src/streaming/onevpl/cfg_params.cpp
src/streaming/onevpl/cfg_params_parser.cpp
src/streaming/onevpl/utils.cpp
+ src/streaming/onevpl/default.cpp
src/streaming/onevpl/data_provider_interface_exception.cpp
src/streaming/onevpl/accelerators/surface/base_frame_adapter.cpp
src/streaming/onevpl/accelerators/surface/cpu_frame_adapter.cpp
# Required for sample with inference on host
-if(TARGET example_gapi_onevpl_infer_single_roi)
+if(TARGET example_gapi_onevpl_infer_with_advanced_device_selection)
if(TARGET ocv.3rdparty.openvino AND OPENCV_GAPI_WITH_OPENVINO)
- ocv_target_link_libraries(example_gapi_onevpl_infer_single_roi PRIVATE ocv.3rdparty.openvino)
+ ocv_target_link_libraries(example_gapi_onevpl_infer_with_advanced_device_selection PRIVATE ocv.3rdparty.openvino)
endif()
if(HAVE_DIRECTX AND HAVE_D3D11)
- ocv_target_link_libraries(example_gapi_onevpl_infer_single_roi PRIVATE d3d11 dxgi)
+ ocv_target_link_libraries(example_gapi_onevpl_infer_with_advanced_device_selection PRIVATE d3d11 dxgi)
endif()
if(HAVE_D3D11 AND HAVE_OPENCL)
- ocv_target_include_directories(example_gapi_onevpl_infer_single_roi SYSTEM PRIVATE ${OPENCL_INCLUDE_DIRS})
+ ocv_target_include_directories(example_gapi_onevpl_infer_with_advanced_device_selection SYSTEM PRIVATE ${OPENCL_INCLUDE_DIRS})
endif()
if(UNIX AND HAVE_VA)
message ("GAPI VPL samples with VAAPI")
- ocv_target_include_directories(example_gapi_onevpl_infer_single_roi SYSTEM PRIVATE ${VA_INCLUDE_DIR})
- ocv_target_link_libraries(example_gapi_onevpl_infer_single_roi PRIVATE ${VA_LIBRARIES})
+ ocv_target_include_directories(example_gapi_onevpl_infer_with_advanced_device_selection SYSTEM PRIVATE ${VA_INCLUDE_DIR})
+ ocv_target_link_libraries(example_gapi_onevpl_infer_with_advanced_device_selection PRIVATE ${VA_LIBRARIES})
endif()
endif()
{
static const std::vector<U>& get(GOCLContext &ctx, int idx) { return ctx.inArg<VectorRef>(idx).rref<U>(); }
};
+template<> struct ocl_get_in<cv::GFrame>
+{
+ static cv::MediaFrame get(GOCLContext &ctx, int idx) { return ctx.inArg<cv::MediaFrame>(idx); }
+};
template<typename U> struct ocl_get_in<cv::GOpaque<U> >
{
static const U& get(GOCLContext &ctx, int idx) { return ctx.inArg<OpaqueRef>(idx).rref<U>(); }
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2022 Intel Corporation
+
+#ifndef OPENCV_GAPI_STREAMING_ONEVPL_UTILS_HPP
+#define OPENCV_GAPI_STREAMING_ONEVPL_UTILS_HPP
+
+#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
+#include <opencv2/gapi/streaming/onevpl/cfg_params.hpp>
+#include <opencv2/gapi/streaming/onevpl/device_selector_interface.hpp>
+
+namespace cv {
+namespace gapi {
+namespace wip {
+namespace onevpl {
+
+/**
+ * @brief Provides default device selector based on config.
+ */
+GAPI_EXPORTS std::shared_ptr<IDeviceSelector> getDefaultDeviceSelector(const std::vector<CfgParam>& cfg_params);
+
+} // namespace onevpl
+} // namespace wip
+} // namespace gapi
+} // namespace cv
+
+#endif // OPENCV_GAPI_STREAMING_ONEVPL_UTILS_HPP
+++ /dev/null
-#include <algorithm>
-#include <fstream>
-#include <iostream>
-#include <cctype>
-#include <tuple>
-
-#include <opencv2/imgproc.hpp>
-#include <opencv2/gapi.hpp>
-#include <opencv2/gapi/core.hpp>
-#include <opencv2/gapi/cpu/gcpukernel.hpp>
-#include <opencv2/gapi/infer/ie.hpp>
-#include <opencv2/gapi/render.hpp>
-#include <opencv2/gapi/streaming/onevpl/source.hpp>
-#include <opencv2/highgui.hpp> // CommandLineParser
-#include <opencv2/gapi/infer/parsers.hpp>
-
-#ifdef HAVE_INF_ENGINE
-#include <inference_engine.hpp> // ParamMap
-#endif // HAVE_INF_ENGINE
-
-#ifdef HAVE_DIRECTX
-#ifdef HAVE_D3D11
-
-// get rid of generate macro max/min/etc from DX side
-#define D3D11_NO_HELPERS
-#define NOMINMAX
-#include <d3d11.h>
-#undef NOMINMAX
-#undef D3D11_NO_HELPERS
-#endif // HAVE_D3D11
-#endif // HAVE_DIRECTX
-
-#ifdef __linux__
-#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
-#include "va/va.h"
-#include "va/va_drm.h"
-
-#include <fcntl.h>
-#include <unistd.h>
-#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
-#endif // __linux__
-
-
-const std::string about =
- "This is an OpenCV-based version of oneVPLSource decoder example";
-const std::string keys =
- "{ h help | | Print this help message }"
- "{ input | | Path to the input demultiplexed video file }"
- "{ output | | Path to the output RAW video file. Use .avi extension }"
- "{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
- "{ faced | GPU | Target device for face detection model (e.g. AUTO, GPU, VPU, ...) }"
- "{ cfg_params | | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }"
- "{ streaming_queue_capacity | 1 | Streaming executor queue capacity. Calculated automatically if 0 }"
- "{ frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size}"
- "{ vpp_frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size for VPP preprocessing results}"
- "{ roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }"
- "{ source_device | CPU | choose device for decoding }"
- "{ preproc_device | | choose device for preprocessing }";
-
-
-namespace {
-bool is_gpu(const std::string &device_name) {
- return device_name.find("GPU") != std::string::npos;
-}
-
-std::string get_weights_path(const std::string &model_path) {
- const auto EXT_LEN = 4u;
- const auto sz = model_path.size();
- GAPI_Assert(sz > EXT_LEN);
-
- auto ext = model_path.substr(sz - EXT_LEN);
- std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
- return static_cast<unsigned char>(std::tolower(c));
- });
- GAPI_Assert(ext == ".xml");
- return model_path.substr(0u, sz - EXT_LEN) + ".bin";
-}
-
-// TODO: It duplicates infer_single_roi sample
-cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
- cv::Rect rv;
- char delim[3];
-
- std::stringstream is(rc);
- is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
- if (is.bad()) {
- return cv::util::optional<cv::Rect>(); // empty value
- }
- const auto is_delim = [](char c) {
- return c == ',';
- };
- if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
- return cv::util::optional<cv::Rect>(); // empty value
- }
- if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
- return cv::util::optional<cv::Rect>(); // empty value
- }
- return cv::util::make_optional(std::move(rv));
-}
-
-#ifdef HAVE_DIRECTX
-#ifdef HAVE_D3D11
-
-// Since ATL headers might not be available on specific MSVS Build Tools
-// we use simple `CComPtr` implementation like as `ComPtrGuard`
-// which is not supposed to be the full functional replacement of `CComPtr`
-// and it uses as RAII to make sure utilization is correct
-template <typename COMNonManageableType>
-void release(COMNonManageableType *ptr) {
- if (ptr) {
- ptr->Release();
- }
-}
-
-template <typename COMNonManageableType>
-using ComPtrGuard = std::unique_ptr<COMNonManageableType, decltype(&release<COMNonManageableType>)>;
-
-template <typename COMNonManageableType>
-ComPtrGuard<COMNonManageableType> createCOMPtrGuard(COMNonManageableType *ptr = nullptr) {
- return ComPtrGuard<COMNonManageableType> {ptr, &release<COMNonManageableType>};
-}
-
-
-using AccelParamsType = std::tuple<ComPtrGuard<ID3D11Device>, ComPtrGuard<ID3D11DeviceContext>>;
-
-AccelParamsType create_device_with_ctx(IDXGIAdapter* adapter) {
- UINT flags = 0;
- D3D_FEATURE_LEVEL feature_levels[] = { D3D_FEATURE_LEVEL_11_1,
- D3D_FEATURE_LEVEL_11_0,
- };
- D3D_FEATURE_LEVEL featureLevel;
- ID3D11Device* ret_device_ptr = nullptr;
- ID3D11DeviceContext* ret_ctx_ptr = nullptr;
- HRESULT err = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN,
- nullptr, flags,
- feature_levels,
- ARRAYSIZE(feature_levels),
- D3D11_SDK_VERSION, &ret_device_ptr,
- &featureLevel, &ret_ctx_ptr);
- if (FAILED(err)) {
- throw std::runtime_error("Cannot create D3D11CreateDevice, error: " +
- std::to_string(HRESULT_CODE(err)));
- }
-
- return std::make_tuple(createCOMPtrGuard(ret_device_ptr),
- createCOMPtrGuard(ret_ctx_ptr));
-}
-#endif // HAVE_D3D11
-#endif // HAVE_DIRECTX
-} // anonymous namespace
-
-namespace custom {
-G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
-
-using GDetections = cv::GArray<cv::Rect>;
-using GRect = cv::GOpaque<cv::Rect>;
-using GSize = cv::GOpaque<cv::Size>;
-using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
-
-G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
- static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
- return cv::empty_array_desc();
- }
-};
-
-// TODO: It duplicates infer_single_roi sample
-G_API_OP(LocateROI, <GRect(GSize)>, "sample.custom.locate-roi") {
- static cv::GOpaqueDesc outMeta(const cv::GOpaqueDesc &) {
- return cv::empty_gopaque_desc();
- }
-};
-
-G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
- static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
- return cv::empty_array_desc();
- }
-};
-
-GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
- // This is the place where we can run extra analytics
- // on the input image frame and select the ROI (region
- // of interest) where we want to detect our objects (or
- // run any other inference).
