Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
break;
-#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
- case Type::VectorTyID: { \
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
- Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
- Dest.AggregateVal[_i].IntVal = APInt(1, \
- Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
- } break;
-
// Handle pointers specially because they must be compared with only as much
// width as the host has. We _do not_ want to be comparing 64 bit values when
// running on a 32-bit target, otherwise the upper 32 bits might mess up
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(eq,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
IMPLEMENT_POINTER_ICMP(==);
default:
dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ne,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
IMPLEMENT_POINTER_ICMP(!=);
default:
dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ult,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(slt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ule,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sle,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(uge,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sge,Ty);
- IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
break
-#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
- Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
- Dest.AggregateVal[_i].IntVal = APInt(1, \
- Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
- break;
-
-#define IMPLEMENT_VECTOR_FCMP(OP) \
- case Type::VectorTyID: \
- if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
- IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
- } else { \
- IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
- }
-
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(==, Float);
IMPLEMENT_FCMP(==, Double);
- IMPLEMENT_VECTOR_FCMP(==);
default:
dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
llvm_unreachable(0);
return Dest;
}
-#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
- if (TY->isFloatTy()) { \
- if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
- Dest.IntVal = APInt(1,false); \
- return Dest; \
- } \
- } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
- Dest.IntVal = APInt(1,false); \
- return Dest; \
- }
-
-#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
- assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
- Dest.AggregateVal.resize( X.AggregateVal.size() ); \
- for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
- if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
- Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
- Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
- else { \
- Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
- } \
- }
-
-#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
- if (TY->isVectorTy()) \
- if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
- MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
- } else { \
- MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
- } \
-
-
-
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
- Type *Ty)
-{
+ Type *Ty) {
GenericValue Dest;
- // if input is scalar value and Src1 or Src2 is NaN return false
- IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
- // if vector input detect NaNs and fill mask
- MASK_VECTOR_NANS(Ty, Src1, Src2, false)
- GenericValue DestMask = Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(!=, Float);
IMPLEMENT_FCMP(!=, Double);
- IMPLEMENT_VECTOR_FCMP(!=);
- default:
- dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- // in vector case mask out NaN elements
- if (Ty->isVectorTy())
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
- if (DestMask.AggregateVal[_i].IntVal == false)
- Dest.AggregateVal[_i].IntVal = APInt(1,false);
+ default:
+ dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
+ llvm_unreachable(0);
+ }
return Dest;
}
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<=, Float);
IMPLEMENT_FCMP(<=, Double);
- IMPLEMENT_VECTOR_FCMP(<=);
default:
dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
llvm_unreachable(0);
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>=, Float);
IMPLEMENT_FCMP(>=, Double);
- IMPLEMENT_VECTOR_FCMP(>=);
default:
dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
llvm_unreachable(0);
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<, Float);
IMPLEMENT_FCMP(<, Double);
- IMPLEMENT_VECTOR_FCMP(<);
default:
dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
llvm_unreachable(0);
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>, Float);
IMPLEMENT_FCMP(>, Double);
- IMPLEMENT_VECTOR_FCMP(>);
default:
dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
llvm_unreachable(0);
return Dest; \
}
-#define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC) \
- if (TY->isVectorTy()) { \
- GenericValue DestMask = Dest; \
- Dest = _FUNC(Src1, Src2, Ty); \
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) \
- if (DestMask.AggregateVal[_i].IntVal == true) \
- Dest.AggregateVal[_i].IntVal = APInt(1,true); \
- return Dest; \
- }
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
return executeFCMP_OEQ(Src1, Src2, Ty);
-
}
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
return executeFCMP_ONE(Src1, Src2, Ty);
}
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
return executeFCMP_OLE(Src1, Src2, Ty);
}
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
return executeFCMP_OGE(Src1, Src2, Ty);
}
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
return executeFCMP_OLT(Src1, Src2, Ty);
}
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
- MASK_VECTOR_NANS(Ty, Src1, Src2, true)
- IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
return executeFCMP_OGT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].FloatVal ==
- Src1.AggregateVal[_i].FloatVal) &&
- (Src2.AggregateVal[_i].FloatVal ==
- Src2.AggregateVal[_i].FloatVal)));
- } else {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].DoubleVal ==
- Src1.AggregateVal[_i].DoubleVal) &&
- (Src2.AggregateVal[_i].DoubleVal ==
- Src2.AggregateVal[_i].DoubleVal)));
- }
- } else if (Ty->isFloatTy())
+ if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
Src2.FloatVal == Src2.FloatVal));
- else {
+ else
Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
Src2.DoubleVal == Src2.DoubleVal));
- }
return Dest;
}
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].FloatVal !=
- Src1.AggregateVal[_i].FloatVal) ||
- (Src2.AggregateVal[_i].FloatVal !=
- Src2.AggregateVal[_i].FloatVal)));
- } else {
- for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,
- ( (Src1.AggregateVal[_i].DoubleVal !=
- Src1.AggregateVal[_i].DoubleVal) ||
- (Src2.AggregateVal[_i].DoubleVal !=
- Src2.AggregateVal[_i].DoubleVal)));
- }
- } else if (Ty->isFloatTy())
+ if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
Src2.FloatVal != Src2.FloatVal));
- else {
+ else
Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
Src2.DoubleVal != Src2.DoubleVal));
- }
return Dest;
}
-static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
- const Type *Ty, const bool val) {
- GenericValue Dest;
- if(Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- Dest.AggregateVal.resize( Src1.AggregateVal.size() );
- for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
- Dest.AggregateVal[_i].IntVal = APInt(1,val);
- } else {
- Dest.IntVal = APInt(1, val);
- }
-
- return Dest;
-}
-
void Interpreter::visitFCmpInst(FCmpInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
GenericValue R; // Result
switch (I.getPredicate()) {
- default:
- dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
- llvm_unreachable(0);
- break;
- case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
- break;
- case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
- break;
+ case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
+ case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
+ default:
+ dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
+ llvm_unreachable(0);
}
SetValue(&I, R, SF);
case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
- case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
- case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
+ case FCmpInst::FCMP_FALSE: {
+ GenericValue Result;
+ Result.IntVal = APInt(1, false);
+ return Result;
+ }
+ case FCmpInst::FCMP_TRUE: {
+ GenericValue Result;
+ Result.IntVal = APInt(1, true);
+ return Result;
+ }
default:
dbgs() << "Unhandled Cmp predicate\n";
llvm_unreachable(0);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
- // First process vector operation
- if (Ty->isVectorTy()) {
- assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
- R.AggregateVal.resize(Src1.AggregateVal.size());
-
- // Macros to execute binary operation 'OP' over integer vectors
-#define INTEGER_VECTOR_OPERATION(OP) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].IntVal = \
- Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
-
- // Additional macros to execute binary operations udiv/sdiv/urem/srem since
- // they have different notation.
-#define INTEGER_VECTOR_FUNCTION(OP) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].IntVal = \
- Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
-
- // Macros to execute binary operation 'OP' over floating point type TY
- // (float or double) vectors
-#define FLOAT_VECTOR_FUNCTION(OP, TY) \
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
- R.AggregateVal[i].TY = \
- Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
-
- // Macros to choose appropriate TY: float or double and run operation
- // execution
-#define FLOAT_VECTOR_OP(OP) { \
- if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
- FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
- else { \
- if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
- FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
- else { \
- dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
- llvm_unreachable(0); \
- } \
- } \
-}
-
- switch(I.getOpcode()){
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(0);
- break;
- case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
- case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
- case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
- case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
- case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
- case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
- case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
- case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
- case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
- case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
- case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
- case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
- case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
- case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
- case Instruction::FRem:
- if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].FloatVal =
- fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
- else {
- if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
- for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
- R.AggregateVal[i].DoubleVal =
- fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
- else {
- dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
