}
-
// -----------------------------------------------------------------------------
// RelocInfo.
void RelocInfo::set_target_address(Address target) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
Assembler::set_target_address_at(pc_, target);
+ if (host() != NULL && IsCodeTarget(rmode_)) {
+ Object* target_code = Code::GetCodeFromTargetAddress(target);
+ host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
+ host(), this, HeapObject::cast(target_code));
+ }
}
void RelocInfo::set_target_object(Object* target) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
+ if (host() != NULL && target->IsHeapObject()) {
+ host()->GetHeap()->incremental_marking()->RecordWrite(
+ host(), &Memory::Object_at(pc_), HeapObject::cast(target));
+ }
}
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
Memory::Address_at(pc_) = address;
+ if (host() != NULL) {
+ // TODO(1550) We are passing NULL as a slot because cell can never be on
+ // evacuation candidate.
+ host()->GetHeap()->incremental_marking()->RecordWrite(
+ host(), NULL, cell);
+ }
}
// debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
// debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
Assembler::set_target_address_at(pc_, target);
+ if (host() != NULL) {
+ Object* target_code = Code::GetCodeFromTargetAddress(target);
+ host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
+ host(), this, HeapObject::cast(target_code));
+ }
}
void RelocInfo::Visit(ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
- Object** p = target_object_address();
- Object* orig = *p;
- visitor->VisitEmbeddedPointer(host(), p);
- if (*p != orig) {
- set_target_object(*p);
- }
+ visitor->VisitEmbeddedPointer(this);
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(this);
} else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
void RelocInfo::Visit(Heap* heap) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
- StaticVisitor::VisitEmbeddedPointer(heap, host(), target_object_address());
+ StaticVisitor::VisitEmbeddedPointer(heap, this);
} else if (RelocInfo::IsCodeTarget(mode)) {
StaticVisitor::VisitCodeTarget(heap, this);
} else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
void CpuFeatures::Probe() {
- ASSERT(!initialized_);
+ unsigned standard_features = (OS::CpuFeaturesImpliedByPlatform() |
+ CpuFeaturesImpliedByCompiler());
+ ASSERT(supported_ == 0 || supported_ == standard_features);
#ifdef DEBUG
initialized_ = true;
#endif
// Get the features implied by the OS and the compiler settings. This is the
// minimal set of features which is also allowed for generated code in the
// snapshot.
- supported_ |= OS::CpuFeaturesImpliedByPlatform();
- supported_ |= CpuFeaturesImpliedByCompiler();
+ supported_ |= standard_features;
if (Serializer::enabled()) {
// No probing for features if we might serialize (generate snapshot).
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
- RelocInfo rinfo(pc_, rmode, data); // We do not try to reuse pool constants.
+ // We do not try to reuse pool constants.
+ RelocInfo rinfo(pc_, rmode, data, NULL);
if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
// Adjust code for new modes.
ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
}
ASSERT(buffer_space() >= kMaxRelocSize); // Too late to grow buffer here.
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
- RelocInfo reloc_info_with_ast_id(pc_, rmode, RecordedAstId());
+ RelocInfo reloc_info_with_ast_id(pc_, rmode, RecordedAstId(), NULL);
ClearRecordedAstId();
reloc_info_writer.Write(&reloc_info_with_ast_id);
} else {
}
+bool WriteInt32ToHeapNumberStub::CompilingCallsToThisStubIsGCSafe() {
+ // These variants are compiled ahead of time. See next method.
+ if (the_int_.is(a1) &&
+ the_heap_number_.is(v0) &&
+ scratch_.is(a2) &&
+ sign_.is(a3)) {
+ return true;
+ }
+ if (the_int_.is(a2) &&
+ the_heap_number_.is(v0) &&
+ scratch_.is(a3) &&
+ sign_.is(a0)) {
+ return true;
+ }
+ // Other register combinations are generated as and when they are needed,
+ // so it is unsafe to call them from stubs (we can't generate a stub while
+ // we are generating a stub).
+ return false;
+}
+
+
+void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
+ WriteInt32ToHeapNumberStub stub1(a1, v0, a2, a3);
+ WriteInt32ToHeapNumberStub stub2(a2, v0, a3, a0);
+ Handle<Code> code1 = stub1.GetCode();
+ Handle<Code> code2 = stub2.GetCode();
+}
+
+
// See comment for class, this does NOT work for int32's that are in Smi range.
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
Label max_negative_int;
}
+void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
+ // We don't allow a GC during a store buffer overflow so there is no need to
+ // store the registers in any particular way, but we do have to store and
+ // restore them.
+ __ MultiPush(kJSCallerSaved | ra.bit());
+ if (save_doubles_ == kSaveFPRegs) {
+ CpuFeatures::Scope scope(FPU);
+ __ MultiPushFPU(kCallerSavedFPU);
+ }
+ const int argument_count = 1;
+ const int fp_argument_count = 0;
+ const Register scratch = a1;
+
+ AllowExternalCallThatCantCauseGC scope(masm);
+ __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
+ __ li(a0, Operand(ExternalReference::isolate_address()));
+ __ CallCFunction(
+ ExternalReference::store_buffer_overflow_function(masm->isolate()),
+ argument_count);
+ if (save_doubles_ == kSaveFPRegs) {
+ CpuFeatures::Scope scope(FPU);
+ __ MultiPopFPU(kCallerSavedFPU);
+ }
+
+ __ MultiPop(kJSCallerSaved | ra.bit());
+ __ Ret();
+}
+
+
void UnaryOpStub::PrintName(StringStream* stream) {
const char* op_name = Token::Name(op_);
const char* overwrite_name = NULL; // Make g++ happy.
void CodeStub::GenerateStubsAheadOfTime() {
+ WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
}
void CodeStub::GenerateFPStubs() {
- CEntryStub save_doubles(1);
- save_doubles.SaveDoubles();
+ CEntryStub save_doubles(1, kSaveFPRegs);
Handle<Code> code = save_doubles.GetCode();
code->GetIsolate()->set_fp_stubs_generated(true);
}
__ sw(a2, FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastCaptureCountOffset));
// Store last subject and last input.
- __ mov(a3, last_match_info_elements); // Moved up to reduce latency.