- //
- // Currently it doesn't do anything intelligent,
- // but only crops the input image to square (this is
- // the most convenient aspect ratio for detectors to use)
-
- static void run(const cv::Size& in_size,
- cv::Rect &out_rect) {
-
- // Identify the central point & square size (- some padding)
- const auto center = cv::Point{in_size.width/2, in_size.height/2};
- auto sqside = std::min(in_size.width, in_size.height);
-
- // Now build the central square ROI
- out_rect = cv::Rect{ center.x - sqside/2
- , center.y - sqside/2
- , sqside
- , sqside
- };
- }
-};
-
-GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
- // This kernel converts the rectangles into G-API's
- // rendering primitives
- static void run(const std::vector<cv::Rect> &in_face_rcs,
- const cv::Rect &in_roi,
- std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
- out_prims.clear();
- const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
- return cv::gapi::wip::draw::Rect(rc, clr, 2);
- };
- out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
- for (auto &&rc : in_face_rcs) {
- out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
- }
- }
-};
-
-GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
- static void run(const cv::Mat &in_ssd_result,
- const cv::Rect &in_roi,
- const cv::Size &in_parent_size,
- std::vector<cv::Rect> &out_objects) {
- const auto &in_ssd_dims = in_ssd_result.size;
- GAPI_Assert(in_ssd_dims.dims() == 4u);
-
- const int MAX_PROPOSALS = in_ssd_dims[2];
- const int OBJECT_SIZE = in_ssd_dims[3];
- GAPI_Assert(OBJECT_SIZE == 7); // fixed SSD object size
-
- const cv::Size up_roi = in_roi.size();
- const cv::Rect surface({0,0}, in_parent_size);
-
- out_objects.clear();
-
- const float *data = in_ssd_result.ptr<float>();
- for (int i = 0; i < MAX_PROPOSALS; i++) {
- const float image_id = data[i * OBJECT_SIZE + 0];
- const float label = data[i * OBJECT_SIZE + 1];
- const float confidence = data[i * OBJECT_SIZE + 2];
- const float rc_left = data[i * OBJECT_SIZE + 3];
- const float rc_top = data[i * OBJECT_SIZE + 4];
- const float rc_right = data[i * OBJECT_SIZE + 5];
- const float rc_bottom = data[i * OBJECT_SIZE + 6];
- (void) label; // unused
-
- if (image_id < 0.f) {
- break; // marks end-of-detections
- }
- if (confidence < 0.5f) {
- continue; // skip objects with low confidence
- }
-
- // map relative coordinates to the original image scale
- // taking the ROI into account
- cv::Rect rc;
- rc.x = static_cast<int>(rc_left * up_roi.width);
- rc.y = static_cast<int>(rc_top * up_roi.height);
- rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x;
- rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
- rc.x += in_roi.x;
- rc.y += in_roi.y;
- out_objects.emplace_back(rc & surface);
- }
- }
-};
-
-} // namespace custom
-
-namespace cfg {
-typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line);
-
-struct flow {
- flow(bool preproc, bool rctx) :
- vpl_preproc_enable(preproc),
- ie_remote_ctx_enable(rctx) {
- }
- bool vpl_preproc_enable = false;
- bool ie_remote_ctx_enable = false;
-};
-
-using support_matrix =
- std::map <std::string/*source_dev_id*/,
- std::map<std::string/*preproc_device_id*/,
- std::map <std::string/*rctx device_id*/, std::shared_ptr<flow>>>>;
-support_matrix resolved_conf{{
- {"GPU", {{
- {"", {{ "CPU", std::make_shared<flow>(false, false)},
- { "GPU", {/* unsupported:
- * ie GPU preproc isn't available */}}
- }},
-
- {"CPU", {{ "CPU", {/* unsupported: preproc mix */}},
- { "GPU", {/* unsupported: preproc mix */}}
- }},
-#if defined(HAVE_DIRECTX) && defined(HAVE_D3D11)
- {"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
- { "GPU", std::make_shared<flow>(true, true)}}}
-#else // TODO VAAPI under linux doesn't support GPU IE remote context
- {"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
- { "GPU", std::make_shared<flow>(true, false)}}}
-#endif
- }}
- },
- {"CPU", {{
- {"", {{ "CPU", std::make_shared<flow>(false, false)},
- { "GPU", std::make_shared<flow>(false, false)}
- }},
-
- {"CPU", {{ "CPU", std::make_shared<flow>(true, false)},
- { "GPU", std::make_shared<flow>(true, false)}
- }},
-
- {"GPU", {{ "CPU", {/* unsupported: preproc mix */}},
- { "GPU", {/* unsupported: preproc mix */}}}}
- }}
- }
- }};
-
-static void print_available_cfg(std::ostream &out,
- const std::string &source_device,
- const std::string &preproc_device,
- const std::string &ie_device_id) {
- const std::string source_device_cfg_name("--source_device=");
- const std::string preproc_device_cfg_name("--preproc_device=");
- const std::string ie_cfg_name("--faced=");
- out << "unsupported acceleration param combinations:\n"
- << source_device_cfg_name << source_device << " "
- << preproc_device_cfg_name << preproc_device << " "
- << ie_cfg_name << ie_device_id <<
- "\n\nSupported matrix:\n\n" << std::endl;
- for (const auto &s_d : cfg::resolved_conf) {
- std::string prefix = source_device_cfg_name + s_d.first;
- for (const auto &p_d : s_d.second) {
- std::string mid_prefix = prefix + +"\t" + preproc_device_cfg_name +
- (p_d.first.empty() ? "" : p_d.first);
- for (const auto &i_d : p_d.second) {
- if (i_d.second) {
- std::cerr << mid_prefix << "\t" << ie_cfg_name <<i_d.first << std::endl;
- }
- }
- }
- }
-}
-}
-
-int main(int argc, char *argv[]) {
-
- cv::CommandLineParser cmd(argc, argv, keys);
- cmd.about(about);
- if (cmd.has("help")) {
- cmd.printMessage();
- return 0;
- }
-
- // get file name
- const auto file_path = cmd.get<std::string>("input");
- const auto output = cmd.get<std::string>("output");
- const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
- const auto face_model_path = cmd.get<std::string>("facem");
- const auto streaming_queue_capacity = cmd.get<uint32_t>("streaming_queue_capacity");
- const auto source_decode_queue_capacity = cmd.get<uint32_t>("frames_pool_size");
- const auto source_vpp_queue_capacity = cmd.get<uint32_t>("vpp_frames_pool_size");
- const auto device_id = cmd.get<std::string>("faced");
- const auto source_device = cmd.get<std::string>("source_device");
- const auto preproc_device = cmd.get<std::string>("preproc_device");
-
- // validate support matrix
- std::shared_ptr<cfg::flow> flow_settings = cfg::resolved_conf[source_device][preproc_device][device_id];
- if (!flow_settings) {
- cfg::print_available_cfg(std::cerr, source_device, preproc_device, device_id);
- return -1;
- }
-
- // check output file extension
- if (!output.empty()) {
- auto ext = output.find_last_of(".");
- if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) {
- std::cerr << "Output file should have *.avi extension for output video" << std::endl;
- return -1;
- }
- }
-
- // get oneVPL cfg params from cmd
- std::stringstream params_list(cmd.get<std::string>("cfg_params"));
- std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs;
- try {
- std::string line;
- while (std::getline(params_list, line, ';')) {
- source_cfgs.push_back(cfg::create_from_string(line));
- }
- } catch (const std::exception& ex) {
- std::cerr << "Invalid cfg parameter: " << ex.what() << std::endl;
- return -1;
- }
-
- // apply VPL source optimization params
- if (source_decode_queue_capacity != 0) {
- source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_frames_pool_size(source_decode_queue_capacity));
- }
- if (source_vpp_queue_capacity != 0) {
- source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_vpp_frames_pool_size(source_vpp_queue_capacity));
- }
-
- auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
- face_model_path, // path to topology IR
- get_weights_path(face_model_path), // path to weights
- device_id
- };
-
- // It is allowed (and highly recommended) to reuse predefined device_ptr & context_ptr objects
- // received from user application. Current sample demonstrate how to deal with this situation.
- //
- // But if you do not need this fine-grained acceleration devices configuration then
- // just use default constructors for onevpl::GSource, IE and preprocessing module.
- // But please pay attention that default pipeline construction in this case will be
- // very inefficient and carries out multiple CPU-GPU memory copies
- //
- // If you want to reach max performance and seize copy-free approach for specific
- // device & context selection then follow the steps below.
- // The situation is complicated a little bit in comparison with default configuration, thus
- // let's focusing this:
- //
- // - all component-participants (Source, Preprocessing, Inference)
- // must share the same device & context instances
- //
- // - you must wrapping your available device & context instancs into thin
- // `cv::gapi::wip::Device` & `cv::gapi::wip::Context`.
- // !!! Please pay attention that both objects are weak wrapper so you must ensure
- // that device & context would be alived before full pipeline created !!!
