detection_output layer ocl implementation
authorLi Peng <peng.li@intel.com>
Thu, 30 Nov 2017 12:43:49 +0000 (20:43 +0800)
committerLi Peng <peng.li@intel.com>
Wed, 6 Dec 2017 14:35:59 +0000 (22:35 +0800)
Signed-off-by: Li Peng <peng.li@intel.com>
modules/dnn/src/layers/detection_output_layer.cpp
modules/dnn/src/opencl/detection_output.cl [new file with mode: 0644]

index 065c0c2..5f75eff 100644 (file)
@@ -45,6 +45,7 @@
 #include <float.h>
 #include <string>
 #include "../nms.inl.hpp"
+#include "opencl_kernels_dnn.hpp"
 
 namespace cv
 {
@@ -211,11 +212,160 @@ public:
         return false;
     }
 
+#ifdef HAVE_OPENCL
+    // Decode all bboxes in a batch
+    bool ocl_DecodeBBoxesAll(UMat& loc_mat, UMat& prior_mat,
+                             const int num, const int numPriors, const bool share_location,
+                             const int num_loc_classes, const int background_label_id,
+                             const cv::String& code_type, const bool variance_encoded_in_target,
+                             const bool clip, std::vector<LabelBBox>& all_decode_bboxes)
+    {
+        UMat outmat = UMat(loc_mat.dims, loc_mat.size, CV_32F);
+        size_t nthreads = loc_mat.total();
+        String kernel_name;
+
+        if (code_type == "CORNER")
+            kernel_name = "DecodeBBoxesCORNER";
+        else if (code_type == "CENTER_SIZE")
+            kernel_name = "DecodeBBoxesCENTER_SIZE";
+        else
+            return false;
+
+        for (int i = 0; i < num; ++i)
+        {
+            ocl::Kernel kernel(kernel_name.c_str(), ocl::dnn::detection_output_oclsrc);
+            kernel.set(0, (int)nthreads);
+            kernel.set(1, ocl::KernelArg::PtrReadOnly(loc_mat));
+            kernel.set(2, ocl::KernelArg::PtrReadOnly(prior_mat));
+            kernel.set(3, (int)variance_encoded_in_target);
+            kernel.set(4, (int)numPriors);
+            kernel.set(5, (int)share_location);
+            kernel.set(6, (int)num_loc_classes);
+            kernel.set(7, (int)background_label_id);
+            kernel.set(8, (int)clip);
+            kernel.set(9, ocl::KernelArg::PtrWriteOnly(outmat));
+
+            if (!kernel.run(1, &nthreads, NULL, false))
+                return false;
+        }
+
+        all_decode_bboxes.clear();
+        all_decode_bboxes.resize(num);
+        {
+            Mat mat = outmat.getMat(ACCESS_READ);
+            const float* decode_data = mat.ptr<float>();
+            for (int i = 0; i < num; ++i)
+            {
+                LabelBBox& decode_bboxes = all_decode_bboxes[i];
+                for (int c = 0; c < num_loc_classes; ++c)
+                {
+                    int label = share_location ? -1 : c;
+                    decode_bboxes[label].resize(numPriors);
+                    for (int p = 0; p < numPriors; ++p)
+                    {
+                        int startIdx = p * num_loc_classes * 4;
+                        util::NormalizedBBox& bbox = decode_bboxes[label][p];
+                        bbox.xmin = decode_data[startIdx + c * 4];
+                        bbox.ymin = decode_data[startIdx + c * 4 + 1];
+                        bbox.xmax = decode_data[startIdx + c * 4 + 2];
+                        bbox.ymax = decode_data[startIdx + c * 4 + 3];
+                    }
+                }
+            }
+        }
+        return true;
+    }
+
+    void ocl_GetConfidenceScores(const UMat& inp1, const int num,
+                                 const int numPredsPerClass, const int numClasses,
+                                 std::vector<Mat>& confPreds)
+    {
+        int shape[] = { numClasses, numPredsPerClass };
+        for (int i = 0; i < num; i++)
+            confPreds.push_back(Mat(2, shape, CV_32F));
+
+        UMat umat = inp1.reshape(1, num * numPredsPerClass);
+        for (int i = 0; i < num; ++i)
+        {
+            Range ranges[] = { Range(i * numPredsPerClass, (i + 1) * numPredsPerClass), Range::all() };
+            transpose(umat(ranges), confPreds[i]);
+        }
+    }
+
+    bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
+    {
+        std::vector<UMat> inputs;
+        std::vector<UMat> outputs;
+
+        inps.getUMatVector(inputs);
+        outs.getUMatVector(outputs);
+
+        std::vector<LabelBBox> allDecodedBBoxes;
+        std::vector<Mat> allConfidenceScores;
+
+        int num = inputs[0].size[0];
+
+        // extract predictions from input layers
+        {
+            int numPriors = inputs[2].size[2] / 4;
+
+            // Retrieve all confidences
+            ocl_GetConfidenceScores(inputs[1], num, numPriors, _numClasses, allConfidenceScores);
+
+            // Decode all loc predictions to bboxes
+            bool ret = ocl_DecodeBBoxesAll(inputs[0], inputs[2], num, numPriors,
+                                           _shareLocation, _numLocClasses, _backgroundLabelId,
+                                           _codeType, _varianceEncodedInTarget, false,
+                                           allDecodedBBoxes);
+            if (!ret)
+                return false;
+        }
+
+        size_t numKept = 0;
+        std::vector<std::map<int, std::vector<int> > > allIndices;
+        for (int i = 0; i < num; ++i)
+        {
+            numKept += processDetections_(allDecodedBBoxes[i], allConfidenceScores[i], allIndices);
+        }
+
+        if (numKept == 0)
+        {
+            // Set confidences to zeros.
+            Range ranges[] = {Range::all(), Range::all(), Range::all(), Range(2, 3)};
+            outputs[0](ranges).setTo(0);
+            return true;
+        }
+        int outputShape[] = {1, 1, (int)numKept, 7};
+        UMat umat = UMat(4, outputShape, CV_32F);
+        {
+            Mat mat = umat.getMat(ACCESS_WRITE);
+            float* outputsData = mat.ptr<float>();
+
+            size_t count = 0;
+            for (int i = 0; i < num; ++i)
+            {
+                count += outputDetections_(i, &outputsData[count * 7],
+                                           allDecodedBBoxes[i], allConfidenceScores[i],
+                                           allIndices[i]);
+            }
+            CV_Assert(count == numKept);
+        }
+        outputs.clear();
+        outputs.push_back(umat);
+        outs.assign(outputs);
+        return true;
+    }
+#endif
+
     void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
     {
         CV_TRACE_FUNCTION();
         CV_TRACE_ARG_VALUE(name, "name", name.c_str());
 
