In this patch, the following classes and functions have been moved to a header file:
FieldChainInfo
FindUninitializedFields
isPrimitiveType
This also meant that they moved from anonymous namespace to clang::ento.
Code related to pointer chasing now relies in its own file.
There's absolutely no functional change in this patch -- its literally just copy pasting.
Differential Revision: https://reviews.llvm.org/D50504
llvm-svn: 339595
UndefResultChecker.cpp
UndefinedArraySubscriptChecker.cpp
UndefinedAssignmentChecker.cpp
- UninitializedObjectChecker.cpp
+ UninitializedObject/UninitializedObjectChecker.cpp
+ UninitializedObject/UninitializedPointee.cpp
UnixAPIChecker.cpp
UnreachableCodeChecker.cpp
VforkChecker.cpp
--- /dev/null
+//===----- UninitializedObject.h ---------------------------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines helper classes for UninitializedObjectChecker and
+// documentation about the logic of it.
+//
+// To read about command line options and a description what this checker does,
+// refer to UninitializedObjectChecker.cpp.
+//
+// Some methods are implemented in UninitializedPointee.cpp, to reduce the
+// complexity of the main checker file.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CLANG_STATICANALYZER_UNINITIALIZEDOBJECT_H
+#define LLVM_CLANG_STATICANALYZER_UNINITIALIZEDOBJECT_H
+
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+
+namespace clang {
+namespace ento {
+
+/// Represents a field chain. A field chain is a vector of fields where the
+/// first element of the chain is the object under checking (not stored), and
+/// every other element is a field, and the element that precedes it is the
+/// object that contains it.
+///
+/// Note that this class is immutable, and new fields may only be added through
+/// constructor calls.
+class FieldChainInfo {
+public:
+ using FieldChain = llvm::ImmutableList<const FieldRegion *>;
+
+private:
+ FieldChain::Factory &Factory;
+ FieldChain Chain;
+
+ const bool IsDereferenced = false;
+
+public:
+ FieldChainInfo() = delete;
+ FieldChainInfo(FieldChain::Factory &F) : Factory(F) {}
+
+ FieldChainInfo(const FieldChainInfo &Other, const bool IsDereferenced)
+ : Factory(Other.Factory), Chain(Other.Chain), IsDereferenced(IsDereferenced) {}
+
+ FieldChainInfo(const FieldChainInfo &Other, const FieldRegion *FR,
+ const bool IsDereferenced = false);
+
+ bool contains(const FieldRegion *FR) const { return Chain.contains(FR); }
+ bool isPointer() const;
+
+ /// If this is a fieldchain whose last element is an uninitialized region of a
+ /// pointer type, `IsDereferenced` will store whether the pointer itself or
+ /// the pointee is uninitialized.
+ bool isDereferenced() const;
+ const FieldDecl *getEndOfChain() const;
+ void print(llvm::raw_ostream &Out) const;
+
+private:
+ /// Prints every element except the last to `Out`. Since ImmutableLists store
+ /// elements in reverse order, and have no reverse iterators, we use a
+ /// recursive function to print the fieldchain correctly. The last element in
+ /// the chain is to be printed by `print`.
+ static void printTail(llvm::raw_ostream &Out,
+ const llvm::ImmutableListImpl<const FieldRegion *> *L);
+ friend struct FieldChainInfoComparator;
+};
+
+struct FieldChainInfoComparator {
+ bool operator()(const FieldChainInfo &lhs, const FieldChainInfo &rhs) const {
+ assert(!lhs.Chain.isEmpty() && !rhs.Chain.isEmpty() &&
+ "Attempted to store an empty fieldchain!");
+ return *lhs.Chain.begin() < *rhs.Chain.begin();
+ }
+};
+
+using UninitFieldSet = std::set<FieldChainInfo, FieldChainInfoComparator>;
+
+/// Searches for and stores uninitialized fields in a non-union object.
