-
- if (rx_regions) {
-#if 0
- // start a new region
- dev->rx_addr = dev->rx_iovec->iov_base;
- rx_bytes = dev->rx_iovec->iov_len;
- ++dev->rx_iovec;
- dev->rx_regions = rx_regions - 1;
-
- if (rx_bytes <= MAX_PIO_COUNT) {
- PRINTD (DBG_RX|DBG_BUS, "(pio)");
- pio_instead = 1;
- }
- if (rx_bytes <= MAX_TRANSFER_COUNT) {
- PRINTD (DBG_RX|DBG_BUS, "(full region)");
- dev->rx_bytes = 0;
- } else {
- PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
- dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
- rx_bytes = MAX_TRANSFER_COUNT;
- }
-#endif
- } else {
- // rx_regions == 0
- // that's all folks - end of frame
- struct sk_buff * skb = dev->rx_skb;
- // dev->rx_iovec = 0;
-
- FLUSH_RX_CHANNEL (dev, dev->rx_channel);
-
- dump_skb ("<<<", dev->rx_channel, skb);
-
- PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
-
- {
- struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
- // VC layer stats
- atomic_inc(&vcc->stats->rx);
- __net_timestamp(skb);
- // end of our responsibility
- vcc->push (vcc, skb);
- }
- }
- }
-
- // note: writing RX_COUNT clears any interrupt condition
- if (rx_bytes) {
- if (pio_instead) {
- if (irq)
- wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
- rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
- } else {
- wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
- wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
- }
- dev->rx_addr += rx_bytes;
- } else {
- if (irq)
- wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
- // allow another RX thread to start
- YELLOW_LED_ON(dev);
- clear_bit (rx_busy, &dev->flags);
- PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
- }
-
-#ifdef TAILRECURSIONWORKS
- // and we all bless optimised tail calls
- if (pio_instead)
- return rx_schedule (dev, 0);
- return;
-#else
- // grrrrrrr!
- irq = 0;
- }
- return;
-#endif
-}
-
-/********** handle RX bus master complete events **********/
-
-static void rx_bus_master_complete_handler (hrz_dev * dev) {
- if (test_bit (rx_busy, &dev->flags)) {
- rx_schedule (dev, 1);
- } else {
- PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
- // clear interrupt condition on adapter
- wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
- }
- return;
-}
-
-/********** (queue to) become the next TX thread **********/
-
-static int tx_hold (hrz_dev * dev) {
- PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
- wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
- PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
- if (signal_pending (current))
- return -1;
- PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
- return 0;
-}
-
-/********** allow another TX thread to start **********/
-
-static inline void tx_release (hrz_dev * dev) {
- clear_bit (tx_busy, &dev->flags);
- PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
- wake_up_interruptible (&dev->tx_queue);
-}
-
-/********** schedule TX transfers **********/
-
-static void tx_schedule (hrz_dev * const dev, int irq) {
- unsigned int tx_bytes;
-
- int append_desc = 0;
-
- int pio_instead = 0;
-#ifndef TAILRECURSIONWORKS
- pio_instead = 1;
- while (pio_instead) {
-#endif
- // bytes in current region waiting for TX transfer
- tx_bytes = dev->tx_bytes;
-
-#if 0
- spin_count = 0;
- while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
- PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
- if (++spin_count > 10) {
- PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
- wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
- tx_release (dev);
- hrz_kfree_skb (dev->tx_skb);
- return;
- }
- }
-#endif
-
- if (tx_bytes) {
- // start next transfer within same region
- if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
- PRINTD (DBG_TX|DBG_BUS, "(pio)");
- pio_instead = 1;
- }
- if (tx_bytes <= MAX_TRANSFER_COUNT) {
- PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
- if (!dev->tx_iovec) {
- // end of last region
- append_desc = 1;
- }
- dev->tx_bytes = 0;
- } else {
- PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
- dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
- tx_bytes = MAX_TRANSFER_COUNT;
- }
- } else {
- // tx_bytes == 0 -- we're between regions
- // regions remaining to transfer
- unsigned int tx_regions = dev->tx_regions;
-
- if (tx_regions) {
- // start a new region
- dev->tx_addr = dev->tx_iovec->iov_base;
- tx_bytes = dev->tx_iovec->iov_len;
- ++dev->tx_iovec;
- dev->tx_regions = tx_regions - 1;
-
- if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
- PRINTD (DBG_TX|DBG_BUS, "(pio)");
- pio_instead = 1;
- }
- if (tx_bytes <= MAX_TRANSFER_COUNT) {
- PRINTD (DBG_TX|DBG_BUS, "(full region)");
- dev->tx_bytes = 0;
- } else {
- PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
- dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
- tx_bytes = MAX_TRANSFER_COUNT;
- }
- } else {
- // tx_regions == 0
- // that's all folks - end of frame
- struct sk_buff * skb = dev->tx_skb;
- dev->tx_iovec = NULL;
-
- // VC layer stats
- atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
-
- // free the skb
- hrz_kfree_skb (skb);
- }
- }
-
- // note: writing TX_COUNT clears any interrupt condition
- if (tx_bytes) {
- if (pio_instead) {
- if (irq)
- wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
- wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
- if (append_desc)
- wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
- } else {
- wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
- if (append_desc)
- wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
- wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
- append_desc
- ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
- : tx_bytes);
- }
- dev->tx_addr += tx_bytes;
- } else {
- if (irq)
- wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
- YELLOW_LED_ON(dev);
- tx_release (dev);
- }
-
-#ifdef TAILRECURSIONWORKS
- // and we all bless optimised tail calls
- if (pio_instead)
- return tx_schedule (dev, 0);
- return;
-#else
- // grrrrrrr!
