--- /dev/null
+/* Native-dependent code for Linux/x86-64.
+ Copyright 2001
+ Free Software Foundation, Inc.
+ Contributed by Jiri Smid, SuSE Labs.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "inferior.h"
+#include "gdbcore.h"
+#include "regcache.h"
+#include "i387-nat.h"
+#include "gdb_assert.h"
+#include "x86-64-tdep.h"
+
+#include <sys/ptrace.h>
+#include <sys/debugreg.h>
+#include <sys/syscall.h>
+#include <sys/procfs.h>
+
+static unsigned long
+x86_64_linux_dr_get (int regnum)
+{
+ int tid;
+ unsigned long value;
+
+ /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
+ multi-threaded processes here. For now, pretend there is just
+ one thread. */
+ tid = PIDGET (inferior_ptid);
+
+ /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the
+ ptrace call fails breaks debugging remote targets. The correct
+ way to fix this is to add the hardware breakpoint and watchpoint
+ stuff to the target vectore. For now, just return zero if the
+ ptrace call fails. */
+ errno = 0;
+ value = ptrace (PT_READ_U, tid,
+ offsetof (struct user, u_debugreg[regnum]), 0);
+ if (errno != 0)
+#if 0
+ perror_with_name ("Couldn't read debug register");
+#else
+ return 0;
+#endif
+
+ return value;
+}
+
+static void
+x86_64_linux_dr_set (int regnum, unsigned long value)
+{
+ int tid;
+
+ /* FIXME: kettenis/2001-01-29: It's not clear what we should do with
+ multi-threaded processes here. For now, pretend there is just
+ one thread. */
+ tid = PIDGET (inferior_ptid);
+
+ errno = 0;
+ ptrace (PT_WRITE_U, tid,
+ offsetof (struct user, u_debugreg[regnum]), value);
+ if (errno != 0)
+ perror_with_name ("Couldn't write debug register");
+}
+
+void
+x86_64_linux_dr_set_control (unsigned long control)
+{
+ x86_64_linux_dr_set (DR_CONTROL, control);
+}
+
+void
+x86_64_linux_dr_set_addr (int regnum, CORE_ADDR addr)
+{
+ gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
+
+ x86_64_linux_dr_set (DR_FIRSTADDR + regnum, addr);
+}
+
+void
+x86_64_linux_dr_reset_addr (int regnum)
+{
+ gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR);
+
+ x86_64_linux_dr_set (DR_FIRSTADDR + regnum, 0L);
+}
+
+unsigned long
+x86_64_linux_dr_get_status (void)
+{
+ return x86_64_linux_dr_get (DR_STATUS);
+}
+\f
+
+/* The register sets used in Linux ELF core-dumps are identical to the
+ register sets used by `ptrace'. */
+
+#define GETREGS_SUPPLIES(regno) \
+ (0 <= (regno) && (regno) <= 17)
+#define GETFPREGS_SUPPLIES(regno) \
+ (FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
+
+#define PTRACE_XFER_TYPE unsigned long
+\f
+
+/* Transfering the general-purpose registers between GDB, inferiors
+ and core files. */
+
+/* Fill GDB's register array with the general-purpose register values
+ in *GREGSETP. */
+
+void
+supply_gregset (elf_gregset_t * gregsetp)
+{
+ elf_greg_t *regp = (elf_greg_t *) gregsetp;
+ int i;
+
+ for (i = 0; i < X86_64_NUM_GREGS; i++)
+ supply_register (i, (char *) (regp + x86_64_regmap[i]));
+}
+
+/* Fill register REGNO (if it is a general-purpose register) in
+ *GREGSETPS with the value in GDB's register array. If REGNO is -1,
+ do this for all registers. */
+
+void
+fill_gregset (elf_gregset_t * gregsetp, int regno)
+{
+ elf_greg_t *regp = (elf_greg_t *) gregsetp;
+ int i;
+
+ for (i = 0; i < X86_64_NUM_GREGS; i++)
+ if ((regno == -1 || regno == i))
+ *(regp + x86_64_regmap[i]) =
+ *(elf_greg_t *) & registers[REGISTER_BYTE (i)];
+}
+
+/* Fetch all general-purpose registers from process/thread TID and
+ store their values in GDB's register array. */
+
+static void
+fetch_regs (int tid)
+{
+ elf_gregset_t regs;
+
+ if (ptrace (PTRACE_GETREGS, tid, 0, (long) ®s) < 0)
+ perror_with_name ("Couldn't get registers");
+
+ supply_gregset (®s);
+}
+
+/* Store all valid general-purpose registers in GDB's register array
+ into the process/thread specified by TID. */
+
+static void
+store_regs (int tid, int regno)
+{
+ elf_gregset_t regs;
+
+ if (ptrace (PTRACE_GETREGS, tid, 0, (long) ®s) < 0)
+ perror_with_name ("Couldn't get registers");
+
+ fill_gregset (®s, regno);
+
+ if (ptrace (PTRACE_SETREGS, tid, 0, (long) ®s) < 0)
+ perror_with_name ("Couldn't write registers");
+}
+\f
+
+/* Transfering floating-point registers between GDB, inferiors and cores. */
+
+/* Fill GDB's register array with the floating-point register values in
+ *FPREGSETP. */
+
+void
+supply_fpregset (elf_fpregset_t * fpregsetp)
+{
+ i387_supply_fxsave ((char *) fpregsetp);
+}
+
+/* Fill register REGNO (if it is a floating-point register) in
+ *FPREGSETP with the value in GDB's register array. If REGNO is -1,
+ do this for all registers. */
+
+void
+fill_fpregset (elf_fpregset_t * fpregsetp, int regno)
+{
+ i387_fill_fxsave ((char *) fpregsetp, regno);
+}
+
+/* Fetch all floating-point registers from process/thread TID and store
+ thier values in GDB's register array. */
+
+static void
+fetch_fpregs (int tid)
+{
+ elf_fpregset_t fpregs;
+
+ if (ptrace (PTRACE_GETFPREGS, tid, 0, (long) &fpregs) < 0)