+class FindUninitializedFields {
+ ProgramStateRef State;
+ const TypedValueRegion *const ObjectR;
+
+ const bool IsPedantic;
+ const bool CheckPointeeInitialization;
+
+ bool IsAnyFieldInitialized = false;
+
+ FieldChainInfo::FieldChain::Factory Factory;
+ UninitFieldSet UninitFields;
+
+public:
+ FindUninitializedFields(ProgramStateRef State,
+ const TypedValueRegion *const R, bool IsPedantic,
+ bool CheckPointeeInitialization);
+ const UninitFieldSet &getUninitFields();
+
+private:
+ /// Adds a FieldChainInfo object to UninitFields. Return true if an insertion
+ /// took place.
+ bool addFieldToUninits(FieldChainInfo LocalChain);
+
+ // For the purposes of this checker, we'll regard the object under checking as
+ // a directed tree, where
+ // * the root is the object under checking
+ // * every node is an object that is
+ // - a union
+ // - a non-union record
+ // - a pointer/reference
+ // - an array
+ // - of a primitive type, which we'll define later in a helper function.
+ // * the parent of each node is the object that contains it
+ // * every leaf is an array, a primitive object, a nullptr or an undefined
+ // pointer.
+ //
+ // Example:
+ //
+ // struct A {
+ // struct B {
+ // int x, y = 0;
+ // };
+ // B b;
+ // int *iptr = new int;
+ // B* bptr;
+ //
+ // A() {}
+ // };
+ //
+ // The directed tree:
+ //
+ // ->x
+ // /
+ // ->b--->y
+ // /
+ // A-->iptr->(int value)
+ // \
+ // ->bptr
+ //
+ // From this we'll construct a vector of fieldchains, where each fieldchain
+ // represents an uninitialized field. An uninitialized field may be a
+ // primitive object, a pointer, a pointee or a union without a single
+ // initialized field.
+ // In the above example, for the default constructor call we'll end up with
+ // these fieldchains:
+ //
+ // this->b.x
+ // this->iptr (pointee uninit)
+ // this->bptr (pointer uninit)
+ //
+ // We'll traverse each node of the above graph with the appropiate one of
+ // these methods:
+
+ /// This method checks a region of a union object, and returns true if no
+ /// field is initialized within the region.
+ bool isUnionUninit(const TypedValueRegion *R);
+
+ /// This method checks a region of a non-union object, and returns true if
+ /// an uninitialized field is found within the region.
+ bool isNonUnionUninit(const TypedValueRegion *R, FieldChainInfo LocalChain);
+
+ /// This method checks a region of a pointer or reference object, and returns
+ /// true if the ptr/ref object itself or any field within the pointee's region
+ /// is uninitialized.
+ bool isPointerOrReferenceUninit(const FieldRegion *FR,
+ FieldChainInfo LocalChain);
+
+ /// This method returns true if the value of a primitive object is
+ /// uninitialized.
+ bool isPrimitiveUninit(const SVal &V);
+
+ // Note that we don't have a method for arrays -- the elements of an array are
+ // often left uninitialized intentionally even when it is of a C++ record
+ // type, so we'll assume that an array is always initialized.
+ // TODO: Add a support for nonloc::LocAsInteger.
+};
+
+/// Returns true if T is a primitive type. We defined this type so that for
+/// objects that we'd only like analyze as much as checking whether their
+/// value is undefined or not, such as ints and doubles, can be analyzed with
+/// ease. This also helps ensuring that every special field type is handled
+/// correctly.
+static bool isPrimitiveType(const QualType &T) {
+ return T->isBuiltinType() || T->isEnumeralType() || T->isMemberPointerType();
+}
+
+} // end of namespace ento
+} // end of namespace clang
+
+#endif // LLVM_CLANG_STATICANALYZER_UNINITIALIZEDOBJECT_H
// references it, and we wouldn't generate multiple report on the same
// pointee.
