sched/fair: Refactor cpu_util_without()
authorDietmar Eggemann <dietmar.eggemann@arm.com>
Fri, 18 Mar 2022 16:36:56 +0000 (17:36 +0100)
committerPeter Zijlstra <peterz@infradead.org>
Fri, 29 Apr 2022 09:06:29 +0000 (11:06 +0200)
Except the 'task has no contribution or is new' condition at the
beginning of cpu_util_without(), which it shares with the load and
runnable counterpart functions, a cpu_util_next(..., dst_cpu = -1)
call can replace the rest of it.

The UTIL_EST specific check that task util_est has to be subtracted
from the CPU one in case of an enqueued (or current (to cater for the
wakeup - lb race)) task has to be moved to cpu_util_next().
This was initially introduced by commit c469933e7721
("sched/fair: Fix cpu_util_wake() for 'execl' type workloads").
UnixBench's `execl` throughput tests were run on the dual socket 40
CPUs Intel E5-2690 v2 to make sure it doesn't regress again.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220318163656.954440-1-dietmar.eggemann@arm.com
kernel/sched/fair.c

index 4c42012..7d38728 100644 (file)
@@ -6544,108 +6544,19 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
 }
 
 /*
- * cpu_util_without: compute cpu utilization without any contributions from *p
- * @cpu: the CPU which utilization is requested
- * @p: the task which utilization should be discounted
- *
- * The utilization of a CPU is defined by the utilization of tasks currently
- * enqueued on that CPU as well as tasks which are currently sleeping after an
- * execution on that CPU.
- *
- * This method returns the utilization of the specified CPU by discounting the
- * utilization of the specified task, whenever the task is currently
- * contributing to the CPU utilization.
- */
-static unsigned long cpu_util_without(int cpu, struct task_struct *p)
-{
-       struct cfs_rq *cfs_rq;
-       unsigned int util;
-
-       /* Task has no contribution or is new */
-       if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
-               return cpu_util_cfs(cpu);
-
-       cfs_rq = &cpu_rq(cpu)->cfs;
-       util = READ_ONCE(cfs_rq->avg.util_avg);
-
-       /* Discount task's util from CPU's util */
-       lsub_positive(&util, task_util(p));
-
-       /*
-        * Covered cases:
-        *
-        * a) if *p is the only task sleeping on this CPU, then:
-        *      cpu_util (== task_util) > util_est (== 0)
-        *    and thus we return:
-        *      cpu_util_without = (cpu_util - task_util) = 0
-        *
-        * b) if other tasks are SLEEPING on this CPU, which is now exiting
-        *    IDLE, then:
-        *      cpu_util >= task_util
-        *      cpu_util > util_est (== 0)
-        *    and thus we discount *p's blocked utilization to return:
-        *      cpu_util_without = (cpu_util - task_util) >= 0
-        *
-        * c) if other tasks are RUNNABLE on that CPU and
-        *      util_est > cpu_util
-        *    then we use util_est since it returns a more restrictive
-        *    estimation of the spare capacity on that CPU, by just
-        *    considering the expected utilization of tasks already
-        *    runnable on that CPU.
-        *
-        * Cases a) and b) are covered by the above code, while case c) is
-        * covered by the following code when estimated utilization is
-        * enabled.
-        */
-       if (sched_feat(UTIL_EST)) {
-               unsigned int estimated =
-                       READ_ONCE(cfs_rq->avg.util_est.enqueued);
-
-               /*
-                * Despite the following checks we still have a small window
-                * for a possible race, when an execl's select_task_rq_fair()
-                * races with LB's detach_task():
-                *
-                *   detach_task()
-                *     p->on_rq = TASK_ON_RQ_MIGRATING;
-                *     ---------------------------------- A
-                *     deactivate_task()                   \
-                *       dequeue_task()                     + RaceTime
-                *         util_est_dequeue()              /
-                *     ---------------------------------- B
-                *
-                * The additional check on "current == p" it's required to
-                * properly fix the execl regression and it helps in further
-                * reducing the chances for the above race.
-                */
-               if (unlikely(task_on_rq_queued(p) || current == p))
-                       lsub_positive(&estimated, _task_util_est(p));
-
-               util = max(util, estimated);
-       }
-
-       /*
-        * Utilization (estimated) can exceed the CPU capacity, thus let's
-        * clamp to the maximum CPU capacity to ensure consistency with
-        * cpu_util.
-        */
-       return min_t(unsigned long, util, capacity_orig_of(cpu));
-}
-
-/*
- * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
- * to @dst_cpu.
+ * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
+ * (@dst_cpu = -1) or migrated to @dst_cpu.
  */
 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
 {
        struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
-       unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
+       unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
 
