*/
TEST(nntrainer_ccapi, train_with_config_01_p) {
std::unique_ptr<ml::train::Model> model;
- ScopedIni s("test_train_01_p",
+ ScopedIni s("ccapi_test_train_01_p",
{model_base + "batch_size = 16", optimizer, learning_rate,
dataset + "-BufferSize", inputlayer, outputlayer});
*/
TEST(nntrainer_ccapi, train_with_config_02_n) {
std::unique_ptr<ml::train::Model> model;
- ScopedIni s("test_train_01_p",
+ ScopedIni s("ccapi_test_train_01_p",
{model_base + "batch_size = 16", dataset + "-BufferSize",
inputlayer, outputlayer});
TEST(nntrainer_ccapi, save_ini_p) {
std::unique_ptr<ml::train::Model> model;
model = ml::train::createModel(ml::train::ModelType::NEURAL_NET);
- ScopedIni s("simple_ini",
+ ScopedIni s("ccapi_simple_ini",
{model_base + "batch_size = 16", optimizer, learning_rate,
dataset + "-BufferSize", inputlayer, outputlayer});
ml_train_model_h handle = NULL;
int status = ML_ERROR_NONE;
- ScopedIni s("test_compile_01_p",
+ ScopedIni s("capi_test_compile_01_p",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &handle);
ml_train_model_h handle = NULL;
int status = ML_ERROR_NONE;
- ScopedIni s("test_compile_03_n",
+ ScopedIni s("capi_test_compile_03_n",
{model_base, optimizer, dataset, inputlayer + "Input_Shape=1:1:0",
outputlayer});
ml_train_model_h handle = NULL;
int status = ML_ERROR_NONE;
- ScopedIni s("test_train_01_p",
+ ScopedIni s("capi_test_train_01_p",
{model_base + "batch_size = 16", optimizer,
dataset + "-BufferSize", inputlayer, outputlayer});
TEST(nntrainer_capi_nnmodel, train_03_n) {
ml_train_model_h handle = NULL;
int status = ML_ERROR_NONE;
- ScopedIni s("test_train_01_p",
+ ScopedIni s("capi_test_train_01_p",
{model_base + "batch_size = 16", optimizer,
dataset + "-BufferSize", inputlayer, outputlayer});
ml_train_model_h model = NULL;
ml_train_layer_h layer = NULL;
- ScopedIni s("test_compile_01_p",
+ ScopedIni s("capi_test_compile_01_p",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &model);
ml_train_model_h handle = NULL;
int status = ML_ERROR_NONE;
- ScopedIni s("test_compile_01_p",
+ ScopedIni s("capi_test_compile_01_p",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &handle);
EXPECT_EQ(status, ML_ERROR_NONE);
ml_train_model_h handle = NULL;
int status = ML_ERROR_NONE;
- ScopedIni s("test_compile_01_p",
+ ScopedIni s("capi_test_compile_01_p",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &handle);
EXPECT_EQ(status, ML_ERROR_NONE);
int status = ML_ERROR_NONE;
- ScopedIni s("test_get_input_dimension_01_p",
+ ScopedIni s("capi_test_get_input_dimension_01_p",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &handle);
EXPECT_EQ(status, ML_ERROR_NONE);
int status = ML_ERROR_NONE;
- ScopedIni s("test_get_input_dimension_02_p",
+ ScopedIni s("capi_test_get_input_dimension_02_p",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &handle);
EXPECT_EQ(status, ML_ERROR_NONE);
int status = ML_ERROR_NONE;
- ScopedIni s("test_get_input_dimension_03_n",
+ ScopedIni s("capi_test_get_input_dimension_03_n",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &handle);
EXPECT_EQ(status, ML_ERROR_NONE);
int status = ML_ERROR_NONE;
- ScopedIni s("test_get_input_dimension_05_n",
+ ScopedIni s("capi_test_get_input_dimension_05_n",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &handle);
EXPECT_EQ(status, ML_ERROR_NONE);
int status = ML_ERROR_NONE;
- ScopedIni s("test_get_input_dimension_06_n",
+ ScopedIni s("capi_test_get_input_dimension_06_n",
{model_base, optimizer, dataset, inputlayer, outputlayer});
status = ml_train_model_construct_with_conf(s.getIniName().c_str(), &handle);
EXPECT_EQ(status, ML_ERROR_NONE);