//
+// To read about how the checker works, refer to the comments in
+// UninitializedObject.h.
+//
+// Some of the logic is implemented in UninitializedPointee.cpp, to reduce the
+// complexity of this file.
+//
//===----------------------------------------------------------------------===//
+#include "UninitializedObject.h"
#include "ClangSACheckers.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const;
};
-/// Represents a field chain. A field chain is a vector of fields where the
-/// first element of the chain is the object under checking (not stored), and
-/// every other element is a field, and the element that precedes it is the
-/// object that contains it.
-///
-/// Note that this class is immutable, and new fields may only be added through
-/// constructor calls.
-class FieldChainInfo {
-public:
- using FieldChain = llvm::ImmutableList<const FieldRegion *>;
-
-private:
- FieldChain::Factory &Factory;
- FieldChain Chain;
-
- const bool IsDereferenced = false;
-
-public:
- FieldChainInfo() = delete;
- FieldChainInfo(FieldChain::Factory &F) : Factory(F) {}
-
- FieldChainInfo(const FieldChainInfo &Other, const bool IsDereferenced)
- : Factory(Other.Factory), Chain(Other.Chain), IsDereferenced(IsDereferenced) {}
-
- FieldChainInfo(const FieldChainInfo &Other, const FieldRegion *FR,
- const bool IsDereferenced = false);
-
- bool contains(const FieldRegion *FR) const { return Chain.contains(FR); }
- bool isPointer() const;
-
- /// If this is a fieldchain whose last element is an uninitialized region of a
- /// pointer type, `IsDereferenced` will store whether the pointer itself or
- /// the pointee is uninitialized.
- bool isDereferenced() const;
- const FieldDecl *getEndOfChain() const;
- void print(llvm::raw_ostream &Out) const;
-
-private:
- /// Prints every element except the last to `Out`. Since ImmutableLists store
- /// elements in reverse order, and have no reverse iterators, we use a
- /// recursive function to print the fieldchain correctly. The last element in
- /// the chain is to be printed by `print`.
- static void printTail(llvm::raw_ostream &Out,
- const llvm::ImmutableListImpl<const FieldRegion *> *L);
- friend struct FieldChainInfoComparator;
-};
-
-struct FieldChainInfoComparator {
- bool operator()(const FieldChainInfo &lhs, const FieldChainInfo &rhs) const {
- assert(!lhs.Chain.isEmpty() && !rhs.Chain.isEmpty() &&
- "Attempted to store an empty fieldchain!");
- return *lhs.Chain.begin() < *rhs.Chain.begin();
- }
-};
-
-using UninitFieldSet = std::set<FieldChainInfo, FieldChainInfoComparator>;
-
-/// Searches for and stores uninitialized fields in a non-union object.
-class FindUninitializedFields {
- ProgramStateRef State;
- const TypedValueRegion *const ObjectR;
-
- const bool IsPedantic;
- const bool CheckPointeeInitialization;
-
- bool IsAnyFieldInitialized = false;
-
- FieldChainInfo::FieldChain::Factory Factory;
- UninitFieldSet UninitFields;
-
-public:
- FindUninitializedFields(ProgramStateRef State,
- const TypedValueRegion *const R, bool IsPedantic,
- bool CheckPointeeInitialization);
- const UninitFieldSet &getUninitFields();
-
-private:
- /// Adds a FieldChainInfo object to UninitFields. Return true if an insertion
- /// took place.
- bool addFieldToUninits(FieldChainInfo LocalChain);
-
- // For the purposes of this checker, we'll regard the object under checking as
- // a directed tree, where
- // * the root is the object under checking
- // * every node is an object that is
- // - a union
- // - a non-union record
- // - a pointer/reference
- // - an array
- // - of a primitive type, which we'll define later in a helper function.
- // * the parent of each node is the object that contains it
- // * every leaf is an array, a primitive object, a nullptr or an undefined
- // pointer.