- irq = 0;
- }
- return;
-#endif
-}
-
-/********** handle TX bus master complete events **********/
-
-static void tx_bus_master_complete_handler (hrz_dev * dev) {
- if (test_bit (tx_busy, &dev->flags)) {
- tx_schedule (dev, 1);
- } else {
- PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
- // clear interrupt condition on adapter
- wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
- }
- return;
-}
-
-/********** move RX Q pointer to next item in circular buffer **********/
-
-// called only from IRQ sub-handler
-static u32 rx_queue_entry_next (hrz_dev * dev) {
- u32 rx_queue_entry;
- spin_lock (&dev->mem_lock);
- rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
- if (dev->rx_q_entry == dev->rx_q_wrap)
- dev->rx_q_entry = dev->rx_q_reset;
- else
- dev->rx_q_entry++;
- wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
- spin_unlock (&dev->mem_lock);
- return rx_queue_entry;
-}
-
-/********** handle RX data received by device **********/
-
-// called from IRQ handler
-static void rx_data_av_handler (hrz_dev * dev) {
- u32 rx_queue_entry;
- u32 rx_queue_entry_flags;
- u16 rx_len;
- u16 rx_channel;
-
- PRINTD (DBG_FLOW, "hrz_data_av_handler");
-
- // try to grab rx lock (not possible during RX bus mastering)
- if (test_and_set_bit (rx_busy, &dev->flags)) {
- PRINTD (DBG_RX, "locked out of rx lock");
- return;
- }
- PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
- // lock is cleared if we fail now, o/w after bus master completion
-
- YELLOW_LED_OFF(dev);
-
- rx_queue_entry = rx_queue_entry_next (dev);
-
- rx_len = rx_q_entry_to_length (rx_queue_entry);
- rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
-
- WAIT_FLUSH_RX_COMPLETE (dev);
-
- SELECT_RX_CHANNEL (dev, rx_channel);
-
- PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
- rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
-
- if (!rx_len) {
- // (at least) bus-mastering breaks if we try to handle a
- // zero-length frame, besides AAL5 does not support them
- PRINTK (KERN_ERR, "zero-length frame!");
- rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
- }
-
- if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
- PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
- }
- if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
- struct atm_vcc * atm_vcc;
-
- PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
-
- atm_vcc = dev->rxer[rx_channel];
- // if no vcc is assigned to this channel, we should drop the frame
- // (is this what SIMONS etc. was trying to achieve?)
-
- if (atm_vcc) {
-
- if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
-
- if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
-
- struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
- if (skb) {
- // remember this so we can push it later
- dev->rx_skb = skb;
- // remember this so we can flush it later
- dev->rx_channel = rx_channel;
-
- // prepare socket buffer
- skb_put (skb, rx_len);
- ATM_SKB(skb)->vcc = atm_vcc;
-
- // simple transfer
- // dev->rx_regions = 0;
- // dev->rx_iovec = 0;
- dev->rx_bytes = rx_len;
- dev->rx_addr = skb->data;
- PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
- skb->data, rx_len);
-
- // do the business
- rx_schedule (dev, 0);
- return;
-
- } else {
- PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
- }
-
- } else {
- PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
- // do we count this?
- }
-
- } else {
- PRINTK (KERN_WARNING, "dropped over-size frame");
- // do we count this?
- }
-
- } else {
- PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
- // do we count this?
- }
-
- } else {
- // Wait update complete ? SPONG
- }
-
- // RX was aborted
- YELLOW_LED_ON(dev);
-
- FLUSH_RX_CHANNEL (dev,rx_channel);
- clear_bit (rx_busy, &dev->flags);
-
- return;
-}
-
-/********** interrupt handler **********/
-
-static irqreturn_t interrupt_handler(int irq, void *dev_id)
-{
- hrz_dev *dev = dev_id;
- u32 int_source;
- unsigned int irq_ok;
-
- PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
-
- // definitely for us
- irq_ok = 0;
- while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
- & INTERESTING_INTERRUPTS)) {
- // In the interests of fairness, the handlers below are
- // called in sequence and without immediate return to the head of
- // the while loop. This is only of issue for slow hosts (or when
- // debugging messages are on). Really slow hosts may find a fast
- // sender keeps them permanently in the IRQ handler. :(
-
- // (only an issue for slow hosts) RX completion goes before
- // rx_data_av as the former implies rx_busy and so the latter
- // would just abort. If it reschedules another transfer
- // (continuing the same frame) then it will not clear rx_busy.
-
- // (only an issue for slow hosts) TX completion goes before RX
- // data available as it is a much shorter routine - there is the
- // chance that any further transfers it schedules will be complete
- // by the time of the return to the head of the while loop
-
- if (int_source & RX_BUS_MASTER_COMPLETE) {
- ++irq_ok;
- PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
- rx_bus_master_complete_handler (dev);
- }
- if (int_source & TX_BUS_MASTER_COMPLETE) {
- ++irq_ok;
- PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
- tx_bus_master_complete_handler (dev);
- }
- if (int_source & RX_DATA_AV) {
- ++irq_ok;
- PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
- rx_data_av_handler (dev);
- }
- }
- if (irq_ok) {
- PRINTD (DBG_IRQ, "work done: %u", irq_ok);
- } else {
- PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
- }
-
- PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
- if (irq_ok)
- return IRQ_HANDLED;
- return IRQ_NONE;
-}
-
-/********** housekeeping **********/
-
-static void do_housekeeping (struct timer_list *t) {
- // just stats at the moment
- hrz_dev * dev = from_timer(dev, t, housekeeping);
-
- // collect device-specific (not driver/atm-linux) stats here
- dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
- dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
- dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
- dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
-
- mod_timer (&dev->housekeeping, jiffies + HZ/10);
-
- return;
-}
-
-/********** find an idle channel for TX and set it up **********/
-
-// called with tx_busy set
-static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
- unsigned short idle_channels;
- short tx_channel = -1;
- unsigned int spin_count;
- PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
-
- // better would be to fail immediately, the caller can then decide whether
- // to wait or drop (depending on whether this is UBR etc.)
- spin_count = 0;
- while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
- PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
- // delay a bit here
- if (++spin_count > 100) {
- PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
- return -EBUSY;
- }
- }
-
- // got an idle channel
- {
- // tx_idle ensures we look for idle channels in RR order
- int chan = dev->tx_idle;
-
- int keep_going = 1;
- while (keep_going) {
- if (idle_channels & (1<<chan)) {
- tx_channel = chan;
- keep_going = 0;
- }
- ++chan;
- if (chan == TX_CHANS)
- chan = 0;
- }
-
- dev->tx_idle = chan;
- }
-
- // set up the channel we found
- {
- // Initialise the cell header in the transmit channel descriptor
- // a.k.a. prepare the channel and remember that we have done so.