__ sw(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastSubjectOffset));
- __ RecordWrite(a3, Operand(RegExpImpl::kLastSubjectOffset), a2, t0);
+ __ mov(a2, subject);
+ __ RecordWriteField(last_match_info_elements,
+ RegExpImpl::kLastSubjectOffset,
+ a2,
+ t3,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs);
__ sw(subject,
FieldMemOperand(last_match_info_elements,
RegExpImpl::kLastInputOffset));
- __ mov(a3, last_match_info_elements);
- __ RecordWrite(a3, Operand(RegExpImpl::kLastInputOffset), a2, t0);
+ __ RecordWriteField(last_match_info_elements,
+ RegExpImpl::kLastInputOffset,
+ subject,
+ t3,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
}
+struct AheadOfTimeWriteBarrierStubList {
+ Register object, value, address;
+ RememberedSetAction action;
+};
+
+
+struct AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
+ // TODO(1696): Fill this in for MIPS.
+ // Null termination.
+ { no_reg, no_reg, no_reg, EMIT_REMEMBERED_SET}
+};
+
+
+bool RecordWriteStub::CompilingCallsToThisStubIsGCSafe() {
+ for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
+ !entry->object.is(no_reg);
+ entry++) {
+ if (object_.is(entry->object) &&
+ value_.is(entry->value) &&
+ address_.is(entry->address) &&
+ remembered_set_action_ == entry->action &&
+ save_fp_regs_mode_ == kDontSaveFPRegs) {
+ return true;
+ }
+ }
+ return true; // TODO(1696): Should be false.
+}
+
+
+void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
+ StoreBufferOverflowStub stub1(kDontSaveFPRegs);
+ stub1.GetCode();
+ StoreBufferOverflowStub stub2(kSaveFPRegs);
+ stub2.GetCode();
+}
+
+
+void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
+ for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
+ !entry->object.is(no_reg);
+ entry++) {
+ RecordWriteStub stub(entry->object,
+ entry->value,
+ entry->address,
+ entry->action,
+ kDontSaveFPRegs);
+ stub.GetCode();
+ }
+}
+
+
+// Takes the input in 3 registers: address_ value_ and object_. A pointer to
+// the value has just been written into the object, now this stub makes sure
+// we keep the GC informed. The word in the object where the value has been
+// written is in the address register.
+void RecordWriteStub::Generate(MacroAssembler* masm) {
+ Label skip_to_incremental_noncompacting;
+ Label skip_to_incremental_compacting;
+
+ // The first two branch+nop instructions are generated with labels so as to
+ // get the offset fixed up correctly by the bind(Label*) call. We patch it
+ // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
+ // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
+ // incremental heap marking.
+ // See RecordWriteStub::Patch for details.
+ __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
+ __ nop();
+ __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
+ __ nop();
+
+ if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
+ __ RememberedSetHelper(
+ address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd);
+ }
+ __ Ret();
+
+ __ bind(&skip_to_incremental_noncompacting);
+ GenerateIncremental(masm, INCREMENTAL);
+
+ __ bind(&skip_to_incremental_compacting);
+ GenerateIncremental(masm, INCREMENTAL_COMPACTION);
+
+ // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
+ // Will be checked in IncrementalMarking::ActivateGeneratedStub.
+
+ PatchBranchIntoNop(masm, 0);
+ PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
+}
+
+
+void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
+ regs_.Save(masm);
+
+ if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
+ Label dont_need_remembered_set;
+
+ __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
+ __ JumpIfNotInNewSpace(regs_.scratch0(),
+ regs_.scratch0(),
+ &dont_need_remembered_set);
+
+ __ CheckPageFlag(regs_.object(),
+ regs_.scratch0(),
+ 1 << MemoryChunk::SCAN_ON_SCAVENGE,
+ ne,
+ &dont_need_remembered_set);
+
+ // First notify the incremental marker if necessary, then update the
+ // remembered set.
+ CheckNeedsToInformIncrementalMarker(
+ masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
+ InformIncrementalMarker(masm, mode);
+ regs_.Restore(masm);
+ __ RememberedSetHelper(
+ address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd);
+
+ __ bind(&dont_need_remembered_set);
+ }
+
+ CheckNeedsToInformIncrementalMarker(
+ masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
+ InformIncrementalMarker(masm, mode);
+ regs_.Restore(masm);
+ __ Ret();
+}
+
+
+void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
+ regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
+ int argument_count = 3;
+ __ PrepareCallCFunction(argument_count, regs_.scratch0());
+ Register address =
+ a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
+ ASSERT(!address.is(regs_.object()));
+ ASSERT(!address.is(a0));
+ __ Move(address, regs_.address());
+ __ Move(a0, regs_.object());
+ if (mode == INCREMENTAL_COMPACTION) {
+ __ Move(a1, address);
+ } else {
+ ASSERT(mode == INCREMENTAL);
+ __ lw(a1, MemOperand(address, 0));
+ }
+ __ li(a2, Operand(ExternalReference::isolate_address()));
+
+ AllowExternalCallThatCantCauseGC scope(masm);
+ if (mode == INCREMENTAL_COMPACTION) {
+ __ CallCFunction(
+ ExternalReference::incremental_evacuation_record_write_function(
+ masm->isolate()),
+ argument_count);
+ } else {
+ ASSERT(mode == INCREMENTAL);
+ __ CallCFunction(
+ ExternalReference::incremental_marking_record_write_function(
+ masm->isolate()),
+ argument_count);
+ }
+ regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
+}
+
+
+void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
+ MacroAssembler* masm,
+ OnNoNeedToInformIncrementalMarker on_no_need,
+ Mode mode) {
+ Label on_black;
+ Label need_incremental;
+ Label need_incremental_pop_scratch;
+
+ // Let's look at the color of the object: If it is not black we don't have
+ // to inform the incremental marker.
+ __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
+
+ regs_.Restore(masm);
+ if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+ __ RememberedSetHelper(
+ address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd);
+ } else {
+ __ Ret();
+ }
+
+ __ bind(&on_black);
+
+ // Get the value from the slot.
+ __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
+
+ if (mode == INCREMENTAL_COMPACTION) {
+ Label ensure_not_white;
+
+ __ CheckPageFlag(regs_.scratch0(), // Contains value.
+ regs_.scratch1(), // Scratch.
+ MemoryChunk::kEvacuationCandidateMask,
+ eq,
+ &ensure_not_white);
+
+ __ CheckPageFlag(regs_.object(),
+ regs_.scratch1(), // Scratch.
+ MemoryChunk::kSkipEvacuationSlotsRecordingMask,
+ eq,
+ &need_incremental);
+
+ __ bind(&ensure_not_white);
+ }
+
+ // We need extra registers for this, so we push the object and the address
+ // register temporarily.
+ __ Push(regs_.object(), regs_.address());
+ __ EnsureNotWhite(regs_.scratch0(), // The value.
+ regs_.scratch1(), // Scratch.
+ regs_.object(), // Scratch.
+ regs_.address(), // Scratch.