- //
- // Example:
- //
- // struct A {
- // struct B {
- // int x, y = 0;
- // };
- // B b;
- // int *iptr = new int;
- // B* bptr;
- //
- // A() {}
- // };
- //
- // The directed tree:
- //
- // ->x
- // /
- // ->b--->y
- // /
- // A-->iptr->(int value)
- // \
- // ->bptr
- //
- // From this we'll construct a vector of fieldchains, where each fieldchain
- // represents an uninitialized field. An uninitialized field may be a
- // primitive object, a pointer, a pointee or a union without a single
- // initialized field.
- // In the above example, for the default constructor call we'll end up with
- // these fieldchains:
- //
- // this->b.x
- // this->iptr (pointee uninit)
- // this->bptr (pointer uninit)
- //
- // We'll traverse each node of the above graph with the appropiate one of
- // these methods:
-
- /// This method checks a region of a union object, and returns true if no
- /// field is initialized within the region.
- bool isUnionUninit(const TypedValueRegion *R);
-
- /// This method checks a region of a non-union object, and returns true if
- /// an uninitialized field is found within the region.
- bool isNonUnionUninit(const TypedValueRegion *R, FieldChainInfo LocalChain);
-
- /// This method checks a region of a pointer or reference object, and returns
- /// true if the ptr/ref object itself or any field within the pointee's region
- /// is uninitialized.
- bool isPointerOrReferenceUninit(const FieldRegion *FR,
- FieldChainInfo LocalChain);
-
- /// This method returns true if the value of a primitive object is
- /// uninitialized.
- bool isPrimitiveUninit(const SVal &V);
-
- // Note that we don't have a method for arrays -- the elements of an array are
- // often left uninitialized intentionally even when it is of a C++ record
- // type, so we'll assume that an array is always initialized.
- // TODO: Add a support for nonloc::LocAsInteger.
-};
-
} // end of anonymous namespace
// Utility function declarations.
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
CheckerContext &Context);
-/// Returns whether T can be (transitively) dereferenced to a void pointer type
-/// (void*, void**, ...). The type of the region behind a void pointer isn't
-/// known, and thus FD can not be analyzed.
-static bool isVoidPointer(QualType T);
-
-/// Returns true if T is a primitive type. We defined this type so that for
-/// objects that we'd only like analyze as much as checking whether their
-/// value is undefined or not, such as ints and doubles, can be analyzed with
-/// ease. This also helps ensuring that every special field type is handled
-/// correctly.
-static bool isPrimitiveType(const QualType &T) {
- return T->isBuiltinType() || T->isEnumeralType() || T->isMemberPointerType();
-}
-
/// Constructs a note message for a given FieldChainInfo object.
static void printNoteMessage(llvm::raw_ostream &Out,
const FieldChainInfo &Chain);
return false;
}
-// Note that pointers/references don't contain fields themselves, so in this
-// function we won't add anything to LocalChain.
-bool FindUninitializedFields::isPointerOrReferenceUninit(
- const FieldRegion *FR, FieldChainInfo LocalChain) {
-
- assert((FR->getDecl()->getType()->isPointerType() ||
- FR->getDecl()->getType()->isReferenceType() ||
- FR->getDecl()->getType()->isBlockPointerType()) &&
- "This method only checks pointer/reference objects!");
-
- SVal V = State->getSVal(FR);
-
- if (V.isUnknown() || V.getAs<loc::ConcreteInt>()) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- if (V.isUndef()) {
- return addFieldToUninits({LocalChain, FR});
- }
-
- if (!CheckPointeeInitialization) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- assert(V.getAs<loc::MemRegionVal>() &&
- "At this point V must be loc::MemRegionVal!");
- auto L = V.castAs<loc::MemRegionVal>();
-
- // We can't reason about symbolic regions, assume its initialized.
- // Note that this also avoids a potential infinite recursion, because
- // constructors for list-like classes are checked without being called, and
- // the Static Analyzer will construct a symbolic region for Node *next; or
- // similar code snippets.
