Until now, we always let ID_AA64PFR0_EL1.GIC reflect the value
visible on the host, even if we were running a GICv2-enabled VM
on a GICv3+compat host.
That's fine, but we also now have the case of a host that does not
expose ID_AA64PFR0_EL1.GIC==1 despite having a vGIC. Yes, this is
confusing. Thank you M1.
Let's go back to first principles and expose ID_AA64PFR0_EL1.GIC=1
when a GICv3 is exposed to the guest. This also hides a GICv4.1
CPU interface from the guest which has no business knowing about
the v4.1 extension.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211010150910.2911495-2-maz@kernel.org
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
+ if (irqchip_in_kernel(vcpu->kvm) &&
+ vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
+ val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
+ val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
+ }
break;
case SYS_ID_AA64PFR1_EL1:
val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);