+        CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
+                   OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
+                   forward_ocl(inputs_arr, outputs_arr, internals_arr))
+
         Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
     }
 
@@ -225,7 +375,7 @@ public:
         CV_TRACE_ARG_VALUE(name, "name", name.c_str());
 
         std::vector<LabelBBox> allDecodedBBoxes;
-        std::vector<std::vector<std::vector<float> > > allConfidenceScores;
+        std::vector<Mat> allConfidenceScores;
 
         int num = inputs[0]->size[0];
 
@@ -286,7 +436,7 @@ public:
 
     size_t outputDetections_(
             const int i, float* outputsData,
-            const LabelBBox& decodeBBoxes, const std::vector<std::vector<float> >& confidenceScores,
+            const LabelBBox& decodeBBoxes, Mat& confidenceScores,
             const std::map<int, std::vector<int> >& indicesMap
     )
     {
@@ -294,9 +444,9 @@ public:
         for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
         {
             int label = it->first;
-            if (confidenceScores.size() <= label)
+            if (confidenceScores.rows <= label)
                 CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find confidence predictions for label %d", label));
-            const std::vector<float>& scores = confidenceScores[label];
+            const std::vector<float>& scores = confidenceScores.row(label);
             int locLabel = _shareLocation ? -1 : label;
             LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(locLabel);
             if (label_bboxes == decodeBBoxes.end())
@@ -320,7 +470,7 @@ public:
     }
 