- //
- // - you should pass such wrappers as constructor arguments for each component in pipeline:
- // a) use extended constructor for `onevpl::GSource` for activating predefined device & context
- // b) use `cfgContextParams` method of `cv::gapi::ie::Params` to enable `PreprocesingEngine`
- // for predefined device & context
- // c) use `InferenceEngine::ParamMap` to activate remote ctx in Inference Engine for given
- // device & context
- //
- //
- //// P.S. the current sample supports heterogenous pipeline construction also.
- //// It is possible to make up mixed device approach.
- //// Please feel free to explore different configurations!
-
- cv::util::optional<cv::gapi::wip::onevpl::Device> gpu_accel_device;
- cv::util::optional<cv::gapi::wip::onevpl::Context> gpu_accel_ctx;
- cv::gapi::wip::onevpl::Device cpu_accel_device = cv::gapi::wip::onevpl::create_host_device();
- cv::gapi::wip::onevpl::Context cpu_accel_ctx = cv::gapi::wip::onevpl::create_host_context();
- // create GPU device if requested
- if (is_gpu(device_id)
- || is_gpu(source_device)
- || is_gpu(preproc_device)) {
-#ifdef HAVE_DIRECTX
-#ifdef HAVE_D3D11
- // create DX11 device & context owning handles.
- // wip::Device & wip::Context provide non-owning semantic of resources and act
- // as weak references API wrappers in order to carry type-erased resources type
- // into appropriate modules: onevpl::GSource, PreprocEngine and InferenceEngine
- // Until modules are not created owner handles must stay alive
- auto dx11_dev = createCOMPtrGuard<ID3D11Device>();
- auto dx11_ctx = createCOMPtrGuard<ID3D11DeviceContext>();
-
- auto adapter_factory = createCOMPtrGuard<IDXGIFactory>();
- {
- IDXGIFactory* out_factory = nullptr;
- HRESULT err = CreateDXGIFactory(__uuidof(IDXGIFactory),
- reinterpret_cast<void**>(&out_factory));
- if (FAILED(err)) {
- std::cerr << "Cannot create CreateDXGIFactory, error: " << HRESULT_CODE(err) << std::endl;
- return -1;
- }
- adapter_factory = createCOMPtrGuard(out_factory);
- }
-
- auto intel_adapter = createCOMPtrGuard<IDXGIAdapter>();
- UINT adapter_index = 0;
- const unsigned int refIntelVendorID = 0x8086;
- IDXGIAdapter* out_adapter = nullptr;
-
- while (adapter_factory->EnumAdapters(adapter_index, &out_adapter) != DXGI_ERROR_NOT_FOUND) {
- DXGI_ADAPTER_DESC desc{};
- out_adapter->GetDesc(&desc);
- if (desc.VendorId == refIntelVendorID) {
- intel_adapter = createCOMPtrGuard(out_adapter);
- break;
- }
- ++adapter_index;
- }
-
- if (!intel_adapter) {
- std::cerr << "No Intel GPU adapter on aboard. Exit" << std::endl;
- return -1;
- }
-
- std::tie(dx11_dev, dx11_ctx) = create_device_with_ctx(intel_adapter.get());
- gpu_accel_device = cv::util::make_optional(
- cv::gapi::wip::onevpl::create_dx11_device(
- reinterpret_cast<void*>(dx11_dev.release()),
- "GPU"));
- gpu_accel_ctx = cv::util::make_optional(
- cv::gapi::wip::onevpl::create_dx11_context(
- reinterpret_cast<void*>(dx11_ctx.release())));
-#endif // HAVE_D3D11
-#endif // HAVE_DIRECTX
-#ifdef __linux__
-#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
- static const char *predefined_vaapi_devices_list[] {"/dev/dri/renderD128",
- "/dev/dri/renderD129",
- "/dev/dri/card0",
- "/dev/dri/card1",
- nullptr};
- std::stringstream ss;
- int device_fd = -1;
- VADisplay va_handle = nullptr;
- for (const char **device_path = predefined_vaapi_devices_list;
- *device_path != nullptr; device_path++) {
- device_fd = open(*device_path, O_RDWR);
- if (device_fd < 0) {
- std::string info("Cannot open GPU file: \"");
- info = info + *device_path + "\", error: " + strerror(errno);
- ss << info << std::endl;
- continue;
- }
- va_handle = vaGetDisplayDRM(device_fd);
- if (!va_handle) {
- close(device_fd);
- std::string info("VAAPI device vaGetDisplayDRM failed, error: ");
- info += strerror(errno);
- ss << info << std::endl;
- continue;
- }
- int major_version = 0, minor_version = 0;
- VAStatus status {};
- status = vaInitialize(va_handle, &major_version, &minor_version);
- if (VA_STATUS_SUCCESS != status) {
- close(device_fd);
- va_handle = nullptr;
-
- std::string info("Cannot initialize VAAPI device, error: ");
- info += vaErrorStr(status);
- ss << info << std::endl;
- continue;
- }
- std::cout << "VAAPI created for device: " << *device_path << ", version: "
- << major_version << "." << minor_version << std::endl;
- break;
- }
-
- // check device creation
- if (!va_handle) {
- std::cerr << "Cannot create VAAPI device. Log:\n" << ss.str() << std::endl;
- return -1;
- }
- gpu_accel_device = cv::util::make_optional(
- cv::gapi::wip::onevpl::create_vaapi_device(reinterpret_cast<void*>(va_handle),
- "GPU"));
- gpu_accel_ctx = cv::util::make_optional(
- cv::gapi::wip::onevpl::create_vaapi_context(nullptr));
-#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
-#endif // #ifdef __linux__
- }
-
-#ifdef HAVE_INF_ENGINE
- // activate remote ctx in Inference Engine for GPU device
- // when other pipeline component use the GPU device too
- if (flow_settings->ie_remote_ctx_enable) {
- InferenceEngine::ParamMap ctx_config({{"CONTEXT_TYPE", "VA_SHARED"},
- {"VA_DEVICE", gpu_accel_device.value().get_ptr()} });
- face_net.cfgContextParams(ctx_config);
- std::cout << "enforce InferenceEngine remote context on device: " << device_id << std::endl;
-
- // NB: consider NV12 surface because it's one of native GPU image format
- face_net.pluginConfig({{"GPU_NV12_TWO_INPUTS", "YES" }});
- std::cout << "enforce InferenceEngine NV12 blob" << std::endl;
- }
-#endif // HAVE_INF_ENGINE
-
- // turn on VPP PreprocesingEngine if available & requested
- if (flow_settings->vpl_preproc_enable) {
- if (is_gpu(preproc_device)) {
- // activate VPP PreprocesingEngine on GPU
- face_net.cfgPreprocessingParams(gpu_accel_device.value(),
- gpu_accel_ctx.value());
- } else {
- // activate VPP PreprocesingEngine on CPU
- face_net.cfgPreprocessingParams(cpu_accel_device,
- cpu_accel_ctx);
- }
- std::cout << "enforce VPP preprocessing on device: " << preproc_device << std::endl;
- } else {
- std::cout << "use InferenceEngine default preprocessing" << std::endl;
- }
-
- auto kernels = cv::gapi::kernels
- < custom::OCVLocateROI
- , custom::OCVParseSSD
- , custom::OCVBBoxes>();
- auto networks = cv::gapi::networks(face_net);
- auto face_detection_args = cv::compile_args(networks, kernels);
- if (streaming_queue_capacity != 0) {
- face_detection_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity });
- }
-
- // Create source
- cv::gapi::wip::IStreamSource::Ptr cap;
- try {
- if (is_gpu(source_device)) {
- std::cout << "enforce VPL Source deconding on device: " << source_device << std::endl;
- // use special 'Device' constructor for `onevpl::GSource`
- cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs,
- gpu_accel_device.value(),
- gpu_accel_ctx.value());
- } else {
- cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs);
- }
- std::cout << "oneVPL source description: " << cap->descr_of() << std::endl;
- } catch (const std::exception& ex) {
- std::cerr << "Cannot create source: " << ex.what() << std::endl;
- return -1;
- }
-
- cv::GMetaArg descr = cap->descr_of();
- auto frame_descr = cv::util::get<cv::GFrameDesc>(descr);
- cv::GOpaque<cv::Rect> in_roi;
- auto inputs = cv::gin(cap);
-
- // Now build the graph
- cv::GFrame in;
- auto size = cv::gapi::streaming::size(in);
- auto graph_inputs = cv::GIn(in);
- if (!opt_roi.has_value()) {
- // Automatically detect ROI to infer. Make it output parameter
- std::cout << "ROI is not set or invalid. Locating it automatically"
- << std::endl;
- in_roi = custom::LocateROI::on(size);
- } else {
- // Use the value provided by user
- std::cout << "Will run inference for static region "
- << opt_roi.value()
- << " only"
- << std::endl;
- graph_inputs += cv::GIn(in_roi);
- inputs += cv::gin(opt_roi.value());
- }
- auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
- cv::GArray<cv::Rect> rcs = custom::ParseSSD::on(blob, in_roi, size);
- auto out_frame = cv::gapi::wip::draw::renderFrame(in, custom::BBoxes::on(rcs, in_roi));
- auto out = cv::gapi::streaming::BGR(out_frame);
- cv::GStreamingCompiled pipeline = cv::GComputation(std::move(graph_inputs), cv::GOut(out)) // and move here
- .compileStreaming(std::move(face_detection_args));
- // The execution part
- pipeline.setSource(std::move(inputs));
- pipeline.start();
-
- size_t frames = 0u;
- cv::TickMeter tm;
- cv::VideoWriter writer;
- if (!output.empty() && !writer.isOpened()) {
- const auto sz = cv::Size{frame_descr.size.width, frame_descr.size.height};
- writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
- GAPI_Assert(writer.isOpened());
- }
-
- cv::Mat outMat;
- tm.start();
- while (pipeline.pull(cv::gout(outMat))) {
- cv::imshow("Out", outMat);
- cv::waitKey(1);
- if (!output.empty()) {
- writer << outMat;
- }
- ++frames;
- }
- tm.stop();
- std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
-
- return 0;
-}
-
-
-namespace cfg {
-typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) {
- using namespace cv::gapi::wip;
-
- if (line.empty()) {
- throw std::runtime_error("Cannot parse CfgParam from emply line");
- }
-
- std::string::size_type name_endline_pos = line.find(':');
- if (name_endline_pos == std::string::npos) {
- throw std::runtime_error("Cannot parse CfgParam from: " + line +
- "\nExpected separator \":\"");
- }
-
- std::string name = line.substr(0, name_endline_pos);
- std::string value = line.substr(name_endline_pos + 1);
-
- return cv::gapi::wip::onevpl::CfgParam::create(name, value,
- /* vpp params strongly optional */
- name.find("vpp.") == std::string::npos);
-}
-}
--- /dev/null
+#include <algorithm>
+#include <fstream>
+#include <iostream>
+#include <cctype>
+#include <tuple>
+
+#include <opencv2/imgproc.hpp>
+#include <opencv2/gapi.hpp>
+#include <opencv2/gapi/core.hpp>
+#include <opencv2/gapi/cpu/gcpukernel.hpp>
+#include <opencv2/gapi/infer/ie.hpp>
+#include <opencv2/gapi/render.hpp>
+#include <opencv2/gapi/streaming/onevpl/source.hpp>
+#include <opencv2/highgui.hpp> // CommandLineParser
+#include <opencv2/gapi/infer/parsers.hpp>
+
+#ifdef HAVE_INF_ENGINE
+#include <inference_engine.hpp> // ParamMap
+#endif // HAVE_INF_ENGINE
+
+#ifdef HAVE_DIRECTX
+#ifdef HAVE_D3D11
+
+// get rid of generate macro max/min/etc from DX side
+#define D3D11_NO_HELPERS
+#define NOMINMAX
+#include <d3d11.h>
+#undef NOMINMAX
+#undef D3D11_NO_HELPERS
+#endif // HAVE_D3D11
+#endif // HAVE_DIRECTX
+
+#ifdef __linux__
+#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
+#include "va/va.h"
+#include "va/va_drm.h"
+
+#include <fcntl.h>
+#include <unistd.h>
+#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
+#endif // __linux__
+
+
+const std::string about =
+ "This is an OpenCV-based version of oneVPLSource decoder example";
+const std::string keys =
+ "{ h help | | Print this help message }"
+ "{ input | | Path to the input demultiplexed video file }"
+ "{ output | | Path to the output RAW video file. Use .avi extension }"
+ "{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
+ "{ faced | GPU | Target device for face detection model (e.g. AUTO, GPU, VPU, ...) }"
+ "{ cfg_params | | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }"
+ "{ streaming_queue_capacity | 1 | Streaming executor queue capacity. Calculated automatically if 0 }"
+ "{ frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size}"
+ "{ vpp_frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size for VPP preprocessing results}"
+ "{ roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }"
+ "{ source_device | CPU | choose device for decoding }"
+ "{ preproc_device | | choose device for preprocessing }";
+
+
+namespace {
+bool is_gpu(const std::string &device_name) {
+ return device_name.find("GPU") != std::string::npos;
+}
+
+std::string get_weights_path(const std::string &model_path) {
+ const auto EXT_LEN = 4u;
+ const auto sz = model_path.size();
+ GAPI_Assert(sz > EXT_LEN);
+
+ auto ext = model_path.substr(sz - EXT_LEN);
+ std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
+ return static_cast<unsigned char>(std::tolower(c));
+ });
+ GAPI_Assert(ext == ".xml");
+ return model_path.substr(0u, sz - EXT_LEN) + ".bin";
+}
+
+// TODO: It duplicates infer_single_roi sample
+cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
+ cv::Rect rv;
+ char delim[3];
+
+ std::stringstream is(rc);
+ is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
+ if (is.bad()) {
+ return cv::util::optional<cv::Rect>(); // empty value
+ }
+ const auto is_delim = [](char c) {
+ return c == ',';
+ };
+ if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
+ return cv::util::optional<cv::Rect>(); // empty value
+ }
+ if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
+ return cv::util::optional<cv::Rect>(); // empty value
+ }
+ return cv::util::make_optional(std::move(rv));
+}
+
+#ifdef HAVE_DIRECTX
+#ifdef HAVE_D3D11
+
+// Since ATL headers might not be available on specific MSVS Build Tools
+// we use simple `CComPtr` implementation like as `ComPtrGuard`
+// which is not supposed to be the full functional replacement of `CComPtr`
+// and it uses as RAII to make sure utilization is correct
+template <typename COMNonManageableType>
+void release(COMNonManageableType *ptr) {
+ if (ptr) {
+ ptr->Release();
+ }
+}
+
+template <typename COMNonManageableType>
+using ComPtrGuard = std::unique_ptr<COMNonManageableType, decltype(&release<COMNonManageableType>)>;
+
+template <typename COMNonManageableType>
+ComPtrGuard<COMNonManageableType> createCOMPtrGuard(COMNonManageableType *ptr = nullptr) {
+ return ComPtrGuard<COMNonManageableType> {ptr, &release<COMNonManageableType>};
+}
+
+
+using AccelParamsType = std::tuple<ComPtrGuard<ID3D11Device>, ComPtrGuard<ID3D11DeviceContext>>;
+
+AccelParamsType create_device_with_ctx(IDXGIAdapter* adapter) {
+ UINT flags = 0;
+ D3D_FEATURE_LEVEL feature_levels[] = { D3D_FEATURE_LEVEL_11_1,
+ D3D_FEATURE_LEVEL_11_0,
+ };
+ D3D_FEATURE_LEVEL featureLevel;
+ ID3D11Device* ret_device_ptr = nullptr;
+ ID3D11DeviceContext* ret_ctx_ptr = nullptr;
+ HRESULT err = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN,
+ nullptr, flags,
+ feature_levels,
+ ARRAYSIZE(feature_levels),
+ D3D11_SDK_VERSION, &ret_device_ptr,
+ &featureLevel, &ret_ctx_ptr);
+ if (FAILED(err)) {
+ throw std::runtime_error("Cannot create D3D11CreateDevice, error: " +
+ std::to_string(HRESULT_CODE(err)));
+ }
+
+ return std::make_tuple(createCOMPtrGuard(ret_device_ptr),
+ createCOMPtrGuard(ret_ctx_ptr));
+}
+#endif // HAVE_D3D11
+#endif // HAVE_DIRECTX
+} // anonymous namespace
+
+namespace custom {
+G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
+
+using GDetections = cv::GArray<cv::Rect>;
+using GRect = cv::GOpaque<cv::Rect>;
+using GSize = cv::GOpaque<cv::Size>;
+using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
+
+G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
+ static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
+ return cv::empty_array_desc();
+ }
+};
+
+// TODO: It duplicates infer_single_roi sample
+G_API_OP(LocateROI, <GRect(GSize)>, "sample.custom.locate-roi") {
+ static cv::GOpaqueDesc outMeta(const cv::GOpaqueDesc &) {
+ return cv::empty_gopaque_desc();
+ }
+};
+
+G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
+ static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
+ return cv::empty_array_desc();
+ }
+};
+
+GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
+ // This is the place where we can run extra analytics
+ // on the input image frame and select the ROI (region
+ // of interest) where we want to detect our objects (or
+ // run any other inference).