+ perror_with_name ("Couldn't get floating point status");
+
+ supply_fpregset (&fpregs);
+}
+
+/* Store all valid floating-point registers in GDB's register array
+ into the process/thread specified by TID. */
+
+static void
+store_fpregs (int tid, int regno)
+{
+ elf_fpregset_t fpregs;
+
+ if (ptrace (PTRACE_GETFPREGS, tid, 0, (long) &fpregs) < 0)
+ perror_with_name ("Couldn't get floating point status");
+
+ fill_fpregset (&fpregs, regno);
+
+ if (ptrace (PTRACE_SETFPREGS, tid, 0, (long) &fpregs) < 0)
+ perror_with_name ("Couldn't write floating point status");
+}
+\f
+
+/* Transferring arbitrary registers between GDB and inferior. */
+
+/* Fetch register REGNO from the child process. If REGNO is -1, do
+ this for all registers (including the floating point and SSE
+ registers). */
+
+void
+fetch_inferior_registers (int regno)
+{
+ int tid;
+
+ /* Linux LWP ID's are process ID's. */
+ if ((tid = TIDGET (inferior_ptid)) == 0)
+ tid = PIDGET (inferior_ptid); /* Not a threaded program. */
+
+ if (regno == -1)
+ {
+ fetch_regs (tid);
+ fetch_fpregs (tid);
+ return;
+ }
+
+ if (GETREGS_SUPPLIES (regno))
+ {
+ fetch_regs (tid);
+ return;
+ }
+
+ if (GETFPREGS_SUPPLIES (regno))
+ {
+ fetch_fpregs (tid);
+ return;
+ }
+
+ internal_error (__FILE__, __LINE__,
+ "Got request for bad register number %d.", regno);
+}
+
+/* Store register REGNO back into the child process. If REGNO is -1,
+ do this for all registers (including the floating point and SSE
+ registers). */
+void
+store_inferior_registers (int regno)
+{
+ int tid;
+
+ /* Linux LWP ID's are process ID's. */
+ if ((tid = TIDGET (inferior_ptid)) == 0)
+ tid = PIDGET (inferior_ptid); /* Not a threaded program. */
+
+ if (regno == -1)
+ {
+ store_regs (tid, regno);
+ store_fpregs (tid, regno);
+ return;
+ }
+
+ if (GETREGS_SUPPLIES (regno))
+ {
+ store_regs (tid, regno);
+ return;
+ }
+
+ if (GETFPREGS_SUPPLIES (regno))
+ {
+ store_fpregs (tid, regno);
+ return;
+ }
+
+ internal_error (__FILE__, __LINE__,
+ "Got request to store bad register number %d.", regno);
+}
+\f
+
+static const unsigned char linux_syscall[] = { 0x0f, 0x05 };
+
+#define LINUX_SYSCALL_LEN (sizeof linux_syscall)
+
+/* The system call number is stored in the %rax register. */
+#define LINUX_SYSCALL_REGNUM 0 /* %rax */
+
+/* We are specifically interested in the sigreturn and rt_sigreturn
+ system calls. */
+
+#ifndef SYS_sigreturn
+#define SYS_sigreturn __NR_sigreturn
+#endif
+#ifndef SYS_rt_sigreturn
+#define SYS_rt_sigreturn __NR_rt_sigreturn
+#endif
+
+/* Offset to saved processor flags, from <asm/sigcontext.h>. */
+#define LINUX_SIGCONTEXT_EFLAGS_OFFSET (152)
+/* Offset to saved processor registers from <asm/ucontext.h> */
+#define LINUX_UCONTEXT_SIGCONTEXT_OFFSET (36)
+
+/* Resume execution of the inferior process.
+ If STEP is nonzero, single-step it.
+ If SIGNAL is nonzero, give it that signal. */
+
+void
+child_resume (ptid_t ptid, int step, enum target_signal signal)
+{
+ int pid = PIDGET (ptid);
+ int request = PTRACE_CONT;
+
+ if (pid == -1)
+ /* Resume all threads. */
+ /* I think this only gets used in the non-threaded case, where "resume
+ all threads" and "resume inferior_ptid" are the same. */
+ pid = PIDGET (inferior_ptid);
+
+ if (step)
+ {
+ CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid));
+ unsigned char buf[LINUX_SYSCALL_LEN];
+
+ request = PTRACE_SINGLESTEP;
+
+ /* Returning from a signal trampoline is done by calling a
+ special system call (sigreturn or rt_sigreturn, see
+ i386-linux-tdep.c for more information). This system call
+ restores the registers that were saved when the signal was
+ raised, including %eflags. That means that single-stepping
+ won't work. Instead, we'll have to modify the signal context
+ that's about to be restored, and set the trace flag there. */
+
+ /* First check if PC is at a system call. */
+ if (read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0
+ && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0)
+ {
+ int syscall =
+ read_register_pid (LINUX_SYSCALL_REGNUM, pid_to_ptid (pid));
+
+ /* Then check the system call number. */
+ if (syscall == SYS_rt_sigreturn)
+ {
+ CORE_ADDR sp = read_register (SP_REGNUM);
+ CORE_ADDR addr = sp;
+ unsigned long int eflags;
+
+ addr +=
+ sizeof (struct siginfo) + LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
+
+ /* Set the trace flag in the context that's about to be
+ restored. */
+ addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET;
+ read_memory (addr, (char *) &eflags, 8);
+ eflags |= 0x0100;
+ write_memory (addr, (char *) &eflags, 8);
+ }
+ }
+ }
+
+ if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1)
+ perror_with_name ("ptrace");
+}
+\f
+
+/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
+ to debugger memory starting at MYADDR. Copy to inferior if
+ WRITE is nonzero. TARGET is ignored.
+
+ Returns the length copied, which is either the LEN argument or zero.