     size_t processDetections_(
-            const LabelBBox& decodeBBoxes, const std::vector<std::vector<float> >& confidenceScores,
+            const LabelBBox& decodeBBoxes, Mat& confidenceScores,
             std::vector<std::map<int, std::vector<int> > >& allIndices
     )
     {
@@ -330,10 +480,10 @@ public:
         {
             if (c == _backgroundLabelId)
                 continue; // Ignore background class.
-            if (c >= confidenceScores.size())
+            if (c >= confidenceScores.rows)
                 CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find confidence predictions for label %d", c));
 
-            const std::vector<float>& scores = confidenceScores[c];
+            const std::vector<float> scores = confidenceScores.row(c);
             int label = _shareLocation ? -1 : c;
 
             LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(label);
@@ -351,9 +501,9 @@ public:
             {
                 int label = it->first;
                 const std::vector<int>& labelIndices = it->second;
-                if (label >= confidenceScores.size())
+                if (label >= confidenceScores.rows)
                     CV_ErrorNoReturn_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
-                const std::vector<float>& scores = confidenceScores[label];
+                const std::vector<float>& scores = confidenceScores.row(label);
                 for (size_t j = 0; j < labelIndices.size(); ++j)
                 {
                     size_t idx = labelIndices[j];
@@ -630,20 +780,20 @@ public:
     //      confidence prediction for an image.
     static void GetConfidenceScores(const float* confData, const int num,
                              const int numPredsPerClass, const int numClasses,
-                             std::vector<std::vector<std::vector<float> > >& confPreds)
+                             std::vector<Mat>& confPreds)
     {
-        confPreds.clear(); confPreds.resize(num);
+        int shape[] = { numClasses, numPredsPerClass };
+        for (int i = 0; i < num; i++)
+            confPreds.push_back(Mat(2, shape, CV_32F));
+
         for (int i = 0; i < num; ++i, confData += numPredsPerClass * numClasses)
         {
-            std::vector<std::vector<float> >& labelScores = confPreds[i];
-            labelScores.resize(numClasses);
+            Mat labelScores = confPreds[i];
             for (int c = 0; c < numClasses; ++c)
             {
-                std::vector<float>& classLabelScores = labelScores[c];
-                classLabelScores.resize(numPredsPerClass);
                 for (int p = 0; p < numPredsPerClass; ++p)
                 {
-                    classLabelScores[p] = confData[p * numClasses + c];
+                    labelScores.at<float>(c, p) = confData[p * numClasses + c];
                 }
             }
         }
diff --git a/modules/dnn/src/opencl/detection_output.cl b/modules/dnn/src/opencl/detection_output.cl
new file mode 100644 (file)
index 0000000..f5932cc
--- /dev/null
@@ -0,0 +1,181 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                           License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#define Dtype float
+#define Dtype4 float4
+
+__kernel void DecodeBBoxesCORNER(const int nthreads,
+                                 __global const Dtype* loc_data,
+                                 __global const Dtype* prior_data,
+                                 const int variance_encoded_in_target,
+                                 const int num_priors,
+                                 const int share_location,
+                                 const int num_loc_classes,
+                                 const int background_label_id,
+                                 const int clip_bbox,
+                                 __global Dtype* bbox_data)
+{
+    for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
+    {
+        Dtype bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax;
+        const int i = index % 4;
+        const int p = ((index / 4 / num_loc_classes) % num_priors) * 4;
+
+        const int c = (index / 4) % num_loc_classes;
+        int label = share_location ? -1 : c;