+ &need_incremental_pop_scratch);
+ __ Pop(regs_.object(), regs_.address());
+
+ regs_.Restore(masm);
+ if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
+ __ RememberedSetHelper(
+ address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd);
+ } else {
+ __ Ret();
+ }
+
+ __ bind(&need_incremental_pop_scratch);
+ __ Pop(regs_.object(), regs_.address());
+
+ __ bind(&need_incremental);
+
+ // Fall through when we need to inform the incremental marker.
+}
+
+
#undef __
} } // namespace v8::internal
};
+class StoreBufferOverflowStub: public CodeStub {
+ public:
+ explicit StoreBufferOverflowStub(SaveFPRegsMode save_fp)
+ : save_doubles_(save_fp) { }
+
+ void Generate(MacroAssembler* masm);
+
+ virtual bool CompilingCallsToThisStubIsGCSafe() { return true; }
+ static void GenerateFixedRegStubsAheadOfTime();
+ virtual bool SometimesSetsUpAFrame() { return false; }
+
+ private:
+ SaveFPRegsMode save_doubles_;
+
+ Major MajorKey() { return StoreBufferOverflow; }
+ int MinorKey() { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; }
+};
+
+
class UnaryOpStub: public CodeStub {
public:
UnaryOpStub(Token::Value op,
: the_int_(the_int),
the_heap_number_(the_heap_number),
scratch_(scratch),
- sign_(scratch2) { }
+ sign_(scratch2) {
+ ASSERT(IntRegisterBits::is_valid(the_int_.code()));
+ ASSERT(HeapNumberRegisterBits::is_valid(the_heap_number_.code()));
+ ASSERT(ScratchRegisterBits::is_valid(scratch_.code()));
+ ASSERT(SignRegisterBits::is_valid(sign_.code()));
+ }
+
+ bool CompilingCallsToThisStubIsGCSafe();
+ static void GenerateFixedRegStubsAheadOfTime();
private:
Register the_int_;
};
+class RecordWriteStub: public CodeStub {
+ public:
+ RecordWriteStub(Register object,
+ Register value,
+ Register address,
+ RememberedSetAction remembered_set_action,
+ SaveFPRegsMode fp_mode)
+ : object_(object),
+ value_(value),
+ address_(address),
+ remembered_set_action_(remembered_set_action),
+ save_fp_regs_mode_(fp_mode),
+ regs_(object, // An input reg.
+ address, // An input reg.
+ value) { // One scratch reg.
+ }
+
+ enum Mode {
+ STORE_BUFFER_ONLY,
+ INCREMENTAL,
+ INCREMENTAL_COMPACTION
+ };
+
+ virtual bool CompilingCallsToThisStubIsGCSafe();
+ static void GenerateFixedRegStubsAheadOfTime();
+ virtual bool SometimesSetsUpAFrame() { return false; }
+
+ static void PatchBranchIntoNop(MacroAssembler* masm, int pos) {
+ const unsigned offset = masm->instr_at(pos) & kImm16Mask;
+ masm->instr_at_put(pos, BNE | (zero_reg.code() << kRsShift) |
+ (zero_reg.code() << kRtShift) | (offset & kImm16Mask));
+ ASSERT(Assembler::IsBne(masm->instr_at(pos)));
+ }
+
+ static void PatchNopIntoBranch(MacroAssembler* masm, int pos) {
+ const unsigned offset = masm->instr_at(pos) & kImm16Mask;
+ masm->instr_at_put(pos, BEQ | (zero_reg.code() << kRsShift) |
+ (zero_reg.code() << kRtShift) | (offset & kImm16Mask));
+ ASSERT(Assembler::IsBeq(masm->instr_at(pos)));
+ }
+
+ static Mode GetMode(Code* stub) {
+ Instr first_instruction = Assembler::instr_at(stub->instruction_start());
+ Instr second_instruction = Assembler::instr_at(stub->instruction_start() +
+ 2 * Assembler::kInstrSize);
+
+ if (Assembler::IsBeq(first_instruction)) {
+ return INCREMENTAL;
+ }
+
+ ASSERT(Assembler::IsBne(first_instruction));
+
+ if (Assembler::IsBeq(second_instruction)) {
+ return INCREMENTAL_COMPACTION;
+ }
+
+ ASSERT(Assembler::IsBne(second_instruction));
+
+ return STORE_BUFFER_ONLY;
+ }
+
+ static void Patch(Code* stub, Mode mode) {
+ MacroAssembler masm(NULL,
+ stub->instruction_start(),
+ stub->instruction_size());
+ switch (mode) {
+ case STORE_BUFFER_ONLY:
+ ASSERT(GetMode(stub) == INCREMENTAL ||
+ GetMode(stub) == INCREMENTAL_COMPACTION);
+ PatchBranchIntoNop(&masm, 0);
+ PatchBranchIntoNop(&masm, 2 * Assembler::kInstrSize);
+ break;
+ case INCREMENTAL:
+ ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
+ PatchNopIntoBranch(&masm, 0);
+ break;
+ case INCREMENTAL_COMPACTION:
+ ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
+ PatchNopIntoBranch(&masm, 2 * Assembler::kInstrSize);
+ break;
+ }
+ ASSERT(GetMode(stub) == mode);
+ CPU::FlushICache(stub->instruction_start(), 4 * Assembler::kInstrSize);
+ }
+
+ private:
+ // This is a helper class for freeing up 3 scratch registers. The input is
+ // two registers that must be preserved and one scratch register provided by
+ // the caller.
+ class RegisterAllocation {
+ public:
+ RegisterAllocation(Register object,
+ Register address,
+ Register scratch0)
+ : object_(object),
+ address_(address),
+ scratch0_(scratch0) {
+ ASSERT(!AreAliased(scratch0, object, address, no_reg));
+ scratch1_ = GetRegThatIsNotOneOf(object_, address_, scratch0_);
+ }
+
+ void Save(MacroAssembler* masm) {
+ ASSERT(!AreAliased(object_, address_, scratch1_, scratch0_));
+ // We don't have to save scratch0_ because it was given to us as
+ // a scratch register.
+ masm->push(scratch1_);
+ }
+
+ void Restore(MacroAssembler* masm) {
+ masm->pop(scratch1_);
+ }
+
+ // If we have to call into C then we need to save and restore all caller-
+ // saved registers that were not already preserved. The scratch registers
+ // will be restored by other means so we don't bother pushing them here.