-
- tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
- u32 rd_ptr;
- u32 wr_ptr;
- u16 channel = vcc->channel;
-
- unsigned long flags;
- spin_lock_irqsave (&dev->mem_lock, flags);
-
- // Update the transmit channel record.
- dev->tx_channel_record[tx_channel] = channel;
-
- // xBR channel
- update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
- vcc->tx_xbr_bits);
-
- // Update the PCR counter preload value etc.
- update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
- vcc->tx_pcr_bits);
-
-#if 0
- if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
- // SCR timer
- update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
- vcc->tx_scr_bits);
-
- // Bucket size...
- update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
- vcc->tx_bucket_bits);
-
- // ... and fullness
- update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
- vcc->tx_bucket_bits);
- }
-#endif
-
- // Initialise the read and write buffer pointers
- rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
- wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
-
- // idle TX channels should have identical pointers
- if (rd_ptr != wr_ptr) {
- PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
- // spin_unlock... return -E...
- // I wonder if gcc would get rid of one of the pointer aliases
- }
- PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
- rd_ptr, wr_ptr);
-
- switch (vcc->aal) {
- case aal0:
- PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
- rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
- wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
- break;
- case aal34:
- PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
- rd_ptr |= CHANNEL_TYPE_AAL3_4;
- wr_ptr |= CHANNEL_TYPE_AAL3_4;
- break;
- case aal5:
- rd_ptr |= CHANNEL_TYPE_AAL5;
- wr_ptr |= CHANNEL_TYPE_AAL5;
- // Initialise the CRC
- wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
- break;
- }
-
- wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
- wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
-
- // Write the Cell Header
- // Payload Type, CLP and GFC would go here if non-zero
- wr_mem (dev, &tx_desc->cell_header, channel);
-
- spin_unlock_irqrestore (&dev->mem_lock, flags);
- }
-
- return tx_channel;
-}
-
-/********** send a frame **********/
-
-static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
- unsigned int spin_count;
- int free_buffers;
- hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
- hrz_vcc * vcc = HRZ_VCC(atm_vcc);
- u16 channel = vcc->channel;
-
- u32 buffers_required;
-
- /* signed for error return */
- short tx_channel;
-
- PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
- channel, skb->data, skb->len);
-
- dump_skb (">>>", channel, skb);
-
- if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
- PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
- hrz_kfree_skb (skb);
- return -EIO;
- }
-
- // don't understand this
- ATM_SKB(skb)->vcc = atm_vcc;
-
- if (skb->len > atm_vcc->qos.txtp.max_sdu) {
- PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
- hrz_kfree_skb (skb);
- return -EIO;
- }
-
- if (!channel) {
- PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
- hrz_kfree_skb (skb);
- return -EIO;
- }
-
-#if 0
- {
- // where would be a better place for this? housekeeping?
- u16 status;
- pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
- if (status & PCI_STATUS_REC_MASTER_ABORT) {
- PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
- status &= ~PCI_STATUS_REC_MASTER_ABORT;
- pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
- if (test_bit (tx_busy, &dev->flags)) {
- hrz_kfree_skb (dev->tx_skb);
- tx_release (dev);
- }
- }
- }
-#endif
-
-#ifdef DEBUG_HORIZON
- /* wey-hey! */
- if (channel == 1023) {
- unsigned int i;
- unsigned short d = 0;
- char * s = skb->data;
- if (*s++ == 'D') {
- for (i = 0; i < 4; ++i)
- d = (d << 4) | hex_to_bin(*s++);
- PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
- }
- }
-#endif
-
- // wait until TX is free and grab lock
- if (tx_hold (dev)) {
- hrz_kfree_skb (skb);
- return -ERESTARTSYS;
- }
-
- // Wait for enough space to be available in transmit buffer memory.
-
- // should be number of cells needed + 2 (according to hardware docs)
- // = ((framelen+8)+47) / 48 + 2
- // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
- buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
-
- // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
- spin_count = 0;
- while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
- PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
- free_buffers, buffers_required);
- // what is the appropriate delay? implement a timeout? (depending on line speed?)
- // mdelay (1);
- // what happens if we kill (current_pid, SIGKILL) ?
- schedule();
- if (++spin_count > 1000) {
- PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
- free_buffers, buffers_required);
- tx_release (dev);
- hrz_kfree_skb (skb);
- return -ERESTARTSYS;
- }
- }
-
- // Select a channel to transmit the frame on.
- if (channel == dev->last_vc) {
- PRINTD (DBG_TX, "last vc hack: hit");
- tx_channel = dev->tx_last;
- } else {
- PRINTD (DBG_TX, "last vc hack: miss");
- // Are we currently transmitting this VC on one of the channels?
- for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
- if (dev->tx_channel_record[tx_channel] == channel) {
- PRINTD (DBG_TX, "vc already on channel: hit");
- break;
- }
- if (tx_channel == TX_CHANS) {
- PRINTD (DBG_TX, "vc already on channel: miss");
- // Find and set up an idle channel.