+ This xfer function does not do partial moves, since child_ops
+ doesn't allow memory operations to cross below us in the target stack
+ anyway. */
+
+int
+child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
+ struct mem_attrib *attrib ATTRIBUTE_UNUSED,
+ struct target_ops *target)
+{
+ register int i;
+ /* Round starting address down to longword boundary. */
+ register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
+ /* Round ending address up; get number of longwords that makes. */
+ register int count
+ = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
+ / sizeof (PTRACE_XFER_TYPE);
+ /* Allocate buffer of that many longwords. */
+ register PTRACE_XFER_TYPE *buffer
+ = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
+
+ if (write)
+ {
+ /* Fill start and end extra bytes of buffer with existing memory data. */
+ if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
+ {
+ /* Need part of initial word -- fetch it. */
+ ptrace (PT_READ_I, PIDGET (inferior_ptid),
+ (PTRACE_ARG3_TYPE) addr, buffer);
+ }
+
+ if (count > 1) /* FIXME, avoid if even boundary */
+ {
+ ptrace (PT_READ_I, PIDGET (inferior_ptid),
+ ((PTRACE_ARG3_TYPE)
+ (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
+ buffer + count - 1);
+ }
+
+ /* Copy data to be written over corresponding part of buffer */
+
+ memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
+ myaddr, len);
+
+ /* Write the entire buffer. */
+
+ for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
+ {
+ errno = 0;
+ ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
+ (PTRACE_ARG3_TYPE) addr, buffer[i]);
+ if (errno)
+ {
+ /* Using the appropriate one (I or D) is necessary for
+ Gould NP1, at least. */
+ errno = 0;
+ ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
+ (PTRACE_ARG3_TYPE) addr, buffer[i]);
+ }
+ if (errno)
+ return 0;
+ }
+#ifdef CLEAR_INSN_CACHE
+ CLEAR_INSN_CACHE ();
+#endif
+ }
+ else
+ {
+ /* Read all the longwords */
+ for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
+ {
+ errno = 0;
+ ptrace (PT_READ_I, PIDGET (inferior_ptid),
+ (PTRACE_ARG3_TYPE) addr, buffer + i);
+ if (errno)
+ return 0;
+ }
+
+ /* Copy appropriate bytes out of the buffer. */
+ memcpy (myaddr,
+ (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
+ len);
+ }
+ return len;
+}
+
+/* Interpreting register set info found in core files. */
+
+/* Provide registers to GDB from a core file.
+
+ CORE_REG_SECT points to an array of bytes, which are the contents
+ of a `note' from a core file which BFD thinks might contain
+ register contents. CORE_REG_SIZE is its size.
+
+ WHICH says which register set corelow suspects this is:
+ 0 --- the general-purpose register set, in elf_gregset_t format
+ 2 --- the floating-point register set, in elf_fpregset_t format
+
+ REG_ADDR isn't used on Linux. */
+
+static void
+fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
+ int which, CORE_ADDR reg_addr)
+{
+ elf_gregset_t gregset;
+ elf_fpregset_t fpregset;
+ switch (which)
+ {
+ case 0:
+ if (core_reg_size != sizeof (gregset))
+ warning ("Wrong size gregset in core file.");
+ else
+ {
+ memcpy (&gregset, core_reg_sect, sizeof (gregset));
+ supply_gregset (&gregset);
+ }
+ break;
+
+ case 2:
+ if (core_reg_size != sizeof (fpregset))
+ warning ("Wrong size fpregset in core file.");
+ else
+ {
+ memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
+ supply_fpregset (&fpregset);
+ }
+ break;
+
+ default:
+ /* We've covered all the kinds of registers we know about here,
+ so this must be something we wouldn't know what to do with
+ anyway. Just ignore it. */
+ break;
+ }
+}
+
+/* Register that we are able to handle Linux ELF core file formats. */
+
+static struct core_fns linux_elf_core_fns = {
+ bfd_target_elf_flavour, /* core_flavour */
+ default_check_format, /* check_format */
+ default_core_sniffer, /* core_sniffer */
+ fetch_core_registers, /* core_read_registers */
+ NULL /* next */
+};
+\f
+
+#if !defined (offsetof)
+#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
+#endif
+
+/* Record the value of the debug control register. */
+static long debug_control_mirror;
+
+/* Record which address associates with which register. */
+static CORE_ADDR address_lookup[DR_LASTADDR - DR_FIRSTADDR + 1];
+
+void
+_initialize_x86_64_linux_nat (void)
+{
+ add_core_fns (&linux_elf_core_fns);
+}
--- /dev/null
+/* Target-dependent code for the x86-64 for GDB, the GNU debugger.
+ Copyright 2001
+ Free Software Foundation, Inc.