+ void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
+ masm->MultiPush((kJSCallerSaved | ra.bit()) & ~scratch1_.bit());
+ if (mode == kSaveFPRegs) {
+ CpuFeatures::Scope scope(FPU);
+ masm->MultiPushFPU(kCallerSavedFPU);
+ }
+ }
+
+ inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
+ SaveFPRegsMode mode) {
+ if (mode == kSaveFPRegs) {
+ CpuFeatures::Scope scope(FPU);
+ masm->MultiPopFPU(kCallerSavedFPU);
+ }
+ masm->MultiPop((kJSCallerSaved | ra.bit()) & ~scratch1_.bit());
+ }
+
+ inline Register object() { return object_; }
+ inline Register address() { return address_; }
+ inline Register scratch0() { return scratch0_; }
+ inline Register scratch1() { return scratch1_; }
+
+ private:
+ Register object_;
+ Register address_;
+ Register scratch0_;
+ Register scratch1_;
+
+ Register GetRegThatIsNotOneOf(Register r1,
+ Register r2,
+ Register r3) {
+ for (int i = 0; i < Register::kNumAllocatableRegisters; i++) {
+ Register candidate = Register::FromAllocationIndex(i);
+ if (candidate.is(r1)) continue;
+ if (candidate.is(r2)) continue;
+ if (candidate.is(r3)) continue;
+ return candidate;
+ }
+ UNREACHABLE();
+ return no_reg;
+ }
+ friend class RecordWriteStub;
+ };
+
+ enum OnNoNeedToInformIncrementalMarker {
+ kReturnOnNoNeedToInformIncrementalMarker,
+ kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
+ };
+
+ void Generate(MacroAssembler* masm);
+ void GenerateIncremental(MacroAssembler* masm, Mode mode);
+ void CheckNeedsToInformIncrementalMarker(
+ MacroAssembler* masm,
+ OnNoNeedToInformIncrementalMarker on_no_need,
+ Mode mode);
+ void InformIncrementalMarker(MacroAssembler* masm, Mode mode);
+
+ Major MajorKey() { return RecordWrite; }
+
+ int MinorKey() {
+ return ObjectBits::encode(object_.code()) |
+ ValueBits::encode(value_.code()) |
+ AddressBits::encode(address_.code()) |
+ RememberedSetActionBits::encode(remembered_set_action_) |
+ SaveFPRegsModeBits::encode(save_fp_regs_mode_);
+ }
+
+ bool MustBeInStubCache() {
+ // All stubs must be registered in the stub cache
+ // otherwise IncrementalMarker would not be able to find
+ // and patch it.
+ return true;
+ }
+
+ void Activate(Code* code) {
+ code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
+ }
+
+ class ObjectBits: public BitField<int, 0, 5> {};
+ class ValueBits: public BitField<int, 5, 5> {};
+ class AddressBits: public BitField<int, 10, 5> {};
+ class RememberedSetActionBits: public BitField<RememberedSetAction, 15, 1> {};
+ class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 16, 1> {};
+
+ Register object_;
+ Register value_;
+ Register address_;
+ RememberedSetAction remembered_set_action_;
+ SaveFPRegsMode save_fp_regs_mode_;
+ Label slow_;
+ RegisterAllocation regs_;
+};
+
+
// Enter C code from generated RegExp code in a way that allows
// the C code to fix the return address in case of a GC.
// Currently only needed on ARM and MIPS.
int pos,
bool right_here = false);
- // Constants related to patching of inlined load/store.
- static int GetInlinedKeyedLoadInstructionsAfterPatch() {
- // This is in correlation with the padding in MacroAssembler::Abort.
- return FLAG_debug_code ? 45 : 20;
- }
-
- static const int kInlinedKeyedStoreInstructionsAfterPatch = 13;
-
- static int GetInlinedNamedStoreInstructionsAfterPatch() {
- ASSERT(Isolate::Current()->inlined_write_barrier_size() != -1);
- // Magic number 5: instruction count after patched map load:
- // li: 2 (liu & ori), Branch : 2 (bne & nop), sw : 1
- return Isolate::Current()->inlined_write_barrier_size() + 5;
- }
-
private:
DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};
}
-void Deoptimizer::PatchStackCheckCodeAt(Address pc_after,
+void Deoptimizer::PatchStackCheckCodeAt(Code* unoptimized_code,
+ Address pc_after,
Code* check_code,
Code* replacement_code) {
UNIMPLEMENTED();
1 << 30; // f30
static const int kNumCalleeSavedFPU = 6;
+
+static const RegList kCallerSavedFPU =
+ 1 << 0 | // f0
+ 1 << 2 | // f2
+ 1 << 4 | // f4
+ 1 << 6 | // f6
+ 1 << 8 | // f8
+ 1 << 10 | // f10
+ 1 << 12 | // f12
+ 1 << 14 | // f14
+ 1 << 16 | // f16
+ 1 << 18; // f18
+
+
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
static const int kNumSafepointRegisters = 24;
#include "stub-cache.h"
#include "mips/code-stubs-mips.h"
+#include "mips/macro-assembler-mips.h"
namespace v8 {
namespace internal {
// Load parameter from stack.
__ lw(a0, MemOperand(fp, parameter_offset));
// Store it in the context.
- __ li(a1, Operand(Context::SlotOffset(var->index())));
- __ addu(a2, cp, a1);
- __ sw(a0, MemOperand(a2, 0));
- // Update the write barrier. This clobbers all involved
- // registers, so we have to use two more registers to avoid
- // clobbering cp.
- __ mov(a2, cp);
- __ RecordWrite(a2, a1, a3);
+ MemOperand target = ContextOperand(cp, var->index());
+ __ sw(a0, target);
+
+ // Update the write barrier.
+ __ RecordWriteContextSlot(
+ cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs);
}
}
}
__ sw(src, location);
// Emit the write barrier code if the location is in the heap.
if (var->IsContextSlot()) {
- __ RecordWrite(scratch0,
- Operand(Context::SlotOffset(var->index())),
- scratch1,
- src);
+ __ RecordWriteContextSlot(scratch0,
+ location.offset(),
+ src,
+ scratch1,
+ kRAHasBeenSaved,
+ kDontSaveFPRegs);
}
}
__ sw(result_register(), ContextOperand(cp, variable->index()));
int offset = Context::SlotOffset(variable->index());
// We know that we have written a function, which is not a smi.
- __ mov(a1, cp);
- __ RecordWrite(a1, Operand(offset), a2, result_register());
+ __ RecordWriteContextSlot(cp,
+ offset,
+ result_register(),
+ a2,
+ kRAHasBeenSaved,
+ kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ OMIT_SMI_CHECK);
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
} else if (mode == Variable::CONST || mode == Variable::LET) {
Comment cmnt(masm_, "[ Declaration");
// Update the write barrier for the array store with v0 as the scratch
// register.