- tx_channel = setup_idle_tx_channel (dev, vcc);
- if (tx_channel < 0) {
- PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
- tx_release (dev);
- return tx_channel;
- }
- }
-
- PRINTD (DBG_TX, "got channel");
- SELECT_TX_CHANNEL(dev, tx_channel);
-
- dev->last_vc = channel;
- dev->tx_last = tx_channel;
- }
-
- PRINTD (DBG_TX, "using channel %u", tx_channel);
-
- YELLOW_LED_OFF(dev);
-
- // TX start transfer
-
- {
- unsigned int tx_len = skb->len;
- unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
- // remember this so we can free it later
- dev->tx_skb = skb;
-
- if (tx_iovcnt) {
- // scatter gather transfer
- dev->tx_regions = tx_iovcnt;
- dev->tx_iovec = NULL; /* @@@ needs rewritten */
- dev->tx_bytes = 0;
- PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
- skb->data, tx_len);
- tx_release (dev);
- hrz_kfree_skb (skb);
- return -EIO;
- } else {
- // simple transfer
- dev->tx_regions = 0;
- dev->tx_iovec = NULL;
- dev->tx_bytes = tx_len;
- dev->tx_addr = skb->data;
- PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
- skb->data, tx_len);
- }
-
- // and do the business
- tx_schedule (dev, 0);
-
- }
-
- return 0;
-}
-
-/********** reset a card **********/
-
-static void hrz_reset (const hrz_dev * dev) {
- u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
-
- // why not set RESET_HORIZON to one and wait for the card to
- // reassert that bit as zero? Like so:
- control_0_reg = control_0_reg & RESET_HORIZON;
- wr_regl (dev, CONTROL_0_REG, control_0_reg);
- while (control_0_reg & RESET_HORIZON)
- control_0_reg = rd_regl (dev, CONTROL_0_REG);
-
- // old reset code retained:
- wr_regl (dev, CONTROL_0_REG, control_0_reg |
- RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
- // just guessing here
- udelay (1000);
-
- wr_regl (dev, CONTROL_0_REG, control_0_reg);
-}
-
-/********** read the burnt in address **********/
-
-static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
-{
- wr_regl (dev, CONTROL_0_REG, ctrl);
- udelay (5);
-}
-
-static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
-{
- // DI must be valid around rising SK edge
- WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
- WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
-}
-
-static u16 read_bia(const hrz_dev *dev, u16 addr)
-{
- u32 ctrl = rd_regl (dev, CONTROL_0_REG);
-
- const unsigned int addr_bits = 6;
- const unsigned int data_bits = 16;
-
- unsigned int i;
-
- u16 res;
-
- ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
- WRITE_IT_WAIT(dev, ctrl);
-
- // wake Serial EEPROM and send 110 (READ) command
- ctrl |= (SEEPROM_CS | SEEPROM_DI);
- CLOCK_IT(dev, ctrl);
-
- ctrl |= SEEPROM_DI;
- CLOCK_IT(dev, ctrl);
-
- ctrl &= ~SEEPROM_DI;
- CLOCK_IT(dev, ctrl);
-
- for (i=0; i<addr_bits; i++) {
- if (addr & (1 << (addr_bits-1)))
- ctrl |= SEEPROM_DI;
- else
- ctrl &= ~SEEPROM_DI;
-
- CLOCK_IT(dev, ctrl);
-
- addr = addr << 1;
- }
-
- // we could check that we have DO = 0 here
- ctrl &= ~SEEPROM_DI;
-
- res = 0;
- for (i=0;i<data_bits;i++) {
- res = res >> 1;
-
- CLOCK_IT(dev, ctrl);
-
- if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
- res |= (1 << (data_bits-1));
- }
-
- ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
- WRITE_IT_WAIT(dev, ctrl);
-
- return res;
-}
-
-/********** initialise a card **********/
-
-static int hrz_init(hrz_dev *dev)
-{
- int onefivefive;
-
- u16 chan;
-
- int buff_count;
-
- HDW * mem;
-
- cell_buf * tx_desc;
- cell_buf * rx_desc;
-
- u32 ctrl;
-
- ctrl = rd_regl (dev, CONTROL_0_REG);
- PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
- onefivefive = ctrl & ATM_LAYER_STATUS;
-
- if (onefivefive)
- printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
- else
- printk (DEV_LABEL ": Horizon (at 25 MBps)");
-
- printk (":");
- // Reset the card to get everything in a known state
-
- printk (" reset");
- hrz_reset (dev);
-
- // Clear all the buffer memory
-
- printk (" clearing memory");
-
- for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
- wr_mem (dev, mem, 0);
-
- printk (" tx channels");
-
- // All transmit eight channels are set up as AAL5 ABR channels with
- // a 16us cell spacing. Why?
-
- // Channel 0 gets the free buffer at 100h, channel 1 gets the free
- // buffer at 110h etc.
-
- for (chan = 0; chan < TX_CHANS; ++chan) {
- tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
- cell_buf * buf = &memmap->inittxbufs[chan];
-
- // initialise the read and write buffer pointers
- wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
- wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
-
- // set the status of the initial buffers to empty
- wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
- }
-
- // Use space bufn3 at the moment for tx buffers
-
- printk (" tx buffers");
-
- tx_desc = memmap->bufn3;
-
- wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
-
- for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
- wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
- tx_desc++;
- }
-
- wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
-
- // Initialise the transmit free buffer count
- wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
-
- printk (" rx channels");
-
- // Initialise all of the receive channels to be AAL5 disabled with
- // an interrupt threshold of 0
-
- for (chan = 0; chan < RX_CHANS; ++chan) {
- rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
-
- wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
- }
-
- printk (" rx buffers");
-
- // Use space bufn4 at the moment for rx buffers
-
- rx_desc = memmap->bufn4;
-
- wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
-
- for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
- wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
-
- rx_desc++;
- }
-
- wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
-
- // Initialise the receive free buffer count
- wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
-
- // Initialize Horizons registers
-
- // TX config
- wr_regw (dev, TX_CONFIG_OFF,
- ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
-
- // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
- wr_regw (dev, RX_CONFIG_OFF,
- DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
-
- // RX line config
- wr_regw (dev, RX_LINE_CONFIG_OFF,
- LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
-
- // Set the max AAL5 cell count to be just enough to contain the
- // largest AAL5 frame that the user wants to receive
- wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
- DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
-
- // Enable receive
- wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
-
- printk (" control");
-
- // Drive the OE of the LEDs then turn the green LED on
- ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
- wr_regl (dev, CONTROL_0_REG, ctrl);
-
- // Test for a 155-capable card
-
- if (onefivefive) {
- // Select 155 mode... make this a choice (or: how do we detect
- // external line speed and switch?)
- ctrl |= ATM_LAYER_SELECT;
- wr_regl (dev, CONTROL_0_REG, ctrl);
-
- // test SUNI-lite vs SAMBA
-
- // Register 0x00 in the SUNI will have some of bits 3-7 set, and
- // they will always be zero for the SAMBA. Ha! Bloody hardware
- // engineers. It'll never work.