+ //
+ // Currently it doesn't do anything intelligent,
+ // but only crops the input image to square (this is
+ // the most convenient aspect ratio for detectors to use)
+
+ static void run(const cv::Size& in_size,
+ cv::Rect &out_rect) {
+
+ // Identify the central point & square size (- some padding)
+ const auto center = cv::Point{in_size.width/2, in_size.height/2};
+ auto sqside = std::min(in_size.width, in_size.height);
+
+ // Now build the central square ROI
+ out_rect = cv::Rect{ center.x - sqside/2
+ , center.y - sqside/2
+ , sqside
+ , sqside
+ };
+ }
+};
+
+GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
+ // This kernel converts the rectangles into G-API's
+ // rendering primitives
+ static void run(const std::vector<cv::Rect> &in_face_rcs,
+ const cv::Rect &in_roi,
+ std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
+ out_prims.clear();
+ const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
+ return cv::gapi::wip::draw::Rect(rc, clr, 2);
+ };
+ out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
+ for (auto &&rc : in_face_rcs) {
+ out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
+ }
+ }
+};
+
+GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
+ static void run(const cv::Mat &in_ssd_result,
+ const cv::Rect &in_roi,
+ const cv::Size &in_parent_size,
+ std::vector<cv::Rect> &out_objects) {
+ const auto &in_ssd_dims = in_ssd_result.size;
+ GAPI_Assert(in_ssd_dims.dims() == 4u);
+
+ const int MAX_PROPOSALS = in_ssd_dims[2];
+ const int OBJECT_SIZE = in_ssd_dims[3];
+ GAPI_Assert(OBJECT_SIZE == 7); // fixed SSD object size
+
+ const cv::Size up_roi = in_roi.size();
+ const cv::Rect surface({0,0}, in_parent_size);
+
+ out_objects.clear();
+
+ const float *data = in_ssd_result.ptr<float>();
+ for (int i = 0; i < MAX_PROPOSALS; i++) {
+ const float image_id = data[i * OBJECT_SIZE + 0];
+ const float label = data[i * OBJECT_SIZE + 1];
+ const float confidence = data[i * OBJECT_SIZE + 2];
+ const float rc_left = data[i * OBJECT_SIZE + 3];
+ const float rc_top = data[i * OBJECT_SIZE + 4];
+ const float rc_right = data[i * OBJECT_SIZE + 5];
+ const float rc_bottom = data[i * OBJECT_SIZE + 6];
+ (void) label; // unused
+
+ if (image_id < 0.f) {
+ break; // marks end-of-detections
+ }
+ if (confidence < 0.5f) {
+ continue; // skip objects with low confidence
+ }
+
+ // map relative coordinates to the original image scale
+ // taking the ROI into account
+ cv::Rect rc;
+ rc.x = static_cast<int>(rc_left * up_roi.width);
+ rc.y = static_cast<int>(rc_top * up_roi.height);
+ rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x;
+ rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
+ rc.x += in_roi.x;
+ rc.y += in_roi.y;
+ out_objects.emplace_back(rc & surface);
+ }
+ }
+};
+
+} // namespace custom
+
+namespace cfg {
+typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line);
+
+struct flow {
+ flow(bool preproc, bool rctx) :
+ vpl_preproc_enable(preproc),
+ ie_remote_ctx_enable(rctx) {
+ }
+ bool vpl_preproc_enable = false;
+ bool ie_remote_ctx_enable = false;
+};
+
+using support_matrix =
+ std::map <std::string/*source_dev_id*/,
+ std::map<std::string/*preproc_device_id*/,
+ std::map <std::string/*rctx device_id*/, std::shared_ptr<flow>>>>;
+support_matrix resolved_conf{{
+ {"GPU", {{
+ {"", {{ "CPU", std::make_shared<flow>(false, false)},
+ { "GPU", {/* unsupported:
+ * ie GPU preproc isn't available */}}
+ }},
+
+ {"CPU", {{ "CPU", {/* unsupported: preproc mix */}},
+ { "GPU", {/* unsupported: preproc mix */}}
+ }},
+#if defined(HAVE_DIRECTX) && defined(HAVE_D3D11)
+ {"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
+ { "GPU", std::make_shared<flow>(true, true)}}}
+#else // TODO VAAPI under linux doesn't support GPU IE remote context
+ {"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
+ { "GPU", std::make_shared<flow>(true, false)}}}
+#endif
+ }}
+ },
+ {"CPU", {{
+ {"", {{ "CPU", std::make_shared<flow>(false, false)},
+ { "GPU", std::make_shared<flow>(false, false)}
+ }},
+
+ {"CPU", {{ "CPU", std::make_shared<flow>(true, false)},
+ { "GPU", std::make_shared<flow>(true, false)}
+ }},
+
+ {"GPU", {{ "CPU", {/* unsupported: preproc mix */}},
+ { "GPU", {/* unsupported: preproc mix */}}}}
+ }}
+ }
+ }};
+
+static void print_available_cfg(std::ostream &out,
+ const std::string &source_device,
+ const std::string &preproc_device,
+ const std::string &ie_device_id) {
+ const std::string source_device_cfg_name("--source_device=");
+ const std::string preproc_device_cfg_name("--preproc_device=");
+ const std::string ie_cfg_name("--faced=");
+ out << "unsupported acceleration param combinations:\n"
+ << source_device_cfg_name << source_device << " "
+ << preproc_device_cfg_name << preproc_device << " "
+ << ie_cfg_name << ie_device_id <<
+ "\n\nSupported matrix:\n\n" << std::endl;
+ for (const auto &s_d : cfg::resolved_conf) {
+ std::string prefix = source_device_cfg_name + s_d.first;
+ for (const auto &p_d : s_d.second) {
+ std::string mid_prefix = prefix + +"\t" + preproc_device_cfg_name +
+ (p_d.first.empty() ? "" : p_d.first);
+ for (const auto &i_d : p_d.second) {
+ if (i_d.second) {
+ std::cerr << mid_prefix << "\t" << ie_cfg_name <<i_d.first << std::endl;
+ }
+ }
+ }
+ }
+}
+}
+
+int main(int argc, char *argv[]) {
+
+ cv::CommandLineParser cmd(argc, argv, keys);
+ cmd.about(about);
+ if (cmd.has("help")) {
+ cmd.printMessage();
+ return 0;
+ }
+
+ // get file name
+ const auto file_path = cmd.get<std::string>("input");
+ const auto output = cmd.get<std::string>("output");
+ const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
+ const auto face_model_path = cmd.get<std::string>("facem");
+ const auto streaming_queue_capacity = cmd.get<uint32_t>("streaming_queue_capacity");
+ const auto source_decode_queue_capacity = cmd.get<uint32_t>("frames_pool_size");
+ const auto source_vpp_queue_capacity = cmd.get<uint32_t>("vpp_frames_pool_size");
+ const auto device_id = cmd.get<std::string>("faced");
+ const auto source_device = cmd.get<std::string>("source_device");
+ const auto preproc_device = cmd.get<std::string>("preproc_device");
+
+ // validate support matrix
+ std::shared_ptr<cfg::flow> flow_settings = cfg::resolved_conf[source_device][preproc_device][device_id];
+ if (!flow_settings) {
+ cfg::print_available_cfg(std::cerr, source_device, preproc_device, device_id);
+ return -1;
+ }
+
+ // check output file extension
+ if (!output.empty()) {
+ auto ext = output.find_last_of(".");
+ if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) {
+ std::cerr << "Output file should have *.avi extension for output video" << std::endl;
+ return -1;
+ }
+ }
+
+ // get oneVPL cfg params from cmd
+ std::stringstream params_list(cmd.get<std::string>("cfg_params"));
+ std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs;
+ try {
+ std::string line;
+ while (std::getline(params_list, line, ';')) {
+ source_cfgs.push_back(cfg::create_from_string(line));
+ }
+ } catch (const std::exception& ex) {
+ std::cerr << "Invalid cfg parameter: " << ex.what() << std::endl;
+ return -1;
+ }
+
+ // apply VPL source optimization params
+ if (source_decode_queue_capacity != 0) {
+ source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_frames_pool_size(source_decode_queue_capacity));
+ }
+ if (source_vpp_queue_capacity != 0) {
+ source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_vpp_frames_pool_size(source_vpp_queue_capacity));
+ }
+
+ auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
+ face_model_path, // path to topology IR
+ get_weights_path(face_model_path), // path to weights
+ device_id
+ };
+
+ // It is allowed (and highly recommended) to reuse predefined device_ptr & context_ptr objects
+ // received from user application. Current sample demonstrate how to deal with this situation.
+ //
+ // But if you do not need this fine-grained acceleration devices configuration then
+ // just use default constructors for onevpl::GSource, IE and preprocessing module.
+ // But please pay attention that default pipeline construction in this case will be
+ // very inefficient and carries out multiple CPU-GPU memory copies
+ //
+ // If you want to reach max performance and seize copy-free approach for specific
+ // device & context selection then follow the steps below.
+ // The situation is complicated a little bit in comparison with default configuration, thus
+ // let's focusing this:
+ //
+ // - all component-participants (Source, Preprocessing, Inference)
+ // must share the same device & context instances
+ //
+ // - you must wrapping your available device & context instancs into thin
+ // `cv::gapi::wip::Device` & `cv::gapi::wip::Context`.
+ // !!! Please pay attention that both objects are weak wrapper so you must ensure
+ // that device & context would be alived before full pipeline created !!!
+ //
+ // - you should pass such wrappers as constructor arguments for each component in pipeline:
+ // a) use extended constructor for `onevpl::GSource` for activating predefined device & context
+ // b) use `cfgContextParams` method of `cv::gapi::ie::Params` to enable `PreprocesingEngine`
+ // for predefined device & context
+ // c) use `InferenceEngine::ParamMap` to activate remote ctx in Inference Engine for given
+ // device & context
+ //
+ //
+ //// P.S. the current sample supports heterogenous pipeline construction also.
+ //// It is possible to make up mixed device approach.
+ //// Please feel free to explore different configurations!
+
+ cv::util::optional<cv::gapi::wip::onevpl::Device> gpu_accel_device;
+ cv::util::optional<cv::gapi::wip::onevpl::Context> gpu_accel_ctx;
+ cv::gapi::wip::onevpl::Device cpu_accel_device = cv::gapi::wip::onevpl::create_host_device();
+ cv::gapi::wip::onevpl::Context cpu_accel_ctx = cv::gapi::wip::onevpl::create_host_context();
+ // create GPU device if requested
+ if (is_gpu(device_id)
+ || is_gpu(source_device)
+ || is_gpu(preproc_device)) {
+#ifdef HAVE_DIRECTX
+#ifdef HAVE_D3D11
+ // create DX11 device & context owning handles.