- __ RecordWrite(a1, Operand(offset), a2, result_register());
+ __ RecordWriteField(
+ a1, offset, result_register(), a2, kRAHasBeenSaved, kDontSaveFPRegs);
PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
}
// RecordWrite may destroy all its register arguments.
__ mov(a3, result_register());
int offset = Context::SlotOffset(var->index());
- __ RecordWrite(a1, Operand(offset), a2, a3);
+ __ RecordWriteContextSlot(
+ a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
}
}
__ sw(v0, location);
if (var->IsContextSlot()) {
__ mov(a3, v0);
- __ RecordWrite(a1, Operand(Context::SlotOffset(var->index())), a2, a3);
+ int offset = Context::SlotOffset(var->index());
+ __ RecordWriteContextSlot(
+ a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
}
} else {
ASSERT(var->IsLookupSlot());
__ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset));
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
- __ RecordWrite(a1, Operand(JSValue::kValueOffset - kHeapObjectTag), a2, a3);
+ __ mov(a2, v0);
+ __ RecordWriteField(
+ a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs);
__ bind(&done);
context()->Plug(v0);
__ sw(scratch1, MemOperand(index2, 0));
__ sw(scratch2, MemOperand(index1, 0));
- Label new_space;
- __ InNewSpace(elements, scratch1, eq, &new_space);
+ Label no_remembered_set;
+ __ CheckPageFlag(elements,
+ scratch1,
+ 1 << MemoryChunk::SCAN_ON_SCAVENGE,
+ ne,
+ &no_remembered_set);
// Possible optimization: do a check that both values are Smis
// (or them and test against Smi mask).
- __ mov(scratch1, elements);
- __ RecordWriteHelper(elements, index1, scratch2);
- __ RecordWriteHelper(scratch1, index2, scratch2); // scratch1 holds elements.
+ // We are swapping two objects in an array and the incremental marker never
+ // pauses in the middle of scanning a single object. Therefore the
+ // incremental marker is not disturbed, so we don't need to call the
+ // RecordWrite stub that notifies the incremental marker.
+ __ RememberedSetHelper(
+ index1, scratch2, kDontSaveFPRegs, MacroAssembler::kFallThroughAtEnd);
+ __ RememberedSetHelper(
+ index2, scratch2, kDontSaveFPRegs, MacroAssembler::kFallThroughAtEnd);
- __ bind(&new_space);
+ __ bind(&no_remembered_set);
// We are done. Drop elements from the stack, and return undefined.
__ Drop(3);
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
// Update the write barrier. Make sure not to clobber the value.
__ mov(scratch1, value);
- __ RecordWrite(elements, scratch2, scratch1);
+ __ RecordWrite(
+ elements, scratch2, scratch1, kRAHasNotBeenSaved, kDontSaveFPRegs);
}
MemOperand mapped_location =
GenerateMappedArgumentsLookup(masm, a2, a1, a3, t0, t1, ¬in, &slow);
__ sw(a0, mapped_location);
- // Verify mapped_location MemOperand is register, with no offset.
- ASSERT_EQ(mapped_location.offset(), 0);
- __ RecordWrite(a3, mapped_location.rm(), t5);
+ __ Addu(t2, a3, t1);
+ __ mov(t5, a0);
+ __ RecordWrite(a3, t2, t5, kRAHasNotBeenSaved, kDontSaveFPRegs);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0); // (In delay slot) return the value stored in v0.
__ bind(¬in);
MemOperand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, a1, a3, t0, &slow);
__ sw(a0, unmapped_location);
- ASSERT_EQ(unmapped_location.offset(), 0);
- __ RecordWrite(a3, unmapped_location.rm(), t5);
+ __ Addu(t2, a3, t0);
+ __ mov(t5, a0);
+ __ RecordWrite(a3, t2, t5, kRAHasNotBeenSaved, kDontSaveFPRegs);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0); // (In delay slot) return the value stored in v0.
__ bind(&slow);
// Fall through to fast case.
__ bind(&fast);
+ Register scratch_value = t0;
+ Register address = t1;
// Fast case, store the value to the elements backing store.
- __ Addu(t4, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- __ sll(t1, key, kPointerSizeLog2 - kSmiTagSize);
- __ Addu(t4, t4, Operand(t1));
- __ sw(value, MemOperand(t4));
+ __ Addu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ sll(scratch_value, key, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(address, address, scratch_value);
+ __ sw(value, MemOperand(address));
// Skip write barrier if the written value is a smi.
__ JumpIfSmi(value, &exit);
// Update write barrier for the elements array address.
- __ Subu(t3, t4, Operand(elements));
-
- __ RecordWrite(elements, Operand(t3), t4, t5);
+ __ mov(scratch_value, value); // Preserve the value which is returned.
+ __ RecordWrite(elements,
+ address,
+ scratch_value,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ OMIT_SMI_CHECK);
__ bind(&exit);
__ mov(v0, a0); // Return the value written.
}
-void MacroAssembler::RecordWriteHelper(Register object,
- Register address,
- Register scratch) {
- if (emit_debug_code()) {
- // Check that the object is not in new space.
- Label not_in_new_space;
- InNewSpace(object, scratch, ne, ¬_in_new_space);
- Abort("new-space object passed to RecordWriteHelper");
- bind(¬_in_new_space);
- }
-
- // Calculate page address: Clear bits from 0 to kPageSizeBits.
- if (mips32r2) {
- Ins(object, zero_reg, 0, kPageSizeBits);
- } else {
- // The Ins macro is slow on r1, so use shifts instead.
- srl(object, object, kPageSizeBits);
- sll(object, object, kPageSizeBits);
- }
-
- // Calculate region number.
- Ext(address, address, Page::kRegionSizeLog2,
- kPageSizeBits - Page::kRegionSizeLog2);
-
- // Mark region dirty.
- lw(scratch, MemOperand(object, Page::kDirtyFlagOffset));
- li(at, Operand(1));
- sllv(at, at, address);
- or_(scratch, scratch, at);
- sw(scratch, MemOperand(object, Page::kDirtyFlagOffset));
-}
-
-
// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
// Safepoints expect a block of kNumSafepointRegisters values on the
}
-// Will clobber 4 registers: object, scratch0, scratch1, at. The
-// register 'object' contains a heap object pointer. The heap object
-// tag is shifted away.
-void MacroAssembler::RecordWrite(Register object,
- Operand offset,
- Register scratch0,
- Register scratch1) {
- // The compiled code assumes that record write doesn't change the
- // context register, so we check that none of the clobbered
- // registers are cp.
- ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp));
-
+void MacroAssembler::RecordWriteField(
+ Register object,
+ int offset,
+ Register value,
+ Register dst,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check) {
+ ASSERT(!AreAliased(value, dst, t8, object));
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
Label done;
- // First, test that the object is not in the new space. We cannot set
- // region marks for new space pages.
- InNewSpace(object, scratch0, eq, &done);
+ // Skip barrier if writing a smi.
+ if (smi_check == INLINE_SMI_CHECK) {
+ JumpIfSmi(value, &done);
+ }
- // Add offset into the object.
- Addu(scratch0, object, offset);
+ // Although the object register is tagged, the offset is relative to the start
+ // of the object, so so offset must be a multiple of kPointerSize.
+ ASSERT(IsAligned(offset, kPointerSize));
- // Record the actual write.
- RecordWriteHelper(object, scratch0, scratch1);
+ Addu(dst, object, Operand(offset - kHeapObjectTag));
+ if (emit_debug_code()) {
+ Label ok;
+ And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
+ Branch(&ok, eq, t8, Operand(zero_reg));
+ stop("Unaligned cell in write barrier");
+ bind(&ok);
+ }
+
+ RecordWrite(object,
+ dst,
+ value,
+ ra_status,
+ save_fp,
+ remembered_set_action,
+ OMIT_SMI_CHECK);
bind(&done);
- // Clobber all input registers when running with the debug-code flag
+ // Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
- li(object, Operand(BitCast<int32_t>(kZapValue)));
- li(scratch0, Operand(BitCast<int32_t>(kZapValue)));
- li(scratch1, Operand(BitCast<int32_t>(kZapValue)));
+ li(value, Operand(BitCast<int32_t>(kZapValue + 4)));
+ li(dst, Operand(BitCast<int32_t>(kZapValue + 8)));
}
}
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object,
Register address,
- Register scratch) {
+ Register value,
+ RAStatus ra_status,
+ SaveFPRegsMode fp_mode,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check) {
+ ASSERT(!AreAliased(object, address, value, t8));
+ ASSERT(!AreAliased(object, address, value, t9));
// The compiled code assumes that record write doesn't change the
// context register, so we check that none of the clobbered
// registers are cp.
- ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp));
+ ASSERT(!address.is(cp) && !value.is(cp));
Label done;
- // First, test that the object is not in the new space. We cannot set
- // region marks for new space pages.
- InNewSpace(object, scratch, eq, &done);
+ if (smi_check == INLINE_SMI_CHECK) {
+ ASSERT_EQ(0, kSmiTag);
+ And(t8, value, Operand(kSmiTagMask));
+ Branch(&done, eq, t8, Operand(zero_reg));
+ }
+
+ CheckPageFlag(value,
+ value, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask,
+ eq,
+ &done);
+ CheckPageFlag(object,
+ value, // Used as scratch.
+ MemoryChunk::kPointersFromHereAreInterestingMask,
+ eq,
+ &done);
// Record the actual write.
- RecordWriteHelper(object, address, scratch);
+ if (ra_status == kRAHasNotBeenSaved) {
+ push(ra);
+ }
+ RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
+ CallStub(&stub);
+ if (ra_status == kRAHasNotBeenSaved) {
+ pop(ra);
+ }
bind(&done);
- // Clobber all input registers when running with the debug-code flag
+ // Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
- li(object, Operand(BitCast<int32_t>(kZapValue)));
- li(address, Operand(BitCast<int32_t>(kZapValue)));
- li(scratch, Operand(BitCast<int32_t>(kZapValue)));
+ li(address, Operand(BitCast<int32_t>(kZapValue + 12)));
+ li(value, Operand(BitCast<int32_t>(kZapValue + 16)));
+ }
+}
+
+
+void MacroAssembler::RememberedSetHelper(Register address,
+ Register scratch,
+ SaveFPRegsMode fp_mode,
+ RememberedSetFinalAction and_then) {
+ Label done;
+ // Load store buffer top.
+ ExternalReference store_buffer =
+ ExternalReference::store_buffer_top(isolate());
+ li(t8, Operand(store_buffer));
+ lw(scratch, MemOperand(t8));
+ // Store pointer to buffer and increment buffer top.
+ sw(address, MemOperand(scratch));
+ Addu(scratch, scratch, kPointerSize);
+ // Write back new top of buffer.
+ sw(scratch, MemOperand(t8));
+ // Call stub on end of buffer.
+ // Check for end of buffer.
+ And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
+ if (and_then == kFallThroughAtEnd) {
+ Branch(&done, eq, t8, Operand(zero_reg));
+ } else {
+ ASSERT(and_then == kReturnAtEnd);
+ Ret(ne, t8, Operand(zero_reg));
+ }
+ push(ra);
+ StoreBufferOverflowStub store_buffer_overflow =
+ StoreBufferOverflowStub(fp_mode);
+ CallStub(&store_buffer_overflow);
+ pop(ra);
+ bind(&done);
+ if (and_then == kReturnAtEnd) {
+ Ret();
}
}
const Runtime::Function* function = Runtime::FunctionForId(id);
li(a0, Operand(function->nargs));
li(a1, Operand(ExternalReference(function, isolate())));
- CEntryStub stub(1);
- stub.SaveDoubles();
+ CEntryStub stub(1, kSaveFPRegs);
CallStub(&stub);
}
}
+void MacroAssembler::CheckPageFlag(
+ Register object,
+ Register scratch,
+ int mask,
+ Condition cc,
+ Label* condition_met) {
+ And(scratch, object, Operand(~Page::kPageAlignmentMask));
+ lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
+ And(scratch, scratch, Operand(mask));
+ Branch(condition_met, cc, scratch, Operand(zero_reg));
+}
+
+
+void MacroAssembler::JumpIfBlack(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* on_black) {
+ HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
+}
+
+
+void MacroAssembler::HasColor(Register object,
+ Register bitmap_scratch,
+ Register mask_scratch,
+ Label* has_color,
+ int first_bit,
+ int second_bit) {
+ ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
+ ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
+
+ GetMarkBits(object, bitmap_scratch, mask_scratch);
+
+ Label other_color, word_boundary;
+ lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ And(t8, t9, Operand(mask_scratch));
+ Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
+ // Shift left 1 by adding.
+ Addu(mask_scratch, mask_scratch, Operand(mask_scratch));
+ Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg));
+ And(t8, t9, Operand(mask_scratch));
+ Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
+ jmp(&other_color);
+
+ bind(&word_boundary);
+ lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize));
+ And(t9, t9, Operand(1));
+ Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg));
+ bind(&other_color);
+}
+
+
+// Detect some, but not all, common pointer-free objects. This is used by the
+// incremental write barrier which doesn't care about oddballs (they are always
+// marked black immediately so this code is not hit).