-
- if (rd_framer (dev, 0) & 0x00f0) {
- // SUNI
- printk (" SUNI");
-
- // Reset, just in case
- wr_framer (dev, 0x00, 0x0080);
- wr_framer (dev, 0x00, 0x0000);
-
- // Configure transmit FIFO
- wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
-
- // Set line timed mode
- wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
- } else {
- // SAMBA
- printk (" SAMBA");
-
- // Reset, just in case
- wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
- wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
-
- // Turn off diagnostic loopback and enable line-timed mode
- wr_framer (dev, 0, 0x0002);
-
- // Turn on transmit outputs
- wr_framer (dev, 2, 0x0B80);
- }
- } else {
- // Select 25 mode
- ctrl &= ~ATM_LAYER_SELECT;
-
- // Madge B154 setup
- // none required?
- }
-
- printk (" LEDs");
-
- GREEN_LED_ON(dev);
- YELLOW_LED_ON(dev);
-
- printk (" ESI=");
-
- {
- u16 b = 0;
- int i;
- u8 * esi = dev->atm_dev->esi;
-
- // in the card I have, EEPROM
- // addresses 0, 1, 2 contain 0
- // addresess 5, 6 etc. contain ffff
- // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
- // the read_bia routine gets the BIA in Ethernet bit order
-
- for (i=0; i < ESI_LEN; ++i) {
- if (i % 2 == 0)
- b = read_bia (dev, i/2 + 2);
- else
- b = b >> 8;
- esi[i] = b & 0xFF;
- printk ("%02x", esi[i]);
- }
- }
-
- // Enable RX_Q and ?X_COMPLETE interrupts only
- wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
- printk (" IRQ on");
-
- printk (".\n");
-
- return onefivefive;
-}
-
-/********** check max_sdu **********/
-
-static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
- PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
-
- switch (aal) {
- case aal0:
- if (!(tp->max_sdu)) {
- PRINTD (DBG_QOS, "defaulting max_sdu");
- tp->max_sdu = ATM_AAL0_SDU;
- } else if (tp->max_sdu != ATM_AAL0_SDU) {
- PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
- return -EINVAL;
- }
- break;
- case aal34:
- if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
- PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
- tp->max_sdu = ATM_MAX_AAL34_PDU;
- }
- break;
- case aal5:
- if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
- PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
- tp->max_sdu = max_frame_size;
- }
- break;
- }
- return 0;
-}
-
-/********** check pcr **********/
-
-// something like this should be part of ATM Linux
-static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
- // we are assuming non-UBR, and non-special values of pcr
- if (tp->min_pcr == ATM_MAX_PCR)
- PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
- else if (tp->min_pcr < 0)
- PRINTD (DBG_QOS, "luser gave negative min_pcr");
- else if (tp->min_pcr && tp->min_pcr > pcr)
- PRINTD (DBG_QOS, "pcr less than min_pcr");
- else
- // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
- // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
- // [this would get rid of next two conditionals]
- if ((0) && tp->max_pcr == ATM_MAX_PCR)
- PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
- else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
- PRINTD (DBG_QOS, "luser gave negative max_pcr");
- else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
- PRINTD (DBG_QOS, "pcr greater than max_pcr");
- else {
- // each limit unspecified or not violated
- PRINTD (DBG_QOS, "xBR(pcr) OK");
- return 0;
- }
- PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
- pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
- return -EINVAL;
-}
-
-/********** open VC **********/
-
-static int hrz_open (struct atm_vcc *atm_vcc)
-{
- int error;
- u16 channel;
-
- struct atm_qos * qos;
- struct atm_trafprm * txtp;
- struct atm_trafprm * rxtp;
-
- hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
- hrz_vcc vcc;
- hrz_vcc * vccp; // allocated late
- short vpi = atm_vcc->vpi;
- int vci = atm_vcc->vci;
- PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
-
-#ifdef ATM_VPI_UNSPEC
- // UNSPEC is deprecated, remove this code eventually
- if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
- PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
- return -EINVAL;
- }
-#endif
-
- error = vpivci_to_channel (&channel, vpi, vci);
- if (error) {
- PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
- return error;
- }
-
- vcc.channel = channel;
- // max speed for the moment
- vcc.tx_rate = 0x0;
-
- qos = &atm_vcc->qos;
-
- // check AAL and remember it
- switch (qos->aal) {
- case ATM_AAL0:
- // we would if it were 48 bytes and not 52!
- PRINTD (DBG_QOS|DBG_VCC, "AAL0");
- vcc.aal = aal0;
- break;
- case ATM_AAL34:
- // we would if I knew how do the SAR!
- PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
- vcc.aal = aal34;
- break;
- case ATM_AAL5:
- PRINTD (DBG_QOS|DBG_VCC, "AAL5");
- vcc.aal = aal5;
- break;
- default:
- PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
- return -EINVAL;
- }
-
- // TX traffic parameters
-
- // there are two, interrelated problems here: 1. the reservation of
- // PCR is not a binary choice, we are given bounds and/or a
- // desirable value; 2. the device is only capable of certain values,
- // most of which are not integers. It is almost certainly acceptable
- // to be off by a maximum of 1 to 10 cps.
-
- // Pragmatic choice: always store an integral PCR as that which has
- // been allocated, even if we allocate a little (or a lot) less,
- // after rounding. The actual allocation depends on what we can
- // manage with our rate selection algorithm. The rate selection
- // algorithm is given an integral PCR and a tolerance and told
- // whether it should round the value up or down if the tolerance is
- // exceeded; it returns: a) the actual rate selected (rounded up to
- // the nearest integer), b) a bit pattern to feed to the timer
- // register, and c) a failure value if no applicable rate exists.
-
- // Part of the job is done by atm_pcr_goal which gives us a PCR
- // specification which says: EITHER grab the maximum available PCR
- // (and perhaps a lower bound which we must not pass), OR grab this
- // amount, rounding down if you have to (and perhaps a lower bound
- // which we must not pass) OR grab this amount, rounding up if you
- // have to (and perhaps an upper bound which we must not pass). If any
- // bounds ARE passed we fail. Note that rounding is only rounding to
- // match device limitations, we do not round down to satisfy
- // bandwidth availability even if this would not violate any given
- // lower bound.
-
- // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
- // (say) so this is not even a binary fixpoint cell rate (but this
- // device can do it). To avoid this sort of hassle we use a
- // tolerance parameter (currently fixed at 10 cps).
-
- PRINTD (DBG_QOS, "TX:");
-
- txtp = &qos->txtp;
-
- // set up defaults for no traffic
- vcc.tx_rate = 0;
- // who knows what would actually happen if you try and send on this?