+ Contributed by Jiri Smid, SuSE Labs.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "inferior.h"
+#include "gdbcore.h"
+#include "gdbcmd.h"
+#include "arch-utils.h"
+#include "regcache.h"
+#include "symfile.h"
+#include "x86-64-tdep.h"
+#include "dwarf2cfi.h"
+
+
+/* Register numbers of various important registers. */
+#define RAX_REGNUM 0
+#define RDX_REGNUM 1
+#define RDI_REGNUM 5
+#define EFLAGS_REGNUM 17
+#define XMM1_REGNUM 35
+
+/* x86_64_register_raw_size_table[i] is the number of bytes of storage in
+ GDB's register array occupied by register i. */
+int x86_64_register_raw_size_table[X86_64_NUM_REGS] = {
+ 8, 8, 8, 8,
+ 8, 8, 8, 8,
+ 8, 8, 8, 8,
+ 8, 8, 8, 8,
+ 8, 4,
+ 10, 10, 10, 10,
+ 10, 10, 10, 10,
+ 4, 4, 4, 4,
+ 4, 4, 4, 4,
+ 16, 16, 16, 16,
+ 16, 16, 16, 16,
+ 16, 16, 16, 16,
+ 16, 16, 16, 16,
+ 4
+};
+
+/* Number of bytes of storage in the actual machine representation for
+ register REGNO. */
+int
+x86_64_register_raw_size (int regno)
+{
+ return x86_64_register_raw_size_table[regno];
+}
+
+/* x86_64_register_byte_table[i] is the offset into the register file of the
+ start of register number i. We initialize this from
+ x86_64_register_raw_size_table. */
+int x86_64_register_byte_table[X86_64_NUM_REGS];
+
+/* Index within `registers' of the first byte of the space for register REGNO. */
+int
+x86_64_register_byte (int regno)
+{
+ return x86_64_register_byte_table[regno];
+}
+
+/* Return the GDB type object for the "standard" data type of data in
+ register N. */
+static struct type *
+x86_64_register_virtual_type (int regno)
+{
+ if (regno == PC_REGNUM || regno == SP_REGNUM)
+ return lookup_pointer_type (builtin_type_void);
+ if (IS_FP_REGNUM (regno))
+ return builtin_type_long_double;
+ if (IS_SSE_REGNUM (regno))
+ return builtin_type_v4sf;
+ if (IS_FPU_CTRL_REGNUM (regno) || regno == MXCSR_REGNUM
+ || regno == EFLAGS_REGNUM)
+ return builtin_type_int;
+ return builtin_type_long;
+}
+
+/* Number of bytes of storage in the program's representation
+ for register REGNO. */
+int
+x86_64_register_virtual_size (int regno)
+{
+ return (TYPE_LENGTH (x86_64_register_virtual_type (regno)));
+}
+
+/* x86_64_register_convertible is true if register N's virtual format is
+ different from its raw format. Note that this definition assumes
+ that the host supports IEEE 32-bit floats, since it doesn't say
+ that SSE registers need conversion. Even if we can't find a
+ counterexample, this is still sloppy. */
+int
+x86_64_register_convertible (int regno)
+{
+ return IS_FP_REGNUM (regno);
+}
+
+/* Convert data from raw format for register REGNUM in buffer FROM to
+ virtual format with type TYPE in buffer TO. In principle both
+ formats are identical except that the virtual format has two extra
+ bytes appended that aren't used. We set these to zero. */
+void
+x86_64_register_convert_to_virtual (int regnum, struct type *type,
+ char *from, char *to)
+{
+/* Copy straight over, but take care of the padding. */
+ memcpy (to, from, FPU_REG_RAW_SIZE);
+ memset (to + FPU_REG_RAW_SIZE, 0, TYPE_LENGTH (type) - FPU_REG_RAW_SIZE);
+}
+
+/* Convert data from virtual format with type TYPE in buffer FROM to
+ raw format for register REGNUM in buffer TO. Simply omit the two
+ unused bytes. */
+
+void
+x86_64_register_convert_to_raw (struct type *type, int regnum,
+ char *from, char *to)
+{
+ memcpy (to, from, FPU_REG_RAW_SIZE);
+}
+\f
+
+/* This is the variable that is set with "set disassembly-flavour", and
+ its legitimate values. */
+static const char att_flavour[] = "att";
+static const char intel_flavour[] = "intel";
+static const char *valid_flavours[] = {
+ att_flavour,
+ intel_flavour,
+ NULL
+};
+static const char *disassembly_flavour = att_flavour;
+
+static CORE_ADDR
+x86_64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
+{
+ char buf[8];
+
+ store_unsigned_integer (buf, 8, CALL_DUMMY_ADDRESS ());
+
+ write_memory (sp - 8, buf, 8);
+ return sp - 8;
+}
+
+void
+x86_64_pop_frame (void)
+{
+ generic_pop_current_frame (cfi_pop_frame);
+}
+\f
+
+/* The returning of values is done according to the special algorithm.
+ Some types are returned in registers an some (big structures) in memory.
+ See ABI for details.
+ */
+
+#define MAX_CLASSES 4
+
+enum x86_64_reg_class
+{
+ X86_64_NO_CLASS,
+ X86_64_INTEGER_CLASS,
+ X86_64_INTEGERSI_CLASS,
+ X86_64_SSE_CLASS,
+ X86_64_SSESF_CLASS,
+ X86_64_SSEDF_CLASS,
+ X86_64_SSEUP_CLASS,
+ X86_64_X87_CLASS,
+ X86_64_X87UP_CLASS,
+ X86_64_MEMORY_CLASS
+};
+
+/* Return the union class of CLASS1 and CLASS2.
+ See the x86-64 ABI for details. */
+
+static enum x86_64_reg_class
+merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
+{
+ /* Rule #1: If both classes are equal, this is the resulting class. */
+ if (class1 == class2)
+ return class1;
+
+ /* Rule #2: If one of the classes is NO_CLASS, the resulting class is
+ the other class. */
+ if (class1 == X86_64_NO_CLASS)
+ return class2;
+ if (class2 == X86_64_NO_CLASS)
+ return class1;
+
+ /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
+ if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
+ return X86_64_MEMORY_CLASS;
+
+ /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
+ if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
+ || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
+ return X86_64_INTEGERSI_CLASS;
+ if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
+ || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
+ return X86_64_INTEGER_CLASS;
+
+ /* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used. */
+ if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
+ || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
+ return X86_64_MEMORY_CLASS;
+
+ /* Rule #6: Otherwise class SSE is used. */
+ return X86_64_SSE_CLASS;
+}
+
+
+/* Classify the argument type.
+ CLASSES will be filled by the register class used to pass each word
+ of the operand. The number of words is returned. In case the parameter
+ should be passed in memory, 0 is returned. As a special case for zero
+ sized containers, classes[0] will be NO_CLASS and 1 is returned.
+
+ See the x86-64 PS ABI for details.