+ // wip::Device & wip::Context provide non-owning semantic of resources and act
+ // as weak references API wrappers in order to carry type-erased resources type
+ // into appropriate modules: onevpl::GSource, PreprocEngine and InferenceEngine
+ // Until modules are not created owner handles must stay alive
+ auto dx11_dev = createCOMPtrGuard<ID3D11Device>();
+ auto dx11_ctx = createCOMPtrGuard<ID3D11DeviceContext>();
+
+ auto adapter_factory = createCOMPtrGuard<IDXGIFactory>();
+ {
+ IDXGIFactory* out_factory = nullptr;
+ HRESULT err = CreateDXGIFactory(__uuidof(IDXGIFactory),
+ reinterpret_cast<void**>(&out_factory));
+ if (FAILED(err)) {
+ std::cerr << "Cannot create CreateDXGIFactory, error: " << HRESULT_CODE(err) << std::endl;
+ return -1;
+ }
+ adapter_factory = createCOMPtrGuard(out_factory);
+ }
+
+ auto intel_adapter = createCOMPtrGuard<IDXGIAdapter>();
+ UINT adapter_index = 0;
+ const unsigned int refIntelVendorID = 0x8086;
+ IDXGIAdapter* out_adapter = nullptr;
+
+ while (adapter_factory->EnumAdapters(adapter_index, &out_adapter) != DXGI_ERROR_NOT_FOUND) {
+ DXGI_ADAPTER_DESC desc{};
+ out_adapter->GetDesc(&desc);
+ if (desc.VendorId == refIntelVendorID) {
+ intel_adapter = createCOMPtrGuard(out_adapter);
+ break;
+ }
+ ++adapter_index;
+ }
+
+ if (!intel_adapter) {
+ std::cerr << "No Intel GPU adapter on aboard. Exit" << std::endl;
+ return -1;
+ }
+
+ std::tie(dx11_dev, dx11_ctx) = create_device_with_ctx(intel_adapter.get());
+ gpu_accel_device = cv::util::make_optional(
+ cv::gapi::wip::onevpl::create_dx11_device(
+ reinterpret_cast<void*>(dx11_dev.release()),
+ "GPU"));
+ gpu_accel_ctx = cv::util::make_optional(
+ cv::gapi::wip::onevpl::create_dx11_context(
+ reinterpret_cast<void*>(dx11_ctx.release())));
+#endif // HAVE_D3D11
+#endif // HAVE_DIRECTX
+#ifdef __linux__
+#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
+ static const char *predefined_vaapi_devices_list[] {"/dev/dri/renderD128",
+ "/dev/dri/renderD129",
+ "/dev/dri/card0",
+ "/dev/dri/card1",
+ nullptr};
+ std::stringstream ss;
+ int device_fd = -1;
+ VADisplay va_handle = nullptr;
+ for (const char **device_path = predefined_vaapi_devices_list;
+ *device_path != nullptr; device_path++) {
+ device_fd = open(*device_path, O_RDWR);
+ if (device_fd < 0) {
+ std::string info("Cannot open GPU file: \"");
+ info = info + *device_path + "\", error: " + strerror(errno);
+ ss << info << std::endl;
+ continue;
+ }
+ va_handle = vaGetDisplayDRM(device_fd);
+ if (!va_handle) {
+ close(device_fd);
+ std::string info("VAAPI device vaGetDisplayDRM failed, error: ");
+ info += strerror(errno);
+ ss << info << std::endl;
+ continue;
+ }
+ int major_version = 0, minor_version = 0;
+ VAStatus status {};
+ status = vaInitialize(va_handle, &major_version, &minor_version);
+ if (VA_STATUS_SUCCESS != status) {
+ close(device_fd);
+ va_handle = nullptr;
+
+ std::string info("Cannot initialize VAAPI device, error: ");
+ info += vaErrorStr(status);
+ ss << info << std::endl;
+ continue;
+ }
+ std::cout << "VAAPI created for device: " << *device_path << ", version: "
+ << major_version << "." << minor_version << std::endl;
+ break;
+ }
+
+ // check device creation
+ if (!va_handle) {
+ std::cerr << "Cannot create VAAPI device. Log:\n" << ss.str() << std::endl;
+ return -1;
+ }
+ gpu_accel_device = cv::util::make_optional(
+ cv::gapi::wip::onevpl::create_vaapi_device(reinterpret_cast<void*>(va_handle),
+ "GPU"));
+ gpu_accel_ctx = cv::util::make_optional(
+ cv::gapi::wip::onevpl::create_vaapi_context(nullptr));
+#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
+#endif // #ifdef __linux__
+ }
+
+#ifdef HAVE_INF_ENGINE
+ // activate remote ctx in Inference Engine for GPU device
+ // when other pipeline component use the GPU device too
+ if (flow_settings->ie_remote_ctx_enable) {
+ InferenceEngine::ParamMap ctx_config({{"CONTEXT_TYPE", "VA_SHARED"},
+ {"VA_DEVICE", gpu_accel_device.value().get_ptr()} });
+ face_net.cfgContextParams(ctx_config);
+ std::cout << "enforce InferenceEngine remote context on device: " << device_id << std::endl;
+
+ // NB: consider NV12 surface because it's one of native GPU image format
+ face_net.pluginConfig({{"GPU_NV12_TWO_INPUTS", "YES" }});
+ std::cout << "enforce InferenceEngine NV12 blob" << std::endl;
+ }
+#endif // HAVE_INF_ENGINE
+
+ // turn on VPP PreprocesingEngine if available & requested
+ if (flow_settings->vpl_preproc_enable) {
+ if (is_gpu(preproc_device)) {
+ // activate VPP PreprocesingEngine on GPU
+ face_net.cfgPreprocessingParams(gpu_accel_device.value(),
+ gpu_accel_ctx.value());
+ } else {
+ // activate VPP PreprocesingEngine on CPU
+ face_net.cfgPreprocessingParams(cpu_accel_device,
+ cpu_accel_ctx);
+ }
+ std::cout << "enforce VPP preprocessing on device: " << preproc_device << std::endl;
+ } else {
+ std::cout << "use InferenceEngine default preprocessing" << std::endl;
+ }
+
+ auto kernels = cv::gapi::kernels
+ < custom::OCVLocateROI
+ , custom::OCVParseSSD
+ , custom::OCVBBoxes>();
+ auto networks = cv::gapi::networks(face_net);
+ auto face_detection_args = cv::compile_args(networks, kernels);
+ if (streaming_queue_capacity != 0) {
+ face_detection_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity });
+ }
+
+ // Create source
+ cv::gapi::wip::IStreamSource::Ptr cap;
+ try {
+ if (is_gpu(source_device)) {
+ std::cout << "enforce VPL Source deconding on device: " << source_device << std::endl;
+ // use special 'Device' constructor for `onevpl::GSource`
+ cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs,
+ gpu_accel_device.value(),
+ gpu_accel_ctx.value());
+ } else {
+ cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs);
+ }
+ std::cout << "oneVPL source description: " << cap->descr_of() << std::endl;
+ } catch (const std::exception& ex) {
+ std::cerr << "Cannot create source: " << ex.what() << std::endl;
+ return -1;
+ }
+
+ cv::GMetaArg descr = cap->descr_of();
+ auto frame_descr = cv::util::get<cv::GFrameDesc>(descr);
+ cv::GOpaque<cv::Rect> in_roi;
+ auto inputs = cv::gin(cap);
+
+ // Now build the graph
+ cv::GFrame in;
+ auto size = cv::gapi::streaming::size(in);
+ auto graph_inputs = cv::GIn(in);
+ if (!opt_roi.has_value()) {
+ // Automatically detect ROI to infer. Make it output parameter
+ std::cout << "ROI is not set or invalid. Locating it automatically"
+ << std::endl;
+ in_roi = custom::LocateROI::on(size);
+ } else {
+ // Use the value provided by user
+ std::cout << "Will run inference for static region "
+ << opt_roi.value()
+ << " only"
+ << std::endl;
+ graph_inputs += cv::GIn(in_roi);
+ inputs += cv::gin(opt_roi.value());
+ }
+ auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
+ cv::GArray<cv::Rect> rcs = custom::ParseSSD::on(blob, in_roi, size);
+ auto out_frame = cv::gapi::wip::draw::renderFrame(in, custom::BBoxes::on(rcs, in_roi));
+ auto out = cv::gapi::streaming::BGR(out_frame);
+ cv::GStreamingCompiled pipeline = cv::GComputation(std::move(graph_inputs), cv::GOut(out)) // and move here
+ .compileStreaming(std::move(face_detection_args));
+ // The execution part
+ pipeline.setSource(std::move(inputs));
+ pipeline.start();
+
+ size_t frames = 0u;
+ cv::TickMeter tm;
+ cv::VideoWriter writer;
+ if (!output.empty() && !writer.isOpened()) {
+ const auto sz = cv::Size{frame_descr.size.width, frame_descr.size.height};
+ writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
+ GAPI_Assert(writer.isOpened());
+ }
+
+ cv::Mat outMat;
+ tm.start();
+ while (pipeline.pull(cv::gout(outMat))) {
+ cv::imshow("Out", outMat);
+ cv::waitKey(1);
+ if (!output.empty()) {
+ writer << outMat;
+ }
+ ++frames;
+ }
+ tm.stop();
+ std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
+
+ return 0;
+}
+
+
+namespace cfg {
+typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) {
+ using namespace cv::gapi::wip;
+
+ if (line.empty()) {
+ throw std::runtime_error("Cannot parse CfgParam from emply line");
+ }
+
+ std::string::size_type name_endline_pos = line.find(':');
+ if (name_endline_pos == std::string::npos) {
+ throw std::runtime_error("Cannot parse CfgParam from: " + line +
+ "\nExpected separator \":\"");
+ }
+
+ std::string name = line.substr(0, name_endline_pos);
+ std::string value = line.substr(name_endline_pos + 1);
+
+ return cv::gapi::wip::onevpl::CfgParam::create(name, value,
+ /* vpp params strongly optional */
+ name.find("vpp.") == std::string::npos);
+}
+}
--- /dev/null
+#include <algorithm>
+#include <fstream>
+#include <iostream>
+#include <cctype>
+#include <tuple>
+#include <memory>
+
+#include <opencv2/imgproc.hpp>
+#include <opencv2/gapi.hpp>
+#include <opencv2/gapi/core.hpp>
+#include <opencv2/gapi/gpu/ggpukernel.hpp>
+#include <opencv2/gapi/streaming/onevpl/source.hpp>
+#include <opencv2/gapi/streaming/onevpl/data_provider_interface.hpp>
+#include <opencv2/gapi/streaming/onevpl/default.hpp>
+#include <opencv2/highgui.hpp> // CommandLineParser
+#include <opencv2/gapi/ocl/core.hpp>
+
+const std::string about =
+ "This is an example presents decoding on GPU using VPL Source and passing it to OpenCL backend";
+const std::string keys =
+ "{ h help | | Print this help message }"
+ "{ input | | Path to the input video file. Use .avi extension }"
+ "{ accel_mode | mfxImplDescription.AccelerationMode:MFX_ACCEL_MODE_VIA_D3D11 | Acceleration mode for VPL }";
+
+namespace {
+namespace cfg {