- vcc.tx_xbr_bits = IDLE_RATE_TYPE;
- vcc.tx_pcr_bits = CLOCK_DISABLE;
-#if 0
- vcc.tx_scr_bits = CLOCK_DISABLE;
- vcc.tx_bucket_bits = 0;
-#endif
-
- if (txtp->traffic_class != ATM_NONE) {
- error = check_max_sdu (vcc.aal, txtp, max_tx_size);
- if (error) {
- PRINTD (DBG_QOS, "TX max_sdu check failed");
- return error;
- }
-
- switch (txtp->traffic_class) {
- case ATM_UBR: {
- // we take "the PCR" as a rate-cap
- // not reserved
- vcc.tx_rate = 0;
- make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
- vcc.tx_xbr_bits = ABR_RATE_TYPE;
- break;
- }
-#if 0
- case ATM_ABR: {
- // reserve min, allow up to max
- vcc.tx_rate = 0; // ?
- make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
- vcc.tx_xbr_bits = ABR_RATE_TYPE;
- break;
- }
-#endif
- case ATM_CBR: {
- int pcr = atm_pcr_goal (txtp);
- rounding r;
- if (!pcr) {
- // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
- // should really have: once someone gets unlimited bandwidth
- // that no more non-UBR channels can be opened until the
- // unlimited one closes?? For the moment, round_down means
- // greedy people actually get something and not nothing
- r = round_down;
- // slight race (no locking) here so we may get -EAGAIN
- // later; the greedy bastards would deserve it :)
- PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
- pcr = dev->tx_avail;
- } else if (pcr < 0) {
- r = round_down;
- pcr = -pcr;
- } else {
- r = round_up;
- }
- error = make_rate_with_tolerance (dev, pcr, r, 10,
- &vcc.tx_pcr_bits, &vcc.tx_rate);
- if (error) {
- PRINTD (DBG_QOS, "could not make rate from TX PCR");
- return error;
- }
- // not really clear what further checking is needed
- error = atm_pcr_check (txtp, vcc.tx_rate);
- if (error) {
- PRINTD (DBG_QOS, "TX PCR failed consistency check");
- return error;
- }
- vcc.tx_xbr_bits = CBR_RATE_TYPE;
- break;
- }
-#if 0
- case ATM_VBR: {
- int pcr = atm_pcr_goal (txtp);
- // int scr = atm_scr_goal (txtp);
- int scr = pcr/2; // just for fun
- unsigned int mbs = 60; // just for fun
- rounding pr;
- rounding sr;
- unsigned int bucket;
- if (!pcr) {
- pr = round_nearest;
- pcr = 1<<30;
- } else if (pcr < 0) {
- pr = round_down;
- pcr = -pcr;
- } else {
- pr = round_up;
- }
- error = make_rate_with_tolerance (dev, pcr, pr, 10,
- &vcc.tx_pcr_bits, 0);
- if (!scr) {
- // see comments for PCR with CBR above
- sr = round_down;
- // slight race (no locking) here so we may get -EAGAIN
- // later; the greedy bastards would deserve it :)
- PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
- scr = dev->tx_avail;
- } else if (scr < 0) {
- sr = round_down;
- scr = -scr;
- } else {
- sr = round_up;
- }
- error = make_rate_with_tolerance (dev, scr, sr, 10,
- &vcc.tx_scr_bits, &vcc.tx_rate);
- if (error) {
- PRINTD (DBG_QOS, "could not make rate from TX SCR");
- return error;
- }
- // not really clear what further checking is needed
- // error = atm_scr_check (txtp, vcc.tx_rate);
- if (error) {
- PRINTD (DBG_QOS, "TX SCR failed consistency check");
- return error;
- }
- // bucket calculations (from a piece of paper...) cell bucket
- // capacity must be largest integer smaller than m(p-s)/p + 1
- // where m = max burst size, p = pcr, s = scr
- bucket = mbs*(pcr-scr)/pcr;
- if (bucket*pcr != mbs*(pcr-scr))
- bucket += 1;
- if (bucket > BUCKET_MAX_SIZE) {
- PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
- bucket, BUCKET_MAX_SIZE);
- bucket = BUCKET_MAX_SIZE;
- }
- vcc.tx_xbr_bits = VBR_RATE_TYPE;
- vcc.tx_bucket_bits = bucket;
- break;
- }
-#endif
- default: {
- PRINTD (DBG_QOS, "unsupported TX traffic class");
- return -EINVAL;
- }
- }
- }
-
- // RX traffic parameters
-
- PRINTD (DBG_QOS, "RX:");
-
- rxtp = &qos->rxtp;
-
- // set up defaults for no traffic
- vcc.rx_rate = 0;
-
- if (rxtp->traffic_class != ATM_NONE) {
- error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
- if (error) {
- PRINTD (DBG_QOS, "RX max_sdu check failed");
- return error;
- }
- switch (rxtp->traffic_class) {
- case ATM_UBR: {
- // not reserved
- break;
- }
-#if 0
- case ATM_ABR: {
- // reserve min
- vcc.rx_rate = 0; // ?