+*/
+
+static int
+classify_argument (struct type *type,
+ enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
+{
+ int bytes = TYPE_LENGTH (type);
+ int words = (bytes + 8 - 1) / 8;
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_ARRAY:
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ {
+ int i;
+ enum x86_64_reg_class subclasses[MAX_CLASSES];
+
+ /* On x86-64 we pass structures larger than 16 bytes on the stack. */
+ if (bytes > 16)
+ return 0;
+
+ for (i = 0; i < words; i++)
+ classes[i] = X86_64_NO_CLASS;
+
+ /* Zero sized arrays or structures are NO_CLASS. We return 0 to
+ signalize memory class, so handle it as special case. */
+ if (!words)
+ {
+ classes[0] = X86_64_NO_CLASS;
+ return 1;
+ }
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_STRUCT:
+ {
+ int j;
+ for (j = 0; j < type->nfields; ++j)
+ {
+ int num = classify_argument (type->fields[j].type,
+ subclasses,
+ (type->fields[j].loc.bitpos
+ + bit_offset) % 256);
+ if (!num)
+ return 0;
+ for (i = 0; i < num; i++)
+ {
+ int pos =
+ (type->fields[j].loc.bitpos + bit_offset) / 8 / 8;
+ classes[i + pos] =
+ merge_classes (subclasses[i], classes[i + pos]);
+ }
+ }
+ }
+ break;
+ case TYPE_CODE_ARRAY:
+ {
+ int num;
+
+ num = classify_argument (type->target_type,
+ subclasses, bit_offset);
+ if (!num)
+ return 0;
+
+ /* The partial classes are now full classes. */
+ if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
+ subclasses[0] = X86_64_SSE_CLASS;
+ if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
+ subclasses[0] = X86_64_INTEGER_CLASS;
+
+ for (i = 0; i < words; i++)
+ classes[i] = subclasses[i % num];
+ }
+ break;
+ case TYPE_CODE_UNION:
+ {
+ int j;
+ {
+ for (j = 0; j < type->nfields; ++j)
+ {
+ int num;
+ num = classify_argument (type->fields[j].type,
+ subclasses, bit_offset);
+ if (!num)
+ return 0;
+ for (i = 0; i < num; i++)
+ classes[i] = merge_classes (subclasses[i], classes[i]);
+ }
+ }
+ }
+ break;
+ }
+ /* Final merger cleanup. */
+ for (i = 0; i < words; i++)
+ {
+ /* If one class is MEMORY, everything should be passed in
+ memory. */
+ if (classes[i] == X86_64_MEMORY_CLASS)
+ return 0;
+
+ /* The X86_64_SSEUP_CLASS should be always preceeded by
+ X86_64_SSE_CLASS. */
+ if (classes[i] == X86_64_SSEUP_CLASS
+ && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
+ classes[i] = X86_64_SSE_CLASS;
+
+ /* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
+ if (classes[i] == X86_64_X87UP_CLASS
+ && (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
+ classes[i] = X86_64_SSE_CLASS;
+ }
+ return words;
+ }
+ break;
+ case TYPE_CODE_FLT:
+ switch (bytes)
+ {
+ case 4:
+ if (!(bit_offset % 64))
+ classes[0] = X86_64_SSESF_CLASS;
+ else
+ classes[0] = X86_64_SSE_CLASS;
+ return 1;
+ case 8:
+ classes[0] = X86_64_SSEDF_CLASS;
+ return 1;
+ case 16:
+ classes[0] = X86_64_X87_CLASS;
+ classes[1] = X86_64_X87UP_CLASS;
+ return 2;
+ }
+ break;
+ case TYPE_CODE_INT:
+ case TYPE_CODE_PTR:
+ switch (bytes)
+ {
+ case 1:
+ case 2:
+ case 4:
+ case 8:
+ if (bytes * 8 + bit_offset <= 32)
+ classes[0] = X86_64_INTEGERSI_CLASS;
+ else
+ classes[0] = X86_64_INTEGER_CLASS;
+ return 1;
+ case 16:
+ classes[0] = classes[1] = X86_64_INTEGER_CLASS;
+ return 2;
+ default:
+ break;
+ }
+ case TYPE_CODE_VOID:
+ return 0;
+ }
+ internal_error (__FILE__, __LINE__, "classify_argument: unknown argument type");
+}
+
+/* Examine the argument and return set number of register required in each
+ class. Return 0 ifif parameter should be passed in memory. */
+
+static int
+examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
+ int n, int *int_nregs, int *sse_nregs)
+{
+ *int_nregs = 0;
+ *sse_nregs = 0;
+ if (!n)
+ return 0;
+ for (n--; n >= 0; n--)
+ switch (classes[n])
+ {
+ case X86_64_INTEGER_CLASS:
+ case X86_64_INTEGERSI_CLASS:
+ (*int_nregs)++;
+ break;
+ case X86_64_SSE_CLASS:
+ case X86_64_SSESF_CLASS:
+ case X86_64_SSEDF_CLASS:
+ (*sse_nregs)++;
+ break;
+ case X86_64_NO_CLASS:
+ case X86_64_SSEUP_CLASS:
+ case X86_64_X87_CLASS:
+ case X86_64_X87UP_CLASS:
+ break;
+ case X86_64_MEMORY_CLASS:
+ internal_error (__FILE__, __LINE__, "examine_argument: unexpected memory class");
+ }
+ return 1;
+}
+
+#define RET_INT_REGS 2
+#define RET_SSE_REGS 2
+
+/* Check if the structure in value_type is returned in registers or in
+ memory. If this function returns 1, gdb will call STORE_STRUCT_RETURN and
+ EXTRACT_STRUCT_VALUE_ADDRESS else STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE
+ will be used. */
+int
+x86_64_use_struct_convention (int gcc_p, struct type *value_type)
+{
+ enum x86_64_reg_class class[MAX_CLASSES];
+ int n = classify_argument (value_type, class, 0);
+ int needed_intregs;
+ int needed_sseregs;
+
+ return (!n ||
+ !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
+ needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
+}
+
+
+/* Extract from an array REGBUF containing the (raw) register state, a
+ function return value of TYPE, and copy that, in virtual format,
+ into VALBUF. */
+
+void
+x86_64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
+{
+ enum x86_64_reg_class class[MAX_CLASSES];
+ int n = classify_argument (type, class, 0);
+ int needed_intregs;
+ int needed_sseregs;
+ int intreg = 0;
+ int ssereg = 0;
+ int offset = 0;
+ int ret_int_r[RET_INT_REGS] = { RAX_REGNUM, RDX_REGNUM };
+ int ret_sse_r[RET_SSE_REGS] = { XMM0_REGNUM, XMM1_REGNUM };