- if (L.getRegion()->getSymbolicBase()) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- DynamicTypeInfo DynTInfo = getDynamicTypeInfo(State, L.getRegion());
- if (!DynTInfo.isValid()) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- QualType DynT = DynTInfo.getType();
-
- if (isVoidPointer(DynT)) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- // At this point the pointer itself is initialized and points to a valid
- // location, we'll now check the pointee.
- SVal DerefdV = State->getSVal(V.castAs<Loc>(), DynT);
-
- // If DerefdV is still a pointer value, we'll dereference it again (e.g.:
- // int** -> int*).
- while (auto Tmp = DerefdV.getAs<loc::MemRegionVal>()) {
- if (Tmp->getRegion()->getSymbolicBase()) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- DynTInfo = getDynamicTypeInfo(State, Tmp->getRegion());
- if (!DynTInfo.isValid()) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- DynT = DynTInfo.getType();
- if (isVoidPointer(DynT)) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- DerefdV = State->getSVal(*Tmp, DynT);
- }
-
- // If FR is a pointer pointing to a non-primitive type.
- if (Optional<nonloc::LazyCompoundVal> RecordV =
- DerefdV.getAs<nonloc::LazyCompoundVal>()) {
-
- const TypedValueRegion *R = RecordV->getRegion();
-
- if (DynT->getPointeeType()->isStructureOrClassType())
- return isNonUnionUninit(R, {LocalChain, FR});
-
- if (DynT->getPointeeType()->isUnionType()) {
- if (isUnionUninit(R)) {
- return addFieldToUninits({LocalChain, FR, /*IsDereferenced*/ true});
- } else {
- IsAnyFieldInitialized = true;
- return false;
- }
- }
-
- if (DynT->getPointeeType()->isArrayType()) {
- IsAnyFieldInitialized = true;
- return false;
- }
-
- llvm_unreachable("All cases are handled!");
- }
-
- assert((isPrimitiveType(DynT->getPointeeType()) || DynT->isPointerType() ||
- DynT->isReferenceType()) &&
- "At this point FR must either have a primitive dynamic type, or it "
- "must be a null, undefined, unknown or concrete pointer!");
-
- if (isPrimitiveUninit(DerefdV))
- return addFieldToUninits({LocalChain, FR, /*IsDereferenced*/ true});
-
- IsAnyFieldInitialized = true;
- return false;
-}
-
bool FindUninitializedFields::isPrimitiveUninit(const SVal &V) {
if (V.isUndef())
return true;
// Utility functions.
//===----------------------------------------------------------------------===//
-static bool isVoidPointer(QualType T) {
- while (!T.isNull()) {
- if (T->isVoidPointerType())
- return true;
- T = T->getPointeeType();
- }
- return false;
-}
-
static Optional<nonloc::LazyCompoundVal>
getObjectVal(const CXXConstructorDecl *CtorDecl, CheckerContext &Context) {
--- /dev/null
+//===----- UninitializedPointer.cpp ------------------------------*- C++ -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines functions and methods for handling pointers and references
+// to reduce the size and complexity of UninitializedObjectChecker.cpp.
+//
+// To read about command line options and a description what this checker does,
+// refer to UninitializedObjectChecker.cpp.
+//
+// To read about how the checker works, refer to the comments in
+// UninitializedObject.h.
+//
+//===----------------------------------------------------------------------===//
+
+#include "UninitializedObject.h"
+#include "ClangSACheckers.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
+
+using namespace clang;
+using namespace clang::ento;
+
+// Utility function declarations.
+
+/// Returns whether T can be (transitively) dereferenced to a void pointer type
+/// (void*, void**, ...). The type of the region behind a void pointer isn't
+/// known, and thus FD can not be analyzed.
+static bool isVoidPointer(QualType T);
+
+//===----------------------------------------------------------------------===//
+// Methods for FindUninitializedFields.