- break;
- }
-#endif
- case ATM_CBR: {
- int pcr = atm_pcr_goal (rxtp);
- if (!pcr) {
- // slight race (no locking) here so we may get -EAGAIN
- // later; the greedy bastards would deserve it :)
- PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
- pcr = dev->rx_avail;
- } else if (pcr < 0) {
- pcr = -pcr;
- }
- vcc.rx_rate = pcr;
- // not really clear what further checking is needed
- error = atm_pcr_check (rxtp, vcc.rx_rate);
- if (error) {
- PRINTD (DBG_QOS, "RX PCR failed consistency check");
- return error;
- }
- break;
- }
-#if 0
- case ATM_VBR: {
- // int scr = atm_scr_goal (rxtp);
- int scr = 1<<16; // just for fun
- if (!scr) {
- // slight race (no locking) here so we may get -EAGAIN
- // later; the greedy bastards would deserve it :)
- PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
- scr = dev->rx_avail;
- } else if (scr < 0) {
- scr = -scr;
- }
- vcc.rx_rate = scr;
- // not really clear what further checking is needed
- // error = atm_scr_check (rxtp, vcc.rx_rate);
- if (error) {
- PRINTD (DBG_QOS, "RX SCR failed consistency check");
- return error;
- }
- break;
- }
-#endif
- default: {
- PRINTD (DBG_QOS, "unsupported RX traffic class");
- return -EINVAL;
- }
- }
- }
-
-
- // late abort useful for diagnostics
- if (vcc.aal != aal5) {
- PRINTD (DBG_QOS, "AAL not supported");
- return -EINVAL;
- }
-
- // get space for our vcc stuff and copy parameters into it
- vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
- if (!vccp) {
- PRINTK (KERN_ERR, "out of memory!");
- return -ENOMEM;
- }
- *vccp = vcc;
-
- // clear error and grab cell rate resource lock
- error = 0;
- spin_lock (&dev->rate_lock);
-
- if (vcc.tx_rate > dev->tx_avail) {
- PRINTD (DBG_QOS, "not enough TX PCR left");
- error = -EAGAIN;
- }
-
- if (vcc.rx_rate > dev->rx_avail) {
- PRINTD (DBG_QOS, "not enough RX PCR left");
- error = -EAGAIN;
- }
-
- if (!error) {
- // really consume cell rates
- dev->tx_avail -= vcc.tx_rate;
- dev->rx_avail -= vcc.rx_rate;
- PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
- vcc.tx_rate, vcc.rx_rate);
- }
-
- // release lock and exit on error
- spin_unlock (&dev->rate_lock);
- if (error) {
- PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
- kfree (vccp);
- return error;
- }
-
- // this is "immediately before allocating the connection identifier
- // in hardware" - so long as the next call does not fail :)
- set_bit(ATM_VF_ADDR,&atm_vcc->flags);
-
- // any errors here are very serious and should never occur
-
- if (rxtp->traffic_class != ATM_NONE) {
- if (dev->rxer[channel]) {
- PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
- error = -EBUSY;
- }
- if (!error)
- error = hrz_open_rx (dev, channel);
- if (error) {
- kfree (vccp);
- return error;
- }
- // this link allows RX frames through
- dev->rxer[channel] = atm_vcc;
- }
-
- // success, set elements of atm_vcc
- atm_vcc->dev_data = (void *) vccp;
-
- // indicate readiness
- set_bit(ATM_VF_READY,&atm_vcc->flags);
-
- return 0;
-}
-
-/********** close VC **********/
-
-static void hrz_close (struct atm_vcc * atm_vcc) {
- hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
- hrz_vcc * vcc = HRZ_VCC(atm_vcc);
- u16 channel = vcc->channel;
- PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
-
- // indicate unreadiness
- clear_bit(ATM_VF_READY,&atm_vcc->flags);
-
- if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
- unsigned int i;
-
- // let any TX on this channel that has started complete
- // no restart, just keep trying
- while (tx_hold (dev))
- ;
- // remove record of any tx_channel having been setup for this channel
- for (i = 0; i < TX_CHANS; ++i)
- if (dev->tx_channel_record[i] == channel) {
- dev->tx_channel_record[i] = -1;
- break;
- }
- if (dev->last_vc == channel)
- dev->tx_last = -1;
- tx_release (dev);
- }
-
- if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
- // disable RXing - it tries quite hard
- hrz_close_rx (dev, channel);
- // forget the vcc - no more skbs will be pushed
- if (atm_vcc != dev->rxer[channel])
- PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
- "arghhh! we're going to die!",
- atm_vcc, dev->rxer[channel]);
- dev->rxer[channel] = NULL;
- }
-
- // atomically release our rate reservation
- spin_lock (&dev->rate_lock);
- PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
- vcc->tx_rate, vcc->rx_rate);
- dev->tx_avail += vcc->tx_rate;
- dev->rx_avail += vcc->rx_rate;
- spin_unlock (&dev->rate_lock);
-
- // free our structure
- kfree (vcc);
- // say the VPI/VCI is free again
- clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
-}
-
-#if 0
-static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
- hrz_dev * dev = HRZ_DEV(atm_dev);
- PRINTD (DBG_FLOW, "hrz_ioctl");
- return -1;
-}
-
-unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
- hrz_dev * dev = HRZ_DEV(atm_dev);
- PRINTD (DBG_FLOW, "hrz_phy_get");
- return 0;
-}
-
-static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
- unsigned long addr) {
- hrz_dev * dev = HRZ_DEV(atm_dev);
- PRINTD (DBG_FLOW, "hrz_phy_put");
-}
-
-static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
- hrz_dev * dev = HRZ_DEV(vcc->dev);
- PRINTD (DBG_FLOW, "hrz_change_qos");
- return -1;
-}
-#endif
-
-/********** proc file contents **********/
-
-static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
- hrz_dev * dev = HRZ_DEV(atm_dev);
- int left = *pos;
- PRINTD (DBG_FLOW, "hrz_proc_read");
-
- /* more diagnostics here? */
-
-#if 0
- if (!left--) {
- unsigned int count = sprintf (page, "vbr buckets:");
- unsigned int i;
- for (i = 0; i < TX_CHANS; ++i)
- count += sprintf (page, " %u/%u",
- query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
- query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
- count += sprintf (page+count, ".\n");
- return count;
- }
-#endif
-
- if (!left--)
- return sprintf (page,
- "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
- dev->tx_cell_count, dev->rx_cell_count,
- dev->hec_error_count, dev->unassigned_cell_count);
-
- if (!left--)
- return sprintf (page,
- "free cell buffers: TX %hu, RX %hu+%hu.\n",
- rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
- rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
- dev->noof_spare_buffers);
-
- if (!left--)
- return sprintf (page,
- "cps remaining: TX %u, RX %u\n",
- dev->tx_avail, dev->rx_avail);
-
- return 0;
-}
-
-static const struct atmdev_ops hrz_ops = {
- .open = hrz_open,
- .close = hrz_close,
- .send = hrz_send,
- .proc_read = hrz_proc_read,
- .owner = THIS_MODULE,
-};
-
-static int hrz_probe(struct pci_dev *pci_dev,
- const struct pci_device_id *pci_ent)
-{
- hrz_dev * dev;
- int err = 0;
-
- // adapter slot free, read resources from PCI configuration space
- u32 iobase = pci_resource_start (pci_dev, 0);
- u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
- unsigned int irq;
- unsigned char lat;
-
- PRINTD (DBG_FLOW, "hrz_probe");
-
- if (pci_enable_device(pci_dev))
- return -EINVAL;
-
- /* XXX DEV_LABEL is a guess */
- if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
- err = -EINVAL;
- goto out_disable;
- }
-
- dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
- if (!dev) {
- // perhaps we should be nice: deregister all adapters and abort?