+
+ if (!n ||
+ !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
+ needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
+ { /* memory class */
+ CORE_ADDR addr;
+ memcpy (&addr, regbuf, REGISTER_RAW_SIZE (RAX_REGNUM));
+ read_memory (addr, valbuf, TYPE_LENGTH (type));
+ return;
+ }
+ else
+ {
+ int i;
+ for (i = 0; i < n; i++)
+ {
+ switch (class[i])
+ {
+ case X86_64_NO_CLASS:
+ break;
+ case X86_64_INTEGER_CLASS:
+ memcpy (valbuf + offset,
+ regbuf + REGISTER_BYTE (ret_int_r[(intreg + 1) / 2]),
+ 8);
+ offset += 8;
+ intreg += 2;
+ break;
+ case X86_64_INTEGERSI_CLASS:
+ memcpy (valbuf + offset,
+ regbuf + REGISTER_BYTE (ret_int_r[intreg / 2]), 4);
+ offset += 8;
+ intreg++;
+ break;
+ case X86_64_SSEDF_CLASS:
+ case X86_64_SSESF_CLASS:
+ case X86_64_SSE_CLASS:
+ memcpy (valbuf + offset,
+ regbuf + REGISTER_BYTE (ret_sse_r[(ssereg + 1) / 2]),
+ 8);
+ offset += 8;
+ ssereg += 2;
+ break;
+ case X86_64_SSEUP_CLASS:
+ memcpy (valbuf + offset + 8,
+ regbuf + REGISTER_BYTE (ret_sse_r[ssereg / 2]), 8);
+ offset += 8;
+ ssereg++;
+ break;
+ case X86_64_X87_CLASS:
+ memcpy (valbuf + offset, regbuf + REGISTER_BYTE (FP0_REGNUM),
+ 8);
+ offset += 8;
+ break;
+ case X86_64_X87UP_CLASS:
+ memcpy (valbuf + offset,
+ regbuf + REGISTER_BYTE (FP0_REGNUM) + 8, 8);
+ offset += 8;
+ break;
+ case X86_64_MEMORY_CLASS:
+ default:
+ internal_error (__FILE__, __LINE__,
+ "Unexpected argument class");
+ }
+ }
+ }
+}
+
+/* Handled by unwind informations. */
+static void
+x86_64_frame_init_saved_regs (struct frame_info *fi)
+{
+}
+
+#define INT_REGS 6
+#define SSE_REGS 16
+
+/* Push onto the stack the specified value VALUE. Pad it correctly for
+ it to be an argument to a function. */
+
+static CORE_ADDR
+value_push (register CORE_ADDR sp, value_ptr arg)
+{
+ register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
+ register int container_len = len;
+
+ /* How big is the container we're going to put this value in? */
+ if (PARM_BOUNDARY)
+ container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
+ & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
+
+ sp -= container_len;
+ write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
+
+ return sp;
+}
+
+CORE_ADDR
+x86_64_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ int intreg = 0;
+ int ssereg = 0;
+ int i;
+ static int int_parameter_registers[INT_REGS] = {5 /*RDI*/, 4 /*RSI*/,
+ 1 /*RDX*/, 2 /*RCX*/,
+ 8 /*R8 */, 9 /*R9 */};
+ /* XMM0 - XMM15 */
+ static int sse_parameter_registers[SSE_REGS] = {34, 35, 36, 37,
+ 38, 39, 40, 41,
+ 42, 43, 44, 45,
+ 46, 47, 48, 49};
+ for (i = 0; i < nargs; i++)
+ {
+ enum x86_64_reg_class class[MAX_CLASSES];
+ int n = classify_argument (args[i]->type, class, 0);
+ int needed_intregs;
+ int needed_sseregs;
+
+ if (!n ||
+ !examine_argument (class, n, &needed_intregs, &needed_sseregs)
+ || intreg + needed_intregs > INT_REGS
+ || ssereg + needed_sseregs > SSE_REGS)
+ { /* memory class */
+ sp = value_push (sp, args[i]);
+ }
+ else
+ {
+ int j;
+ for (j = 0; j < n; j++)
+ {
+ int offset = 0;
+ switch (class[j])
+ {
+ case X86_64_NO_CLASS:
+ break;
+ case X86_64_INTEGER_CLASS:
+ write_register_gen (int_parameter_registers[(intreg + 1) / 2],
+ VALUE_CONTENTS_ALL (args[i]) + offset);
+ offset += 8;
+ intreg += 2;
+ break;
+ case X86_64_INTEGERSI_CLASS:
+ write_register_gen (int_parameter_registers[intreg / 2],
+ VALUE_CONTENTS_ALL (args[i]) + offset);
+ offset += 8;
+ intreg++;
+ break;
+ case X86_64_SSEDF_CLASS:
+ case X86_64_SSESF_CLASS:
+ case X86_64_SSE_CLASS:
+ write_register_gen (sse_parameter_registers[(ssereg + 1) / 2],
+ VALUE_CONTENTS_ALL (args[i]) + offset);
+ offset += 8;
+ ssereg += 2;
+ break;
+ case X86_64_SSEUP_CLASS:
+ write_register_gen (sse_parameter_registers[ssereg / 2],
+ VALUE_CONTENTS_ALL (args[i]) + offset);
+ offset += 8;
+ ssereg++;
+ break;
+ case X86_64_X87_CLASS:
+ case X86_64_X87UP_CLASS:
+ case X86_64_MEMORY_CLASS:
+ sp = value_push (sp, args[i]);
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "Unexpected argument class");
+ }
+ intreg += intreg % 2;
+ ssereg += ssereg % 2;
+ }
+ }
+ }
+ return sp;
+}
+
+/* Write into the appropriate registers a function return value stored
+ in VALBUF of type TYPE, given in virtual format. */
+void
+x86_64_store_return_value (struct type *type, char *valbuf)
+{
+ int len = TYPE_LENGTH (type);
+
+ if (TYPE_CODE_FLT == TYPE_CODE (type))
+ {
+ /* Floating-point return values can be found in %st(0). */
+ if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
+ && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
+ {
+ /* Copy straight over. */
+ write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
+ FPU_REG_RAW_SIZE);
+ }
+ else
+ {
+ char buf[FPU_REG_RAW_SIZE];
+ DOUBLEST val;
+
+ /* Convert the value found in VALBUF to the extended
+ floating point format used by the FPU. This is probably
+ not exactly how it would happen on the target itself, but
+ it is the best we can do. */
+ val = extract_floating (valbuf, TYPE_LENGTH (type));
+ floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
+ write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
+ FPU_REG_RAW_SIZE);
+ }
+ }
+ else
+ {
+ int low_size = REGISTER_RAW_SIZE (0);
+ int high_size = REGISTER_RAW_SIZE (1);
+
+ if (len <= low_size)
+ write_register_bytes (REGISTER_BYTE (0), valbuf, len);