+// FIXME: Move OneVPL arguments parser to a single place
+typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line);
+} // namespace cfg
+} // anonymous namespace
+
+int main(int argc, char *argv[]) {
+ cv::CommandLineParser cmd(argc, argv, keys);
+ cmd.about(about);
+ if (cmd.has("help")) {
+ cmd.printMessage();
+ return 0;
+ }
+
+ // Get file name
+ const auto input = cmd.get<std::string>("input");
+ const auto accel_mode = cmd.get<std::string>("accel_mode");
+
+ // Create VPL config
+ std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs;
+ source_cfgs.push_back(cfg::create_from_string(accel_mode));
+
+ // Create VPL-based source
+ std::shared_ptr<cv::gapi::wip::onevpl::IDeviceSelector> default_device_selector =
+ cv::gapi::wip::onevpl::getDefaultDeviceSelector(source_cfgs);
+
+ cv::gapi::wip::IStreamSource::Ptr source = cv::gapi::wip::make_onevpl_src(input, source_cfgs,
+ default_device_selector);
+
+ // Build the graph
+ cv::GFrame in; // input frame from VPL source
+ auto bgr_gmat = cv::gapi::streaming::BGR(in); // conversion from VPL source frame to BGR UMat
+ auto out = cv::gapi::blur(bgr_gmat, cv::Size(4,4)); // ocl kernel of blur operation
+
+ cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
+ .compileStreaming(cv::compile_args(cv::gapi::core::ocl::kernels()));
+ pipeline.setSource(std::move(source));
+
+ // The execution part
+ size_t frames = 0u;
+ cv::TickMeter tm;
+ cv::Mat outMat;
+
+ pipeline.start();
+ tm.start();
+
+ while (pipeline.pull(cv::gout(outMat))) {
+ cv::imshow("OutVideo", outMat);
+ cv::waitKey(1);
+ ++frames;
+ }
+ tm.stop();
+ std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
+
+ return 0;
+}
+
+namespace {
+namespace cfg {
+typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) {
+ using namespace cv::gapi::wip;
+
+ if (line.empty()) {
+ throw std::runtime_error("Cannot parse CfgParam from emply line");
+ }
+
+ std::string::size_type name_endline_pos = line.find(':');
+ if (name_endline_pos == std::string::npos) {
+ throw std::runtime_error("Cannot parse CfgParam from: " + line +
+ "\nExpected separator \":\"");
+ }
+
+ std::string name = line.substr(0, name_endline_pos);
+ std::string value = line.substr(name_endline_pos + 1);
+
+ return cv::gapi::wip::onevpl::CfgParam::create(name, value,
+ /* vpp params strongly optional */
+ name.find("vpp.") == std::string::npos);
+}
+} // namespace cfg
+} // anonymous namespace
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
&& arg.kind != cv::detail::ArgKind::GSCALAR
&& arg.kind != cv::detail::ArgKind::GARRAY
- && arg.kind != cv::detail::ArgKind::GOPAQUE);
+ && arg.kind != cv::detail::ArgKind::GOPAQUE
+ && arg.kind != cv::detail::ArgKind::GFRAME);
if (arg.kind != cv::detail::ArgKind::GOBJREF)
{
// Note: .at() is intentional for GOpaque as object MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case GShape::GOPAQUE: return GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
+ case GShape::GFRAME: return GArg(m_res.slot<cv::MediaFrame>().at(ref.id));
default:
util::throw_error(std::logic_error("Unsupported GShape type"));
break;
#include "precomp.hpp"
+#include "logger.hpp"
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/ocl/core.hpp>
+#include <opencv2/gapi/util/throw.hpp>
+
#include "backends/ocl/goclcore.hpp"
+#ifdef HAVE_DIRECTX
+#ifdef HAVE_D3D11
+#pragma comment(lib,"d3d11.lib")
+
+// get rid of generate macro max/min/etc from DX side
+#define D3D11_NO_HELPERS
+#define NOMINMAX
+#include <d3d11.h>
+#pragma comment(lib, "dxgi")
+#undef NOMINMAX
+#undef D3D11_NO_HELPERS
+#include <opencv2/core/directx.hpp>
+#endif // HAVE_D3D11
+#endif // HAVE_DIRECTX
+
+#include <opencv2/core/ocl.hpp>
+#include "streaming/onevpl/accelerators/surface/dx11_frame_adapter.hpp"
+
GAPI_OCL_KERNEL(GOCLAdd, cv::gapi::core::GAdd)
{
static void run(const cv::UMat& a, const cv::UMat& b, int dtype, cv::UMat& out)
}
};
+GAPI_OCL_KERNEL(GOCLBGR, cv::gapi::streaming::GBGR)
+{
+ static void run(const cv::MediaFrame& in, cv::UMat& out)
+ {
+ cv::util::suppress_unused_warning(in);
+ cv::util::suppress_unused_warning(out);
+#ifdef HAVE_DIRECTX
+#ifdef HAVE_D3D11
+#ifdef HAVE_ONEVPL
+ auto d = in.desc();
+ if (d.fmt != cv::MediaFormat::NV12)
+ {
+ GAPI_LOG_FATAL(nullptr, "Unsupported format provided: " << static_cast<int>(d.fmt) <<
+ ". Expected cv::MediaFormat::NV12.");
+ cv::util::throw_error(std::logic_error("Unsupported MediaFrame format provided"));
+ }
+
+ // FIXME: consider a better solution.
+ // Current approach cannot be easily extended for other adapters (getHandle).
+ auto adapterPtr = in.get<cv::gapi::wip::onevpl::VPLMediaFrameDX11Adapter>();
+ if (adapterPtr == nullptr)
+ {
+ GAPI_LOG_FATAL(nullptr, "Unsupported adapter type. Only VPLMediaFrameDX11Adapter is supported");
+ cv::util::throw_error(std::logic_error("Unsupported adapter type. Only VPLMediaFrameDX11Adapter is supported"));
+ }
+
+ auto params = adapterPtr->getHandle();
+ auto handle = cv::util::any_cast<mfxHDLPair>(params);
+ ID3D11Texture2D* texture = reinterpret_cast<ID3D11Texture2D*>(handle.first);
+ if (texture == nullptr)
+ {
+ GAPI_LOG_FATAL(nullptr, "mfxHDLPair contains ID3D11Texture2D that is nullptr. Handle address" <<
+ reinterpret_cast<uint64_t>(handle.first));
+ cv::util::throw_error(std::logic_error("mfxHDLPair contains ID3D11Texture2D that is nullptr"));
+ }
+
+ // FIXME: Assuming here that we only have 1 device
+ // TODO: Textures are reusable, so to improve the peroformance here
+ // consider creating a hash map texture <-> device/ctx
+ static thread_local ID3D11Device* pD3D11Device = nullptr;
+ if (pD3D11Device == nullptr)
+ {
+ texture->GetDevice(&pD3D11Device);
+ }
+ if (pD3D11Device == nullptr)
+ {
+ GAPI_LOG_FATAL(nullptr, "D3D11Texture2D::GetDevice returns pD3D11Device that is nullptr");
+ cv::util::throw_error(std::logic_error("D3D11Texture2D::GetDevice returns pD3D11Device that is nullptr"));
+ }
+
+ // FIXME: assuming here that the context is always the same
+ // TODO: Textures are reusable, so to improve the peroformance here
+ // consider creating a hash map texture <-> device/ctx
+ static thread_local cv::ocl::Context ctx = cv::directx::ocl::initializeContextFromD3D11Device(pD3D11Device);
+ if (ctx.ptr() == nullptr)
+ {
+ GAPI_LOG_FATAL(nullptr, "initializeContextFromD3D11Device returned null context");
+ cv::util::throw_error(std::logic_error("initializeContextFromD3D11Device returned null context"));
+ }
+
+ cv::directx::convertFromD3D11Texture2D(texture, out);
+#else
+ GAPI_LOG_FATAL(nullptr, "HAVE_ONEVPL is not set. Please, check your cmake flags");
+ cv::util::throw_error(std::logic_error("HAVE_ONEVPL is not set. Please, check your cmake flags"));
+#endif // HAVE_ONEVPL
+#else
+ GAPI_LOG_FATAL(nullptr, "HAVE_D3D11 or HAVE_DIRECTX is not set. Please, check your cmake flags");
+ cv::util::throw_error(std::logic_error("HAVE_D3D11 or HAVE_DIRECTX is not set. Please, check your cmake flags"));
+#endif // HAVE_D3D11
+#endif // HAVE_DIRECTX
+ }
+};
+
cv::GKernelPackage cv::gapi::core::ocl::kernels()
{
static auto pkg = cv::gapi::kernels
, GOCLLUT
, GOCLConvertTo
, GOCLTranspose
+ , GOCLBGR
>();
return pkg;
}
cv::util::any VPLMediaFrameCPUAdapter::blobParams() const {
throw std::runtime_error("VPLMediaFrameCPUAdapter::blobParams() is not implemented");
- return {};
}
void VPLMediaFrameCPUAdapter::serialize(cv::gapi::s11n::IOStream&) {
}
}
+mfxHDLPair VPLMediaFrameDX11Adapter::getHandle() const {
+ auto surface_ptr_copy = get_surface();
+ const Surface::data_t& data = surface_ptr_copy->get_data();
+ NativeHandleAdapter* native_handle_getter = reinterpret_cast<NativeHandleAdapter*>(data.MemId);
+
+ mfxHDLPair handle{};
+ native_handle_getter->get_handle(data.MemId, reinterpret_cast<mfxHDL&>(handle));
+ return handle;
+}
+
cv::util::any VPLMediaFrameDX11Adapter::blobParams() const {
/*GAPI_Assert(false && "VPLMediaFrameDX11Adapter::blobParams() is not fully integrated"
"in OpenVINO InferenceEngine and would be temporary disable.");*/
#ifdef HAVE_INF_ENGINE
+ mfxHDLPair handle = getHandle();
+
auto surface_ptr_copy = get_surface();
- Surface::data_t& data = surface_ptr_copy->get_data();
const Surface::info_t& info = surface_ptr_copy->get_info();
- NativeHandleAdapter* native_handle_getter = reinterpret_cast<NativeHandleAdapter*>(data.MemId);
-
- mfxHDLPair handle{};
- native_handle_getter->get_handle(data.MemId, reinterpret_cast<mfxHDL&>(handle));
GAPI_Assert(frame_desc.fmt == MediaFormat::NV12 &&
"blobParams() for VPLMediaFrameDX11Adapter supports NV12 only");
GAPI_EXPORTS ~VPLMediaFrameDX11Adapter();
MediaFrame::View access(MediaFrame::Access) override;
+ // FIXME: Consider a better solution since this approach
+ // is not easily extendable for other adapters (oclcore.cpp)
+ // FIXME: Use with caution since the handle might become invalid
+ // due to reference counting
+ mfxHDLPair getHandle() const;
// The default implementation does nothing
cv::util::any blobParams() const override;
void serialize(cv::gapi::s11n::IOStream&) override;
namespace wip {
namespace onevpl {
-class PlatformSpecificParams;
+struct PlatformSpecificParams;
std::vector<CfgParam> update_param_with_accel_type(std::vector<CfgParam> &¶m_array, AccelType type);
struct GAPI_EXPORTS CfgParamDeviceSelector final: public IDeviceSelector {
--- /dev/null
+// This file is part of OpenCV project.