        /*
-        * If @p migrates from @cpu to another, remove its contribution. Or,
-        * if @p migrates from another CPU to @cpu, add its contribution. In
-        * the other cases, @cpu is not impacted by the migration, so the
-        * util_avg should already be correct.
+        * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
+        * contribution. If @p migrates from another CPU to @cpu add its
+        * contribution. In all the other cases @cpu is not impacted by the
+        * migration so its util_avg is already correct.
         */
        if (task_cpu(p) == cpu && dst_cpu != cpu)
                lsub_positive(&util, task_util(p));
@@ -6653,16 +6564,40 @@ static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
                util += task_util(p);
 
        if (sched_feat(UTIL_EST)) {
+               unsigned long util_est;
+
                util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
 
                /*
-                * During wake-up, the task isn't enqueued yet and doesn't
-                * appear in the cfs_rq->avg.util_est.enqueued of any rq,
-                * so just add it (if needed) to "simulate" what will be
-                * cpu_util after the task has been enqueued.
+                * During wake-up @p isn't enqueued yet and doesn't contribute
+                * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
+                * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
+                * has been enqueued.
+                *
+                * During exec (@dst_cpu = -1) @p is enqueued and does
+                * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
+                * Remove it to "simulate" cpu_util without @p's contribution.
+                *
+                * Despite the task_on_rq_queued(@p) check there is still a
+                * small window for a possible race when an exec
+                * select_task_rq_fair() races with LB's detach_task().
+                *
+                *   detach_task()
+                *     deactivate_task()
+                *       p->on_rq = TASK_ON_RQ_MIGRATING;
+                *       -------------------------------- A
+                *       dequeue_task()                    \
+                *         dequeue_task_fair()              + Race Time
+                *           util_est_dequeue()            /
+                *       -------------------------------- B
+                *
+                * The additional check "current == p" is required to further
+                * reduce the race window.
                 */
                if (dst_cpu == cpu)
                        util_est += _task_util_est(p);
+               else if (unlikely(task_on_rq_queued(p) || current == p))
+                       lsub_positive(&util_est, _task_util_est(p));
 
                util = max(util, util_est);
        }
@@ -6671,6 +6606,28 @@ static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
 }
 
 /*
+ * cpu_util_without: compute cpu utilization without any contributions from *p
+ * @cpu: the CPU which utilization is requested
+ * @p: the task which utilization should be discounted
+ *
+ * The utilization of a CPU is defined by the utilization of tasks currently
+ * enqueued on that CPU as well as tasks which are currently sleeping after an
+ * execution on that CPU.
+ *
+ * This method returns the utilization of the specified CPU by discounting the
+ * utilization of the specified task, whenever the task is currently
+ * contributing to the CPU utilization.
+ */
+static unsigned long cpu_util_without(int cpu, struct task_struct *p)
+{
+       /* Task has no contribution or is new */
+       if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
+               return cpu_util_cfs(cpu);
+
+       return cpu_util_next(cpu, p, -1);
+}
+
+/*
  * compute_energy(): Estimates the energy that @pd would consume if @p was
  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
  * landscape of @pd's CPUs after the task migration, and uses the Energy Model