+ else if (len <= (low_size + high_size))
+ {
+ write_register_bytes (REGISTER_BYTE (0), valbuf, low_size);
+ write_register_bytes (REGISTER_BYTE (1),
+ valbuf + low_size, len - low_size);
+ }
+ else
+ internal_error (__FILE__, __LINE__,
+ "Cannot store return value of %d bytes long.", len);
+ }
+}
+\f
+
+static char *
+x86_64_register_name (int reg_nr)
+{
+ static char *register_names[] = {
+ "rax", "rdx", "rcx", "rbx",
+ "rsi", "rdi", "rbp", "rsp",
+ "r8", "r9", "r10", "r11",
+ "r12", "r13", "r14", "r15",
+ "rip", "eflags",
+ "st0", "st1", "st2", "st3",
+ "st4", "st5", "st6", "st7",
+ "fctrl", "fstat", "ftag", "fiseg",
+ "fioff", "foseg", "fooff", "fop",
+ "xmm0", "xmm1", "xmm2", "xmm3",
+ "xmm4", "xmm5", "xmm6", "xmm7",
+ "xmm8", "xmm9", "xmm10", "xmm11",
+ "xmm12", "xmm13", "xmm14", "xmm15",
+ "mxcsr"
+ };
+ if (reg_nr < 0)
+ return NULL;
+ if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
+ return NULL;
+ return register_names[reg_nr];
+}
+\f
+
+
+/* We have two flavours of disassembly. The machinery on this page
+ deals with switching between those. */
+
+static int
+gdb_print_insn_x86_64 (bfd_vma memaddr, disassemble_info * info)
+{
+ if (disassembly_flavour == att_flavour)
+ return print_insn_i386_att (memaddr, info);
+ else if (disassembly_flavour == intel_flavour)
+ return print_insn_i386_intel (memaddr, info);
+ /* Never reached -- disassembly_flavour is always either att_flavour
+ or intel_flavour. */
+ internal_error (__FILE__, __LINE__, "failed internal consistency check");
+}
+\f
+
+/* Store the address of the place in which to copy the structure the
+ subroutine will return. This is called from call_function. */
+void
+x86_64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
+{
+ write_register (RDI_REGNUM, addr);
+}
+
+int
+x86_64_frameless_function_invocation (struct frame_info *frame)
+{
+ return 0;
+}
+
+/* On x86_64 there are no reasonable prologs. */
+CORE_ADDR
+x86_64_skip_prologue (CORE_ADDR pc)
+{
+ return pc;
+}
+
+/* Sequence of bytes for breakpoint instruction. */
+static unsigned char *
+x86_64_breakpoint_from_pc (CORE_ADDR *pc, int *lenptr)
+{
+ static unsigned char breakpoint[] = { 0xcc };
+ *lenptr = 1;
+ return breakpoint;
+}
+
+static struct gdbarch *
+i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+
+ /* Find a candidate among the list of pre-declared architectures. */
+ for (arches = gdbarch_list_lookup_by_info (arches, &info);
+ arches != NULL;
+ arches = gdbarch_list_lookup_by_info (arches->next, &info))
+ {
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_x86_64:
+ case bfd_mach_x86_64_intel_syntax:
+ switch (gdbarch_bfd_arch_info (arches->gdbarch)->mach)
+ {
+ case bfd_mach_x86_64:
+ case bfd_mach_x86_64_intel_syntax:
+ return arches->gdbarch;
+ case bfd_mach_i386_i386:
+ case bfd_mach_i386_i8086:
+ case bfd_mach_i386_i386_intel_syntax:
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "i386_gdbarch_init: unknown machine type");
+ }
+ break;
+ case bfd_mach_i386_i386:
+ case bfd_mach_i386_i8086:
+ case bfd_mach_i386_i386_intel_syntax:
+ switch (gdbarch_bfd_arch_info (arches->gdbarch)->mach)
+ {
+ case bfd_mach_x86_64:
+ case bfd_mach_x86_64_intel_syntax:
+ break;
+ case bfd_mach_i386_i386:
+ case bfd_mach_i386_i8086:
+ case bfd_mach_i386_i386_intel_syntax:
+ return arches->gdbarch;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "i386_gdbarch_init: unknown machine type");
+ }
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "i386_gdbarch_init: unknown machine type");
+ }
+ }
+
+ tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ switch (info.bfd_arch_info->mach)
+ {
+ case bfd_mach_x86_64:
+ case bfd_mach_x86_64_intel_syntax:
+ tdep->last_fpu_regnum = 25;
+ tdep->first_xmm_regnum = 34;
+ tdep->last_xmm_regnum = 49;
+ tdep->mxcsr_regnum = 50;
+ tdep->first_fpu_ctrl_regnum = 26;
+ break;
+ case bfd_mach_i386_i386:
+ case bfd_mach_i386_i8086:
+ case bfd_mach_i386_i386_intel_syntax:
+ /* This is place for definition of i386 target vector. */
+ break;
+ default:
+ internal_error (__FILE__, __LINE__,
+ "i386_gdbarch_init: unknown machine type");
+ }
+
+ set_gdbarch_long_bit (gdbarch, 64);
+ set_gdbarch_long_long_bit (gdbarch, 64);
+ set_gdbarch_ptr_bit (gdbarch, 64);
+
+ set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
+ set_gdbarch_ieee_float (gdbarch, 1);
+
+
+ set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
+ set_gdbarch_register_name (gdbarch, x86_64_register_name);
+ set_gdbarch_register_size (gdbarch, 8);
+ set_gdbarch_register_raw_size (gdbarch, x86_64_register_raw_size);
+ set_gdbarch_max_register_raw_size (gdbarch, 16);
+ set_gdbarch_register_byte (gdbarch, x86_64_register_byte);
+ /* Total amount of space needed to store our copies of the machine's register
+ (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS + SIZEOF_SSE_REGS) */
+ set_gdbarch_register_bytes (gdbarch,
+ (18 * 8) + (8 * 10) + (8 * 4) + (8 * 16 + 4));
+ set_gdbarch_register_virtual_size (gdbarch, x86_64_register_virtual_size);
+ set_gdbarch_max_register_virtual_size (gdbarch, 16);
+
+ set_gdbarch_register_virtual_type (gdbarch, x86_64_register_virtual_type);
+
+ set_gdbarch_register_convertible (gdbarch, x86_64_register_convertible);
+ set_gdbarch_register_convert_to_virtual (gdbarch,
+ x86_64_register_convert_to_virtual);
+ set_gdbarch_register_convert_to_raw (gdbarch,
