}
SkScalar SkPoint::Normalize(SkPoint* pt) {
+ float x = pt->fX;
+ float y = pt->fY;
float mag2;
- if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) {
- float mag = sk_float_sqrt(mag2);
- float scale = 1.0f / mag;
- pt->fX = pt->fX * scale;
- pt->fY = pt->fY * scale;
- return mag;
+ if (isLengthNearlyZero(x, y, &mag2)) {
+ return 0;
}
- return 0;
+
+ float mag, scale;
+ if (SkScalarIsFinite(mag2)) {
+ mag = sk_float_sqrt(mag2);
+ scale = 1 / mag;
+ } else {
+ // our mag2 step overflowed to infinity, so use doubles instead.
+ // much slower, but needed when x or y are very large, other wise we
+ // divide by inf. and return (0,0) vector.
+ double xx = x;
+ double yy = y;
+ double magmag = sqrt(xx * xx + yy * yy);
+ mag = (float)magmag;
+ // we perform the divide with the double magmag, to stay exactly the
+ // same as setLength. It would be faster to perform the divide with
+ // mag, but it is possible that mag has overflowed to inf. but still
+ // have a non-zero value for scale (thanks to denormalized numbers).
+ scale = (float)(1 / magmag);
+ }
+ pt->set(x * scale, y * scale);
+ return mag;
}
SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
- return sk_float_sqrt(getLengthSquared(dx, dy));
+ float mag2 = dx * dx + dy * dy;
+ if (SkScalarIsFinite(mag2)) {
+ return sk_float_sqrt(mag2);
+ } else {
+ double xx = dx;
+ double yy = dy;
+ return (float)sqrt(xx * xx + yy * yy);
+ }
}
+/*
+ * We have to worry about 2 tricky conditions:
+ * 1. underflow of mag2 (compared against nearlyzero^2)
+ * 2. overflow of mag2 (compared w/ isfinite)
+ *
+ * If we underflow, we return false. If we overflow, we compute again using
+ * doubles, which is much slower (3x in a desktop test) but will not overflow.
+ */
bool SkPoint::setLength(float x, float y, float length) {
float mag2;
- if (!isLengthNearlyZero(x, y, &mag2)) {
- float scale = length / sk_float_sqrt(mag2);
- fX = x * scale;
- fY = y * scale;
- return true;
+ if (isLengthNearlyZero(x, y, &mag2)) {
+ return false;
}
- return false;
+
+ float scale;
+ if (SkScalarIsFinite(mag2)) {
+ scale = length / sk_float_sqrt(mag2);
+ } else {
+ // our mag2 step overflowed to infinity, so use doubles instead.
+ // much slower, but needed when x or y are very large, other wise we
+ // divide by inf. and return (0,0) vector.
+ double xx = x;
+ double yy = y;
+ scale = (float)(length / sqrt(xx * xx + yy * yy));
+ }
+ fX = x * scale;
+ fY = y * scale;
+ return true;
}
#else
REPORTER_ASSERT(reporter, r.asScalars() == rPtr);
}
+// Tests SkPoint::Normalize() for this (x,y)
+static void test_Normalize(skiatest::Reporter* reporter,
+ SkScalar x, SkScalar y) {
+ SkPoint point;
+ point.set(x, y);
+ SkScalar oldLength = point.length();
+ SkScalar returned = SkPoint::Normalize(&point);
+ SkScalar newLength = point.length();
+ REPORTER_ASSERT(reporter, SkScalarNearlyEqual(returned, oldLength));
+ REPORTER_ASSERT(reporter, SkScalarNearlyEqual(newLength, SK_Scalar1));
+}
+
// Tests that SkPoint::length() and SkPoint::Length() both return
// approximately expectedLength for this (x,y).
static void test_length(skiatest::Reporter* reporter, SkScalar x, SkScalar y,
//See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=323
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(s1, s2));
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(s1, expectedLength));
+
+ test_Normalize(reporter, x, y);
}
-// Tests SkPoint::Normalize() for this (x,y)
-static void test_Normalize(skiatest::Reporter* reporter,
- SkScalar x, SkScalar y) {
- SkPoint point;
- point.set(x, y);
- SkScalar oldLength = point.length();
- SkScalar returned = SkPoint::Normalize(&point);
- SkScalar newLength = point.length();
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(returned, oldLength));
- REPORTER_ASSERT(reporter, SkScalarNearlyEqual(newLength, SK_Scalar1));
+// test that we handle very large values correctly. i.e. that we can
+// successfully normalize something whose mag overflows a float.
+static void test_overflow(skiatest::Reporter* reporter) {
+ SkPoint pt = { SkFloatToScalar(3.4e38f), SkFloatToScalar(3.4e38f) };
+
+ SkScalar length = pt.length();
+ REPORTER_ASSERT(reporter, !SkScalarIsFinite(length));
+
+ // this should succeed, even though we can't represent length
+ REPORTER_ASSERT(reporter, pt.setLength(SK_Scalar1));
+
+ // now that pt is normalized, we check its length
+ length = pt.length();
+ REPORTER_ASSERT(reporter, SkScalarNearlyEqual(length, SK_Scalar1));
+}
+
+// test that we handle very small values correctly. i.e. that we can
+// report failure if we try to normalize them.
+static void test_underflow(skiatest::Reporter* reporter) {
+ SkPoint pt = { SkFloatToScalar(1.0e-37f), SkFloatToScalar(1.0e-37f) };
+ SkPoint copy = pt;
+
+ REPORTER_ASSERT(reporter, 0 == SkPoint::Normalize(&pt));
+ REPORTER_ASSERT(reporter, pt == copy); // pt is unchanged
+
+ REPORTER_ASSERT(reporter, !pt.setLength(SK_Scalar1));
+ REPORTER_ASSERT(reporter, pt == copy); // pt is unchanged
}
static void PointTest(skiatest::Reporter* reporter) {
test_casts(reporter);
- test_length(reporter, SkIntToScalar(3), SkIntToScalar(4), SkIntToScalar(5));
- test_length(reporter, SkFloatToScalar(0.6f), SkFloatToScalar(0.8f),
- SK_Scalar1);
- test_Normalize(reporter, SkIntToScalar(3), SkIntToScalar(4));
- test_Normalize(reporter, SkFloatToScalar(0.6f), SkFloatToScalar(0.8f));
+ static const struct {
+ SkScalar fX;
+ SkScalar fY;
+ SkScalar fLength;
+ } gRec[] = {
+ { SkIntToScalar(3), SkIntToScalar(4), SkIntToScalar(5) },
+ { SkFloatToScalar(0.6f), SkFloatToScalar(0.8f), SK_Scalar1 },
+ };
+
+ for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
+ test_length(reporter, gRec[i].fX, gRec[i].fY, gRec[i].fLength);
+ }
+
+ test_underflow(reporter);
+ test_overflow(reporter);
}
#include "TestClassDef.h"