+void MacroAssembler::JumpIfDataObject(Register value,
+ Register scratch,
+ Label* not_data_object) {
+ ASSERT(!AreAliased(value, scratch, t8, no_reg));
+ Label is_data_object;
+ lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
+ LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
+ Branch(&is_data_object, eq, t8, Operand(scratch));
+ ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+ ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+ // If it's a string and it's not a cons string then it's an object containing
+ // no GC pointers.
+ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
+ Branch(not_data_object, ne, t8, Operand(zero_reg));
+ bind(&is_data_object);
+}
+
+
+void MacroAssembler::GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register mask_reg) {
+ ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
+ And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
+ Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
+ const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
+ Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
+ sll(t8, t8, kPointerSizeLog2);
+ Addu(bitmap_reg, bitmap_reg, t8);
+ li(t8, Operand(1));
+ sllv(mask_reg, t8, mask_reg);
+}
+
+
+void MacroAssembler::EnsureNotWhite(
+ Register value,
+ Register bitmap_scratch,
+ Register mask_scratch,
+ Register load_scratch,
+ Label* value_is_white_and_not_data) {
+ ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
+ GetMarkBits(value, bitmap_scratch, mask_scratch);
+
+ // If the value is black or grey we don't need to do anything.
+ ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+ ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
+ ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
+ ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+ Label done;
+
+ // Since both black and grey have a 1 in the first position and white does
+ // not have a 1 there we only need to check one bit.
+ lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ And(t8, mask_scratch, load_scratch);
+ Branch(&done, ne, t8, Operand(zero_reg));
+
+ if (FLAG_debug_code) {
+ // Check for impossible bit pattern.
+ Label ok;
+ // sll may overflow, making the check conservative.
+ sll(t8, mask_scratch, 1);
+ And(t8, load_scratch, t8);
+ Branch(&ok, eq, t8, Operand(zero_reg));
+ stop("Impossible marking bit pattern");
+ bind(&ok);
+ }
+
+ // Value is white. We check whether it is data that doesn't need scanning.
+ // Currently only checks for HeapNumber and non-cons strings.
+ Register map = load_scratch; // Holds map while checking type.
+ Register length = load_scratch; // Holds length of object after testing type.
+ Label is_data_object;
+
+ // Check for heap-number
+ lw(map, FieldMemOperand(value, HeapObject::kMapOffset));
+ LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
+ {
+ Label skip;
+ Branch(&skip, ne, t8, Operand(map));
+ li(length, HeapNumber::kSize);
+ Branch(&is_data_object);
+ bind(&skip);
+ }
+
+ // Check for strings.
+ ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+ ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+ // If it's a string and it's not a cons string then it's an object containing
+ // no GC pointers.
+ Register instance_type = load_scratch;
+ lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
+ Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg));
+ // It's a non-indirect (non-cons and non-slice) string.
+ // If it's external, the length is just ExternalString::kSize.
+ // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
+ // External strings are the only ones with the kExternalStringTag bit
+ // set.
+ ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
+ ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
+ And(t8, instance_type, Operand(kExternalStringTag));
+ {
+ Label skip;
+ Branch(&skip, eq, t8, Operand(zero_reg));
+ li(length, ExternalString::kSize);
+ Branch(&is_data_object);
+ bind(&skip);
+ }
+
+ // Sequential string, either ASCII or UC16.
+ // For ASCII (char-size of 1) we shift the smi tag away to get the length.
+ // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
+ // getting the length multiplied by 2.
+ ASSERT(kAsciiStringTag == 4 && kStringEncodingMask == 4);
+ ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+ lw(t9, FieldMemOperand(value, String::kLengthOffset));
+ And(t8, instance_type, Operand(kStringEncodingMask));
+ {
+ Label skip;
+ Branch(&skip, eq, t8, Operand(zero_reg));
+ srl(t9, t9, 1);
+ bind(&skip);
+ }
+ Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
+ And(length, length, Operand(~kObjectAlignmentMask));
+
+ bind(&is_data_object);
+ // Value is a data object, and it is white. Mark it black. Since we know
+ // that the object is white we can make it black by flipping one bit.
+ lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ Or(t8, t8, Operand(mask_scratch));
+ sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+
+ And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
+ lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+ Addu(t8, t8, Operand(length));
+ sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+
+ bind(&done);
+}
+
+
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
lw(descriptors,
}
+bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
+ if (r1.is(r2)) return true;
+ if (r1.is(r3)) return true;
+ if (r1.is(r4)) return true;
+ if (r2.is(r3)) return true;
+ if (r2.is(r4)) return true;
+ if (r3.is(r4)) return true;
+ return false;
+}
+
+
CodePatcher::CodePatcher(byte* address, int instructions)
: address_(address),
instructions_(instructions),
};
+enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
+enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
+enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
+
+bool AreAliased(Register r1, Register r2, Register r3, Register r4);
+
+
// -----------------------------------------------------------------------------
// Static helper functions.
Branch(L);
}
+
// Load an object from the root table.
void LoadRoot(Register destination,
Heap::RootListIndex index);
Condition cond, Register src1, const Operand& src2);
- // Check if object is in new space.
- // scratch can be object itself, but it will be clobbered.
- void InNewSpace(Register object,
- Register scratch,
- Condition cc, // eq for new space, ne otherwise.
- Label* branch);
+ // ---------------------------------------------------------------------------
+ // GC Support
+
+ void IncrementalMarkingRecordWriteHelper(Register object,
+ Register value,
+ Register address);
+
+ enum RememberedSetFinalAction {
+ kReturnAtEnd,
+ kFallThroughAtEnd
+ };
+
+
+ // Record in the remembered set the fact that we have a pointer to new space
+ // at the address pointed to by the addr register. Only works if addr is not
+ // in new space.
+ void RememberedSetHelper(Register addr,
+ Register scratch,
+ SaveFPRegsMode save_fp,
+ RememberedSetFinalAction and_then);
+
+ void CheckPageFlag(Register object,
+ Register scratch,
+ int mask,
+ Condition cc,
+ Label* condition_met);
+
+ // Check if object is in new space. Jumps if the object is not in new space.
+ // The register scratch can be object itself, but it will be clobbered.
+ void JumpIfNotInNewSpace(Register object,
+ Register scratch,
+ Label* branch) {
+ InNewSpace(object, scratch, ne, branch);
+ }
+
+ // Check if object is in new space. Jumps if the object is in new space.