+//===----------------------------------------------------------------------===//
+
+// Note that pointers/references don't contain fields themselves, so in this
+// function we won't add anything to LocalChain.
+bool FindUninitializedFields::isPointerOrReferenceUninit(
+ const FieldRegion *FR, FieldChainInfo LocalChain) {
+
+ assert((FR->getDecl()->getType()->isPointerType() ||
+ FR->getDecl()->getType()->isReferenceType() ||
+ FR->getDecl()->getType()->isBlockPointerType()) &&
+ "This method only checks pointer/reference objects!");
+
+ SVal V = State->getSVal(FR);
+
+ if (V.isUnknown() || V.getAs<loc::ConcreteInt>()) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ if (V.isUndef()) {
+ return addFieldToUninits({LocalChain, FR});
+ }
+
+ if (!CheckPointeeInitialization) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ assert(V.getAs<loc::MemRegionVal>() &&
+ "At this point V must be loc::MemRegionVal!");
+ auto L = V.castAs<loc::MemRegionVal>();
+
+ // We can't reason about symbolic regions, assume its initialized.
+ // Note that this also avoids a potential infinite recursion, because
+ // constructors for list-like classes are checked without being called, and
+ // the Static Analyzer will construct a symbolic region for Node *next; or
+ // similar code snippets.
+ if (L.getRegion()->getSymbolicBase()) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ DynamicTypeInfo DynTInfo = getDynamicTypeInfo(State, L.getRegion());
+ if (!DynTInfo.isValid()) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ QualType DynT = DynTInfo.getType();
+
+ if (isVoidPointer(DynT)) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ // At this point the pointer itself is initialized and points to a valid
+ // location, we'll now check the pointee.
+ SVal DerefdV = State->getSVal(V.castAs<Loc>(), DynT);
+
+ // If DerefdV is still a pointer value, we'll dereference it again (e.g.:
+ // int** -> int*).
+ while (auto Tmp = DerefdV.getAs<loc::MemRegionVal>()) {
+ if (Tmp->getRegion()->getSymbolicBase()) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ DynTInfo = getDynamicTypeInfo(State, Tmp->getRegion());
+ if (!DynTInfo.isValid()) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ DynT = DynTInfo.getType();
+ if (isVoidPointer(DynT)) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ DerefdV = State->getSVal(*Tmp, DynT);
+ }
+
+ // If FR is a pointer pointing to a non-primitive type.
+ if (Optional<nonloc::LazyCompoundVal> RecordV =
+ DerefdV.getAs<nonloc::LazyCompoundVal>()) {
+
+ const TypedValueRegion *R = RecordV->getRegion();
+
+ if (DynT->getPointeeType()->isStructureOrClassType())
+ return isNonUnionUninit(R, {LocalChain, FR});
+
+ if (DynT->getPointeeType()->isUnionType()) {
+ if (isUnionUninit(R)) {
+ return addFieldToUninits({LocalChain, FR, /*IsDereferenced*/ true});
+ } else {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+ }
+
+ if (DynT->getPointeeType()->isArrayType()) {
+ IsAnyFieldInitialized = true;
+ return false;
+ }
+
+ llvm_unreachable("All cases are handled!");
+ }
+
+ assert((isPrimitiveType(DynT->getPointeeType()) || DynT->isPointerType() ||
+ DynT->isReferenceType()) &&
+ "At this point FR must either have a primitive dynamic type, or it "
+ "must be a null, undefined, unknown or concrete pointer!");
+
+ if (isPrimitiveUninit(DerefdV))
+ return addFieldToUninits({LocalChain, FR, /*IsDereferenced*/ true});
+
+ IsAnyFieldInitialized = true;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Utility functions.
+//===----------------------------------------------------------------------===//
+
+static bool isVoidPointer(QualType T) {
+ while (!T.isNull()) {
+ if (T->isVoidPointerType())
+ return true;
+ T = T->getPointeeType();
+ }
+ return false;
+}