unreachable("unknown jump");
}
}
+
+/**
+ * This helper takes the result of a load operation that reads 32-bit elements
+ * in this format:
+ *
+ * x x x x x x x x
+ * y y y y y y y y
+ * z z z z z z z z
+ * w w w w w w w w
+ *
+ * and shuffles the data to get this:
+ *
+ * x y x y x y x y
+ * x y x y x y x y
+ * z w z w z w z w
+ * z w z w z w z w
+ *
+ * Which is exactly what we want if the load is reading 64-bit components
+ * like doubles, where x represents the low 32-bit of the x double component
+ * and y represents the high 32-bit of the x double component (likewise with
+ * z and w for double component y). The parameter @components represents
+ * the number of 64-bit components present in @src. This would typically be
+ * 2 at most, since we can only fit 2 double elements in the result of a
+ * vec4 load.
+ *
+ * Notice that @dst and @src can be the same register.
+ */
+void
+shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
+ const fs_reg &dst,
+ const fs_reg &src,
+ uint32_t components)
+{
+ assert(type_sz(src.type) == 4);
+ assert(type_sz(dst.type) == 8);
+
+ /* A temporary that we will use to shuffle the 32-bit data of each
+ * component in the vector into valid 64-bit data. We can't write directly
+ * to dst because dst can be (and would usually be) the same as src
+ * and in that case the first MOV in the loop below would overwrite the
+ * data read in the second MOV.
+ */
+ fs_reg tmp = bld.vgrf(dst.type);
+
+ for (unsigned i = 0; i < components; i++) {
+ const fs_reg component_i = offset(src, bld, 2 * i);
+
+ bld.MOV(subscript(tmp, src.type, 0), component_i);
+ bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
+
+ bld.MOV(offset(dst, bld, i), tmp);
+ }
+}