+ x86_64_register_convert_to_raw);
+
+/* Register numbers of various important registers. */
+ set_gdbarch_sp_regnum (gdbarch, 7); /* (rsp) Contains address of top of stack. */
+ set_gdbarch_fp_regnum (gdbarch, 6); /* (rbp) */
+ set_gdbarch_pc_regnum (gdbarch, 16); /* (rip) Contains program counter. */
+
+ set_gdbarch_fp0_regnum (gdbarch, 18); /* First FPU floating-point register. */
+
+ set_gdbarch_read_fp (gdbarch, cfi_read_fp);
+ set_gdbarch_write_fp (gdbarch, cfi_write_fp);
+
+/* Discard from the stack the innermost frame, restoring all registers. */
+ set_gdbarch_pop_frame (gdbarch, x86_64_pop_frame);
+
+ /* FRAME_CHAIN takes a frame's nominal address and produces the frame's
+ chain-pointer. */
+ set_gdbarch_frame_chain (gdbarch, cfi_frame_chain);
+
+ set_gdbarch_frameless_function_invocation (gdbarch,
+ x86_64_frameless_function_invocation);
+ set_gdbarch_frame_saved_pc (gdbarch, x86_64_linux_frame_saved_pc);
+
+ set_gdbarch_frame_args_address (gdbarch, default_frame_address);
+ set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
+
+/* Return number of bytes at start of arglist that are not really args. */
+ set_gdbarch_frame_args_skip (gdbarch, 8);
+
+ set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);
+
+/* Frame pc initialization is handled by unwind informations. */
+ set_gdbarch_init_frame_pc (gdbarch, cfi_init_frame_pc);
+
+/* Initialization of unwind informations. */
+ set_gdbarch_init_extra_frame_info (gdbarch, cfi_init_extra_frame_info);
+
+/* Getting saved registers is handled by unwind informations. */
+ set_gdbarch_get_saved_register (gdbarch, cfi_get_saved_register);
+
+ set_gdbarch_frame_init_saved_regs (gdbarch, x86_64_frame_init_saved_regs);
+
+/* Cons up virtual frame pointer for trace */
+ set_gdbarch_virtual_frame_pointer (gdbarch, cfi_virtual_frame_pointer);
+
+
+ set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
+
+ set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
+ set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
+ set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
+ set_gdbarch_call_dummy_length (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
+ set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
+ set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
+ set_gdbarch_call_dummy_words (gdbarch, 0);
+ set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
+ set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
+ set_gdbarch_call_dummy_p (gdbarch, 1);
+ set_gdbarch_call_dummy_start_offset (gdbarch, 0);
+ set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
+ set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
+ set_gdbarch_push_return_address (gdbarch, x86_64_push_return_address);
+ set_gdbarch_push_arguments (gdbarch, x86_64_push_arguments);
+
+/* Return number of args passed to a frame, no way to tell. */
+ set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
+/* Don't use default structure extract routine */
+ set_gdbarch_extract_struct_value_address (gdbarch, 0);
+
+/* If USE_STRUCT_CONVENTION retruns 0, then gdb uses STORE_RETURN_VALUE
+ and EXTRACT_RETURN_VALUE to store/fetch the functions return value. It is
+ the case when structure is returned in registers. */
+ set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
+
+/* Store the address of the place in which to copy the structure the
+ subroutine will return. This is called from call_function. */
+ set_gdbarch_store_struct_return (gdbarch, x86_64_store_struct_return);
+
+/* Extract from an array REGBUF containing the (raw) register state
+ a function return value of type TYPE, and copy that, in virtual format,
+ into VALBUF. */
+ set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
+
+
+/* Write into the appropriate registers a function return value stored
+ in VALBUF of type TYPE, given in virtual format. */
+ set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
+\f
+
+/* Offset from address of function to start of its code. */
+ set_gdbarch_function_start_offset (gdbarch, 0);
+
+ set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
+
+ set_gdbarch_saved_pc_after_call (gdbarch, x86_64_linux_saved_pc_after_call);
+
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+
+ set_gdbarch_breakpoint_from_pc (gdbarch, x86_64_breakpoint_from_pc);
+
+
+/* Amount PC must be decremented by after a breakpoint. This is often the
+ number of bytes in BREAKPOINT but not always. */
+ set_gdbarch_decr_pc_after_break (gdbarch, 1);
+
+ return gdbarch;
+}
+
+void
+_initialize_x86_64_tdep (void)
+{
+ register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
+
+ /* Initialize the table saying where each register starts in the
+ register file. */
+ {
+ int i, offset;
+
+ offset = 0;
+ for (i = 0; i < X86_64_NUM_REGS; i++)
+ {
+ x86_64_register_byte_table[i] = offset;
+ offset += x86_64_register_raw_size_table[i];
+ }
+ }
+
+ tm_print_insn = gdb_print_insn_x86_64;
+ tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 3)->mach;
+
+ /* Add the variable that controls the disassembly flavour. */
+ {
+ struct cmd_list_element *new_cmd;
+
+ new_cmd = add_set_enum_cmd ("disassembly-flavour", no_class,
+ valid_flavours, &disassembly_flavour, "\
+Set the disassembly flavour, the valid values are \"att\" and \"intel\", \
+and the default value is \"att\".", &setlist);
+ add_show_from_set (new_cmd, &showlist);
+ }
+}