+        if (label == background_label_id)
+            return; // Ignore background class.
+
+        Dtype4 loc_vec = vload4(0, loc_data + index - i);
+        Dtype4 bbox_vec, prior_variance;
+        if (variance_encoded_in_target)
+        {
+            bbox_vec = loc_vec;
+        } else {
+            const int start_index = num_priors * 4 + p;
+            prior_variance = vload4(0, prior_data + start_index);
+            bbox_vec = loc_vec * prior_variance;
+        }
+
+        bbox_xmin = bbox_vec.x;
+        bbox_ymin = bbox_vec.y;
+        bbox_xmax = bbox_vec.z;
+        bbox_ymax = bbox_vec.w;
+
+        Dtype4 prior_vec = vload4(0, prior_data + p);
+        Dtype val;
+        switch (i)
+        {
+            case 0:
+                val = prior_vec.x + bbox_xmin;
+                break;
+            case 1:
+                val = prior_vec.y + bbox_ymin;
+                break;
+            case 2:
+                val = prior_vec.z + bbox_xmax;
+                break;
+            case 3:
+                val = prior_vec.w + bbox_ymax;
+                break;
+        }
+
+        if (clip_bbox)
+            val = max(min(val, (Dtype)1.), (Dtype)0.);
+
+        bbox_data[index] = val;
+    }
+}
+
+__kernel void DecodeBBoxesCENTER_SIZE(const int nthreads,
+                                      __global const Dtype* loc_data,
+                                      __global const Dtype* prior_data,
+                                      const int variance_encoded_in_target,
+                                      const int num_priors,
+                                      const int share_location,
+                                      const int num_loc_classes,
+                                      const int background_label_id,
+                                      const int clip_bbox,
+                                      __global Dtype* bbox_data)
+{
+    for (int index = get_global_id(0); index < nthreads; index += get_global_size(0))
+    {
+        Dtype bbox_xmin, bbox_ymin, bbox_xmax, bbox_ymax;
+        const int i = index % 4;
+        const int p = ((index / 4 / num_loc_classes) % num_priors) * 4;
+
+        const int c = (index / 4) % num_loc_classes;
+        int label = share_location ? -1 : c;
+        if (label == background_label_id)
+            return; // Ignore background class.
+
+        Dtype4 loc_vec = vload4(0, loc_data + index - i);
+        Dtype4 bbox_vec, prior_variance;
+        if (variance_encoded_in_target)
+        {
+            bbox_vec = loc_vec;
+        } else {
+            const int start_index = num_priors * 4 + p;
+            prior_variance = vload4(0, prior_data + start_index);
+            bbox_vec = loc_vec * prior_variance;
+        }
+
+        bbox_xmin = bbox_vec.x;
+        bbox_ymin = bbox_vec.y;
+        bbox_xmax = bbox_vec.z;
+        bbox_ymax = bbox_vec.w;
+
+        Dtype4 prior_vec = vload4(0, prior_data + p);
+        Dtype prior_width = prior_vec.z - prior_vec.x;
+        Dtype prior_height = prior_vec.w - prior_vec.y;
+        Dtype prior_center_x = (prior_vec.x + prior_vec.z) * .5;
+        Dtype prior_center_y = (prior_vec.y + prior_vec.w) * .5;
+
+        Dtype decode_bbox_center_x, decode_bbox_center_y;
+        Dtype decode_bbox_width, decode_bbox_height;
+        decode_bbox_center_x = bbox_xmin * prior_width + prior_center_x;
+        decode_bbox_center_y = bbox_ymin * prior_height + prior_center_y;
+        decode_bbox_width = exp(bbox_xmax) * prior_width;
+        decode_bbox_height = exp(bbox_ymax) * prior_height;
+
+        Dtype val;
+        switch (i)
+        {
+            case 0:
+                val = decode_bbox_center_x - decode_bbox_width * .5;
+                break;
+            case 1:
+                val = decode_bbox_center_y - decode_bbox_height * .5;
+                break;
+            case 2:
+                val = decode_bbox_center_x + decode_bbox_width * .5;
+                break;
+            case 3:
+                val = decode_bbox_center_y + decode_bbox_height * .5;
+                break;
+        }
+
+        if (clip_bbox)
+            val = max(min(val, (Dtype)1.), (Dtype)0.);
+
+        bbox_data[index] = val;
+    }
+}