+ // The register scratch can be object itself, but it will be clobbered.
+ void JumpIfInNewSpace(Register object,
+ Register scratch,
+ Label* branch) {
+ InNewSpace(object, scratch, eq, branch);
+ }
+ // Check if an object has a given incremental marking color.
+ void HasColor(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* has_color,
+ int first_bit,
+ int second_bit);
- // For the page containing |object| mark the region covering [address]
- // dirty. The object address must be in the first 8K of an allocated page.
- void RecordWriteHelper(Register object,
- Register address,
- Register scratch);
-
- // For the page containing |object| mark the region covering
- // [object+offset] dirty. The object address must be in the first 8K
- // of an allocated page. The 'scratch' registers are used in the
- // implementation and all 3 registers are clobbered by the
- // operation, as well as the 'at' register. RecordWrite updates the
- // write barrier even when storing smis.
- void RecordWrite(Register object,
- Operand offset,
+ void JumpIfBlack(Register object,
Register scratch0,
- Register scratch1);
+ Register scratch1,
+ Label* on_black);
+
+ // Checks the color of an object. If the object is already grey or black
+ // then we just fall through, since it is already live. If it is white and
+ // we can determine that it doesn't need to be scanned, then we just mark it
+ // black and fall through. For the rest we jump to the label so the
+ // incremental marker can fix its assumptions.
+ void EnsureNotWhite(Register object,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* object_is_white_and_not_data);
- // For the page containing |object| mark the region covering
- // [address] dirty. The object address must be in the first 8K of an
- // allocated page. All 3 registers are clobbered by the operation,
- // as well as the ip register. RecordWrite updates the write barrier
- // even when storing smis.
- void RecordWrite(Register object,
- Register address,
- Register scratch);
+ // Detects conservatively whether an object is data-only, ie it does need to
+ // be scanned by the garbage collector.
+ void JumpIfDataObject(Register value,
+ Register scratch,
+ Label* not_data_object);
+
+ // Notify the garbage collector that we wrote a pointer into an object.
+ // |object| is the object being stored into, |value| is the object being
+ // stored. value and scratch registers are clobbered by the operation.
+ // The offset is the offset from the start of the object, not the offset from
+ // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
+ void RecordWriteField(
+ Register object,
+ int offset,
+ Register value,
+ Register scratch,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK);
+
+ // As above, but the offset has the tag presubtracted. For use with
+ // MemOperand(reg, off).
+ inline void RecordWriteContextSlot(
+ Register context,
+ int offset,
+ Register value,
+ Register scratch,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK) {
+ RecordWriteField(context,
+ offset + kHeapObjectTag,
+ value,
+ scratch,
+ ra_status,
+ save_fp,
+ remembered_set_action,
+ smi_check);
+ }
+
+ // For a given |object| notify the garbage collector that the slot |address|
+ // has been written. |value| is the object being stored. The value and
+ // address registers are clobbered by the operation.
+ void RecordWrite(
+ Register object,
+ Register address,
+ Register value,
+ RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
+ SmiCheck smi_check = INLINE_SMI_CHECK);
// ---------------------------------------------------------------------------
Register scratch1,
Register scratch2);
+ // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
+ void InNewSpace(Register object,
+ Register scratch,
+ Condition cond, // eq for new space, ne otherwise.
+ Label* branch);
+
+ // Helper for finding the mark bits for an address. Afterwards, the
+ // bitmap register points at the word with the mark bits and the mask
+ // the position of the first bit. Leaves addr_reg unchanged.
+ inline void GetMarkBits(Register addr_reg,
+ Register bitmap_reg,
+ Register mask_reg);
+
// Compute memory operands for safepoint stack slots.
static int SafepointRegisterStackIndex(int reg_code);
MemOperand SafepointRegisterSlot(Register reg);
// Update the write barrier for the array address.
// Pass the now unused name_reg as a scratch register.
- __ RecordWrite(receiver_reg, Operand(offset), name_reg, scratch);
+ __ mov(name_reg, a0);
+ __ RecordWriteField(receiver_reg,
+ offset,
+ name_reg,
+ scratch,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Update the write barrier for the array address.
// Ok to clobber receiver_reg and name_reg, since we return.
- __ RecordWrite(scratch, Operand(offset), name_reg, receiver_reg);
+ __ mov(name_reg, a0);
+ __ RecordWriteField(scratch,
+ offset,
+ name_reg,
+ receiver_reg,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs);
}
// Return the value (register v0).
DONT_DO_SMI_CHECK);
if (argc == 1) { // Otherwise fall through to call the builtin.
- Label exit, with_write_barrier, attempt_to_grow_elements;
+ Label exit, attempt_to_grow_elements;
// Get the array's length into v0 and calculate new length.
__ lw(v0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ sw(t0, MemOperand(end_elements));
// Check for a smi.
+ Label with_write_barrier;
__ JumpIfNotSmi(t0, &with_write_barrier);
__ bind(&exit);
__ Drop(argc + 1);
__ Ret();
__ bind(&with_write_barrier);
- __ InNewSpace(elements, t0, eq, &exit);
- __ RecordWriteHelper(elements, end_elements, t0);
+ __ RecordWrite(elements,
+ end_elements,
+ t0,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ OMIT_SMI_CHECK);
__ Drop(argc + 1);
__ Ret();
// Store the value in the cell.
__ sw(a0, FieldMemOperand(t0, JSGlobalPropertyCell::kValueOffset));
__ mov(v0, a0); // Stored value must be returned in v0.
+
+ // This trashes a0 but the value is returned in v0 anyway.
+ __ RecordWriteField(t0,
+ JSGlobalPropertyCell::kValueOffset,
+ a0,
+ a2,
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs,
+ OMIT_REMEMBERED_SET);
+
Counters* counters = masm()->isolate()->counters();
__ IncrementCounter(counters->named_store_global_inline(), 1, a1, a3);
__ Ret();
elements_reg, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ sll(scratch2, key_reg, kPointerSizeLog2 - kSmiTagSize);
- __ Addu(scratch3, scratch2, scratch);
- __ sw(value_reg, MemOperand(scratch3));
- __ RecordWrite(scratch, Operand(scratch2), receiver_reg , elements_reg);
+ __ Addu(scratch, scratch, scratch2);
+ __ sw(value_reg, MemOperand(scratch));
+ __ mov(receiver_reg, value_reg);
+ __ RecordWrite(elements_reg, // Object.
+ scratch, // Address.
+ receiver_reg, // Value.
+ kRAHasNotBeenSaved,
+ kDontSaveFPRegs);
// value_reg (a0) is preserved.
// Done.