- PRINTD(DBG_ERR, "out of memory");
- err = -ENOMEM;
- goto out_release;
- }
-
- pci_set_drvdata(pci_dev, dev);
-
- // grab IRQ and install handler - move this someplace more sensible
- irq = pci_dev->irq;
- if (request_irq(irq,
- interrupt_handler,
- IRQF_SHARED, /* irqflags guess */
- DEV_LABEL, /* name guess */
- dev)) {
- PRINTD(DBG_WARN, "request IRQ failed!");
- err = -EINVAL;
- goto out_free;
- }
-
- PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
- iobase, irq, membase);
-
- dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
- NULL);
- if (!(dev->atm_dev)) {
- PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
- err = -EINVAL;
- goto out_free_irq;
- }
-
- PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
- dev->atm_dev->number, dev, dev->atm_dev);
- dev->atm_dev->dev_data = (void *) dev;
- dev->pci_dev = pci_dev;
-
- // enable bus master accesses
- pci_set_master(pci_dev);
-
- // frobnicate latency (upwards, usually)
- pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
- if (pci_lat) {
- PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
- "changing", lat, pci_lat);
- pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
- } else if (lat < MIN_PCI_LATENCY) {
- PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
- "increasing", lat, MIN_PCI_LATENCY);
- pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
- }
-
- dev->iobase = iobase;
- dev->irq = irq;
- dev->membase = membase;
-
- dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
- dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
-
- // these next three are performance hacks
- dev->last_vc = -1;
- dev->tx_last = -1;
- dev->tx_idle = 0;
-
- dev->tx_regions = 0;
- dev->tx_bytes = 0;
- dev->tx_skb = NULL;
- dev->tx_iovec = NULL;
-
- dev->tx_cell_count = 0;
- dev->rx_cell_count = 0;
- dev->hec_error_count = 0;
- dev->unassigned_cell_count = 0;
-
- dev->noof_spare_buffers = 0;
-
- {
- unsigned int i;
- for (i = 0; i < TX_CHANS; ++i)
- dev->tx_channel_record[i] = -1;
- }
-
- dev->flags = 0;
-
- // Allocate cell rates and remember ASIC version
- // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
- // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
- // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
-
- if (hrz_init(dev)) {
- // to be really pedantic, this should be ATM_OC3c_PCR
- dev->tx_avail = ATM_OC3_PCR;
- dev->rx_avail = ATM_OC3_PCR;
- set_bit(ultra, &dev->flags); // NOT "|= ultra" !
- } else {
- dev->tx_avail = ((25600000/8)*26)/(27*53);
- dev->rx_avail = ((25600000/8)*26)/(27*53);
- PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
- }
-
- // rate changes spinlock
- spin_lock_init(&dev->rate_lock);
-
- // on-board memory access spinlock; we want atomic reads and
- // writes to adapter memory (handles IRQ and SMP)
- spin_lock_init(&dev->mem_lock);
-
- init_waitqueue_head(&dev->tx_queue);
-
- // vpi in 0..4, vci in 6..10
- dev->atm_dev->ci_range.vpi_bits = vpi_bits;
- dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
-
- timer_setup(&dev->housekeeping, do_housekeeping, 0);
- mod_timer(&dev->housekeeping, jiffies);
-
-out:
- return err;
-
-out_free_irq:
- free_irq(irq, dev);
-out_free:
- kfree(dev);
-out_release:
- release_region(iobase, HRZ_IO_EXTENT);
-out_disable:
- pci_disable_device(pci_dev);
- goto out;
-}
-
-static void hrz_remove_one(struct pci_dev *pci_dev)
-{
- hrz_dev *dev;
-
- dev = pci_get_drvdata(pci_dev);
-
- PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
- del_timer_sync(&dev->housekeeping);
- hrz_reset(dev);
- atm_dev_deregister(dev->atm_dev);
- free_irq(dev->irq, dev);
- release_region(dev->iobase, HRZ_IO_EXTENT);
- kfree(dev);
-
- pci_disable_device(pci_dev);
-}
-
-static void __init hrz_check_args (void) {
-#ifdef DEBUG_HORIZON
- PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
-#else
- if (debug)
- PRINTK (KERN_NOTICE, "no debug support in this image");
-#endif
-
- if (vpi_bits > HRZ_MAX_VPI)
- PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
- vpi_bits = HRZ_MAX_VPI);
-
- if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
- PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
- max_tx_size = TX_AAL5_LIMIT);
-
- if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
- PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
- max_rx_size = RX_AAL5_LIMIT);
-
- return;
-}
-
-MODULE_AUTHOR(maintainer_string);
-MODULE_DESCRIPTION(description_string);
-MODULE_LICENSE("GPL");
-module_param(debug, ushort, 0644);
-module_param(vpi_bits, ushort, 0);
-module_param(max_tx_size, int, 0);
-module_param(max_rx_size, int, 0);
-module_param(pci_lat, byte, 0);
-MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
-MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
-MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
-MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
-MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
-
-static const struct pci_device_id hrz_pci_tbl[] = {
- { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
- 0, 0, 0 },
- { 0, }
-};
-
-MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
-
-static struct pci_driver hrz_driver = {
- .name = "horizon",
- .probe = hrz_probe,
- .remove = hrz_remove_one,
- .id_table = hrz_pci_tbl,
-};
-
-/********** module entry **********/
-
-static int __init hrz_module_init (void) {
- BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
-
- show_version();
-
- // check arguments
- hrz_check_args();
-
- // get the juice
- return pci_register_driver(&hrz_driver);
-}
-
-/********** module exit **********/
-
-static void __exit hrz_module_exit (void) {
- PRINTD (DBG_FLOW, "cleanup_module");
-
- pci_unregister_driver(&hrz_driver);
-}
-
-module_init(hrz_module_init);
-module_exit(hrz_module_exit);