- llvm_unreachable(0);
- }
- }
- break;
- }
- } else {
- switch (I.getOpcode()) {
- default:
- dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
- llvm_unreachable(0);
- break;
- case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
- case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
- case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
- case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
- case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
- case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
- case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
- case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
- case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
- case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
- case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
- case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
- case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
- case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
- case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
- }
+ switch (I.getOpcode()) {
+ case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
+ case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
+ case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
+ case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
+ case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
+ case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
+ case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
+ case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
+ case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
+ case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
+ case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
+ case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
+ case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
+ case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
+ case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
+ default:
+ dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
+ llvm_unreachable(0);
}
+
SetValue(&I, R, SF);
}
+++ /dev/null
-; RUN: %lli %s > /dev/null
-
-define i32 @main() {
- %int1 = add <3 x i32> <i32 0, i32 0, i32 0>, <i32 0, i32 0, i32 0>
- %int2 = add <3 x i32> <i32 0, i32 0, i32 0>, <i32 0, i32 0, i32 0>
- %long1 = add <2 x i64> <i64 0, i64 0>, <i64 0, i64 0>
- %long2 = add <2 x i64> <i64 0, i64 0>, <i64 0, i64 0>
- %sbyte1 = add <5 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0>, <i8 0, i8 0, i8 0, i8 0, i8 0>
- %sbyte2 = add <5 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0>, <i8 0, i8 0, i8 0, i8 0, i8 0>
- %short1 = add <4 x i16> <i16 0, i16 0, i16 0, i16 0>, <i16 0, i16 0, i16 0, i16 0>
- %short2 = add <4 x i16> <i16 0, i16 0, i16 0, i16 0>, <i16 0, i16 0, i16 0, i16 0>
- %ubyte1 = add <5 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0>, <i8 0, i8 0, i8 0, i8 0, i8 0>
- %ubyte2 = add <5 x i8> <i8 0, i8 0, i8 0, i8 0, i8 0>, <i8 0, i8 0, i8 0, i8 0, i8 0>
- %uint1 = add <3 x i32> <i32 0, i32 0, i32 0>, <i32 0, i32 0, i32 0>
- %uint2 = add <3 x i32> <i32 0, i32 0, i32 0>, <i32 0, i32 0, i32 0>
- %ulong1 = add <2 x i64> <i64 0, i64 0>, <i64 0, i64 0>
- %ulong2 = add <2 x i64> <i64 0, i64 0>, <i64 0, i64 0>
- %ushort1 = add <4 x i16> <i16 0, i16 0, i16 0, i16 0>, <i16 0, i16 0, i16 0, i16 0>
- %ushort2 = add <4 x i16> <i16 0, i16 0, i16 0, i16 0>, <i16 0, i16 0, i16 0, i16 0>
- %test1 = icmp eq <5 x i8> %ubyte1, %ubyte2
- %test2 = icmp uge <5 x i8> %ubyte1, %ubyte2
- %test3 = icmp ugt <5 x i8> %ubyte1, %ubyte2
- %test4 = icmp ule <5 x i8> %ubyte1, %ubyte2
- %test5 = icmp ult <5 x i8> %ubyte1, %ubyte2
- %test6 = icmp ne <5 x i8> %ubyte1, %ubyte2
- %test7 = icmp eq <4 x i16> %ushort1, %ushort2
- %test8 = icmp uge <4 x i16> %ushort1, %ushort2
- %test9 = icmp ugt <4 x i16> %ushort1, %ushort2
- %test10 = icmp ule <4 x i16> %ushort1, %ushort2
- %test11 = icmp ult <4 x i16> %ushort1, %ushort2
- %test12 = icmp ne <4 x i16> %ushort1, %ushort2
- %test13 = icmp eq <3 x i32> %uint1, %uint2
- %test14 = icmp uge <3 x i32> %uint1, %uint2
- %test15 = icmp ugt <3 x i32> %uint1, %uint2
- %test16 = icmp ule <3 x i32> %uint1, %uint2
- %test17 = icmp ult <3 x i32> %uint1, %uint2
- %test18 = icmp ne <3 x i32> %uint1, %uint2
- %test19 = icmp eq <2 x i64> %ulong1, %ulong2
- %test20 = icmp uge <2 x i64> %ulong1, %ulong2
- %test21 = icmp ugt <2 x i64> %ulong1, %ulong2
- %test22 = icmp ule <2 x i64> %ulong1, %ulong2
- %test23 = icmp ult <2 x i64> %ulong1, %ulong2
- %test24 = icmp ne <2 x i64> %ulong1, %ulong2
- %test25 = icmp eq <5 x i8> %sbyte1, %sbyte2
- %test26 = icmp sge <5 x i8> %sbyte1, %sbyte2
- %test27 = icmp sgt <5 x i8> %sbyte1, %sbyte2
- %test28 = icmp sle <5 x i8> %sbyte1, %sbyte2
- %test29 = icmp slt <5 x i8> %sbyte1, %sbyte2
- %test30 = icmp ne <5 x i8> %sbyte1, %sbyte2
- %test31 = icmp eq <4 x i16> %short1, %short2
- %test32 = icmp sge <4 x i16> %short1, %short2
- %test33 = icmp sgt <4 x i16> %short1, %short2
- %test34 = icmp sle <4 x i16> %short1, %short2
- %test35 = icmp slt <4 x i16> %short1, %short2
- %test36 = icmp ne <4 x i16> %short1, %short2
- %test37 = icmp eq <3 x i32> %int1, %int2
- %test38 = icmp sge <3 x i32> %int1, %int2
- %test39 = icmp sgt <3 x i32> %int1, %int2
- %test40 = icmp sle <3 x i32> %int1, %int2
- %test41 = icmp slt <3 x i32> %int1, %int2
- %test42 = icmp ne <3 x i32> %int1, %int2
- %test43 = icmp eq <2 x i64> %long1, %long2
- %test44 = icmp sge <2 x i64> %long1, %long2
- %test45 = icmp sgt <2 x i64> %long1, %long2
- %test46 = icmp sle <2 x i64> %long1, %long2
- %test47 = icmp slt <2 x i64> %long1, %long2
- %test48 = icmp ne <2 x i64> %long1, %long2
- ret i32 0
-}