+// It is subject to the license terms in the LICENSE file found in the top-level directory
+// of this distribution and at http://opencv.org/license.html.
+//
+// Copyright (C) 2022 Intel Corporation
+
+#include <iostream>
+#include <memory>
+
+#include <opencv2/gapi/streaming/onevpl/default.hpp>
+#include <opencv2/gapi/streaming/onevpl/cfg_params.hpp>
+#include <opencv2/gapi/streaming/onevpl/device_selector_interface.hpp>
+
+#include "cfg_param_device_selector.hpp"
+
+#ifdef HAVE_ONEVPL
+
+namespace cv {
+namespace gapi {
+namespace wip {
+namespace onevpl {
+
+std::shared_ptr<IDeviceSelector> getDefaultDeviceSelector(const std::vector<CfgParam>& cfg_params) {
+ std::shared_ptr<CfgParamDeviceSelector> default_accel_contex(new CfgParamDeviceSelector(cfg_params));
+
+ return default_accel_contex;
+}
+
+} // namespace onevpl
+} // namespace wip
+} // namespace gapi
+} // namespace cv
+
+#else // HAVE_ONEVPL
+
+namespace cv {
+namespace gapi {
+namespace wip {
+namespace onevpl {
+
+std::shared_ptr<IDeviceSelector> getDefaultDeviceSelector(const std::vector<CfgParam>&) {
+ std::cerr << "Cannot utilize getDefaultVPLDeviceAndCtx without HAVE_ONEVPL enabled" << std::endl;
+ util::throw_error(std::logic_error("Cannot utilize getDefaultVPLDeviceAndCtx without HAVE_ONEVPL enabled"));
+ return nullptr;
+}
+
+} // namespace onevpl
+} // namespace wip
+} // namespace gapi
+} // namespace cv
+
+#endif // HAVE_ONEVPL
}
- decRequest.Type |= MFX_MEMTYPE_EXTERNAL_FRAME | MFX_MEMTYPE_FROM_DECODE | MFX_MEMTYPE_FROM_VPPIN;
+ decRequest.Type |= MFX_MEMTYPE_EXTERNAL_FRAME | MFX_MEMTYPE_FROM_DECODE |
+ MFX_MEMTYPE_FROM_VPPIN | MFX_MEMTYPE_SHARED_RESOURCE;
VPLAccelerationPolicy::pool_key_t decode_pool_key =
acceleration_policy->create_surface_pool(decRequest, mfxDecParams.mfx.FrameInfo);
vppRequests[1].AllocId = std::numeric_limits<uint16_t>::max() - request_id++;
GAPI_Assert(request_id != std::numeric_limits<uint16_t>::max() && "Something wrong");
- vppRequests[1].Type |= MFX_MEMTYPE_FROM_VPPIN;
+ vppRequests[1].Type |= MFX_MEMTYPE_FROM_VPPIN | MFX_MEMTYPE_SHARED_RESOURCE;
vpp_out_pool_key = acceleration_policy->create_surface_pool(vppRequests[1],
mfxVPPParams.vpp.Out);
} // namespace wip
} // namespace gapi
} // namespace cv
+
#endif // HAVE_ONEVPL
#include "../test_precomp.hpp"
#include "../common/gapi_streaming_tests_common.hpp"
+#include "../common/gapi_tests_common.hpp"
#include <chrono>
#include <future>
#ifdef HAVE_ONEVPL
#include <opencv2/gapi/streaming/onevpl/data_provider_interface.hpp>
+#include <opencv2/gapi/streaming/onevpl/default.hpp>
#include "streaming/onevpl/file_data_provider.hpp"
#include "streaming/onevpl/cfg_param_device_selector.hpp"
EXPECT_TRUE(0 == surf->get_locks_count());
}
+TEST(OneVPL_Source_Default_Source_With_OCL_Backend, Accuracy)
+{
+ using namespace cv::gapi::wip::onevpl;
+
+ auto create_from_string = [](const std::string& line){
+ std::string::size_type name_endline_pos = line.find(':');
+ std::string name = line.substr(0, name_endline_pos);
+ std::string value = line.substr(name_endline_pos + 1);
+ return CfgParam::create(name, value);
+ };
+
+ std::vector<CfgParam> source_cfgs;
+ source_cfgs.push_back(create_from_string("mfxImplDescription.AccelerationMode:MFX_ACCEL_MODE_VIA_D3D11"));
+
+ // Create VPL-based source
+ std::shared_ptr<IDeviceSelector> default_device_selector = getDefaultDeviceSelector(source_cfgs);
+
+ cv::gapi::wip::IStreamSource::Ptr source;
+ cv::gapi::wip::IStreamSource::Ptr source_cpu;
+
+ auto input = findDataFile("cv/video/768x576.avi");
+ try {
+ source = cv::gapi::wip::make_onevpl_src(input, source_cfgs, default_device_selector);
+ source_cpu = cv::gapi::wip::make_onevpl_src(input, source_cfgs, default_device_selector);
+ } catch(...) {
+ throw SkipTestException("Video file can not be opened");
+ }
+
+ // Build the graph w/ OCL backend
+ cv::GFrame in; // input frame from VPL source
+ auto bgr_gmat = cv::gapi::streaming::BGR(in); // conversion from VPL source frame to BGR UMat
+ auto out = cv::gapi::blur(bgr_gmat, cv::Size(4,4)); // ocl kernel of blur operation
+
+ cv::GStreamingCompiled pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out))
+ .compileStreaming(std::move(cv::compile_args(cv::gapi::core::ocl::kernels())));
+ pipeline.setSource(std::move(source));
+
+ cv::GStreamingCompiled pipeline_cpu = cv::GComputation(cv::GIn(in), cv::GOut(out))
+ .compileStreaming(std::move(cv::compile_args(cv::gapi::core::cpu::kernels())));
+ pipeline_cpu.setSource(std::move(source_cpu));
+
+ // The execution part
+ cv::Mat out_mat;
+ std::vector<cv::Mat> ocl_mats, cpu_mats;
+
+ // Run the pipelines
+ pipeline.start();
+ while (pipeline.pull(cv::gout(out_mat)))
+ {
+ ocl_mats.push_back(out_mat);
+ }
+
+ pipeline_cpu.start();
+ while (pipeline_cpu.pull(cv::gout(out_mat)))
+ {
+ cpu_mats.push_back(out_mat);
+ }
+
+ // Compare results
+ // FIXME: investigate why 2 sources produce different number of frames sometimes
+ for (size_t i = 0; i < std::min(ocl_mats.size(), cpu_mats.size()); ++i)
+ {
+ EXPECT_TRUE(AbsTolerance(1).to_compare_obj()(ocl_mats[i], cpu_mats[i]));
+ }
+}
+
TEST(OneVPL_Source_CPU_Accelerator, InitDestroy)
{
using cv::gapi::wip::onevpl::VPLCPUAccelerationPolicy;